EP0293367A1 - Dispositif pour le reglage de la stabilite de marche de moteurs a combustion. - Google Patents

Dispositif pour le reglage de la stabilite de marche de moteurs a combustion.

Info

Publication number
EP0293367A1
EP0293367A1 EP86905739A EP86905739A EP0293367A1 EP 0293367 A1 EP0293367 A1 EP 0293367A1 EP 86905739 A EP86905739 A EP 86905739A EP 86905739 A EP86905739 A EP 86905739A EP 0293367 A1 EP0293367 A1 EP 0293367A1
Authority
EP
European Patent Office
Prior art keywords
segments
smooth running
controllers
setpoint
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86905739A
Other languages
German (de)
English (en)
Other versions
EP0293367B1 (fr
Inventor
Thomas Kuttner
Wolf Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0293367A1 publication Critical patent/EP0293367A1/fr
Application granted granted Critical
Publication of EP0293367B1 publication Critical patent/EP0293367B1/fr
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • a device for regulating the smooth running of an internal combustion engine is known, with the aid of which the vibration of a motor vehicle in the lower speed range, in particular when idling, is eliminated.
  • This swinging of the motor vehicle is often referred to as "shaking" and is a result of manufacturing tolerances that occur in the series production of the injection equipment.
  • the fuel quantities to be injected into the individual cylinders are to be corrected by a smooth running control, in which each cylinder is assigned its own control, in such a way that each cylinder delivers the same torque as possible, so that the engine runs more smoothly.
  • a smooth running control in which each cylinder is assigned its own control, in such a way that each cylinder delivers the same torque as possible, so that the engine runs more smoothly.
  • the actual and setpoint formation is carried out at the same time, which gives the disadvantage in the case of large signal speed fluctuations that the measure for the deviation of the actual value from the mean value is falsified because the setpoint signal causes a delay or a phase shift experiences. This disadvantage leads to a deterioration in the dynamic behavior of the injection system.
  • the device according to the invention for controlling the smooth running of an internal combustion engine has the advantage that the phase shift that occurs between the actual value and the desired value is compensated for large-signal speed fluctuations, so that a significant improvement in the dynamic behavior of the injection system is achieved.
  • the compensation of the phase shift between the setpoint and the actual value is achieved in that the setpoint is decelerated from the actual value by z-1 segments of a known segment wheel, which has z segments when it is attached to the crankshaft.
  • the preferred embodiment provides that a simplified averaging of the setpoint takes place with the aid of a filter which filters out the frequency of the "shaking", so that 2 * z memory cells of a microprocessor which control the smoothness and other control and / or regulating devices for the Controls fuel metering, less are needed.
  • the limit frequency of the filter is determined according to two criteria: on the one hand, the averaged speed signal must be able to follow the instantaneous speed well in the event of large signal speed fluctuations, and on the other hand, the best possible damping of the camshaft speed fluctuations must be guaranteed.
  • FIG. 2 delayed the moving average over 2 segments and the moving average over 8 segments by 3 segments
  • Figure 3 shows a first possibility of the principle of quiet running regulation with 4 proportional integral controllers without synchronization
  • FIG. 4 the principle of the smooth running control with 8 proportional integral controllers
  • FIG. 5 shows a second possibility of the principle of smooth running control with 4 proportional-integral controllers without synchronization
  • FIG. 6 the principle of the smooth running control with 4 proportional-integral controllers with synchronization
  • FIG. 7 shows a simplified block diagram with integration of the smooth running control into the injection system
  • FIG. 8 shows the course of the smooth running control integrators during idling and outside of idling
  • FIG. 9 shows a first alternative to the setpoint and actual value formation
  • Figure 10 shows a second alternative to the target and actual value formation
  • Figure 11 shows the principle of manipulating variable shaping to shorten the actuating time.
  • Figure 1 the moving averages over 2 and 8 segments are recorded.
  • the actual invert is the average of the two previous segment times, which corresponds to one working stroke of a cylinder.
  • Figure 1 further shows that at Large signal speed fluctuations a greater delay or phase shift of the setpoint compared to the actual value occurs.
  • FIG. 2 shows the moving average over 2 segments and the moving average over 8 segments, which is delayed by 3 segments. This measure enables, as can be seen from FIG. 2, that the smoothness control recognizes the correct measure for the deviation of the actual value with respect to the mean value even in the case of large signal speed fluctuations.
  • Figure 3 shows a first possibility of the principle of the smooth running control LRR with proportional integral controllers (PI controller) without synchronization.
  • PI controller proportional integral controllers
  • the following variables are plotted over the time axis t.
  • This time diagram shows the calculation times of the setpoint and actual value. At the time of the setpoint and manipulated variable calculation for the controller, the calculated actual value was 3 segments behind.
  • FIG. 4 illustrates the principle of the smooth running control LRR with 8 proportional integral controllers (PI controllers), the same variables as in FIG. 3 being plotted over the time axis t.
  • PI controllers proportional integral controllers
  • FIG. 5 shows a second possibility of the principle of the LRR smooth running control with 4 proportional integral controllers (PI controllers) without synchronization.
  • FIG. 5 can be compared with FIG. 3.
  • This second option like the first option in FIG. 3, permits stable LRR control.
  • FIG. 5 shows that the reaction to the injection in cylinder 1 (ZI) is then detected in the second and third segments, in FIG. 3 already in the first and second segments.
  • ZI the times for the controller calculation and the manipulated variable are shifted by one segment compared to the first option. Since there are these two setting options, no synchronization is necessary, and it is up to chance which setting is set from the start.
  • FIG. 6 shows the principle of the smooth running control LRR with 4 proportional integral controllers (PI controllers) with synchronization, the reaction to the injection in cylinder 1 (ZI) being subsequently recorded in the second and third segments.
  • PI controllers proportional integral controllers
  • FIG. 7 shows a simplified block diagram with integration of the smooth running control LRR into the injection system.
  • the idle controller is divided into a proportional component, LL-P component, and an integral component, LL-I component, and an integral gain calculation, I-component.
  • the integral increase is added to the manipulated variables and integrators of the idle idle control LRR.
  • the mean value MW of the smooth running integrators is formed. This mean value MW is fed to a conversion point U, which uses the timer value to determine the amount of fuel that is fed to the cylinder. This conversion point U is connected to an addition point 1.
  • the idle controller proportional component is also linked to this addition point 1.
  • the addition point 1 is supplied with a third signal via the change in the driving behavior of the motor vehicle KFZ.
  • the vehicle speed control FGR and the addition point 1 are connected to a maximum value limiter MAX which, together with a full load / smoke limitation VL / R, emits signals to a minimum limiter MIN.
  • This minimum limiter MIN supplies signals to a subtraction point 2 via a fuel temperature correction KTK, a pump map (pump KF) and a timer value normalization TN.
  • the output signal of the formed mean value MW of the smooth running integrators is also fed to the subtraction point 2.
  • the output signal of the subtraction point 2 is fed to an addition point 3, which receives a further signal from the smooth running control LRR via a control variable switchover SGU.
  • the output signal of the addition point 3 is fed to the control path setpoint output of the injection system.
  • the minimum limiter MIN is coupled to the smooth running control LRR, in the form that the integrator setting is stored below the zero line outside of the idle mode.
  • Figure 8 shows the course of the smooth running control LRR integrators 1 to 4 at idle LL and outside of
  • the characteristic curve a shows the mean value MW of the integrators of the smooth running control during idling and outside of idling.
  • FIG. 11 shows a possibility for shortening the actuating time in the case of fuel quantity interlockings with a specific actuating time (for example magnetic interlockings). Shortly after the time of issue for the next manipulated variable, it is not the new final value (eg S1) that is output, but a pilot control variable VS1, which is formed as follows:
  • the pilot control variable VS1 is pending for the time dt.
  • the factor and the time dt must be matched to the actuating speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Ce dispositif compense un décalage ou un retard de phase des variations de vitesse. Ce décalage ou retard est défini par une valeur effective et une valeur prescrite moyenne. Ces deux valeurs sont introduites dans un bloc de commande pour l'injection du carburant dans un cylindre. Si l'on utilise 2 x z régulateurs proportionnels à corrélation intégrale pour le réglage de la stabilité de marche de z cylindres, on obtient automatiquement une synchronisation. Si le nombre de cylindres est inférieur à 6, une synchronisation automatique est obtenue avec z régulateurs.
EP86905739A 1986-02-17 1986-09-19 Dispositif pour le reglage de la stabilite de marche de moteurs a combustion Expired EP0293367B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863604904 DE3604904A1 (de) 1986-02-17 1986-02-17 Einrichtung zur regelung der laufruhe einer brennkraftmaschine
DE3604904 1986-02-17

Publications (2)

Publication Number Publication Date
EP0293367A1 true EP0293367A1 (fr) 1988-12-07
EP0293367B1 EP0293367B1 (fr) 1989-12-20

Family

ID=6294227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905739A Expired EP0293367B1 (fr) 1986-02-17 1986-09-19 Dispositif pour le reglage de la stabilite de marche de moteurs a combustion

Country Status (4)

Country Link
EP (1) EP0293367B1 (fr)
JP (1) JP2545521B2 (fr)
DE (2) DE3604904A1 (fr)
WO (1) WO1987005074A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0481983B1 (fr) * 1989-07-07 1994-09-21 Siemens Aktiengesellschaft Procede et dispositif pour la regulation de la vitesse d'un moteur diesel polycylindrique a faible vitesse de rotation
DE4005735A1 (de) * 1990-02-23 1991-08-29 Bosch Gmbh Robert Verfahren und einrichtung zur regelung/steuerung der laufruhe einer brennkraftmaschine
IT1279073B1 (it) * 1994-12-23 1997-12-04 Bosch Gmbh Robert Procedimento e dispositivo per la regolazione della silezionsita' di funzionamento di un motore endotermico
DE19725233B4 (de) * 1997-06-14 2005-03-24 Volkswagen Ag Verfahren zur Anpassung der Einspritzmenge einer Brennkraftmaschine zur Laufruheregelung
DE19961292C2 (de) * 1999-12-18 2003-04-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10147589B4 (de) * 2001-09-27 2011-01-27 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP4424380B2 (ja) * 2007-06-20 2010-03-03 株式会社デンソー 噴射量制御装置およびそれを用いた燃料噴射システム
DE102013210741A1 (de) * 2013-06-10 2014-12-11 Robert Bosch Gmbh Verfahren zum Bestimmen einer mittleren Segmentzeit eines Geberrads einer Brennkraftmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906782A1 (de) * 1979-02-22 1980-09-04 Bosch Gmbh Robert Einrichtung zum daempfen von ruckelschwingungen bei einer brennkraftmaschine
US4475511A (en) * 1982-09-01 1984-10-09 The Bendix Corporation Fuel distribution control system for an internal combustion engine
JPS5993945A (ja) * 1982-11-19 1984-05-30 Nippon Denso Co Ltd 内燃機関のアイドル運転制御方法
JPS59119039A (ja) * 1982-12-24 1984-07-10 Nippon Denso Co Ltd エンジンのアイドル運転制御装置
DE3336028C3 (de) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Einrichtung zur Beeinflussung von Steuergrößen einer Brennkraftmaschine
JPS60184944A (ja) * 1984-03-02 1985-09-20 Toyota Motor Corp 電子制御デイ−ゼルエンジンの気筒別燃料噴射量制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8705074A1 *

Also Published As

Publication number Publication date
JP2545521B2 (ja) 1996-10-23
JPH01501643A (ja) 1989-06-08
EP0293367B1 (fr) 1989-12-20
DE3604904A1 (de) 1987-08-20
DE3667701D1 (de) 1990-01-25
WO1987005074A1 (fr) 1987-08-27

Similar Documents

Publication Publication Date Title
DE19527218B4 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
EP0416270B1 (fr) Procédé et dispositif pour commander et régler un moteur à auto-allumage
DE2803750C2 (fr)
DE3311892C2 (fr)
DE102008043165A1 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
EP0142011A2 (fr) Appareil pour déterminer la composition du mélange dans un moteur à combustion
DE4401828B4 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
WO1989012737A1 (fr) Procede et dispositif de regulation lambda a sondes multiples
EP0347446B1 (fr) Procede et agencement de regulation du dosage d'air dans des moteurs a combustion interne, notamment au ralenti et en deceleration
WO1997029276A1 (fr) Procede pour determiner une quantite supplementaire de carburant a injecter lors de la reinjection de carburant dans un moteur a combustion interne
EP0293367A1 (fr) Dispositif pour le reglage de la stabilite de marche de moteurs a combustion.
EP0460126B1 (fr) Systeme pour la commande electronique et/ou la regulation de la puissance d'un moteur a combustion interne d'un vehicule automobile
EP2358988A1 (fr) Procédé de commande et de régulation d'un moteur à combustion interne équipé d'un système à rampe commune
DE3437324A1 (de) Verfahren und vorrichtung zur regelung der leerlaufdrehzahl bei brennkraftmaschinen
DE4001510C2 (de) Zündzeitpunktregelsystem für eine Brennkraftmaschine eines Kraftfahrzeugs
EP1005609B1 (fr) Procede permettant de commander le recyclage des gaz d'echappement d'un moteur a combustion interne
DE4222298B4 (de) Verfahren zur Dämpfung von auftretenden Ruckelschwingungen für Brennkraftmaschinen
DE2949311C2 (de) Verfahren und Vorrichtung zur Veränderung des Abstands der von einem Zündimpulsgeber für Brennkraftmaschinen abgegebenen Zündsteuerimpulse
DE69507672T2 (de) Elektronisches steuersystem für den einspritzdruck bei sich verändernden betriebszuständen
EP0415048B1 (fr) Procédé de régulation d'un ensemble moteur/transmission
DE4020654C2 (de) Regelverfahren in Verbindung mit einer Brennkraftmaschine und/oder einem Kraftfahrzeug und Regelvorrichtung zur Durchführung des Regelverfahrens
EP0128523B1 (fr) Procédé d'utilisation de machine à combustion
DE10252399A1 (de) Verfahren zur Regelung einer Brennkraftmaschinen-Generator-Einheit
EP0227058B1 (fr) Procédé et circuit de régulation du début d'injection pour pompe distributrice de gazole pour moteur Diesel
EP0150437B1 (fr) Système de dosage du mélange air-carburant pour moteur à combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19890206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3667701

Country of ref document: DE

Date of ref document: 19900125

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050913

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051229

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060918

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20