JP5265975B2 - Manufacturing method and manufacturing apparatus for glass molded body - Google Patents

Manufacturing method and manufacturing apparatus for glass molded body Download PDF

Info

Publication number
JP5265975B2
JP5265975B2 JP2008171139A JP2008171139A JP5265975B2 JP 5265975 B2 JP5265975 B2 JP 5265975B2 JP 2008171139 A JP2008171139 A JP 2008171139A JP 2008171139 A JP2008171139 A JP 2008171139A JP 5265975 B2 JP5265975 B2 JP 5265975B2
Authority
JP
Japan
Prior art keywords
melt
manufacturing
electrodes
dissolution tank
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008171139A
Other languages
Japanese (ja)
Other versions
JP2010006674A (en
Inventor
孝之 岸
直雪 後藤
稔 梅田
直人 佐藤
寛 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008171139A priority Critical patent/JP5265975B2/en
Priority to RU2011102520/03A priority patent/RU2465221C2/en
Priority to CN200980124596.3A priority patent/CN102076619B/en
Priority to PCT/JP2009/061851 priority patent/WO2010001857A1/en
Publication of JP2010006674A publication Critical patent/JP2010006674A/en
Application granted granted Critical
Publication of JP5265975B2 publication Critical patent/JP5265975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Provided are a glass-formed body manufacturing method and a manufacturing device which can support formation of a large-volume glass block and fully improve the homogeneity of glass. A glass-formed body manufacturing device (10) is provided with a melting tank (20) in which a melt of a raw material is housed and which comprises plural electrodes (21a, 21'a) immersed in the melt, a feeder (30) which communicates with the melting tank (20), a heating unit (40) provided in the upper portion of the melting tank (20), a forming die (50) for forming molten glass led out from the feeder (30), and a stirring body (60) insertable into and removable from the melting tank (20).  The molten glass is fabricated by heating the molten solution from above the molten solution by the heating unit (40) while conductively heating the molten solution by electrically connecting the plural electrodes (21a, 21'a), inserting the stirring body (60) into the melting tank (20) from outside after the raw material is melted, and stirring the molten solution by the stirring body (60).

Description

本発明は、ガラス成形体の製造方法及び製造装置に関する。   The present invention relates to a method for manufacturing a glass molded body and a manufacturing apparatus.

従来、連続的にガラスを得るための溶解装置としては、溶解槽、清澄槽、及び撹拌槽が順次設けられ、融液のレベルが常にほぼ一定となるように原料が補充され、溶解槽で原料が溶融された融液が、清澄槽及び撹拌槽へと順次移動するという連続式の溶解炉が多く用いられている。   Conventionally, as a melting apparatus for continuously obtaining glass, a melting tank, a clarification tank, and a stirring tank are sequentially provided, and the raw material is replenished so that the level of the melt is always substantially constant. A continuous melting furnace is often used in which the melted liquid is sequentially moved to a clarification tank and a stirring tank.

しかし、このような連続式の溶解炉では、ガラスの単位時間あたり流出量を、一定量を超えて増やすことができない。このため、単位時間あたりに多量のガラスを流出することが必要な大体積のガラスブロックを成形することは困難である。そこで、特許文献1には、バッチ式の溶解炉(ガラスの流出を停止しつつ、ある一定量の融液が得られると原料の補充を停止し、その後ガラスの流出を開始する溶解炉)を用いて大体積のガラスブロックを成形する技術が開示されている。   However, in such a continuous melting furnace, the outflow amount of glass per unit time cannot be increased beyond a certain amount. For this reason, it is difficult to form a large volume glass block that requires a large amount of glass to flow out per unit time. Therefore, Patent Document 1 discloses a batch-type melting furnace (a melting furnace that stops the refilling of raw materials when a certain amount of melt is obtained while stopping the outflow of glass, and then starts outflow of glass). A technique for forming a large-capacity glass block using the same is disclosed.

ところで、均質なガラスを得るためには、融液を充分に撹拌する必要がある。撹拌は融液の対流やバブリングによって行うこともできるが、特に融液の粘度が高い等の場合には、撹拌棒等で融液を機械的に撹拌することが望まれる。
特開2006−117525号公報
By the way, in order to obtain a homogeneous glass, it is necessary to sufficiently stir the melt. Stirring can also be performed by convection or bubbling of the melt, but it is desirable to mechanically stir the melt with a stir bar or the like, particularly when the melt has a high viscosity.
JP 2006-117525 A

しかし、特許文献1に示されるバッチ式の溶解炉では、単一の溶解槽において溶解、清澄、及び撹拌を行う場合、溶解工程中の未溶解の原料が作用して、機械的な撹拌装置の損傷や、白金との合金化による劣化という問題を生じるために、機械的な撹拌装置を設置することが困難であった。このため、従来のバッチ式の溶解炉では機械的撹拌以外の方法で撹拌を行う必要があり、結果的にガラスの均質性の向上が不充分になりやすかった。   However, in the batch-type melting furnace shown in Patent Document 1, when performing melting, clarification, and stirring in a single melting tank, undissolved raw materials in the melting step act, It has been difficult to install a mechanical stirrer because of problems such as damage and deterioration due to alloying with platinum. For this reason, in the conventional batch type melting furnace, it is necessary to perform stirring by a method other than mechanical stirring, and as a result, improvement in the homogeneity of the glass tends to be insufficient.

本発明は、以上の実情に鑑みてなされたものであり、大体積のガラスブロックの成形に対応でき且つガラスの均質性を充分に向上できるガラス成形体の製造方法及び製造装置を提供することを目的とする。ここで、大体積のガラスブロックとは、例えば0.3m以上のものを言う。なお、本発明においてガラスは、アモルファスガラス及びアモルファスガラスを熱処理し、結晶化させた結晶化ガラスを含むものである。 The present invention has been made in view of the above circumstances, and provides a method and apparatus for manufacturing a glass molded body that can cope with the molding of a large volume glass block and can sufficiently improve the homogeneity of the glass. Objective. Here, the large-volume glass block refers to, for example, a block having a size of 0.3 m 3 or more. In addition, in this invention, glass contains the crystallized glass which heat-processed and crystallized amorphous glass and amorphous glass.

本発明者らは、融液の上方から融液を加熱しつつ融液を通電加熱し、適切なタイミングで撹拌体を挿脱することで、融液の温度が適切に制御され、撹拌体の損傷を抑えつつ充分に融液を撹拌できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The present inventors heated the melt from above the melt while energizing and heating the melt, and inserting and removing the stirrer at an appropriate timing, so that the temperature of the melt is appropriately controlled, The inventors have found that the melt can be sufficiently stirred while suppressing damage, and have completed the present invention. Specifically, the present invention provides the following.

(1) 原材料の融液が収容された溶解槽に連通するフィーダから成形型へとガラスを流出するガラス成形体の製造方法であって、
融液中に複数の電極を有する前記溶解槽に原材料を供給する供給工程と、
前記複数の電極を通電して融液を導電加熱しつつ、更に融液の上方から融液を加熱する加熱工程と、を有し、
前記原材料が溶解した後、外部から前記溶解槽の内部へと撹拌体を挿入し、この撹拌体で前記融液を撹拌する製造方法。
(1) A method for producing a glass molded body in which glass flows out from a feeder communicating with a melting tank containing a raw material melt into a mold,
Supplying a raw material to the dissolution tank having a plurality of electrodes in the melt;
Heating the melt from above the melt while conducting the heating of the melt by energizing the plurality of electrodes,
A manufacturing method in which, after the raw materials are dissolved, a stirring body is inserted from the outside into the dissolution tank, and the melt is stirred by the stirring body.

(2) 前記加熱工程は、前記溶解槽の底部から融液の深さの4分の1以下の範囲における融液の温度を、前記液面から前記融液の深さの4分の1以下の範囲における融液の温度よりも高くする温度差設定工程を有する(1)記載の製造方法。   (2) In the heating step, the temperature of the melt in the range of ¼ or less of the melt depth from the bottom of the dissolution tank is set to ¼ or less of the melt depth from the liquid surface. (1) The manufacturing method as described in (1) which has a temperature difference setting process made higher than the temperature of the melt in the range.

(3) 温度差を10℃以上にする(2)記載の製造方法。   (3) The manufacturing method according to (2), wherein the temperature difference is 10 ° C. or more.

(4) 前記複数の電極として、内部に冷却機構を有し且つ前記溶解槽の内方へ略水平に突出するものを用い、前記冷却機構によって前記複数の電極を冷却する(1)から(3)いずれか記載の製造方法。   (4) As the plurality of electrodes, those having a cooling mechanism inside and projecting substantially horizontally inward of the dissolution tank are used, and the plurality of electrodes are cooled by the cooling mechanism (1) to (3 ) Any one of the manufacturing methods.

(5) 前記溶解槽として、少なくとも前記複数の電極の設置位置における内部の水平断面がn角形(nは4以上の整数である)のものを用いる(1)から(4)いずれか記載の製造方法。   (5) The production according to any one of (1) to (4), wherein an inner horizontal section at least at an installation position of the plurality of electrodes is an n-gon (n is an integer of 4 or more). Method.

(6) 前記液面の高さを検出し、この検出値に基づいて原材料の供給及び/又は融液の導出の量を調節する(1)から(5)いずれか記載の製造方法。   (6) The manufacturing method according to any one of (1) to (5), wherein the height of the liquid surface is detected, and the amount of raw material supply and / or melt derivation is adjusted based on the detected value.

(7) 前記溶解槽の底部から前記液面までの高さをH、前記溶解槽の底部から前記複数の電極の最上部までの高さをhとするとき、h/Hが0.1〜0.6になるように原材料の供給量を調節する(6)記載の製造方法。   (7) When the height from the bottom of the dissolution tank to the liquid surface is H, and the height from the bottom of the dissolution tank to the top of the plurality of electrodes is h, h / H is 0.1 to 0.1. (6) The production method according to (6), wherein the supply amount of the raw material is adjusted to be 0.6.

(8) 上方からの融液の加熱は、融液の上方に位置する上部炉壁に設けられた燃焼バーナを用いて行う(1)から(7)いずれか記載の製造方法。   (8) The manufacturing method according to any one of (1) to (7), wherein heating of the melt from above is performed using a combustion burner provided on an upper furnace wall positioned above the melt.

(9)前記溶解槽における前記液面よりも上方の体積(A)と、前記融液の体積(B)との比(A:B)を、1.0:1.0〜1.5:1.0にする(8)記載の製造方法。   (9) The ratio (A: B) of the volume (A) above the liquid level in the dissolution tank and the volume (B) of the melt is 1.0: 1.0 to 1.5: (8) The production method according to (8).

(10) 前記溶解槽として、前記上部炉壁及び/又は前記融液が収容される下部炉壁の一部又は全部は、電鋳耐火物、耐火煉瓦、及びセラミックファイバからなる群より選ばれる1種以上で形成されたものを用いる(8)又は(9)記載の製造方法。   (10) As the melting tank, a part or all of the upper furnace wall and / or the lower furnace wall in which the melt is accommodated is selected from the group consisting of an electroformed refractory, a refractory brick, and a ceramic fiber. The production method according to (8) or (9), wherein a material formed of seeds or more is used.

(11) 前記溶解槽として、前記下部炉壁のうち少なくとも前記融液に接触する部位がZrOを主材料とし、SiO及び/又はAlを更に含むものを用いる(10)記載の製造方法。 (11) as said dissolving tank, a portion in contact with at least the melt of the lower furnace wall and ZrO 2 as a main material, used further contains SiO 2 and / or Al 2 O 3 (10) according Production method.

(12) 前記溶解槽として、開度を調節可能な煙道が前記上部炉壁に設けられたものを用い、前記溶解槽の内圧が所定範囲になるように前記煙道の開度を調節する(8)から(11)いずれか記載の製造方法。   (12) As the melting tank, a flue having an adjustable opening is provided on the upper furnace wall, and the opening of the flue is adjusted so that the internal pressure of the melting tank falls within a predetermined range. (8) The manufacturing method in any one of (11).

(13) 前記燃焼バーナの開口の中央の位置と前記液面との高低差が300mm以上となるように前記液面を設定する(8)から(12)いずれか記載の製造方法。   (13) The manufacturing method according to any one of (8) to (12), wherein the liquid level is set such that a difference in height between the center position of the opening of the combustion burner and the liquid level is 300 mm or more.

(14) 前記燃焼バーナを水平方向又は水平方向よりも上方へ開口するように配置する(8)から(13)いずれか記載の製造方法。   (14) The manufacturing method according to any one of (8) to (13), wherein the combustion burner is disposed so as to open upward in the horizontal direction or in the horizontal direction.

(15) 前記原材料の供給量b(L)に対する前記燃焼バーナの単位時間当たり燃焼量a(kcal/h)の比(a/b)を400以下にする(1)から(14)いずれか記載の製造方法。   (15) The ratio (a / b) of the combustion amount a (kcal / h) per unit time of the combustion burner to the supply amount b (L) of the raw material is set to 400 or less (1) to (14) Manufacturing method.

(16) 前記複数の電極の数cに対する前記原材料の供給量b(L)の比(b/c)を350以下にする(1)から(15)いずれか記載の製造方法。   (16) The manufacturing method according to any one of (1) to (15), wherein a ratio (b / c) of the supply amount b (L) of the raw material to the number c of the plurality of electrodes is 350 or less.

(17) 前記撹拌体として、内部に冷媒流路を有するものを用い、この冷媒流路に冷媒を流通することで前記撹拌体を冷却する(1)から(16)いずれか記載の製造方法。   (17) The manufacturing method according to any one of (1) to (16), wherein the stirrer has a refrigerant flow path therein and the refrigerant is circulated through the refrigerant flow path to cool the stirrer.

(18) 前記複数の電極を、周波数が2.5kHz以上の交流電源へ電気的に接続する(1)から(17)いずれか記載の製造方法。   (18) The manufacturing method according to any one of (1) to (17), wherein the plurality of electrodes are electrically connected to an AC power source having a frequency of 2.5 kHz or more.

(19) 単一の前記溶解槽において原材料の溶融、清澄、及び撹拌を行う(1)から(18)いずれか記載の製造方法。   (19) The manufacturing method according to any one of (1) to (18), wherein the raw material is melted, clarified, and stirred in a single dissolution tank.

(20) 前記フィーダは前記溶解槽の底部の略中央に連通している(1)から(19)いずれか記載の製造方法。   (20) The manufacturing method according to any one of (1) to (19), wherein the feeder communicates with a substantial center of a bottom portion of the dissolution tank.

(21) 前記加熱工程の間の最高温度における融液の粘度が1.5poise以上であるガラス成形体の製造に適用する(1)から(20)いずれか記載の製造方法。   (21) The manufacturing method according to any one of (1) to (20), which is applied to manufacturing a glass molded body having a melt viscosity of 1.5 poise or more at the maximum temperature during the heating step.

(22) 得られるガラス成形体のOH基の含有量が570ppm以下である(1)から(21)いずれか記載の製造方法。   (22) The production method according to any one of (1) to (21), wherein the obtained glass molded body has an OH group content of 570 ppm or less.

(23) 前記ガラス成形体をSiO−Al−LiO系又はSiO−LiO系からなるものにする(1)から(22)いずれか記載の製造方法。 (23) The manufacturing method according to any one of (1) to (22), wherein the glass molded body is made of a SiO 2 —Al 2 O 3 —Li 2 O system or a SiO 2 —Li 2 O system.

(24) ガラス成形体の製造装置であって、
原材料の融液が収容され且つこの融液中に浸される複数の電極を有する溶解槽と、
前記溶解槽に連通するフィーダと、
前記溶解槽の上部に設けられた加熱手段と、
前記フィーダから導出される溶融ガラスを成形する成形型と、
前記溶解槽の内部へ挿脱可能な撹拌体と、を備える製造装置。
(24) An apparatus for manufacturing a glass molded body,
A dissolution vessel having a plurality of electrodes in which a raw material melt is contained and immersed in the melt;
A feeder communicating with the dissolution tank;
Heating means provided in the upper part of the dissolution tank;
A mold for molding molten glass derived from the feeder;
A stirring device that can be inserted into and removed from the inside of the dissolution tank.

(25) 前記撹拌体は、内部に冷媒流路を有し、この冷媒流路の周囲に高膨張セラミックスが設けられ、この高膨張セラミックスが白金又は白金ロジウム合金で被覆されたものである(24)記載の製造装置。   (25) The stirrer has a refrigerant flow path therein, high-expansion ceramics are provided around the refrigerant flow path, and the high-expansion ceramics are coated with platinum or a platinum rhodium alloy (24 ) Manufacturing apparatus described.

(26) 前記複数の電極は、内部に冷却機構を有し且つ前記溶解槽の内方へ略水平に突出する(24)又は(25)記載の製造装置。   (26) The manufacturing apparatus according to (24) or (25), wherein each of the plurality of electrodes has a cooling mechanism inside and protrudes substantially inward of the dissolution tank.

(27) 前記溶解槽は、少なくとも前記複数の電極の設置位置における内部の水平断面がn角形(nは4以上の整数である)である(24)から(26)いずれか記載の製造装置。   (27) The manufacturing apparatus according to any one of (24) to (26), wherein the dissolution tank has an n-sided horizontal cross section (n is an integer of 4 or more) at least at an installation position of the plurality of electrodes.

(28) 前記溶解槽は、融液を収容する下部炉壁と、この下部炉壁の上部に設けられた上部炉壁と、を有し、
前記加熱手段は、前記上部炉壁に設けられた燃焼バーナを有する(24)から(27)いずれか記載の製造装置。
(28) The melting tank has a lower furnace wall for storing the melt, and an upper furnace wall provided on the upper part of the lower furnace wall,
The said heating means is a manufacturing apparatus in any one of (24) to (27) which has a combustion burner provided in the said upper furnace wall.

本発明によれば、複数の電極によって融液が通電加熱されるとともに上方からも加熱されるため、原材料の溶解が迅速になされる。また、通電加熱によって融液の下部が加熱されるため、融液の対流が促進されて、清澄及び均質化も迅速になされる。そして、原材料を溶融した後に撹拌体が挿入されるため、撹拌体の損傷が抑制され、機械的な撹拌が可能になりガラスの均質性を充分に向上できる。   According to the present invention, since the melt is heated by energization by the plurality of electrodes and is also heated from above, the raw materials are rapidly dissolved. Moreover, since the lower part of the melt is heated by energization heating, the convection of the melt is promoted, and clarification and homogenization are also quickly performed. And since a stirring body is inserted after fuse | melting a raw material, damage to a stirring body is suppressed, mechanical stirring becomes possible and the homogeneity of glass can fully be improved.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るガラス成形体の製造装置10の垂直断面図である。図2は原材料投入前の状態における製造装置10の平面図である(ただし、上部炉壁26の上壁263は透視している)。製造装置10は、溶解槽20、フィーダ30、加熱手段としての加熱部40、成形型50、及び撹拌体60を備える。各構成要素を以下詳細に説明する。   FIG. 1 is a vertical sectional view of a glass molded body manufacturing apparatus 10 according to an embodiment of the present invention. FIG. 2 is a plan view of the manufacturing apparatus 10 before the raw material is charged (however, the upper wall 263 of the upper furnace wall 26 is seen through). The manufacturing apparatus 10 includes a dissolution tank 20, a feeder 30, a heating unit 40 as a heating unit, a mold 50, and a stirring body 60. Each component will be described in detail below.

[溶解槽]
溶解槽20には原材料の融液が収容されている。原材料はバッチ(各成分の原料粉末が混合されたもの)又はこのバッチがガラス化されたラフメルトカレットであってよく、原材料供給部70の本体71の先端に設けられた保持部73に載せられ、側壁231’aに形成された供給孔237を通って供給される。この供給孔237は、溶解槽20内部の温度が低下しにくいよう開閉可能に形成され、原材料の供給時に開き、それ以外の間には閉じることが好ましい。
[Dissolution tank]
The melting tank 20 contains a raw material melt. The raw material may be a batch (a mixture of raw material powders of each component) or a rough melt cullet obtained by vitrification of the batch, and is placed on a holding unit 73 provided at the front end of the main body 71 of the raw material supply unit 70. , And supplied through a supply hole 237 formed in the side wall 231′a. The supply hole 237 is formed so as to be openable and closable so that the temperature inside the dissolution tank 20 is not easily lowered, and is preferably opened when the raw material is supplied and closed during the rest.

図2に示されるように、溶解槽20は、融液中に複数の電極21a〜21d、21’a〜21’dを有し、これら複数の電極21a〜21d、21’a〜21’dは図示しない電源に電気的に接続されている。電源から電極21a〜21d又は21’a〜21’dへと電気が供給されると、融液を介して通電がなされ、融液が加熱される。この融液を介する通電による加熱と、後述する加熱部40による融液の上方からの加熱により、原材料の溶解、清澄、撹拌の各工程での炉内及び融液の温度管理を適切に行うことが可能となる。例えば、溶解槽20が空の状態から原材料を溶解する場合には、ある一定量の融液が得られるまでは加熱部40による加熱のみにより行う。また、電極21a〜21d、21’a〜21’dを溶解槽20の下部に設置しておけば、ある一定量の融液が収容されている場合に、電極21a〜21d、21’a〜21’dによる通電加熱の度合いを強め、融液上方からの加熱を比較的弱めることで融液の下部が上部よりも温度が高くなる結果、融液の対流が促進され、溶解及び清澄を迅速化することができる。   As shown in FIG. 2, the dissolution tank 20 has a plurality of electrodes 21a to 21d and 21′a to 21′d in the melt, and the plurality of electrodes 21a to 21d and 21′a to 21′d. Is electrically connected to a power source (not shown). When electricity is supplied from the power source to the electrodes 21a to 21d or 21'a to 21'd, energization is performed through the melt and the melt is heated. The temperature of the furnace and the melt are appropriately controlled in each step of melting, clarifying, and stirring the raw materials by heating by energization through the melt and heating from above of the melt by the heating unit 40 described later. Is possible. For example, when the raw material is melted from the state where the melting tank 20 is empty, the heating is performed only by the heating unit 40 until a certain amount of melt is obtained. Moreover, if the electrodes 21a to 21d and 21'a to 21'd are installed in the lower part of the dissolution tank 20, the electrodes 21a to 21d, 21'a to By increasing the degree of current heating by 21'd and relatively weakening the heating from above the melt, the temperature of the lower part of the melt becomes higher than the upper part. As a result, convection of the melt is promoted, and dissolution and clarification are rapidly performed. Can be

強い融液の対流を得やすくできる点で、溶解槽20の底部233から融液の深さの4分の1以下の範囲における融液の温度を、融液の液面FLから融液の深さの4分の1以下の範囲における融液の温度よりも高くすることが好ましい。この温度差は、融液を収容する下部炉壁23の内側に設けられた温度センサ22a〜22cと、電極21a〜21d又は21’a〜21’dの内部に設けられた図示しない温度センサとで検出される各部位の融液温度に基づいて、電極21a〜21d又は21’a〜21’dによる通電加熱及び後述の加熱部40による加熱の程度をそれぞれ調節することでなされてよい。   The melt temperature in the range of ¼ or less of the melt depth from the bottom 233 of the dissolution tank 20 can be changed from the melt surface FL to the melt depth in that a strong melt convection can be easily obtained. It is preferable to make it higher than the temperature of the melt in a range of ¼ or less. This temperature difference is caused by the temperature sensors 22a to 22c provided inside the lower furnace wall 23 containing the melt and the temperature sensors (not shown) provided inside the electrodes 21a to 21d or 21'a to 21'd. May be performed by adjusting the degree of heating by the electrodes 21a to 21d or 21'a to 21'd and the heating unit 40 described later, based on the melt temperature of each part detected in step (b).

上記温度差は、融液の粘性等に応じて適宜設定されてよいが、10℃以上であることが好ましい。温度差の下限は、より好ましくは25℃、最も好ましくは40℃である。また、温度差は、通電に費やされる費用増加及び融液による炉壁の侵食を抑制するため、150℃以下であることが好ましく、より好ましくは130℃以下、最も好ましくは100℃以下である。ここで、融液の温度は次のように測定する。即ち、炉壁に設けられた孔から融液中に白金で被覆された熱電対等の温度センサを突出させるように設置し、その温度センサによって測定する。あるいは融液中に突出させた電極21a〜21dの先端部内側に設けられた温度センサにより測定してもよい。   Although the said temperature difference may be suitably set according to the viscosity etc. of a melt, it is preferable that it is 10 degreeC or more. The lower limit of the temperature difference is more preferably 25 ° C, and most preferably 40 ° C. Further, the temperature difference is preferably 150 ° C. or less, more preferably 130 ° C. or less, and most preferably 100 ° C. or less in order to suppress an increase in cost spent for energization and erosion of the furnace wall by the melt. Here, the temperature of the melt is measured as follows. That is, a temperature sensor such as a thermocouple coated with platinum is projected into the melt from a hole provided in the furnace wall, and measurement is performed by the temperature sensor. Or you may measure with the temperature sensor provided in the front-end | tip part inside of the electrodes 21a-21d protruded in the melt.

電極21a〜21d,21’a〜21’dは、内部に図示しない冷却機構を有し且つ溶解槽20の内方へ略水平に突出することが好ましい。冷却機構によって電極21a〜21d,21’a〜21’dが冷却されるため、高温の融液による劣化を抑制できる。冷却機構は、従来周知のものであってよい。また、電極21a〜21d,21’a〜21’dが溶解槽20の内方へ略水平に突出することで、通電による融液の昇温を迅速に行うことができる。突出する長さの下限は、融液の昇温を効率化できる点で、20mmであることが好ましく、より好ましくは50mm、最も好ましくは100mmである。突出する長さの上限は、通電によって融液内に侵食する白金や白金ロジウム合金の量が極力少なくなるよう、700mmであることが好ましく、より好ましくは600mm、最も好ましくは450mmである。   It is preferable that the electrodes 21a to 21d and 21'a to 21'd have a cooling mechanism (not shown) inside and protrude substantially inward into the dissolution tank 20. Since the electrodes 21a to 21d and 21'a to 21'd are cooled by the cooling mechanism, deterioration due to a high-temperature melt can be suppressed. The cooling mechanism may be a conventionally known one. Further, since the electrodes 21a to 21d and 21'a to 21'd protrude substantially inward into the dissolution tank 20, the temperature of the melt can be rapidly increased by energization. The lower limit of the protruding length is preferably 20 mm, more preferably 50 mm, and most preferably 100 mm from the viewpoint that the temperature rise of the melt can be made efficient. The upper limit of the protruding length is preferably 700 mm, more preferably 600 mm, and most preferably 450 mm so that the amount of platinum or a platinum rhodium alloy that erodes into the melt when energized is minimized.

電極21a〜21d及び21’a〜21’dは、図2に示されるように互いに対向して配置され、電極21a,21’aの対、電極21b,21’bの対、電極21c,21’cの対、及び電極21d,21’dの対(電極の数は8本)の間で通電がなされる。ここで、融液の対流による融液の均質化を促進できる点で、複数の電極の数cに対する原材料の供給量b(L)の比(b/c)を350以下にすることが好ましい。b/cが350を超えると、融液に対する通電加熱の程度が不充分になりやすく、その結果、対流の促進が不充分になりやすい。b/cの上限は、より好ましくは325、最も好ましくは300である。また、電極の設置コスト及び対流による融液の均質化の兼ね合いから、b/cの下限は、50であることが好ましく、より好ましくは65、最も好ましくは75である。   The electrodes 21a to 21d and 21'a to 21'd are arranged to face each other as shown in FIG. 2, and are a pair of electrodes 21a and 21'a, a pair of electrodes 21b and 21'b, and an electrode 21c and 21 Energization is performed between the pair of 'c and the pair of electrodes 21d and 21'd (the number of electrodes is eight). Here, it is preferable that the ratio (b / c) of the feed amount b (L) of the raw material to the number c of the plurality of electrodes is 350 or less in that homogenization of the melt by convection of the melt can be promoted. When b / c exceeds 350, the degree of current heating to the melt tends to be insufficient, and as a result, the promotion of convection tends to be insufficient. The upper limit of b / c is more preferably 325, and most preferably 300. Further, the lower limit of b / c is preferably 50, more preferably 65, and most preferably 75 in consideration of the installation cost of the electrode and the homogenization of the melt by convection.

このような通電の際に融液の平面方向で加熱が不充分な部位が生じないように、溶解槽20の少なくとも電極の設置位置における内部の水平断面がn角形(nは4以上の整数であり、5以上の整数であることが好ましい)であることが好ましい。即ち、図5(c)のように、nが4の水平断面であってもよいが、この場合には点線で囲んだ箇所のように通電加熱が相対的に不充分な箇所が生じ得る。好ましくはnが5以上、最も好ましくは6以上であると、このような箇所が少なくなる。なお、本実施形態では図2に示されるように、構成を簡略化する観点で下部炉壁23の全体をn角形の水平断面としているが、少なくとも電極の設置位置における内部の水平断面がn角形であればよい。融液の平面方向の加熱を均一にするためには、少なくとも電極の設置位置における内部の水平断面が正n角形であることがより好ましい。   In order to prevent a portion where the heating is insufficient in the plane direction of the melt during such energization, the horizontal cross section inside the dissolution tank 20 at least at the electrode installation position is an n-square (n is an integer of 4 or more). And it is preferably an integer of 5 or more. That is, as shown in FIG. 5C, a horizontal cross section where n is 4 may be used, but in this case, there may be a place where current heating is relatively insufficient, such as a place surrounded by a dotted line. When n is preferably 5 or more, and most preferably 6 or more, such a portion is reduced. In the present embodiment, as shown in FIG. 2, the entire lower furnace wall 23 has an n-gonal horizontal section from the viewpoint of simplifying the configuration, but at least the internal horizontal section at the electrode installation position is an n-square shape. If it is. In order to make the heating of the melt in the plane direction uniform, it is more preferable that at least the internal horizontal cross section at the electrode installation position is a regular n-gon.

本実施形態では、水平断面が正8角形であるが、これに限られず、例えば図5(a)のように側壁231a〜231c,231’a〜231’c同士が湾曲面232a〜232hで滑らかにつながっていてもよい(つまり、角部がない)し、図5(b)のように水平断面が円(例えば、正円、楕円)、つまりnが無限大であってもよい。ただし、電極の設置容易性の観点からは、電極21a〜21d,21’a〜21’dが設置される部位が、図2等に示されるように平坦面であることが好ましい。   In the present embodiment, the horizontal cross section is a regular octagon. However, the present invention is not limited to this, and for example, as shown in FIG. 5A, the side walls 231a to 231c and 231′a to 231′c are smooth with curved surfaces 232a to 232h. (That is, there is no corner), and the horizontal cross section may be a circle (for example, a perfect circle or an ellipse) as shown in FIG. 5B, that is, n may be infinite. However, from the viewpoint of easy installation of the electrodes, it is preferable that the portions where the electrodes 21a to 21d and 21'a to 21'd are installed are flat surfaces as shown in FIG.

また、電極21a〜21d、21’a〜21’dに接続される電源は、特に限定されないが、融液の加熱効率を向上できる点で、周波数が2.5kHz以上の交流電源であることが好ましい。   In addition, the power source connected to the electrodes 21a to 21d and 21'a to 21'd is not particularly limited, but may be an AC power source having a frequency of 2.5 kHz or more in that the heating efficiency of the melt can be improved. preferable.

溶解槽20には液面検出器80が設けられ、この液面検出器80によって検出された融液の液面FLの高さ値に基づいて原材料の供給及び/又は融液の導出の量を調節することが好ましい。つまり、液面FLの高さの検出値が所定範囲になると、原材料の供給を停止し、後述のフィーダ30からガラスを流出可能になり、上記検出値が所定範囲を下回った場合には原材料供給部70により原材料を供給する。これにより、ガラスの品質を安定化できるとともに、電極21a〜21d、21’a〜21’dが気体に露出することによる劣化を予防できる。本実施形態における液面検出器80は、半導体レーザから近赤外線を液面FLに向けて発射し、その反射光を検出する機器であるが、これに限られるものではない。   The dissolution tank 20 is provided with a liquid level detector 80. Based on the height value of the liquid level FL of the melt detected by the liquid level detector 80, the amount of supply of raw materials and / or derivation of the melt is determined. It is preferable to adjust. That is, when the detected value of the height of the liquid level FL falls within a predetermined range, the supply of the raw material is stopped, and the glass can flow out from a feeder 30 described later. When the detected value falls below the predetermined range, the supply of the raw material is performed. The raw material is supplied by the unit 70. Thereby, the quality of the glass can be stabilized, and deterioration due to the electrodes 21a to 21d and 21'a to 21'd being exposed to gas can be prevented. The liquid level detector 80 in the present embodiment is a device that emits near infrared rays from the semiconductor laser toward the liquid level FL and detects the reflected light, but is not limited thereto.

好ましくは、溶解槽の底部から前記液面までの高さをH、前記溶解槽の底部から前記複数の電極の最上部までの高さをhとするとき、h/Hが0.1〜0.6になるように原材料の供給量を調節する。これにより、融液深さにおける電極21a〜21dの相対位置を効果的な融液の対流が得られる位置にすることができる。液面が高くなりすぎると通電による加熱の効果が充分でなくなるため、h/Hの下限は、より好ましくは0.2であり、最も好ましくは0.3である。また、融液の上下方向の温度差が設定し難くなるため、h/Hの上限は、より好ましくは0.55であり、最も好ましくは0.52である。   Preferably, when the height from the bottom of the dissolution tank to the liquid surface is H and the height from the bottom of the dissolution tank to the top of the plurality of electrodes is h, h / H is 0.1 to 0. Adjust the feed rate of raw materials to be .6. Thereby, the relative positions of the electrodes 21a to 21d at the melt depth can be set to positions where effective convection of the melt can be obtained. If the liquid level becomes too high, the effect of heating by energization becomes insufficient, so the lower limit of h / H is more preferably 0.2, and most preferably 0.3. Moreover, since it becomes difficult to set the temperature difference in the vertical direction of the melt, the upper limit of h / H is more preferably 0.55, and most preferably 0.52.

[加熱部]
加熱部40は、溶解槽20の上部に設けられて、融液の上方から融液を加熱する。これにより、融液の下部のみならず上部も昇温されるため、電極による通電加熱と合わせて融液の上下方向の温度制御が可能となり、また、原材料の溶解の迅速化の点でも有利である。加熱部40は、昇温効率に優れる点で、燃焼バーナ41a,41bを有することが好ましい。これら燃焼バーナ41a,41bは、融液を収容する下部炉壁23の上部に位置する上部炉壁26に設けられている。本実施形態における燃焼バーナ41a,41bは、上部炉壁26の側壁261から内方へと、互いに対向して配置されている。燃焼バーナ41a,41bとしては空気燃焼、酸素燃焼等を用いることができるが、高温の溶解を行うことができる観点から酸素燃焼が好ましい。
[Heating section]
The heating unit 40 is provided in the upper part of the dissolution tank 20 and heats the melt from above the melt. As a result, the temperature is raised not only at the bottom but also at the top of the melt, so that it is possible to control the temperature of the melt in the vertical direction together with the current heating by the electrodes, and it is also advantageous in terms of speeding up the melting of the raw materials. is there. The heating unit 40 preferably has combustion burners 41a and 41b in terms of excellent temperature rise efficiency. These combustion burners 41a and 41b are provided in the upper furnace wall 26 located in the upper part of the lower furnace wall 23 which accommodates a melt. The combustion burners 41a and 41b in the present embodiment are arranged to face each other from the side wall 261 of the upper furnace wall 26 inward. Air combustion, oxyfuel combustion, or the like can be used as the combustion burners 41a and 41b, but oxyfuel combustion is preferred from the viewpoint of enabling high-temperature dissolution.

燃焼バーナ41a,41bによって燃焼反応が行われると、雰囲気中にOH基が発生する。このOH基は融液に混入するとガラスの熱的安定性を低下する傾向を有するため、特に結晶化ガラスを製造する等の場合には、OH基分布による結晶化速度の違いにより不安定な結晶成長が起こり、それに起因して生じる品質劣化や割れを防止する観点から、OH基の融液への混入を抑制する必要性が高い。そこで、溶解槽20における液面FLよりも上方の体積(A)と、融液の体積(B)との比(A:B)を、1.0:1.0〜1.5:1.0にすることが好ましい。AがBに対して過剰になると、燃焼量が過多になって耐火物等の寿命が短くなりやすく、AがBに対して過小になるとOH基を高含有するガラスが製造されやすい。A:Bは、より好ましくは1.0:1.0〜1.4:1.0であり、最も好ましくは1.1:1.0〜1.35:1.0である。なお、ここで「溶解槽における液面FLよりも上方の体積(A)」とは、溶解槽において気体が占める体積を指し、通常は溶解槽20の全容積から融液の体積を差し引いた値に等しい。通常、A:Bの調節は、原材料の供給及び/又は融液の導出量を介した融液体積Bの増減によって行うことが想定されるが、これに限られず溶解槽20の容積の増減によって行ってもよい。   When a combustion reaction is performed by the combustion burners 41a and 41b, OH groups are generated in the atmosphere. Since this OH group tends to lower the thermal stability of the glass when mixed in the melt, in particular in the case of producing crystallized glass, an unstable crystal due to the difference in the crystallization rate due to the OH group distribution. From the standpoint of preventing quality degradation and cracking caused by growth and the occurrence thereof, it is highly necessary to suppress the mixing of OH groups into the melt. Therefore, the ratio (A: B) of the volume (A) above the liquid level FL in the dissolution tank 20 and the volume (B) of the melt is set to 1.0: 1.0 to 1.5: 1. It is preferably 0. When A is excessive with respect to B, the amount of combustion becomes excessive and the life of the refractory is likely to be shortened, and when A is excessively small with respect to B, glass containing a high amount of OH groups is likely to be produced. A: B is more preferably 1.0: 1.0 to 1.4: 1.0, and most preferably 1.1: 1.0 to 1.35: 1.0. Here, the “volume (A) above the liquid level FL in the dissolution tank” refers to the volume occupied by gas in the dissolution tank, and is usually a value obtained by subtracting the volume of the melt from the total volume of the dissolution tank 20. be equivalent to. Usually, it is assumed that the adjustment of A: B is performed by increasing / decreasing the melt volume B through the supply of raw materials and / or the derived amount of the melt. You may go.

燃焼バーナ41a,41bの開口43a,43bの中央の位置と、液面FLとの高低差αが300mm以上となるように液面FLを設定することが好ましい。これにより、OH基の発生源である開口43a,43bが融液から充分に離間されるため、融液へのOH基の混入をより抑制できる。高低差αの下限は、より好ましくは350mm、最も好ましくは400mmである。また、高低差αが過剰になると融液の加熱効率が不充分になるおそれがあるため、高低差αの上限は850mmであることが好ましく、より好ましくは700mm、最も好ましくは650mmである。なお、液面FLの設定は、原材料の供給及び/又は融液の導出量を介して行えばよい。   The liquid level FL is preferably set so that the height difference α between the center position of the openings 43a and 43b of the combustion burners 41a and 41b and the liquid level FL is 300 mm or more. Accordingly, the openings 43a and 43b, which are generation sources of OH groups, are sufficiently separated from the melt, so that mixing of OH groups into the melt can be further suppressed. The lower limit of the height difference α is more preferably 350 mm, and most preferably 400 mm. In addition, if the height difference α is excessive, the heating efficiency of the melt may be insufficient. Therefore, the upper limit of the height difference α is preferably 850 mm, more preferably 700 mm, and most preferably 650 mm. The liquid level FL may be set through the supply of raw materials and / or the amount of melt derived.

また、燃焼バーナ41a,41bは、本実施形態のように水平方向、又は水平方向よりも上方へ開口するように配置されることが好ましい。燃焼バーナが水平方向よりも下方へ開口していると、炎が融液に向かうために融液へのOH基の混入のおそれが増すが、上記構成によれば、このようなおそれが軽減されるため、融液へのOH基の混入をより抑制できることになる。なお、本実施形態における上部炉壁26は、同様の効果を狙って、その側壁261が下部炉壁23の側壁231よりも拡径された形状を有し、燃焼バーナ41a,41bの開口43a,43bを融液から隠しているが、このような構成に限定されるものではない。   Moreover, it is preferable that the combustion burners 41a and 41b are arranged so as to open in the horizontal direction or upward in the horizontal direction as in the present embodiment. If the combustion burner is opened downward from the horizontal direction, the flame is directed to the melt, so that there is an increased risk of mixing OH groups into the melt. However, according to the above configuration, such a risk is reduced. Therefore, mixing of OH groups into the melt can be further suppressed. The upper furnace wall 26 in this embodiment has a shape in which the side wall 261 has a diameter larger than that of the side wall 231 of the lower furnace wall 23 for the same effect, and the openings 43a, 41a, 41b of the combustion burners 41a, 41b. Although 43b is hidden from the melt, it is not limited to such a configuration.

融液へのOH基の混入をより抑制できる点で、原材料の供給量b(L)に対する燃焼バーナ41a,41bの単位時間当たり燃焼量a(kcal/h)の比(a/b)を400以下にすることが好ましい。a/bが過剰、つまり、加熱対象である原材料の供給量に対して過剰な燃焼が行われると、単位量あたりの融液に対するOH基の混入量が増加しやすくなる。a/bの上限は、より好ましくは350、最も好ましくは330である。a/bが過小になると、融液の加熱が不充分になり溶解が遅延することを考慮して、a/bの下限は、50であることが好ましく、より好ましくは70、最も好ましくは100である。なお、燃焼量a(kcal/h)は、燃焼バーナ41a,41bに供給されるガス(例えば、酸素ガス、炭化水素ガス)の供給量に基づいて算出できる。なお、原材料の供給量b(L)とは、その時点で溶解槽に収容されている融液量を得るために供給された原材料の体積(単位:リットル)である。   The ratio (a / b) of the combustion amount a (kcal / h) per unit time of the combustion burners 41a and 41b to the supply amount b (L) of the raw material is 400 in that mixing of OH groups into the melt can be further suppressed. The following is preferable. If a / b is excessive, that is, if excessive combustion is performed with respect to the supply amount of the raw material to be heated, the amount of OH groups mixed into the melt per unit amount tends to increase. The upper limit of a / b is more preferably 350, and most preferably 330. Considering that heating of the melt becomes insufficient and dissolution is delayed when a / b is too small, the lower limit of a / b is preferably 50, more preferably 70, and most preferably 100. It is. The combustion amount a (kcal / h) can be calculated based on the supply amount of gas (for example, oxygen gas or hydrocarbon gas) supplied to the combustion burners 41a and 41b. The raw material supply amount b (L) is the volume (unit: liter) of the raw material supplied to obtain the amount of melt accommodated in the dissolution tank at that time.

本実施形態では、加熱部40を燃焼バーナ41a,41bで構成したが、これに限られず、MoSi発熱体(例えばカンタル社製の「カンタルスーパー」)やSiC発熱体(例えば東海高熱工業社製のエレマ発熱体)等であってもよい。 In the present embodiment, the heating portion 40 the combustion burner 41a, was constructed in 41b, is not limited thereto, MoSi 2 heating element (e.g. Kanthal Corp. of "Cantal Super") or SiC heating elements (e.g. Tokaikonetsukogyo Co. Elema heating element) or the like.

再び溶解槽の説明に戻って、上部炉壁26及び/又は下部炉壁23の一部又は全部は、電鋳耐火物、耐火煉瓦、及びセラミックファイバからなる群より選ばれる1種以上で形成されていることが好ましい。これにより、燃焼バーナ41a,41bでの燃焼で生じた高温雰囲気による上部炉壁26の劣化、及び/又は、高温の融液に接触等することによる下部炉壁23の劣化を抑制できる。なお、このような効果を最大限に享受できる点では、下部炉壁23及び上部炉壁26の全部が、電鋳耐火物、耐火煉瓦、及びセラミックファイバからなる群より選ばれる1種以上で形成されていることが好ましい。   Returning to the explanation of the melting tank again, a part or all of the upper furnace wall 26 and / or the lower furnace wall 23 is formed of at least one selected from the group consisting of electroformed refractories, refractory bricks, and ceramic fibers. It is preferable. Thereby, deterioration of the upper furnace wall 26 due to a high temperature atmosphere generated by combustion in the combustion burners 41a and 41b and / or deterioration of the lower furnace wall 23 due to contact with a high temperature melt can be suppressed. In addition, in the point which can enjoy such an effect to the maximum, all of the lower furnace wall 23 and the upper furnace wall 26 are formed with one or more types selected from the group consisting of electroformed refractories, refractory bricks, and ceramic fibers. It is preferable that

下部炉壁23は、少なくとも融液に接触する部位がZrOを主材料とし、SiO及び/又はAlを更に含むことが好ましい。ZrOを主材料とすることで耐久性を向上できるとともに、SiO及び/又はAlを併用することでZrOの安定性を向上でき、融液による炉壁の浸食を大幅に改善できる。この効果はSiO−Al−LiO系のガラスにおいて特に顕著に表れる。本実施形態では、構成の簡略化の観点で下部炉壁23の全体を略同一組成の素材で形成したが、少なくとも融液に接触する部位が上記組成の素材で形成されていればよい。また、状況に応じてガラス液面の侵食しやすい部分、特に融液FL部分を外部から冷却して、侵食を防止することもできる。 In the lower furnace wall 23, it is preferable that at least a portion in contact with the melt is mainly composed of ZrO 2 and further includes SiO 2 and / or Al 2 O 3 . The durability can be improved by using ZrO 2 as the main material, and the stability of ZrO 2 can be improved by using SiO 2 and / or Al 2 O 3 together, which greatly improves the erosion of the furnace wall by the melt. it can. This effect is particularly noticeable in SiO 2 —Al 2 O 3 —Li 2 O glass. In the present embodiment, the entire lower furnace wall 23 is formed of a material having substantially the same composition from the viewpoint of simplification of the configuration. However, it is only necessary that at least a portion in contact with the melt is formed of the material having the above composition. Further, depending on the situation, a portion where the glass liquid surface is easily eroded, particularly the melt FL portion, can be cooled from the outside to prevent erosion.

溶解槽20の上部炉壁26には、開度を調節可能な煙道28が設けられており、溶解槽20の内圧が所定範囲になるように煙道28の開度が調節されることが好ましい。これにより、ガラス成形体の品質を安定化できるとともに、OH基が溶解槽20内に蓄積されるのが抑制されるため、融液へのOH基の混入をより抑制できる。本実施形態では、煙道28の開度は調整弁によって調節されるが、これに限られるものではない。   The upper furnace wall 26 of the melting tank 20 is provided with a flue 28 whose opening degree can be adjusted, and the opening degree of the flue 28 may be adjusted so that the internal pressure of the melting tank 20 falls within a predetermined range. preferable. Thereby, while being able to stabilize the quality of a glass molded object, since it is suppressed that OH group accumulate | stores in the dissolution tank 20, mixing of the OH group to a melt can be suppressed more. In the present embodiment, the opening of the flue 28 is adjusted by the regulating valve, but is not limited to this.

本実施形態では、上部炉壁26は水平断面が方形状に構成され、側壁261のうち燃焼バーナ41a、41bが設けられていない面の一方に煙道28が設けられている。そして、煙道28の対面には導入管29が設けられ、この導入管29によって溶解槽20の内部と外気とが連通されている。煙道28の開度に応じて、導入管29から外気が溶解槽20内へと導入され、この外気は、OH基を含む溶解槽20の内気を煙道28を通じて外部へと押し出す。融液へのOH基の混入をより抑制できる点では、煙道28及び/又は導入管29が、燃焼バーナ41a、41bと同じ高さ又はそれよりも低い位置に設けられていることが好ましい。   In the present embodiment, the upper furnace wall 26 has a rectangular horizontal cross section, and the flue 28 is provided on one side of the side wall 261 where the combustion burners 41a and 41b are not provided. An introduction pipe 29 is provided on the opposite side of the flue 28, and the introduction pipe 29 communicates the inside of the dissolution tank 20 with the outside air. Depending on the opening of the flue 28, outside air is introduced into the dissolution tank 20 from the introduction pipe 29, and this outside air pushes the inside air of the dissolution tank 20 containing OH groups to the outside through the flue 28. It is preferable that the flue 28 and / or the introduction pipe 29 are provided at the same height as or lower than the combustion burners 41a and 41b in that the OH group can be further prevented from being mixed into the melt.

[撹拌体]
撹拌体60は、溶解槽の内部へ挿脱可能に構成されており、原材料が溶解した後、外部から溶解槽20の内部へと挿入されて融液を撹拌する。つまり、撹拌体を攻撃するおそれのある未溶解の原材料が存在する溶解工程の間、撹拌体60は溶解槽20の外部に配置されるため、その劣化を抑制できる。また、撹拌体60を構成する成分が融液に取り込まれることによるガラスの品質の劣化も抑制できる。
[Stirring body]
The stirring body 60 is configured to be inserted into and removed from the inside of the dissolution tank. After the raw materials are dissolved, the stirring body 60 is inserted from the outside into the dissolution tank 20 to stir the melt. That is, since the stirrer 60 is disposed outside the dissolution tank 20 during the melting step in which undissolved raw materials that may attack the stirrer exist, deterioration of the stirrer 60 can be suppressed. Moreover, the deterioration of the quality of the glass by the component which comprises the stirring body 60 being taken in into a melt can also be suppressed.

図3は、撹拌体60が溶解槽20内に挿入される態様を示す図である。撹拌工程でない間には、側壁231のうち融液の液面FLよりも上に設けられた開閉窓235が閉じて溶解槽20内を密閉している一方、溶解工程終了後、撹拌工程の直前になると、図3(a)に示されるように、開閉窓235が開いて開閉口236を形成し、撹拌体60を挿入可能な状態になる。ここで、本実施形態における撹拌体60は、駆動源に接続された棒状の基部61を有し、この基部61の途中に設けられた屈曲部63において略直角に屈曲して先端部65に至る。開閉口236は、屈曲部63から先端部65までの長さよりも大きい横幅寸法と、基部61の径よりも大きい縦幅寸法とを有しており(通常、横長形状になる)、屈曲部63から先端部65までの部分を水平に寝かした状態で撹拌体60が挿入される(図3(b))。先端部65が溶解槽20の内部に挿入されると、基部61が回転されて先端部65が融液に浸される(図3(c))。その後、駆動源を稼動することで先端部65が融液内を動き、これによって融液が機械的に撹拌される。ここで開閉口236の横幅は、先端部65が融液内を所望の軌道で動く際、基部61に開閉窓235が接触しない程度の寸法を有しているべきである。やがて撹拌が終了すると、撹拌体60及び開閉窓235を図3(b)、(a)の状態へと順次戻して、撹拌体60を溶解槽20の外部へと戻す。   FIG. 3 is a view showing an aspect in which the stirring body 60 is inserted into the dissolution tank 20. While not in the stirring step, the open / close window 235 provided above the melt surface FL in the side wall 231 is closed to seal the inside of the dissolution tank 20. On the other hand, after the dissolution step is completed, immediately before the stirring step. Then, as shown in FIG. 3A, the opening / closing window 235 opens to form the opening / closing port 236, and the stirring member 60 can be inserted. Here, the stirrer 60 in the present embodiment has a rod-like base 61 connected to a drive source, and bends at a substantially right angle at a bent portion 63 provided in the middle of the base 61 to reach the tip 65. . The opening / closing port 236 has a width dimension larger than the length from the bent portion 63 to the distal end portion 65 and a vertical width dimension larger than the diameter of the base portion 61 (usually has a horizontally long shape). The stirring body 60 is inserted in a state where the part from the tip part 65 to the tip part 65 is laid down horizontally (FIG. 3B). When the tip 65 is inserted into the dissolution tank 20, the base 61 is rotated and the tip 65 is immersed in the melt (FIG. 3C). Thereafter, by operating the drive source, the tip 65 moves in the melt, and the melt is mechanically agitated. Here, the lateral width of the opening / closing port 236 should have such a dimension that the opening / closing window 235 does not contact the base 61 when the tip 65 moves in a desired path in the melt. When the stirring is finished, the stirring body 60 and the opening / closing window 235 are sequentially returned to the states shown in FIGS. 3B and 3A, and the stirring body 60 is returned to the outside of the dissolution tank 20.

図4は、撹拌体60の部分拡大断面図である。撹拌体60は、内部に冷媒流路66を有し、この冷媒流路66の周囲に高膨張セラミックス67が設けられ、この高膨張セラミックス67が白金又は白金ロジウム合金68で被覆されていることが好ましい。白金又は白金ロジウム合金68は安定性に優れるため、融液への異物混入を抑制しつつ撹拌を行うことができ、冷媒流路66を流通する冷媒によって撹拌体60の劣化を抑制できる。また、白金又は白金ロジウム合金68及び冷媒流路66の間にセラミックスを介在させたことで、白金又は白金ロジウム合金の使用量を低減して製造コストを低減できるとともに、セラミックスとして高膨張セラミックスを使用したことで、温度変化に伴う膨張特性が白金又は白金ロジウム合金68に近似する結果、変形による撹拌体60の損傷を抑制できる。このように、高膨張セラミックスとは、撹拌工程における温度条件下での膨張特性が白金又は白金ロジウム合金に近似するセラミックスを指し、温度条件に応じて適宜選択されるものであるが、一般的にはAl−CaO系のセラミックス等が使用できる。なお、冷媒流路66を流通する冷媒は、特に限定されず、水、油等の液体、空気等の気体であってよい。 FIG. 4 is a partially enlarged cross-sectional view of the stirring body 60. The stirrer 60 has a refrigerant flow channel 66 inside, a high expansion ceramic 67 is provided around the refrigerant flow channel 66, and the high expansion ceramic 67 is covered with platinum or a platinum rhodium alloy 68. preferable. Since platinum or the platinum rhodium alloy 68 is excellent in stability, the stirring can be performed while suppressing the mixing of foreign matters into the melt, and the deterioration of the stirring body 60 can be suppressed by the coolant flowing through the coolant channel 66. In addition, by interposing ceramics between platinum or platinum rhodium alloy 68 and refrigerant flow channel 66, the amount of platinum or platinum rhodium alloy used can be reduced to reduce manufacturing costs, and high expansion ceramics can be used as ceramics. As a result, the expansion characteristics accompanying the temperature change approximate to that of platinum or the platinum rhodium alloy 68, and as a result, damage to the stirrer 60 due to deformation can be suppressed. Thus, high expansion ceramics refers to ceramics whose expansion characteristics under the temperature conditions in the stirring process are similar to those of platinum or platinum rhodium alloys, and are appropriately selected according to the temperature conditions. Al 2 O 3 —CaO-based ceramics can be used. In addition, the refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path 66 is not specifically limited, Liquids, such as water and oil, and gas, such as air, may be sufficient.

このように、原材料の溶融、清澄、及び撹拌を単一の溶解槽20において行うことで、後述のフィーダ30から単位時間あたりに多量の溶融ガラスを導出することができ、大体積のガラスブロックの成形に対応できる。ただし、これに限られるものではなく、原材料の溶融、清澄、及び撹拌を複数の溶解槽を併用して行ってもよい。   In this way, by performing melting, clarification, and stirring of the raw materials in the single dissolution tank 20, a large amount of molten glass can be derived per unit time from a feeder 30 described later. Can be used for molding. However, the present invention is not limited to this, and melting, clarification, and stirring of raw materials may be performed in combination with a plurality of dissolution tanks.

[フィーダ]
フィーダ30は、図示されない流出制御手段によって、流出の開始及び停止を行うことができ、溶解槽20を外界に連通し、溶解槽20内の溶融ガラスを成形型50へと導出する。具体的には、融液に面する連通口33に溶融ガラスが流れ込み、本体31を通って導出口35から成形型50へと導出される。このようなフィーダ30は、溶融ガラスへの異物混入を抑制できるよう、白金又は白金合金で形成されている。
[feeder]
The feeder 30 can start and stop the outflow by an outflow control means (not shown), communicates the melting tank 20 to the outside world, and guides the molten glass in the melting tank 20 to the mold 50. Specifically, molten glass flows into the communication port 33 facing the melt and is led out from the outlet 35 to the molding die 50 through the main body 31. Such a feeder 30 is formed of platinum or a platinum alloy so as to suppress foreign matters from being mixed into the molten glass.

フィーダ30は、より均質性が高められた溶融ガラスを導出できる点で、溶解槽20の底部233に設けられていることが好ましく、底部233の略中央に設けられていることがより好ましい。ここで、底部の略中央とは、溶解槽20の垂直軸方向に沿った底部の投影図において、この底部の投影図と重心が一致し、底部の投影図面積の10%の面積を有する相似形状で囲まれる領域内の任意の箇所を指す。   The feeder 30 is preferably provided at the bottom portion 233 of the melting tank 20 and more preferably provided substantially at the center of the bottom portion 233 in that molten glass with higher homogeneity can be derived. Here, the approximate center of the bottom is a similarity in which, in the projection of the bottom along the vertical axis direction of the dissolution tank 20, the center of gravity of the projection of the bottom coincides with the center of gravity, and the area is 10% of the area of the projection of the bottom. It refers to any point in the area surrounded by the shape.

フィーダ30の連通口33は、より均質性に優れた溶融ガラスを導出できる点で、底部233よりも上方に配置されることが好ましいが、通電加熱を阻害しないよう、電極21a〜21d、21’a〜21’dの設置高さよりも下方に位置しなければならない。   The communication port 33 of the feeder 30 is preferably arranged above the bottom portion 233 in terms of being able to lead out molten glass with higher homogeneity. However, the electrodes 21a to 21d, 21 ′ are not so disturbed as to prevent current heating. It must be located below the installation height of a to 21′d.

[成形型]
成形型50はフィーダ30から導出される溶融ガラスを成形する。成形型50は、ガラス成形体の所望の寸法に適合した寸法を有し、例えば大体積のガラスブロックが望まれる場合には、大容積の成形型50を用いる。また、導出口35及び成形型50の距離を増減可能な機構を設けることが好ましい。これにより、成形型50内に導出されて蓄積される溶融ガラス量が逐次増加しても、導出口35から導出される溶融ガラスの落下距離が常に最小に保たれるため、ガラス成形体への気泡等の混入や脈理の発生を抑制できる。
[Molding mold]
The mold 50 molds molten glass led out from the feeder 30. The mold 50 has a size that matches the desired size of the glass molded body. For example, when a large volume glass block is desired, the large volume mold 50 is used. In addition, it is preferable to provide a mechanism that can increase or decrease the distance between the outlet 35 and the mold 50. As a result, even if the amount of molten glass derived and accumulated in the mold 50 is successively increased, the falling distance of the molten glass derived from the outlet 35 is always kept at a minimum. Mixing of bubbles and striae can be suppressed.

以上の製造装置10を用いたガラス成形体の製造方法は、加熱工程の間の最高温度における融液の粘度が1.5poise以上であるガラス成形体の製造に適用することが好ましい。このように融液が高粘性化であるガラスであっても、対流による清澄促進、及び撹拌体60による機械的撹拌がなされるため、ガラスの均質性を充分に向上できる。加熱工程の間の最高温度における融液の粘度の下限は、より好ましくは1.7poise、最も好ましくは1.8poiseである。他方、融液の粘性が過剰になると、対流及び機械的撹拌に多大なエネルギが必要になる結果、製造コストが増加しやすいことを考慮して、加熱工程の間の最高温度における融液の粘度の上限は、3.0poiseであることが好ましく、より好ましくは2.8poise、最も好ましくは2.7poiseである。   It is preferable to apply the manufacturing method of the glass molded object using the above manufacturing apparatus 10 to manufacture of the glass molded object whose viscosity of the melt in the highest temperature during a heating process is 1.5 poise or more. Thus, even in a glass whose melt is highly viscous, clarification is promoted by convection and mechanical stirring is performed by the stirring body 60, so that the homogeneity of the glass can be sufficiently improved. The lower limit of the melt viscosity at the highest temperature during the heating step is more preferably 1.7 poise, most preferably 1.8 poise. On the other hand, if the melt viscosity is excessive, the viscosity of the melt at the highest temperature during the heating process, taking into account that manufacturing costs are likely to increase as a result of the enormous energy required for convection and mechanical stirring. The upper limit is preferably 3.0 poise, more preferably 2.8 poise, and most preferably 2.7 poise.

また、このようにして得られるガラス成形体のOH基の含有量は570ppm以下である。このようなガラス成形体は、耐熱性に優れた低膨張ガラス製品として有用である。ガラス成形体のOH基の含有量の上限は、より好ましくは540ppm、最も好ましくは500ppmである。また、OH基の含有量の低減により得られる効果とそれに伴う製造コスト増加との兼ね合いを考慮して、ガラス成形体のOH基の含有量の下限は、50ppmであることが好ましく、より好ましくは150ppm、最も好ましくは200ppmである。   Moreover, content of OH group of the glass molded body obtained in this way is 570 ppm or less. Such a glass molded body is useful as a low expansion glass product excellent in heat resistance. The upper limit of the OH group content in the glass molded body is more preferably 540 ppm, and most preferably 500 ppm. Further, considering the balance between the effect obtained by reducing the OH group content and the accompanying increase in production cost, the lower limit of the OH group content of the glass molded body is preferably 50 ppm, more preferably 150 ppm, most preferably 200 ppm.

ガラス成形体におけるOH基の含有量は、次に示すLambert−Beer式を用いて算出できる。
C=log10(Ta/Tb)/αt
(式中、CはOH分子の含有量(ppm)であり、αは水のモル吸光係数(8.6L
/mol・mm)であり、tは研磨したガラスの厚さ(mm)、Ta及びTbは各波
長における透過率(%)であり、より詳しくは、Taは波長2.0μm付近で極大値を示す透過率、Tbは波長2.21μm付近で極小値を示す透過率である。)
The OH group content in the glass molded body can be calculated using the following Lambert-Beer equation.
C = log 10 (Ta / Tb) / αt
(In the formula, C is the content (ppm) of OH molecules, and α is the molar absorption coefficient of water (8.6 L).
/ Mol · mm), t is the thickness of the polished glass (mm), Ta and Tb are the transmissivity (%) at each wavelength, and more specifically, Ta is a maximum value near a wavelength of 2.0 μm. Tb is a transmittance showing a minimum value in the vicinity of a wavelength of 2.21 μm. )

ガラス成形体をSiO−Al−LiO系からなるものにすることが好ましい。このようなSiO−Al−LiO系のガラス成形体は、半導体製造用の露光装置や天体望遠鏡等の多用途に有用な低膨張ガラス成形体であるが、原材料の溶解温度及び融液の粘性が極めて高いことが知られている。しかし、本発明の製造方法によれば、燃焼バーナ41a、41bによる上方からの加熱と、電極21a〜21d、21’a〜21’dによる通電加熱とを併用することで、迅速且つ充分に原材料が溶解され、対流促進によって迅速且つ充分に清澄も行われるため、均質性に優れたSiO−Al−LiO系のガラス成形体を製造できる。また、融液へのOH基の混入が抑制されるので、極めて低膨張性のガラス成形体が得られる。本発明の製造方法は、その他、SiO−LiO系からなるハードディスク基板用アモルファスガラスまたはハードディスク基板用結晶化ガラス、光通信フィルター用結晶化ガラスの製造にも好適である。 The glass molded body is preferably made of a SiO 2 —Al 2 O 3 —Li 2 O system. Such a SiO 2 —Al 2 O 3 —Li 2 O-based glass molded body is a low-expansion glass molded body useful for various applications such as an exposure apparatus for semiconductor manufacturing and an astronomical telescope, but the melting temperature of raw materials. It is also known that the viscosity of the melt is extremely high. However, according to the manufacturing method of the present invention, by using heating from above with the combustion burners 41a and 41b and energization heating with the electrodes 21a to 21d and 21'a to 21'd in combination, the raw material can be quickly and sufficiently obtained. Is dissolved, and clarification is performed quickly and sufficiently by promoting convection, so that a SiO 2 —Al 2 O 3 —Li 2 O-based glass molded article excellent in homogeneity can be produced. Moreover, since mixing of OH groups into the melt is suppressed, an extremely low expansion glass molded body can be obtained. The production method of the present invention is also suitable for producing amorphous glass for hard disk substrates, crystallized glass for hard disk substrates, and crystallized glass for optical communication filters made of SiO 2 —Li 2 O.

[温度条件]
以上の製造装置10を用い、SiO−Al−LiO系のガラスを製造する場合の各工程の温度条件は下記の値とすることが好ましい。
[Temperature conditions]
It is preferable that the temperature conditions of each step when manufacturing the SiO 2 —Al 2 O 3 —Li 2 O-based glass using the above manufacturing apparatus 10 are set to the following values.

まず、溶解槽20が全く空の状態からバッチを投入し融液を得る場合には、迅速に融液が得られるよう、加熱部40により溶解槽20の内部空間の温度を1530〜1550℃にすることが好ましい。   First, when the batch is charged from the state where the dissolution tank 20 is completely empty to obtain a melt, the temperature of the internal space of the dissolution tank 20 is set to 1530 to 1550 ° C. by the heating unit 40 so that the melt can be obtained quickly. It is preferable to do.

一旦、溶解槽20が一定量の融液で満たされた後は、ガラス組成の変更等を行う場合を除き、溶解槽20中の融液が一定量以下にならないようにする。つまり、1回のガラスブロックの製造に必要な量の溶融ガラスを流出した後においても、溶解槽20中に一定量の融液が残るように融液の量を制御する。   Once the dissolution tank 20 is filled with a certain amount of melt, the melt in the dissolution tank 20 is prevented from becoming less than a certain amount unless the glass composition is changed. That is, the amount of melt is controlled so that a certain amount of melt remains in the melting tank 20 even after the amount of molten glass necessary for manufacturing one glass block has flowed out.

ガラスブロック製造のために1回の流出を終えた後は、一定のレベルになるまで、融液中に原材料を供給し溶解する(溶解工程)。この工程における温度は、白金の劣化や溶け残り(異物の原因)を抑制できるよう、融液上部において1450℃〜1550℃であることが好ましく、より好ましくは1460℃〜1540℃、最も好ましくは1480℃〜1500℃である。   After finishing one outflow for manufacturing the glass block, the raw materials are supplied and melted in the melt until reaching a certain level (dissolution step). The temperature in this step is preferably 1450 ° C. to 1550 ° C., more preferably 1460 ° C. to 1540 ° C., and most preferably 1480 in the upper part of the melt so that platinum deterioration and undissolved residue (cause of foreign matter) can be suppressed. ℃ -1500 ℃.

原材料の溶解が終えた後、清澄及び撹拌を同時に行う(清澄・撹拌工程)。この工程での温度は、融液上部においては、加熱部40による燃焼エネルギの削減、及びガラス表面への結晶析出の抑制の観点から1480℃〜1580℃であることが好ましく、より好ましくは1500℃〜1560℃、最も好ましくは1510℃〜1540℃である。また、融液下部の温度は、対流による融液の均質化を促進でき且つ白金の劣化を抑制できるよう、1530℃〜1600であることが好ましく、より好ましくは1540℃〜1595℃、最も好ましくは1550℃〜1590℃である。   After the raw materials are completely dissolved, clarification and stirring are simultaneously performed (clarification / stirring step). The temperature in this step is preferably 1480 ° C. to 1580 ° C., more preferably 1500 ° C. from the viewpoint of reducing combustion energy by the heating unit 40 and suppressing crystal precipitation on the glass surface in the upper part of the melt. -1560 ° C, most preferably 1510 ° C-1540 ° C. The temperature at the lower part of the melt is preferably 1530 ° C. to 1600 ° C., more preferably 1540 ° C. to 1595 ° C., and most preferably so that homogenization of the melt by convection can be promoted and deterioration of platinum can be suppressed. 1550 ° C to 1590 ° C.

<実施例1>
前述したガラス成形体の製造装置10を用い、酸化物基準の質量%で54.5〜57%のSiO成分、6.0%〜8.5%のP成分、22.0〜26.0%のAl成分、3.5〜4.2%のLiO成分、0.6〜1.6%のMgO成分、0.4〜1.4%のZnO成分、0.7〜2.0%のCaO成分、0.6〜1.7%のBaO成分、1.6〜2.7%のTiO成分、1.0〜2.2%のZrO成分、及び0.8〜1.2%のAs成分を含むバッチの原材料を投入し、溶解槽20の底部233から液面までの高さHが976mmの状態で、燃焼バーナ41a,41bに酸素を供給して燃焼し且つ溶解槽の内方へ水平に120〜130mm突出している電極21a〜21d、21’a〜21’dに周波数3.0kHzの交流を供給することで溶解を行い、その後、撹拌体60を挿入し、清澄及び撹拌を行った。この間の融液温度を、底部233からの高さが750mmの位置に設けた温度センサ(検出値を上部温度と称する)と、底部233からの高さが230mmの位置に設けた電極内の温度センサ(検出値を下部温度と称する)とで測定したところ、上部温度は1516〜1530℃、下部温度は1580〜1589℃であり、約60℃の温度差で下部温度が上部温度よりも高かった。これにより、融液の対流が促進されていることが推測される。このときの溶解槽20における融液の液面FLよりも上方の体積(A)は2.766m、融液の体積(B)は3.281mであり、A:Bは=1.19:1であった。また、燃焼バーナの開口の中央の位置と液面との高低差は612mmであった。原材料の供給量bは1020(L)であり、単位時間当たり燃焼量aは240000(kcal/h)であり、a/bは235.2であった。また、複数の電極の最上部までの高さhは400mmであった。電極の数cは8であるから、b/cは127.5であった。
<Example 1>
Using the glass molded body manufacturing apparatus 10 described above, 54.5 to 57% SiO 2 component, 6.0% to 8.5% P 2 O 5 component, 22.0 to 20% by mass based on oxide. 26.0% Al 2 O 3 component, 3.5-4.2% Li 2 O component, 0.6-1.6% MgO component, 0.4-1.4% ZnO component, 0 0.7-2.0% CaO component, 0.6-1.7% BaO component, 1.6-2.7% TiO 2 component, 1.0-2.2% ZrO 2 component, and A batch raw material containing 0.8 to 1.2% of As 2 O 3 component is charged, and oxygen is supplied to the combustion burners 41a and 41b in a state where the height H from the bottom 233 of the dissolution tank 20 to the liquid level is 976 mm. Is applied to the electrodes 21a to 21d and 21'a to 21'd, which are burned and protrude horizontally 120 to 130 mm inward of the dissolution tank. It melt | dissolved by supplying alternating current of 0.0kHz, Then, the stirring body 60 was inserted, and clarification and stirring were performed. During this time, the temperature in the electrode provided with a temperature sensor (the detected value is referred to as an upper temperature) provided with a height of 750 mm from the bottom 233 and an electrode provided with a height of 230 mm from the bottom 233. When measured with a sensor (the detected value is referred to as the lower temperature), the upper temperature was 1516-1530 ° C, the lower temperature was 1580-1589 ° C, and the lower temperature was higher than the upper temperature with a temperature difference of about 60 ° C. . Thereby, it is estimated that the convection of the melt is promoted. At this time, the volume (A) above the melt level FL in the dissolution tank 20 is 2.766 m 3 , the melt volume (B) is 3.281 m 3 , and A: B = 1.19. : 1. The height difference between the center position of the opening of the combustion burner and the liquid level was 612 mm. The raw material supply amount b was 1020 (L), the combustion amount a per unit time was 240000 (kcal / h), and a / b was 235.2. The height h up to the top of the plurality of electrodes was 400 mm. Since the number c of electrodes was 8, b / c was 127.5.

このようにして得られた溶融ガラスを成形型50に導出し、成形後に徐冷することで、直径1700mm、厚み400mmtのガラス成形体を製造した。撹拌体60は、成形型50への溶融ガラスの導出が終わるまで回転させ、溶融ガラスの導出終了後に溶解槽20の外部へと戻した。このガラス成形体を厚み約10mmtに切り取り、切り取った片の表面に偏光粘着フィルムを貼着した後、グラフィックソフトにより表面画像を取得した。この結果を図7に示す。また、ガラス成形体におけるOH基の含有量は、前述のLambert−Beer式に基づいて算出したところ、424〜566ppmであった。   The molten glass obtained in this way was led out to a mold 50 and slowly cooled after molding to produce a glass molded body having a diameter of 1700 mm and a thickness of 400 mmt. The stirrer 60 was rotated until the molten glass was led out to the mold 50, and returned to the outside of the melting tank 20 after the molten glass was led out. The glass molded body was cut to a thickness of about 10 mm, and a polarizing adhesive film was adhered to the surface of the cut piece, and then a surface image was obtained with graphic software. The result is shown in FIG. Moreover, when content of OH group in a glass molded object was computed based on the above-mentioned Lambert-Beer formula, it was 424-566 ppm.

(比較例1)
電極21a〜21d、21’a〜21’dを設置していない点を除き、製造装置10と同様の構成の製造装置を用い、その他の手順は実施例1と同様にしてガラス成形体を製造した。なお、溶解、清澄、及び撹拌の間における上部温度は1602〜1604℃、下部温度は1544〜1546℃であり、上部温度の方が下部温度よりも高かった。これにより、融液の対流が行われていないことが推測される。切り取った片の表面画像を図6に示す。
(Comparative Example 1)
A glass molded body is manufactured in the same manner as in Example 1 except that the electrodes 21a to 21d and 21'a to 21'd are not installed, and a manufacturing apparatus having the same configuration as the manufacturing apparatus 10 is used. did. The upper temperature during dissolution, clarification, and stirring was 1602-1604 ° C., and the lower temperature was 1544-1546 ° C. The upper temperature was higher than the lower temperature. Thereby, it is estimated that the convection of the melt is not performed. A surface image of the cut piece is shown in FIG.

図7に示されるように、実施例1で製造したガラス成形体は均質であり、脈理が極めて抑制されていることが分かった。これに対して、図6に示されるように、比較例1で製造したガラス成形体は、その均質性が低く、脈理が発生していることが分かった。   As shown in FIG. 7, it was found that the glass molded body produced in Example 1 was homogeneous and striae were extremely suppressed. In contrast, as shown in FIG. 6, the glass molded body produced in Comparative Example 1 was found to have low homogeneity and striae.

<参考例1>
融液の液面FLよりも上方の体積(A)と融液の体積(B)との比がガラス成形体におけるOH基の含有量にもたらす効果を検証するために、以下の試験を行った。まず、溶解槽20における融液の液面FLよりも上方の体積(A)が1.369m、融液の体積(B)が1.768mになる(A:B=0.77:1)ように原材料を投入した点を除き、実施例1と同様の手順でガラス成形体を製造した。このガラス成形体におけるOH基の含有量を、前述のLambert−Beer式に基づいて算出したところ、953〜998ppmであった。ここで、透過率は、厚さ10mmに研磨した結晶化熱処理前のガラス成形体を試料として、日立製作所社製270−30形赤外分光光度計を用いて測定し、波長2.0μm付近での透過率の極大値をTaとし、波長2.21μm付近での透過率の極小値をTbとした。なお、これら透過率には表面反射損失分が含まれる。
<Reference Example 1>
In order to verify the effect that the ratio of the volume (A) above the melt level FL and the volume (B) of the melt has on the OH group content in the glass molded body, the following test was conducted. . First, the volume (A) above the melt level FL in the dissolution tank 20 is 1.369 m 3 and the melt volume (B) is 1.768 m 3 (A: B = 0.77: 1). ) A glass molded body was produced in the same procedure as in Example 1 except that the raw materials were added as described above. It was 953-998 ppm when content of OH group in this glass molded object was computed based on the above-mentioned Lambert-Beer formula. Here, the transmittance was measured using a 270-30 type infrared spectrophotometer manufactured by Hitachi, Ltd. using a glass molded body polished to a thickness of 10 mm before crystallization heat treatment as a sample, and at a wavelength of about 2.0 μm. The maximum value of the transmittance was Ta, and the minimum value of the transmittance around the wavelength of 2.21 μm was Tb. These transmittances include the surface reflection loss.

<参考例2>
電極の数と原材料の供給量の比がガラス成形体におけるOH基の含有量にもたらす効果を検証するために、以下の試験を行った。参考例2−1では電極が4本設けられた製造装置(下部炉壁23の水平断面が正方形)を用い、参考例2−2〜2−7では電極が8本設けられた製造装置(下部炉壁23の水平断面が正八角形)を用い、表1に示す条件を変更した点を除き、実施例1と同様の手順でガラス成形体を製造した。なお、参考例2−7では、撹拌時間を他の参考例よりも短く設定し、撹拌時間を他の参考例の3/5にした。
<Reference Example 2>
In order to verify the effect of the ratio of the number of electrodes and the supply amount of raw materials on the OH group content in the glass molded body, the following test was performed. In Reference Example 2-1, a manufacturing apparatus with four electrodes (the horizontal cross section of the lower furnace wall 23 is square) is used, and in Reference Examples 2-2 to 2-7, a manufacturing apparatus with eight electrodes (lower part). A glass molded body was manufactured in the same procedure as in Example 1 except that the horizontal cross section of the furnace wall 23 was a regular octagon) and the conditions shown in Table 1 were changed. In Reference Example 2-7, the stirring time was set shorter than that of the other reference examples, and the stirring time was set to 3/5 of the other reference examples.

(比較例2)
比較例2では、撹拌を行わなかった点を除き、参考例2−1と同様の手順でガラス成形体を製造した。
(Comparative Example 2)
In Comparative Example 2, a glass molded body was produced in the same procedure as in Reference Example 2-1, except that stirring was not performed.

参考例2及び比較例2で製造したガラス成形体におけるOH基の含有量、脈理の程度、及び異物混入の程度を表1に併せて示す。なお表1において、脈理の基準は、◎:全く観察されず、○:ほぼ観察されず、△:若干観察された、×:多く発生していた、をそれぞれ意味し、異物の基準は、◎:全く混入せず、○:ほぼ混入せず、△:若干混入していた、×:多量に混入していた、をそれぞれ意味する。   Table 1 also shows the OH group content, the degree of striae, and the degree of foreign matter contamination in the glass molded bodies produced in Reference Example 2 and Comparative Example 2. In Table 1, the standard of striae means ◎: not observed at all, ○: almost not observed, △: observed slightly, x: generated a lot, respectively. (Double-circle): It does not mix at all, (circle): Almost not mixed, (triangle | delta): It mixed a little, and x: It was mixed in large quantities, respectively.

表1に示されるように、参考例2−1〜2−7では、比較例2に比べて脈理及び異物の程度が良かった。これにより、撹拌を行うことで、ガラス成形体に生じる脈理及び異物混入を抑制できることが分かった。また、参考例2−2〜2−6では脈理及び異物の程度が低く、優れたガラス成形体が製造できることが分かった。   As shown in Table 1, in Reference Examples 2-1 to 2-7, the degree of striae and foreign matter was better than that in Comparative Example 2. Thereby, it turned out that the striae and foreign material mixing which arise in a glass molded object can be suppressed by stirring. Moreover, in Reference Examples 2-2 to 2-6, it was found that the degree of striae and foreign matters is low, and an excellent glass molded body can be produced.

<参考例3>
ガラス中のOH基含有量が結晶化にもたらす効果を検証するために、実施例1と同一組成のSiO−Al−LiO系ガラスであって、OH基含有量がそれぞれ異なる一連のガラスを作成し、これらのガラスをそれぞれ熱処理することで結晶化し、結晶化の良好性及び結晶化後の加工性を評価した。この結果を表2に示す。なお、表2において、○は良好、△は中間、×は不良を指す。
<Reference Example 3>
In order to verify the effect of the OH group content in the glass on crystallization, the SiO 2 —Al 2 O 3 —Li 2 O glass having the same composition as that of Example 1, each having a different OH group content. A series of glasses were prepared, and each glass was crystallized by heat treatment, and the good crystallization and the workability after crystallization were evaluated. The results are shown in Table 2. In Table 2, ◯ indicates good, Δ indicates intermediate, and X indicates poor.

表2に示されるように、OH基含有量が578ppm以上のガラスは、結晶化が良好ではなく、結晶化後の加工性が不良であるのに対して、OH基含有量が548ppm以下のガラスは、結晶化及び結晶化後の加工性のいずれにおいても優れることが分かった。これにより、OH基含有量を減らすことで、結晶化及び結晶化後の加工性を向上できることが確認された。   As shown in Table 2, a glass having an OH group content of 578 ppm or more is not good in crystallization and has poor workability after crystallization, whereas a glass having an OH group content of 548 ppm or less. Was found to be excellent in both crystallization and workability after crystallization. Thereby, it was confirmed that crystallization and the workability after crystallization can be improved by reducing the OH group content.

また、OH基の含有量が778ppm、548ppmであった結晶化後のガラス成形体の表面画像を取得した。この結果を図8((a)が778ppm、(b)が548ppmに対応する)に示す。図8に示されるように、OH基含有量が778ppmのガラス成形体には割れが発生していることが確認されたが、OH基含有量が548ppmのガラス成形体には割れの発生が確認できなかった。これにより、OH基含有量を減らすことで、結晶化時のガラス成形体における割れの発生を抑制できることが確認された。   Moreover, the surface image of the glass molded object after the crystallization whose content of OH group was 778 ppm and 548 ppm was acquired. The results are shown in FIG. 8 ((a) corresponds to 778 ppm and (b) corresponds to 548 ppm). As shown in FIG. 8, it was confirmed that the glass molded body having an OH group content of 778 ppm was cracked, but the glass molded body having an OH group content of 548 ppm was confirmed to be cracked. could not. Thereby, it was confirmed that generation | occurrence | production of the crack in the glass molded object at the time of crystallization can be suppressed by reducing OH group content.

本発明の一実施形態に係るガラス成形体の製造装置の垂直断面図である。It is a vertical sectional view of the manufacturing device of the glass forming object concerning one embodiment of the present invention. 図1の製造装置の水平平面図である。It is a horizontal top view of the manufacturing apparatus of FIG. 図1の製造装置を構成する撹拌体の挿入の態様を示す図である。It is a figure which shows the aspect of insertion of the stirring body which comprises the manufacturing apparatus of FIG. 図3の撹拌体の部分拡大断面図である。It is a partial expanded sectional view of the stirring body of FIG. 前記実施形態の変形例を構成する溶解槽の水平断面形状を示す図である。It is a figure which shows the horizontal cross-sectional shape of the dissolution tank which comprises the modification of the said embodiment. 比較例に係る製造方法で製造したガラス成形体の内部の均質性を示す画像である。It is an image which shows the homogeneity inside the glass molded object manufactured with the manufacturing method which concerns on a comparative example. 本発明の一実施例に係る製造方法で製造したガラス成形体の内部の均質性を示す画像である。It is an image which shows the homogeneity inside the glass molded object manufactured with the manufacturing method which concerns on one Example of this invention. 本発明の一実施例に係る製造方法で製造したガラス成形体の表面画像である。It is a surface image of the glass molded object manufactured with the manufacturing method which concerns on one Example of this invention.

符号の説明Explanation of symbols

10 ガラス成形体の製造装置
20 溶解槽
21 電極
23 下部炉壁
233 底部
26 上部炉壁
28 煙道
30 フィーダ
40 加熱部(加熱手段)
41 燃焼バーナ
43 開口
50 成形型
60 撹拌体
66 冷媒流路
67 高膨張セラミックス
68 白金又は白金ロジウム合金
DESCRIPTION OF SYMBOLS 10 Glass forming body manufacturing apparatus 20 Melting tank 21 Electrode 23 Lower furnace wall 233 Bottom part 26 Upper furnace wall 28 Flue 30 Feeder 40 Heating part (heating means)
41 Combustion burner 43 Opening 50 Molding die 60 Stirrer 66 Refrigerant flow path 67 High expansion ceramics 68 Platinum or platinum rhodium alloy

Claims (28)

原材料の融液が収容された溶解槽に連通するフィーダから成形型へとガラスを流出するガラス成形体の製造方法であって、
融液中に複数の電極を有する前記溶解槽に原材料を供給する供給工程と、
前記複数の電極を通電して融液を導電加熱しつつ、更に融液の上方から融液を加熱する加熱工程と、を有し、
前記原材料が溶解した後、外部から前記溶解槽の内部へと撹拌体を挿入し、この撹拌体で前記融液を撹拌する製造方法。
A method for producing a glass molded body in which glass flows out from a feeder communicating with a melting tank containing a raw material melt into a mold,
Supplying a raw material to the dissolution tank having a plurality of electrodes in the melt;
Heating the melt from above the melt while conducting the heating of the melt by energizing the plurality of electrodes,
A manufacturing method in which, after the raw materials are dissolved, a stirring body is inserted from the outside into the dissolution tank, and the melt is stirred by the stirring body.
前記加熱工程は、前記溶解槽の底部から融液の深さの4分の1以下の範囲における融液の温度を、前記液面から前記融液の深さの4分の1以下の範囲における融液の温度よりも高くする温度差設定工程を有する請求項1記載の製造方法。   In the heating step, the temperature of the melt in a range of ¼ or less of the melt depth from the bottom of the dissolution tank is set in a range of ¼ or less of the melt depth from the liquid surface. The manufacturing method of Claim 1 which has a temperature difference setting process made higher than the temperature of a melt. 温度差を10℃以上にする請求項2記載の製造方法。   The manufacturing method of Claim 2 which makes a temperature difference 10 degreeC or more. 前記複数の電極として、内部に冷却機構を有し且つ前記溶解槽の内方へ略水平に突出するものを用い、前記冷却機構によって前記複数の電極を冷却する請求項1から3いずれか記載の製造方法。   4. The plurality of electrodes according to claim 1, wherein the plurality of electrodes have a cooling mechanism inside and project substantially horizontally toward the inside of the dissolution tank, and the plurality of electrodes are cooled by the cooling mechanism. 5. Production method. 前記溶解槽として、少なくとも前記複数の電極の設置位置における内部の水平断面がn角形(nは4以上の整数である)のものを用いる請求項1から4いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the dissolution tank is one having an n-sided horizontal cross section (where n is an integer of 4 or more) at least at an installation position of the plurality of electrodes. 前記液面の高さを検出し、この検出値に基づいて原材料の供給及び/又は融液の導出の量を調節する請求項1から5いずれか記載の製造方法。   The manufacturing method according to claim 1, wherein the height of the liquid surface is detected, and the amount of raw material supply and / or melt discharge is adjusted based on the detected value. 前記溶解槽の底部から前記液面までの高さをH、前記溶解槽の底部から前記複数の電極の最上部までの高さをhとするとき、h/Hが0.1〜0.6になるように原材料の供給量を調節する請求項6記載の製造方法。   When the height from the bottom of the dissolution tank to the liquid surface is H and the height from the bottom of the dissolution tank to the top of the plurality of electrodes is h, h / H is 0.1 to 0.6. The manufacturing method according to claim 6, wherein the supply amount of the raw material is adjusted so that 上方からの融液の加熱は、融液の上方に位置する上部炉壁に設けられた燃焼バーナを用いて行う請求項1から7いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 7, wherein the heating of the melt from above is performed using a combustion burner provided on an upper furnace wall located above the melt. 前記溶解槽における前記液面よりも上方の体積(A)と、前記融液の体積(B)との比(A:B)を、1.0:1.0〜1.5:1.0にする請求項8記載の製造方法。   The ratio (A: B) of the volume (A) above the liquid level in the dissolution tank and the volume (B) of the melt is 1.0: 1.0 to 1.5: 1.0. The manufacturing method of Claim 8. 前記溶解槽として、前記上部炉壁及び/又は前記融液が収容される下部炉壁の一部又は全部は、電鋳耐火物、耐火煉瓦、及びセラミックファイバからなる群より選ばれる1種以上で形成されたものを用いる請求項8又は9記載の製造方法。   As the melting tank, a part or all of the upper furnace wall and / or the lower furnace wall in which the melt is accommodated is at least one selected from the group consisting of electroformed refractories, refractory bricks, and ceramic fibers. The manufacturing method of Claim 8 or 9 using what was formed. 前記溶解槽として、前記下部炉壁のうち少なくとも前記融液に接触する部位がZrOを主材料とし、SiO及び/又はAlを更に含むものを用いる請求項10記載の製造方法。 The manufacturing method according to claim 10, wherein at least a portion of the lower furnace wall that contacts the melt is made of ZrO 2 as a main material and further contains SiO 2 and / or Al 2 O 3 as the melting tank. 前記溶解槽として、開度を調節可能な煙道が前記上部炉壁に設けられたものを用い、前記溶解槽の内圧が所定範囲になるように前記煙道の開度を調節する請求項8から11いずれか記載の製造方法。   9. The smelter opening is adjusted so that the inner pressure of the smelting tank is within a predetermined range by using a melting tank having a flue whose opening is adjustable provided on the upper furnace wall. To 11. The production method according to any one of 11 to 11. 前記燃焼バーナの開口の中央の位置と前記液面との高低差が300mm以上となるように前記液面を設定する請求項8から12いずれか記載の製造方法。   The manufacturing method according to any one of claims 8 to 12, wherein the liquid level is set so that a height difference between a center position of the opening of the combustion burner and the liquid level is 300 mm or more. 前記燃焼バーナを水平方向又は水平方向よりも上方へ開口するように配置する請求項8から13いずれか記載の製造方法。   The manufacturing method according to any one of claims 8 to 13, wherein the combustion burner is disposed so as to open in a horizontal direction or upward from the horizontal direction. 前記原材料の供給量b(L)に対する前記燃焼バーナの単位時間当たり燃焼量a(kcal/h)の比(a/b)を400以下にする請求項1から14いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 14, wherein a ratio (a / b) of a combustion amount a (kcal / h) per unit time of the combustion burner to a supply amount b (L) of the raw material is 400 or less. 前記複数の電極の数cに対する前記原材料の供給量b(L)の比(b/c)を350以下にする請求項1から15いずれか記載の製造方法。   The manufacturing method according to claim 1, wherein a ratio (b / c) of the supply amount b (L) of the raw material to the number c of the plurality of electrodes is set to 350 or less. 前記撹拌体として、内部に冷媒流路を有するものを用い、この冷媒流路に冷媒を流通することで前記撹拌体を冷却する請求項1から16いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 16, wherein the agitator has a refrigerant flow path therein, and the agitator is cooled by circulating the refrigerant through the refrigerant flow path. 前記複数の電極を、周波数が2.5kHz以上の交流電源へ電気的に接続する請求項1から17いずれか記載の製造方法。   The manufacturing method according to claim 1, wherein the plurality of electrodes are electrically connected to an AC power source having a frequency of 2.5 kHz or more. 単一の前記溶解槽において原材料の溶融、清澄、及び撹拌を行う請求項1から18いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 18, wherein the raw material is melted, clarified, and stirred in a single dissolution tank. 前記フィーダは前記溶解槽の底部の略中央に連通している請求項1から19いずれか記載の製造方法。   The said feeder is a manufacturing method in any one of Claim 1 to 19 connected to the approximate center of the bottom part of the said dissolution tank. 前記加熱工程の間の最高温度における融液の粘度が1.5poise以上であるガラス成形体の製造に適用する請求項1から20いずれか記載の製造方法。   The manufacturing method according to any one of claims 1 to 20, which is applied to manufacture of a glass molded body having a melt viscosity of 1.5 poise or more at a maximum temperature during the heating step. 得られるガラス成形体のOH基の含有量が570ppm以下である請求項1から21いずれか記載の製造方法。   The production method according to any one of claims 1 to 21, wherein the glass molded body to be obtained has an OH group content of 570 ppm or less. 前記ガラス成形体をSiO−Al−LiO系又はSiO−LiO系からなるものにする請求項1から22いずれか記載の製造方法。 The process according to any one of claims 1 22 for the glass molded body made of SiO 2 -Al 2 O 3 -Li 2 O system or SiO 2 -Li 2 O system. ガラス成形体の製造装置であって、
原材料の融液が収容され且つこの融液中に浸される複数の電極を有する溶解槽と、
前記溶解槽に連通するフィーダと、
前記溶解槽の上部に設けられた加熱手段と、
前記フィーダから導出される溶融ガラスを成形する成形型と、
前記溶解槽の内部へ挿脱可能な撹拌体と、を備える製造装置。
An apparatus for manufacturing a glass molded body,
A dissolution vessel having a plurality of electrodes in which a raw material melt is contained and immersed in the melt;
A feeder communicating with the dissolution tank;
Heating means provided in the upper part of the dissolution tank;
A mold for molding molten glass derived from the feeder;
A stirring device that can be inserted into and removed from the inside of the dissolution tank.
前記撹拌体は、内部に冷媒流路を有し、この冷媒流路の周囲に高膨張セラミックスが設けられ、この高膨張セラミックスが白金又は白金ロジウム合金で被覆されたものである請求項24記載の製造装置。   25. The stirrer has a refrigerant flow path therein, high-expansion ceramics are provided around the refrigerant flow path, and the high-expansion ceramics are coated with platinum or a platinum rhodium alloy. manufacturing device. 前記複数の電極は、内部に冷却機構を有し且つ前記溶解槽の内方へ略水平に突出する請求項24又は25記載の製造装置。   26. The manufacturing apparatus according to claim 24 or 25, wherein the plurality of electrodes have a cooling mechanism therein and project substantially horizontally inward of the dissolution tank. 前記溶解槽は、少なくとも前記複数の電極の設置位置における内部の水平断面がn角形(nは4以上の整数である)である請求項24から26いずれか記載の製造装置。   27. The manufacturing apparatus according to any one of claims 24 to 26, wherein the dissolution tank has an n-sided horizontal cross section (n is an integer of 4 or more) at least at an installation position of the plurality of electrodes. 前記溶解槽は、融液を収容する下部炉壁と、この下部炉壁の上部に設けられた上部炉壁と、を有し、
前記加熱手段は、前記上部炉壁に設けられた燃焼バーナを有する請求項24から27いずれか記載の製造装置。
The melting tank has a lower furnace wall for storing the melt, and an upper furnace wall provided on the upper part of the lower furnace wall,
The manufacturing apparatus according to any one of claims 24 to 27, wherein the heating means includes a combustion burner provided on the upper furnace wall.
JP2008171139A 2008-06-30 2008-06-30 Manufacturing method and manufacturing apparatus for glass molded body Expired - Fee Related JP5265975B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008171139A JP5265975B2 (en) 2008-06-30 2008-06-30 Manufacturing method and manufacturing apparatus for glass molded body
RU2011102520/03A RU2465221C2 (en) 2008-06-30 2009-06-29 Method of making glass articles and device to this end
CN200980124596.3A CN102076619B (en) 2008-06-30 2009-06-29 Glass-formed body manufacturing method and manufacturing device
PCT/JP2009/061851 WO2010001857A1 (en) 2008-06-30 2009-06-29 Glass-formed body manufacturing method and manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171139A JP5265975B2 (en) 2008-06-30 2008-06-30 Manufacturing method and manufacturing apparatus for glass molded body

Publications (2)

Publication Number Publication Date
JP2010006674A JP2010006674A (en) 2010-01-14
JP5265975B2 true JP5265975B2 (en) 2013-08-14

Family

ID=41465952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171139A Expired - Fee Related JP5265975B2 (en) 2008-06-30 2008-06-30 Manufacturing method and manufacturing apparatus for glass molded body

Country Status (4)

Country Link
JP (1) JP5265975B2 (en)
CN (1) CN102076619B (en)
RU (1) RU2465221C2 (en)
WO (1) WO2010001857A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580685B2 (en) * 2009-08-18 2014-08-27 Hoya株式会社 Glass manufacturing method, glass melting furnace, glass manufacturing apparatus, glass blank manufacturing method, information recording medium substrate manufacturing method, information recording medium manufacturing method, display substrate manufacturing method and optical component manufacturing method
CN103570240B (en) * 2012-07-29 2016-04-06 苏州宏久航空防热材料科技有限公司 A kind of devices and methods therefor reducing bushing place, centrifugal cotton molten bath glass melt viscosity
EP3397405B1 (en) * 2015-12-29 2020-07-08 Kurion, Inc. Vitrification system and method with an electrode seal assembly
CN107857462A (en) * 2017-12-18 2018-03-30 山东聚源玄武岩纤维股份有限公司 A kind of pneumoelectric kiln for being used to produce basalt continuous fiber
CN109399942A (en) * 2018-11-22 2019-03-01 宁波荣山新型材料有限公司 A kind of foam glass Ceramic Composite building heat preservation heat-barrier material and preparation method thereof
EP3760595A1 (en) * 2019-07-04 2021-01-06 International Partners in Glass Research (IPGR) e.V. Glass melting furnace
CN113024090A (en) * 2019-12-24 2021-06-25 江苏康姆罗拉特种陶瓷有限公司 Quartz crystal forming equipment
CN112520978B (en) * 2020-11-24 2022-11-15 重庆市渝琥玻璃有限公司 Circulating cooling agitated vessel
JP2022088071A (en) * 2020-12-02 2022-06-14 日本電気硝子株式会社 Glass melting furnace monitoring method and glass article manufacturing method
CN113562959A (en) * 2021-06-30 2021-10-29 陕西彩虹工业智能科技有限公司 Flue structure of flexible glass kiln
KR102649011B1 (en) * 2022-01-04 2024-03-18 한국수력원자력 주식회사 Remote restart system for vitrification equipment and operation method thereof
CN115367999A (en) * 2022-09-21 2022-11-22 成都光明光电股份有限公司 Intermittent optical glass production method and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU34719A1 (en) * 1933-01-31 1934-02-28 В.Э. Бромлей Electric furnace for melting glass under vacuum
US3850606A (en) * 1973-07-02 1974-11-26 Owens Illinois Inc Method for melting glass-making materials
US4430109A (en) * 1981-03-16 1984-02-07 Corning Glass Works Method of regulating fuel and air flow to a glass melting furnace
US4366571A (en) * 1981-03-16 1982-12-28 Corning Glass Works Electric furnace construction
DE3445557A1 (en) * 1984-12-14 1986-06-19 Nikolaus Sorg GmbH & Co KG, 8770 Lohr ELECTRICALLY OPERATED DISCONTINUOUS GLASS MELTING STOVE
DE3718276A1 (en) * 1987-05-30 1988-12-08 Sorg Gmbh & Co Kg GLASS MELTING STOVE
SU1544717A2 (en) * 1988-05-23 1990-02-23 Предприятие П/Я В-2268 Electric glass-melting furnace
DE19548027C2 (en) * 1995-12-21 1999-04-01 Bayer Ag Electric resistance melting furnace
US6705117B2 (en) * 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner
DE10057285B4 (en) * 2000-11-17 2004-07-08 Schott Glas Melting device and method for producing highly UV-transmissive glasses
US20020134287A1 (en) * 2001-03-23 2002-09-26 Olin-Nunez Miguel Angel Method and system for feeding and burning a pulverized fuel in a glass melting furnace, and burner for use in the same
DE102004052514B4 (en) * 2004-10-21 2009-03-26 Schott Ag Method and mold for casting glass blocks
JP2006160546A (en) * 2004-12-06 2006-06-22 Hitachi Ltd Flat surface-type display device
JP2007269509A (en) * 2006-03-30 2007-10-18 Ohara Inc Melting apparatus

Also Published As

Publication number Publication date
CN102076619B (en) 2014-05-21
RU2465221C2 (en) 2012-10-27
WO2010001857A1 (en) 2010-01-07
CN102076619A (en) 2011-05-25
RU2011102520A (en) 2012-08-10
JP2010006674A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5265975B2 (en) Manufacturing method and manufacturing apparatus for glass molded body
KR101230754B1 (en) Method of increasing the effectiveness of a fining agent in a glass melt
JP5002731B2 (en) Glass plate manufacturing method
JP2012517398A (en) Apparatus and method for reducing gaseous inclusions in glass
TWI724264B (en) Manufacturing method of alkali-free glass substrate
WO2019049768A1 (en) Method for producing alkali-free glass substrate, and alkali-free glass substrate
KR101971755B1 (en) Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method
WO2012132474A1 (en) Glass substrate production method
JP5977388B2 (en) A fusion process for the production of flat glass.
US20190322563A1 (en) Apparatus and methods for producing glass comprising crystal zirconia
JP2019112253A (en) Production method of glass article, and glass melting furnace
JP6563230B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2008081382A (en) Method for manufacturing optical glass, method for manufacturing preform for precision press forming, and method for manufacturing optical element
JP6665435B2 (en) Method for manufacturing glass articles
JP5731437B2 (en) Manufacturing method of glass plate
JP5730806B2 (en) Manufacturing method of glass substrate
WO2019093129A1 (en) Method for producing alkali-free glass substrate, and alkali-free glass substrate
JP6038247B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2013095639A (en) Preheating method of glass melting furnace, glass melting apparatus, and method for manufacturing glass article
JP2005053757A (en) Glass manufacturing apparatus and method
JP4074568B2 (en) Manufacturing method of optical glass
JP5668066B2 (en) Manufacturing method of glass substrate
JP2017178649A (en) Manufacturing method for glass substrate
JP6749123B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
WO2020137011A1 (en) Glass article manufacturing device and method for manufacturing glass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees