EP0292466A2 - Electrode for an electrolytic cell - Google Patents

Electrode for an electrolytic cell Download PDF

Info

Publication number
EP0292466A2
EP0292466A2 EP88870094A EP88870094A EP0292466A2 EP 0292466 A2 EP0292466 A2 EP 0292466A2 EP 88870094 A EP88870094 A EP 88870094A EP 88870094 A EP88870094 A EP 88870094A EP 0292466 A2 EP0292466 A2 EP 0292466A2
Authority
EP
European Patent Office
Prior art keywords
slots
electrolyte
electrode
anode
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88870094A
Other languages
German (de)
French (fr)
Other versions
EP0292466B1 (en
EP0292466A3 (en
Inventor
Jean Crahay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Recherches Metallurgiques CRM ASBL
Original Assignee
Centre de Recherches Metallurgiques CRM ASBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre de Recherches Metallurgiques CRM ASBL filed Critical Centre de Recherches Metallurgiques CRM ASBL
Publication of EP0292466A2 publication Critical patent/EP0292466A2/en
Publication of EP0292466A3 publication Critical patent/EP0292466A3/en
Application granted granted Critical
Publication of EP0292466B1 publication Critical patent/EP0292466B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers

Definitions

  • the present invention relates to an electrode for an electrolysis cell of the type used in particular for operating the deposition of a metallic coating, adherent or detachable, on a substrate.
  • the current density conditions on the one hand the duration of the operation, that is to say the speed of the substrate and the size of the installation if the substrate is in motion, and on the other hand the compactness, or conversely the porosity, of the coating deposited.
  • the anode which provides the electrical supply of the cell.
  • This electrode is necessarily made of a material resistant to chemical attack by the electrolyte; for this purpose, it is for example made of graphite, a Pb-Ag alloy, or titanium provided with an appropriate coating.
  • the electrical supply of the anode will therefore preferably be provided by copper bars, which should conduct the current as close as possible to the interval between the anode and the cathode.
  • a first known solution consists in placing a plane anode parallel to the surface of the strip, and in injecting the electrolyte transversely with respect to the strip.
  • the electrolyte introduced along one edge of the strip and collected on the other edge must therefore circulate at high speed between two flat surfaces close to each other; this arrangement causes high pressure drops and requires high supply pressures of the electrolyte.
  • a variant of this solution consisting in injecting the electrolyte in the longitudinal direction of the strip, faces the same problems and is subject to the same limitations as in the case of transverse injection.
  • Another proposed solution consists in introducing the electrolyte perpendicular to the surface of the cathode, through one or more transverse slots formed in the anode, and in then collecting it on the edges of the strip.
  • the supply pressures must be high due to the high pressure drops, which also limits the practicable distance between the anode and the strip to around 10 mm.
  • Patent BE-A-905,588 by the same applicant proposes a solution which makes it possible to reduce the pressure drops and therefore to avoid the use of high supply pressures. He recommends introducing the electrolyte perpendicular to the surface of the strip by small holes drilled in the anode and taking up this electrolyte by other small holes, close to the first, also drilled in the anode; the anode proper is constituted by a plate of electrically conductive material resistant to the electrolyte, such as graphite, this plate ensuring the supply of current from the lateral supply conductors up to the interval electrolysis.
  • the present invention provides an electrode intended for an electrolysis cell of the aforementioned type, the design and constitution of this anode being such that it makes it possible to largely reach the three objectives mentioned above, namely a high speed of the electrolyte in a very narrow interval between the anode and the cathode, ohmic losses reduced to a minimum, as well as a homogeneous scanning of the interval between the anode and the cathode by the electrolyte.
  • an electrode for an electrolysis cell intended for depositing a metal coating on a substrate which comprises an electrode body comprising means for supplying electric current and having at least one profiled surface of corresponding to the surface of said substrate, is characterized in that said electrode body has a plurality of narrow parallel slots opening into said surface of the electrode body, in that a first group of said slots are connected to means electrolyte supply, in that the other group of said slots are connected to means for discharging the electrolyte and in that the slots of one and the other of said groups alternate in succession in said surface of the electrode body.
  • said electrode body is preferably made of an electrically conductive material which is chemically resistant to the electrolyte, such as graphite.
  • said slots have a width which does not exceed 3 mm.
  • the distance between two neighboring slots is between 20 mm and 50 mm.
  • said slots advantageously extend in the electrode body perpendicular to the surface of the electrode body into which they open.
  • each of said slots opens, according to the invention, into a channel formed in said electrode body and disposed parallel both to the plane of said surface of the electrode body and to the longitudinal direction of said slots .
  • Each of these channels is normally closed at one of its ends and it is connected by its other end either to means for supplying electrolyte, or to means for discharging the electrolyte, depending on the slot with which it is found. in communication.
  • These channels are advantageously arranged head to tail, the closed end of any one of these channels being close to the open end of the adjacent channel or channels.
  • the electrode body is composed of a plurality of juxtaposed plates profiled so as to form, during their assembly, the narrow slots and the supply and discharge channels of the electrolyte required by the invention.
  • said electrode body is provided with means for supplying electric current constituted by bars made of a material which is a good conductor of electricity, which penetrates into said electrode body up to proximity of said slots, respectively of the channels, for supplying electrolyte.
  • said bars are advantageously housed in cavities formed in at least one lateral face of said plates.
  • Preferably copper bars are used, the resistivity of which, clearly lower than that of the material of said electrode body, enables the electric current to be conducted, without appreciable ohmic losses, as far as immediate proximity to the electrolyte circulating in the slots, respectively the supply channels.
  • the figures refer to an electrolysis cell intended to deposit a coating on a continuous metallic substrate in movement, such as a steel strip, which constitutes the cathode of the cell.
  • the electrode according to the invention then constitutes the anode of the cell.
  • this anode is arranged in such a way that the electrolyte supply and discharge slots are oriented transversely with respect to the direction of movement of the cathode.
  • this cathode could be an endless strip on which a detachable coating is deposited, in particular a strip of titanium or of titanium alloy, possibly provided with a protective coating.
  • the anode could be arranged in such a way that said slots are oriented in any way, for example obliquely, relative to the direction of movement of the cathode.
  • Fig. 1 schematically shows, in perspective, the configuration of the electrolyte plies circulating on the one hand in the slots of the anode and on the other hand in the space between the anode and the cathode.
  • the anode proper is not shown and the cathode consists of a metal strip 1 moving in the direction of arrow 2.
  • the electrolyte is supplied in thin vertical sheets 3, flowing from top to bottom (arrows 4) in the supply slots of the anode (not shown); in the space between the anode and the cathode, it is subdivided into two horizontal layers such as 5 and 6, of small thickness, which separate from one another; then, concurrent horizontal plies such as 6 and 7 are taken up in vertical plies 8 flowing from bottom to top (arrows 9) in the evacuation slots of the anode (not shown).
  • the supply 4 and discharge 8 plies are produced by corresponding slots connected respectively to means for supplying and discharging the electrolyte, according to an arrangement which is schematically illustrated in FIG. 2.
  • FIG. 2 is a plan view of an anode according to the invention, which comprises a body 10 disposed transversely with respect to the cathode 1.
  • the body 10 of the anode has an inlet (11) and an outlet (12) for the electrolyte, respectively connected to external supply and discharge means, not shown.
  • the body 10 of the anode comprises a distribution chamber connected to the inlet 11 and connected to supply branches 13 in which the supply slots 14 are formed, drawn in solid lines, which open into the space included between cathode 1 and body 10 of the anode. These branches and supply slots are traversed by the vertical layers of electrolyte symbolized by the descending arrows 4.
  • the electrolyte is taken up by the discharge slots 15, drawn in broken lines which , by evacuation branches 16 and a collection chamber, return it towards the exit 12.
  • the slots and the evacuation branches are traversed by the vertical layers of electrolyte symbolized by the ascending arrows 8.
  • the supply branches 13 are separated from the discharge branches 16 by a labyrinth wall 17.
  • variable pressure losses along a supply branch are compensated by the pressure losses varying in opposite directions along a discharge branch. This results in a homogeneous flow of the electrolyte over the width of the strip.
  • FIG. 3 there is shown schematically an advantageous implementation of an anode of the type illustrated in FIG. 2, implementation in which the body 10 of the anode is composed of a plurality of transverse plates 18, 19, 20, 21, arranged perpendicularly to the plane of the cathode 1.
  • FIG. 4a which partly represents a section along the line AA ′ in FIG. 3.
  • the body of the anode 10 is composed of a series of plates such as 18, 19, 20, 21 juxta laid and assembled by appropriate means, for example bolts 22.
  • the configuration of the anode assembly being repetitive, it will suffice to describe the relative arrangement of four plates such as 18, 19, 20 and 21.
  • These plates are arranged vertically, and their lower face is located at a very short distance from the upper surface of the cathode 1 to be coated. They are made of graphite or an electrically conductive and electrolyte resistant alloy.
  • a half-channel 23 and a half-slot 24 have been machined intended for the evacuation of the electrolyte, while in the left face of these same odd plates (19 , 21), a half-channel 25 and a half-slot 26 have been machined intended for the supply of electrolyte.
  • a half-channel 27 and a half-slot 28 have been machined intended for the evacuation of the electrolyte
  • a half-channel 29 and a half-slot 30 have been machined intended for the supply of electrolyte.
  • the assembly of the plates makes it possible to form the channels and the slots for supplying and discharging the electrolyte.
  • the end plates such as 18 are not machined on their outer face.
  • the body 10 of the anode also includes copper bars 31 which are housed in grooves machined in the plates 19, 20 and which penetrate as close as possible to the supply channels 25, 29.
  • the contact surfaces between the plates are lined with seals such as 32, 33.
  • the evacuation slots 24, 28 are advantageously discontinuous in the transverse direction of the strip, as shown in Fig. 4b.
  • the slit sections are separated by short contact zones which practically do not disturb the discharge flow of the electrolyte, but which ensure mechanical contact between the plates 18 and 19 in the event of an increase in the pressure in the feed slots 26, 30.
  • the plates 18, 19 cannot flex due to this contact. It is therefore possible to increase the supply pressure of the electrolyte and consequently improve the performance of the cell without run the risk of causing deformation of the entire anode.
  • the channels 24, 29 and the supply slots 26, 30 communicate with the inlet 11 of the electrolyte, while the channels 23, 27 and the discharge slots 24, 28 communicate with the outlet 12 of the 'electrolyte.
  • FIGS. 5 and Figs. 6a and 6b which respectively show a plan view, a partial section along the line AA ′ and a bottom view along the arrow B.
  • the body 10 of the anode is composed of a plurality of modular elements 34 whose width is determined by the existing machining possibilities. These elements are arranged obliquely to the direction of movement of the strip 1.
  • FIGS. 6a and 6b show the channels 25 and the supply slots 26 as well as the channels 27 and the discontinuous slots 28 for discharging the electrolyte.
  • This oblique arrangement makes it possible to mask the discontinuity effect caused by the joints between the various modular elements, by distributing these joints over the entire width of the strip.
  • Fig. 7 illustrates the configuration of an electrode according to the invention profiled so as to correspond to a cylindrical substrate.
  • the plates such as 20, 21 have a trapezoidal section.
  • the various channels and the various slots are also produced by simple machining operations. The pla they must be assembled by appropriate means which guarantee compliance with the curvature of the assembly.
  • Fig. 8 shows, by a cross section similar to that of FIG. 4a, the constitution of an anode in which the channels are formed by a suitably folded metal sheet.
  • the folds of the sheet 17 have the shape of alternate trapezoids, the large bases of which are welded respectively to an upper plate 35 and to a lower plate 36, both parallel to the lower face. of the body of the anode 10.
  • the blocks 39, the lower 36 and upper 35 plates as well as the folded sheet 17 form the circuit for supplying the anode with electric current; all these elements are therefore preferably made of titanium, as are the upper sections, marked with a broken arrow, which symbolize the connection of the anode to the source of electric current.
  • Fig. 9 illustrates, in vertical section A-A ′ and in horizontal section C-C ′, another way of producing the supply channels 13 and discharge 16 of the electrolyte, by means of parallel vertical separation walls 17. These walls are provided with cylindrical bulges 40 in which are pierced passages through which tie rods 41. These tie rods 41 serve on the one hand to fix the walls 17 to upper 35 and lower 36 horizontal plates and on the other hand to bring the electric current to the blocks 39.
  • the feed channels 13 are connected to the feed slots 14 by feed holes 37 drilled in the bottom plate 36, likewise, the discharge slots 15 are connected to the discharge channels 16 by evacuation orifices 38 drilled in the bottom plate 36.
  • the walls 17 and the upper 35 and lower 36 plates can be made of a composite material resistant to the electrolyte, for example of epoxy resin reinforced with glass fibers.
  • the electric current is supplied by the tie rods 41, one end of which is for example screwed into the blocks 39 and the other end of which has a head which, by a copper plate 32 and a spring 43, bears on the plate upper 35.
  • the copper plate 42 is connected to a source of electric current by known means.
  • the electrode according to the invention can be placed at a very short distance from the substrate to be coated, since the electrolyte travels only a very short path between the anode and the cathode; it therefore does not undergo high pressure drops and a moderate pressure ensures a speed and a turbulence very favorable to the electrolytic deposition.
  • the electrically active parts cover the entire surface of the electrode, with the exception of the small portion corresponding to the electrolyte supply and discharge slots. The electrode therefore ensures a homogeneous distribution of the electric current with low ohmic losses, which leads to an excellent efficiency of the operation. Finally, the entire surface of the substrate is subjected to a homogeneous sweep by the electrolyte, which also promotes the homogeneity and the yield of the coating deposition.

Abstract

Electrode for an electrolysis cell intended for the deposition of a metal coating on a substrate. The body of the electrode has a plurality of parallel narrow slots emerging in the surface of the body of the electrode facing the substrate. A first group of slots is connected to means for feeding electrolyte, the other group of slots is connected to means for discharging the electrolyte and the slots of both groups succeed each other alternately in the abovementioned surface of the electrode body. Each slot is connected to an electrolyte feed or discharge channel respectively. <IMAGE>

Description

La présente invention concerne une électrode pour une cellule d'élec­trolyse du type utilisé notamment pour opérer le dépôt d'un revêtement métallique,adhérent ou détachable, sur un substrat.The present invention relates to an electrode for an electrolysis cell of the type used in particular for operating the deposition of a metallic coating, adherent or detachable, on a substrate.

Pour une opération de dépôt électrolytique, il est intéressant d'utiliser une densité de courant élevée, tant pour le rendement de l'opération que pour la qualité du dépôt proprement dit. En effet, la densité de courant conditionne d'une part la durée de l'opération, c'est-à-dire la vitesse du substrat et l'encombrement de l'installa­tion si le substrat est en mouvement, et d'autre part la compacité, ou inversément la porosité, du revêtement déposé.For an electrolytic deposition operation, it is advantageous to use a high current density, both for the efficiency of the operation and for the quality of the deposition itself. Indeed, the current density conditions on the one hand the duration of the operation, that is to say the speed of the substrate and the size of the installation if the substrate is in motion, and on the other hand the compactness, or conversely the porosity, of the coating deposited.

On sait par ailleurs que la réalisation de hautes densités de courant, par exemple supérieures à 100 A/dm², nécessite une turbulence élevée de l'électrolyte dans l'espace compris entre l'anode et la cathode, cette dernière étant généralement constituée par le substrat. Une telle turbulence élevée implique que l'électrolyte soit animé d'une grande vitesse lorsqu'il circule entre l'anode et la cathode.It is also known that achieving high current densities, for example greater than 100 A / dm², requires high turbulence of the electrolyte in the space between the anode and the cathode, the latter being generally constituted by the substrate. Such high turbulence implies that the electrolyte is driven at a high speed when it flows between the anode and the cathode.

Il est également bien connu qu'une partie importante de l'énergie électrique consommée par une opération d'électrolyse dépend des pertes par effet Joule qui se produisent dans l'électrolyte, et que ces pertes sont proportionnelles à la distance qui sépare l'anode de la cathode. Pour minimiser ces pertes et ainsi atteindre un rendement aussi élevé que possible, il convient donc de minimiser la distance existant entre l'anode et la cathode de la cellule d'électrolyse.It is also well known that a large part of the electrical energy consumed by an electrolysis operation depends on the Joule effect losses which occur in the electrolyte, and that these losses are proportional to the distance which separates the anode. of the cathode. To minimize these losses and thus achieve as high a return as possible, it is therefore necessary to minimize the distance existing between the anode and the cathode of the electrolysis cell.

Enfin, une autre fraction non négligeable de l'énergie électrique consommée au cours d'une telle opération d'électrolyse sert à compen­ser les pertes ohmiques dans les parties conductrices de l'électrode, généralement l'anode, qui assure l'alimentation électrique de la cellule. Cette électrode est nécessairement réalisée en un matériau résistant à une attaque chimique par l'électrolyte; à cet effet, elle est par exemple constituée de graphite, d'un alliage Pb - Ag, ou de titane pourvu d'un revêtement approprié. Etant donné l'importance des intensités électriques mises en jeu, qui peuvent dépasser 10.000 A/m² , il est particulièrement intéressant de réduire ces pertes ohmiques en utilisant des matériaux présentant une résistance électrique aussi faible que possible. L'alimentation électrique de l'anode sera dès lors assurée de préférence par des barreaux de cuivre, qui devront conduire le courant aussi près que possible de l'intervalle compris entre l'anode et la cathode.Finally, another not insignificant fraction of the electrical energy consumed during such an electrolysis operation serves to compensate for the ohmic losses in the conductive parts of the electrode, generally the anode, which provides the electrical supply of the cell. This electrode is necessarily made of a material resistant to chemical attack by the electrolyte; for this purpose, it is for example made of graphite, a Pb-Ag alloy, or titanium provided with an appropriate coating. Given the importance of the electrical intensities involved, which can exceed 10,000 A / m², it is particularly advantageous to reduce these ohmic losses by using materials having as low an electrical resistance as possible. The electrical supply of the anode will therefore preferably be provided by copper bars, which should conduct the current as close as possible to the interval between the anode and the cathode.

Il existe plusieurs dispositions de cellules ainsi que diverses mé­thodes d'introduction de l'électrolyte cherchant à atteindre les trois objectifs précités.There are several cell arrangements as well as various methods of introducing the electrolyte seeking to achieve the three aforementioned objectives.

Pour fixer les idées, la description de la technique antérieure ainsi que de la présente invention fera plus spécialement référence au dépôt électrolytique d'un revêtement sur une cathode constituée par une bande métallique circulant dans un plan horizontal. Cette réfé­rence n'a cependant qu'une simple valeur d'exemple et elle n'exclut nullement la possibilité d'appliquer l'invention dans toute situation compatible avec les revendications qui suivront.To fix the ideas, the description of the prior art as well as of the present invention will more particularly refer to the electrolytic deposition of a coating on a cathode constituted by a metal strip circulating in a horizontal plane. This reference has only a simple example value and it does not exclude the possibility of applying the invention in any situation compatible with the claims which will follow.

Une première solution connue consiste à disposer une anode plane parallèlement à la surface de la bande, et à injecter l'électrolyte transversalement par rapport à la bande. Conformément aux deux pre­miers objectifs, l'électrolyte introduit le long d'un bord de la bande et recueilli sur l'autre bord doit donc circuler à grande vitesse entre deux surfaces planes proches l'une de l'autre; cette disposition provoque des pertes de charge élevées et nécessite d'importantes pres­sions d'alimentation de l'électrolyte. Il en résulte de nombreux pro­blèmes mécaniques portant notamment sur l'étanchéité des joints et la déformation des surfaces en présence, et qui empêchent en pratique d'opérer avec des distances inférieures à 10 mm entre l'anode et la cathode.A first known solution consists in placing a plane anode parallel to the surface of the strip, and in injecting the electrolyte transversely with respect to the strip. In accordance with the first two objectives, the electrolyte introduced along one edge of the strip and collected on the other edge must therefore circulate at high speed between two flat surfaces close to each other; this arrangement causes high pressure drops and requires high supply pressures of the electrolyte. This results in numerous mechanical problems relating in particular to the sealing of the seals and the deformation of the surfaces present, and which in practice prevent operating with distances of less than 10 mm between the anode and the cathode.

Une variante de cette solution, consistant à injecter l'électrolyte dans le sens longitudinal de la bande, se heurte aux mêmes problèmes et est soumise aux mêmes limitations que dans le cas de l'injection transversale.A variant of this solution, consisting in injecting the electrolyte in the longitudinal direction of the strip, faces the same problems and is subject to the same limitations as in the case of transverse injection.

Une autre solution proposée consiste à introduire l'électrolyte perpendiculairement à la surface de la cathode, à travers une ou plu­sieurs fentes transversales ménagées dans l'anode, et à le recueillir ensuite sur les bords de la bande. Ici encore, les pressions d'alimen­tation doivent être importantes en raison des pertes de charge élevées, ce qui limite également à environ 10 mm la distance pratica­ble entre l'anode et la bande.Another proposed solution consists in introducing the electrolyte perpendicular to the surface of the cathode, through one or more transverse slots formed in the anode, and in then collecting it on the edges of the strip. Here again, the supply pressures must be high due to the high pressure drops, which also limits the practicable distance between the anode and the strip to around 10 mm.

Le brevet BE-A-905.588 du même demandeur propose une solution qui per­met de réduire les pertes de charge et par conséquent d'éviter le recours à des pressions d'alimentation élevées. Il préconise d'intro­duire l'électrolyte perpendiculairement à la surface de la bande par de petits orifices percés dans l'anode et de reprendre cet électrolyte par d'autres petits orifices, proches des premiers, également percés dans l'anode; l'anode proprement dite est constituée par une plaque en matériau conducteur de l'électricité et résistant à l'électrolyte, tel que le graphite, cette plaque assurant l'amenée du courant depuis les conducteurs d'alimentation latéraux jusqu'à l'intervalle d'électrolyse. Une telle disposition permet certes de réduire la dis­tance entre l'anode et la bande; elle n'assure cependant pas toujours un écoulement parfaitement homogène de l'électrolyte dans l'intervalle entre l'anode et la bande, et les conducteurs d'alimentation à faible résistance n'arrivent pas encore assez près de cet intervalle pour ré­duire les pertes ohmiques dans une mesure suffisante.Patent BE-A-905,588 by the same applicant proposes a solution which makes it possible to reduce the pressure drops and therefore to avoid the use of high supply pressures. He recommends introducing the electrolyte perpendicular to the surface of the strip by small holes drilled in the anode and taking up this electrolyte by other small holes, close to the first, also drilled in the anode; the anode proper is constituted by a plate of electrically conductive material resistant to the electrolyte, such as graphite, this plate ensuring the supply of current from the lateral supply conductors up to the interval electrolysis. Such an arrangement certainly makes it possible to reduce the distance between the anode and the strip; however, it does not always ensure a perfectly homogeneous flow of the electrolyte in the interval between the anode and the strip, and the low resistance supply conductors do not yet arrive close enough to this interval to reduce losses. ohmic to a sufficient extent.

La présente invention propose une électrode destinée à une cellule d'électrolyse du type précité, la conception et la constitution de cette anode étant telles qu'elle permet d'atteindre largement les trois objectifs mentionnés plus haut, à savoir une vitesse élevée de l'électrolyte dans un intervalle très étroit entre l'anode et la ca­thode, des pertes ohmiques réduites au minimum, ainsi qu'un balayage homogène de l'intervalle entre l'anode et la cathode par l'électro­lyte.The present invention provides an electrode intended for an electrolysis cell of the aforementioned type, the design and constitution of this anode being such that it makes it possible to largely reach the three objectives mentioned above, namely a high speed of the electrolyte in a very narrow interval between the anode and the cathode, ohmic losses reduced to a minimum, as well as a homogeneous scanning of the interval between the anode and the cathode by the electrolyte.

Conformément à la présente invention, une électrode pour une cellule d'électrolyse destinée au dépôt d'un revêtement métallique sur un sub­strat, qui comprend un corps d'électrode comportant des moyens d'ali­mentation en courant électrique et présentant au moins une surface profilée de façon correspondant à la surface dudit substrat, est caractérisée en ce que ledit corps d'électrode présente une pluralité de fentes étroites parallèles débouchant dans ladite surface du corps d'électrode, en ce qu'un premier groupe desdites fentes sont reliées à des moyens d'alimentation en électrolyte, en ce que l'autre groupe desdites fentes sont reliées à des moyens d'évacuation de l'électrolyte et en ce que les fentes de l'un et l'autre desdits groupes se succèdent en alternance dans ladite surface du corps d'électrode.According to the present invention, an electrode for an electrolysis cell intended for depositing a metal coating on a substrate, which comprises an electrode body comprising means for supplying electric current and having at least one profiled surface of corresponding to the surface of said substrate, is characterized in that said electrode body has a plurality of narrow parallel slots opening into said surface of the electrode body, in that a first group of said slots are connected to means electrolyte supply, in that the other group of said slots are connected to means for discharging the electrolyte and in that the slots of one and the other of said groups alternate in succession in said surface of the electrode body.

De façon connue en soi, ledit corps d'électrode est de préférence réa­lisé en un matériau conducteur de l'électricité et chimiquement résis­tant à l'électrolyte, tel que le graphite.In a manner known per se, said electrode body is preferably made of an electrically conductive material which is chemically resistant to the electrolyte, such as graphite.

Selon une première caractéristique supplémentaire de l'invention, les­dites fentes présentent une largeur qui n'excède pas 3 mm.According to a first additional characteristic of the invention, said slots have a width which does not exceed 3 mm.

Selon une autre caractéristique supplémentaire de l'invention, la dis­tance entre deux fentes voisines est comprise entre 20 mm et 50 mm.According to another additional characteristic of the invention, the distance between two neighboring slots is between 20 mm and 50 mm.

En outre, lesdites fentes s'étendent avantageusement dans le corps d'électrode perpendiculairement à la surface du corps d'électrode dans laquelle elles débouchent.In addition, said slots advantageously extend in the electrode body perpendicular to the surface of the electrode body into which they open.

A son extrémité éloignée de ladite surface, chacune desdites fentes débouche, suivant l'invention, dans un canal formé dans ledit corps d'électrode et disposé parallèlement tant au plan de ladite surface du corps d'électrode qu'à la direction longitudinale desdites fentes.At its end remote from said surface, each of said slots opens, according to the invention, into a channel formed in said electrode body and disposed parallel both to the plane of said surface of the electrode body and to the longitudinal direction of said slots .

Chacun de ces canaux est normalement fermé à une de ses extrémités et il est relié par son autre extrémité soit à des moyens d'alimentation en électrolyte, soit à des moyens d'évacuation de l'électrolyte, selon la fente avec laquelle il se trouve en communication. Ces canaux sont avantageusement disposés tête-bêche, l'extrémité fermée de l'un quel­conque de ces canaux étant voisine de l'extrémité ouverte du ou des canaux adjacents.Each of these channels is normally closed at one of its ends and it is connected by its other end either to means for supplying electrolyte, or to means for discharging the electrolyte, depending on the slot with which it is found. in communication. These channels are advantageously arranged head to tail, the closed end of any one of these channels being close to the open end of the adjacent channel or channels.

Selon une réalisation particulière intéressante, le corps d'électrode est composé d'une pluralité de plaques juxtaposées profilées de façon à former, lors de leur assemblage, les fentes étroites et les canaux d'alimentation et d'évacuation de l'électrolyte requis par l'inven­tion.According to a particular advantageous embodiment, the electrode body is composed of a plurality of juxtaposed plates profiled so as to form, during their assembly, the narrow slots and the supply and discharge channels of the electrolyte required by the invention.

Conformément à une autre caractéristique de l'invention, ledit corps d'électrode est doté de moyens d'alimentation en courant électrique constitués par des barreaux en un matériau bon conducteur de l'élec­tricité, qui pénètrent dans ledit corps d'électrode jusqu'à proximité desdites fentes, respectivement des canaux, d'alimentation en élec­trolyte.According to another characteristic of the invention, said electrode body is provided with means for supplying electric current constituted by bars made of a material which is a good conductor of electricity, which penetrates into said electrode body up to proximity of said slots, respectively of the channels, for supplying electrolyte.

Dans le cas où ledit corps d'électrode est constitué de plaques juxta­posées, lesdits barreaux sont avantageusement logés dans des cavités ménagées dans au moins une face latérale desdites plaques.In the case where said electrode body consists of juxtaposed plates, said bars are advantageously housed in cavities formed in at least one lateral face of said plates.

On utilise de préférence des barreaux en cuivre, dont la résistivité, nettement plus faible que celle du matériau dudit corps d'électrode, permet de conduire le courant électrique, sans pertes ohmiques sensibles, jusqu'à proximité immédiate de l'électrolyte circulant dans les fentes, respectivement les canaux d'alimentation.Preferably copper bars are used, the resistivity of which, clearly lower than that of the material of said electrode body, enables the electric current to be conducted, without appreciable ohmic losses, as far as immediate proximity to the electrolyte circulating in the slots, respectively the supply channels.

D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description, donnée ci-dessous à titre d'exemple, d'une réalisation préférée d'une électrode conforme à l'invention. Dans cette description détaillée, il est fait référence aux dessins annexés, dans lesquels la

  • Fig. 1 montre schématiquement en perspective la configuration des nap­pes d'électrolyte obtenues avec une électrode conforme à l'in­vention; la
  • Fig. 2 est une vue en plan illustrant schématiquement la position re­lative des fentes d'alimentation et d'évacuation de l'élec­trolyte; la
  • Fig. 3 est une vue en plan, similaire à celle de la Fig. 2, montrant schématiquement une électrode composée de plaques juxtaposées transversalement; la
  • Fig.4a est une coupe transversale suivant la ligne A-A′ de la Fig. 3, montrant la disposition relative des fentes et des canaux, dans le cas d'une électrode plane; la
  • Fig.4b représente un détail de la surface inférieure du corps de l'é­lectrode, vue suivant la direction de la flèche B; la
  • Fig. 5 est une vue en plan, similaire à celle de la Fig. 2, montrant schématiquement une électrode composée de plaques juxtaposées en oblique; les
  • Fig. 6a et 6b sont analogues aux Fig. 4a et 4b pour une électrode constituée comme le montre la Fig. 5; la
  • Fig. 7 montre schématiquement, en coupe transversale, la disposition relative des fentes et des canaux dans le cas d'une électrode cylindrique; la
  • Fig. 8 est une coupe transversale analogue à celle de la Fig. 4a, mon­trant un autre mode de réalisation des canaux et des fentes dans une anode conforme à l'invention; et la
  • Fig. 9 illustre également en coupe transversale, une façon supplé­mentaire de réaliser les canaux et les fentes dans une anode conforme à l'invention.
Other features and advantages of the invention will appear on reading the description, given below by way of example, of a preferred embodiment of an electrode according to the invention. In this detailed description, reference is made to the accompanying drawings, in which the
  • Fig. 1 schematically shows in perspective the configuration of the electrolyte layers obtained with an electrode according to the invention; the
  • Fig. 2 is a plan view schematically illustrating the relative position of the electrolyte supply and discharge slots; the
  • Fig. 3 is a plan view, similar to that of FIG. 2, schematically showing an electrode composed of plates juxtaposed transversely; the
  • Fig.4a is a cross section along line AA ′ of Fig. 3, showing the relative arrangement of the slots and the channels, in the case of a planar electrode; the
  • Fig.4b shows a detail of the lower surface of the body of the electrode, seen in the direction of arrow B; the
  • Fig. 5 is a plan view, similar to that of FIG. 2, schematically showing an electrode composed of plates juxtaposed obliquely; the
  • Fig. 6a and 6b are similar to Figs. 4a and 4b for an electrode constituted as shown in FIG. 5; the
  • Fig. 7 schematically shows, in cross section, the relative arrangement of the slots and channels in the case of a cylindrical electrode; the
  • Fig. 8 is a cross section similar to that of FIG. 4a, showing another embodiment of the channels and slots in an anode according to the invention; and the
  • Fig. 9 also illustrates in cross section, an additional way of producing the channels and the slots in an anode according to the invention.

Dans toutes les figures, des éléments identiques ou analogues sont dé­signés par les mêmes repères numériques. Le sens de circulation de l'électrolyte et du courant électrique est indiqué par des flèches appropriées. Enfin, on n'a pas représenté les éléments qui ne sont pas directement nécessaires à la compréhension de l'invention, afin de ne pas surcharger inutilement les dessins.In all the figures, identical or analogous elements are designated by the same reference numerals. The direction of flow of the electrolyte and the electric current is indicated by appropriate arrows. Finally, the elements which are not directly necessary for understanding the invention have not been shown, so as not to unnecessarily overload the drawings.

Les figures se réfèrent à une cellule d'électrolyse destinée à déposer un revêtement sur un substrat métallique continu en mouvement, tel qu'une bande d'acier, qui constitue la cathode de la cellule. L'élec­trode conforme à l'invention constitue alors l'anode de la cellule. Dans l'application envisagée, cette anode est disposée de telle façon que les fentes d'alimentation et d'évacuation de l'électrolyte soient orientées transversalement par rapport à la direction de déplacement de la cathode. Il va de soi que cette cathode pourrait être une bande sans fin sur laquelle on dépose un revêtement détachable, en parti­culier une bande en titane ou en alliage de titane, éventuellement pourvue d'un revêtement de protection. Par ailleurs, l'anode pourrait être disposée de telle façon que lesdites fentes soient orientées de façon quelconque, par exemple en oblique, par rapport à la direction de déplacement de la cathode.The figures refer to an electrolysis cell intended to deposit a coating on a continuous metallic substrate in movement, such as a steel strip, which constitutes the cathode of the cell. The electrode according to the invention then constitutes the anode of the cell. In the envisaged application, this anode is arranged in such a way that the electrolyte supply and discharge slots are oriented transversely with respect to the direction of movement of the cathode. It goes without saying that this cathode could be an endless strip on which a detachable coating is deposited, in particular a strip of titanium or of titanium alloy, possibly provided with a protective coating. Furthermore, the anode could be arranged in such a way that said slots are oriented in any way, for example obliquely, relative to the direction of movement of the cathode.

La Fig. 1 montre schématiquement, en perspective, la configuration des nappes d'électrolyte circulant d'une part dans les fentes de l'anode et d'autre part dans l'espace compris entre l'anode et la cathode. L'anode proprement dite n'est pas représentée et la cathode est constituée par une bande métallique 1 se déplaçant dans le sens de la flèche 2.Fig. 1 schematically shows, in perspective, the configuration of the electrolyte plies circulating on the one hand in the slots of the anode and on the other hand in the space between the anode and the cathode. The anode proper is not shown and the cathode consists of a metal strip 1 moving in the direction of arrow 2.

L'électrolyte est fourni en nappes verticales minces 3, circulant de haut en bas (flèches 4) dans les fentes d'alimentation de l'anode (non représentée); dans l'espace entre l'anode et la cathode, il se sub­divise en deux nappes horizontales telles que 5 et 6, de faible épais­seur, qui s'écartent l'une de l'autre; ensuite, des nappes horizon­tales concourantes telles que 6 et 7 sont reprises en nappes verti­cales 8 circulant de bas en haut (flèches 9) dans les fentes d'éva­cuation de l'anode (non représentée).The electrolyte is supplied in thin vertical sheets 3, flowing from top to bottom (arrows 4) in the supply slots of the anode (not shown); in the space between the anode and the cathode, it is subdivided into two horizontal layers such as 5 and 6, of small thickness, which separate from one another; then, concurrent horizontal plies such as 6 and 7 are taken up in vertical plies 8 flowing from bottom to top (arrows 9) in the evacuation slots of the anode (not shown).

Les nappes d'alimentation 4 et d'évacuation 8 sont produites par des fentes correspondantes raccordées respectivement à des moyens d'ali­mentation et d'évacuation de l'électrolyte, selon une disposition qui est schématiquement illustrée dans la Fig. 2.The supply 4 and discharge 8 plies are produced by corresponding slots connected respectively to means for supplying and discharging the electrolyte, according to an arrangement which is schematically illustrated in FIG. 2.

Cette Fig. 2 est une vue en plan d'une anode conforme à l'invention, qui comporte un corps 10 disposé transversalement par rapport à la ca­thode 1. Le corps 10 de l'anode présente une entrée (11) et une sortie (12) de l'électrolyte, raccordées respectivement à des moyens exté­rieurs d'alimentation et d'évacuation non représentés. Le corps 10 de l'anode comprend une chambre de distribution raccordée à l'entrée 11 et reliée à des branches d'alimentation 13 dans lesquelles sont ména­gées les fentes d'alimentation 14, tracées en trait plein, qui débou­chent dans l'espace compris entre la cathode 1 et le corps 10 de l'anode. Ces branches et fentes d'alimentation sont parcourues par les nappes verticales d'électrolyte symbolisées par les flèches descendan­tes 4. Après un court trajet parallèle à la cathode, l'électrolyte est repris par les fentes d'évacuation 15, tracées en trait interrompu qui, par des branches d'évacuation 16 et une chambre de collecte, le renvoient vers la sortie 12. Les fentes et les branches d'évacuation sont parcourues par les nappes verticales d'électrolyte symbolisées par les flèches ascendantes 8. Dans cette illustration schématique, les branches d'alimentation 13 sont séparées des branches d'évacuation 16 par une paroi en labyrinthe 17.This Fig. 2 is a plan view of an anode according to the invention, which comprises a body 10 disposed transversely with respect to the cathode 1. The body 10 of the anode has an inlet (11) and an outlet (12) for the electrolyte, respectively connected to external supply and discharge means, not shown. The body 10 of the anode comprises a distribution chamber connected to the inlet 11 and connected to supply branches 13 in which the supply slots 14 are formed, drawn in solid lines, which open into the space included between cathode 1 and body 10 of the anode. These branches and supply slots are traversed by the vertical layers of electrolyte symbolized by the descending arrows 4. After a short path parallel to the cathode, the electrolyte is taken up by the discharge slots 15, drawn in broken lines which , by evacuation branches 16 and a collection chamber, return it towards the exit 12. The slots and the evacuation branches are traversed by the vertical layers of electrolyte symbolized by the ascending arrows 8. In this schematic illustration, the supply branches 13 are separated from the discharge branches 16 by a labyrinth wall 17.

L'avantage d'une telle disposition est que les pertes de charge va­riables le long d'une branche d'alimentation sont compensées par les pertes de charge variant en sens inverse le long d'une branche d'éva­cuation. Il en résulte un débit homogène de l'électrolyte sur la largeur de la bande.The advantage of such an arrangement is that the variable pressure losses along a supply branch are compensated by the pressure losses varying in opposite directions along a discharge branch. This results in a homogeneous flow of the electrolyte over the width of the strip.

Dans la Fig. 3, on a représenté schématiquement une mise en oeuvre intéressante d'une anode du type illustré dans la Fig. 2, mise en oeuvre dans laquelle le corps 10 de l'anode est composé d'une plura­lité de plaques transversales 18, 19, 20, 21, disposées perpendicu­lairement par rapport au plan de la cathode 1.In Fig. 3, there is shown schematically an advantageous implementation of an anode of the type illustrated in FIG. 2, implementation in which the body 10 of the anode is composed of a plurality of transverse plates 18, 19, 20, 21, arranged perpendicularly to the plane of the cathode 1.

La constitution de cette anode sera comprise plus aisément en se réfé­rant à la Fig. 4, en particulier à la Fig. 4a, qui représente en par­tie une coupe suivant la ligne A-A′ de la Fig. 3. Le corps de l'anode 10 est composé d'une série de plaques telles que 18, 19, 20, 21 juxta­ posées et assemblées par des moyens appropriés, par exemple des bou­lons 22. La configuration du montage de l'anode étant répétitive, il suffira de décrire la disposition relative de quatre plaques telles que 18, 19, 20 et 21.The constitution of this anode will be more easily understood by referring to FIG. 4, in particular in FIG. 4a, which partly represents a section along the line AA ′ in FIG. 3. The body of the anode 10 is composed of a series of plates such as 18, 19, 20, 21 juxta laid and assembled by appropriate means, for example bolts 22. The configuration of the anode assembly being repetitive, it will suffice to describe the relative arrangement of four plates such as 18, 19, 20 and 21.

Ces plaques sont disposées verticalement, et leur face inférieure est située à une très faible distance de la surface supérieure de la ca­thode 1 à revêtir. Elles sont constituées de graphite ou d'un alliage électriquement conducteur et résistant à l'électrolyte. Dans la face droite des plaques impaires (19, 21), on a usiné un demi-canal 23 et une demi-fente 24 destinés à l'évacuation de l'électrolyte, tandis que dans la face gauche de ces mêmes plaques impaires (19, 21), on a usiné un demi-canal 25 et une demi-fente 26 destinés à l'alimentation en électrolyte. Inversément, dans la face gauche des plaques paies (18, 20) on a usiné d'une part un demi-canal 27 et une demi-fente 28 des­tinés à l'évacuation de l'électrolyte, tandis que dans la face droite de ces mêmes plaques paires (20) on a usiné un demi-canal 29 et une demi-fente 30 destinés à l'alimentation en électrolyte. L'assemblage des plaques permet de former les canaux et les fentes d'alimentation et d'évacuation de l'électrolyte. Bien entendu, les plaques d'extré­mité telles que 18 ne sont pas usinées sur leur face extérieure. Le corps 10 de l'anode comporte encore des barreaux 31 en cuivre qui sont logés dans des rainures usinées dans les plaques 19, 20 et qui pénè­trent jusqu'à proximité des canaux d'alimentation 25, 29.These plates are arranged vertically, and their lower face is located at a very short distance from the upper surface of the cathode 1 to be coated. They are made of graphite or an electrically conductive and electrolyte resistant alloy. In the right face of the odd plates (19, 21), a half-channel 23 and a half-slot 24 have been machined intended for the evacuation of the electrolyte, while in the left face of these same odd plates (19 , 21), a half-channel 25 and a half-slot 26 have been machined intended for the supply of electrolyte. Conversely, on the left side of the pay plates (18, 20), on the one hand, a half-channel 27 and a half-slot 28 have been machined intended for the evacuation of the electrolyte, while on the right side of these same pair plates (20) a half-channel 29 and a half-slot 30 have been machined intended for the supply of electrolyte. The assembly of the plates makes it possible to form the channels and the slots for supplying and discharging the electrolyte. Of course, the end plates such as 18 are not machined on their outer face. The body 10 of the anode also includes copper bars 31 which are housed in grooves machined in the plates 19, 20 and which penetrate as close as possible to the supply channels 25, 29.

Pour assurer l'étanchéité de l'ensemble, les surfaces de contact entre les plaques sont garnies de joints tels que 32, 33. Par ailleurs, les fentes d'évacuation 24, 28 sont avantageusement discontinues dans le sens transversal de la bande, comme le montre la Fig. 4b. Les tronçons de fente sont séparés par de courtes zones de contact qui ne pertur­bent pratiquement pas l'écoulement d'évacuation de l'électrolyte, mais qui assurent un contact mécanique entre les plaques 18 et 19 en cas d'augmentation de la pression dans les fentes d'alimentation 26, 30. Les plaques 18, 19 ne peuvent fléchir, en raison de ce contact. Il est donc possible d'augmenter la pression d'alimentation de l'électrolyte et par conséquent d'améliorer les performances de la cellule sans courir le risque de provoquer une déformation de l'ensemble de l'anode.To seal the assembly, the contact surfaces between the plates are lined with seals such as 32, 33. Furthermore, the evacuation slots 24, 28 are advantageously discontinuous in the transverse direction of the strip, as shown in Fig. 4b. The slit sections are separated by short contact zones which practically do not disturb the discharge flow of the electrolyte, but which ensure mechanical contact between the plates 18 and 19 in the event of an increase in the pressure in the feed slots 26, 30. The plates 18, 19 cannot flex due to this contact. It is therefore possible to increase the supply pressure of the electrolyte and consequently improve the performance of the cell without run the risk of causing deformation of the entire anode.

Comme le montre la Fig. 3 et conformément à la disposition schématisée dans la Fig. 2, les canaux 24, 29 et les fentes 26, 30 d'alimentation communiquent avec l'entrée 11 de l'électrolyte, tandis que les canaux 23, 27 et les fentes 24, 28 d'évacuation communiquent avec la sortie 12 de l'électrolyte.As shown in Fig. 3 and in accordance with the arrangement shown diagrammatically in FIG. 2, the channels 24, 29 and the supply slots 26, 30 communicate with the inlet 11 of the electrolyte, while the channels 23, 27 and the discharge slots 24, 28 communicate with the outlet 12 of the 'electrolyte.

Cette disposition est particulièrement intéressante, car les fentes et les canaux peuvent être réalisés par des opérations d'usinage simples des différentes plaques.This arrangement is particularly advantageous, since the slots and the channels can be produced by simple machining operations of the various plates.

Dans certaines circonstances, il n'est cependant pas possible de fa­briquer des plaques transversales suffisamment résistantes. On peut alors faire appel à une autre variante de l'électrode conforme à l'in­vention.In certain circumstances, however, it is not possible to manufacture sufficiently strong transverse plates. It is then possible to use another variant of the electrode according to the invention.

Cette variante est illustrée schématiquement dans les Fig. 5 et les Fig. 6a et 6b qui en montrent respectivement une vue en plan, une coupe partielle suivant la ligne A-A′ et une vue inférieure suivant la flèche B. Le corps 10 de l'anode est composé d'une pluralité d'élé­ments modulaires 34 dont la largeur est déterminée par les possibi­lités d'usinage existantes. Ces éléments sont disposés en oblique par rapport à la direction de déplacement de la bande 1. Les Fig. 6a et 6b montrent les canaux 25 et les fentes 26 d'alimentation ainsi que les canaux 27 et les fentes discontinues 28 d'évacuation de l'électrolyte.This variant is illustrated schematically in FIGS. 5 and Figs. 6a and 6b which respectively show a plan view, a partial section along the line AA ′ and a bottom view along the arrow B. The body 10 of the anode is composed of a plurality of modular elements 34 whose width is determined by the existing machining possibilities. These elements are arranged obliquely to the direction of movement of the strip 1. FIGS. 6a and 6b show the channels 25 and the supply slots 26 as well as the channels 27 and the discontinuous slots 28 for discharging the electrolyte.

Cette disposition oblique permet de masquer l'effet de discontinuité provoqué par les joints entre les divers éléments modulaires, en répartissant ces joints sur toute la largeur de la bande.This oblique arrangement makes it possible to mask the discontinuity effect caused by the joints between the various modular elements, by distributing these joints over the entire width of the strip.

La Fig. 7 illustre la configuration d'une électrode conforme à l'invention profilée de façon à correspondre à un substrat cylin­drique. Dans cette variante, les plaques telles que 20, 21 présentent une section trapézoïdale. Les divers canaux et les différentes fentes sont également réalisés par des opérations d'usinage simples. Les pla­ ques doivent être assemblées par des moyens appropriés qui garan­tissent le respect de la courbure de l'ensemble.Fig. 7 illustrates the configuration of an electrode according to the invention profiled so as to correspond to a cylindrical substrate. In this variant, the plates such as 20, 21 have a trapezoidal section. The various channels and the various slots are also produced by simple machining operations. The pla they must be assembled by appropriate means which guarantee compliance with the curvature of the assembly.

On peut bien entendu imaginer d'autres modes de réalisation des canaux et des fentes d'alimentation et d'évacuation de l'électrolyte, sans sortir du cadre de la présente invention.One can of course imagine other embodiments of the channels and slots for supplying and discharging the electrolyte, without departing from the scope of the present invention.

La Fig. 8 montre, par une coupe transversale analogue à celle de la Fig. 4a, la constitution d'une anode dans laquelle les canaux sont formés par une tôle métallique repliée de façon appropriée.Fig. 8 shows, by a cross section similar to that of FIG. 4a, the constitution of an anode in which the channels are formed by a suitably folded metal sheet.

La tôle 17, par exemple en titane, est repliée de façon à former des plis successifs qui constituent alternativement des canaux ou branches d'alimentation 13 et d'évacuation 16 de l'électrolyte. Pour assurer la rigidité d'ensemble de l'anode, les plis de la tôle 17 ont la forme de trapèzes alternés dont les grandes bases sont soudées respectivement à une plaque supérieure 35 et à une plaque inférieure 36, toutes deux parallèles à la face inférieure du corps de l'anode 10. Par la nature même du pliage, seules les grandes bases des trapèzes sont constituées par la tôle 17, tandis que les petites bases de ces trapèzes ne sont fermées que par lesdites plaques 35 et 36.The sheet 17, for example made of titanium, is folded back so as to form successive folds which alternately constitute channels or branches 13 for supply and discharge 16 of the electrolyte. To ensure the overall rigidity of the anode, the folds of the sheet 17 have the shape of alternate trapezoids, the large bases of which are welded respectively to an upper plate 35 and to a lower plate 36, both parallel to the lower face. of the body of the anode 10. By the very nature of the folding, only the large bases of the trapezoids are formed by the sheet 17, while the small bases of these trapezoids are closed only by said plates 35 and 36.

Dans la zone de la plaque inférieure 36 qui ferme la petite base des canaux d'alimentation 13 sont percés des orifices d'alimentation 37 répartis sur la largeur de l'anode. De même, dans les grandes bases des canaux d'évacuation 16 soudées à cette même plaque inférieure 36, sont percés des orifices d'évacuation 38 répartis sur la largeur de l'anode. Les orifices d'alimentation 37 et les orifices d'évacuation 38 communiquent respectivement avec des fentes d'alimentation 14 et des fentes d'évacuation 15 comprises entre des blocs transversaux 39. Ces blocs 39 sont amovibles et peuvent être aisément remplacés pour modifier la largeur des fentes ou rétablir la largeur désirée d'une fente en cas d'élargissement excessif par exemple par suite de l'usure d'un bloc.In the area of the bottom plate 36 which closes the small base of the supply channels 13 are perforated supply orifices 37 distributed over the width of the anode. Likewise, in the large bases of the evacuation channels 16 welded to this same bottom plate 36, evacuation orifices 38 are drilled distributed over the width of the anode. The supply ports 37 and the discharge ports 38 communicate respectively with supply slots 14 and discharge slots 15 comprised between transverse blocks 39. These blocks 39 are removable and can be easily replaced to modify the width slots or restore the desired width of a slot in case of excessive widening, for example due to the wear of a block.

L'agencement relatif de la plaque inférieure 36, des orifices 37, 38 et des blocs 39 avec les fentes 14, 15 est illustré en perspective dans l'encadré de la Fig. 8.The relative arrangement of the bottom plate 36, the orifices 37, 38 and the blocks 39 with the slots 14, 15 is illustrated in perspective in the box of FIG. 8.

Les blocs 39, les plaques inférieure 36 et supérieure 35 ainsi que la tôle pliée 17 forment le circuit d'alimentation de l'anode en courant électrique; tous ces éléments sont dès lors réalisés de préférence en titane, de même que les profilés supérieurs, marqués d'une flèche brisée, qui symbolisent le raccordement de l'anode à la source de courant électrique.The blocks 39, the lower 36 and upper 35 plates as well as the folded sheet 17 form the circuit for supplying the anode with electric current; all these elements are therefore preferably made of titanium, as are the upper sections, marked with a broken arrow, which symbolize the connection of the anode to the source of electric current.

La Fig. 9 illustre, en coupe verticale A-A′ et en coupe horizontale C-C′, une autre façon de réaliser les canaux d'alimentation 13 et d'évacuation 16 de l'électrolyte, au moyen de parois de séparation 17 verticales parallèles. Ces parois sont pourvues de renflements cylin­driques 40 dans lesquels sont percés des passages traversés par des tirants 41. Ces tirants 41 servent d'une part à fixer les parois 17 à des plaques horizontales supérieure 35 et inférieure 36 et d'autre part à amener le courant électrique aux blocs 39. Les canaux d'ali­mentation 13 sont reliés aux fentes d'alimentation 14 par des orifices d'alimentation 37 percés dans la plaque inférieure 36, de même, les fentes d'évacuation 15 sont reliées aux canaux d'évacuation 16 par des orifices d'évacuation 38 percés dans la plaque inférieure 36.Fig. 9 illustrates, in vertical section A-A ′ and in horizontal section C-C ′, another way of producing the supply channels 13 and discharge 16 of the electrolyte, by means of parallel vertical separation walls 17. These walls are provided with cylindrical bulges 40 in which are pierced passages through which tie rods 41. These tie rods 41 serve on the one hand to fix the walls 17 to upper 35 and lower 36 horizontal plates and on the other hand to bring the electric current to the blocks 39. The feed channels 13 are connected to the feed slots 14 by feed holes 37 drilled in the bottom plate 36, likewise, the discharge slots 15 are connected to the discharge channels 16 by evacuation orifices 38 drilled in the bottom plate 36.

Les parois 17 ainsi que les plaques supérieure 35 et inférieure 36 peuvent être réalisées en un matériau composite résistant à l'élec­trolyte, par exemple en résine époxy armée de fibres de verre.The walls 17 and the upper 35 and lower 36 plates can be made of a composite material resistant to the electrolyte, for example of epoxy resin reinforced with glass fibers.

L'alimentation en courant électrique est assurée par les tirants 41, dont une extrémité est par exemple vissée dans les blocs 39 et dont l'autre extrémité présente une tête qui par une plaque de cuivre 32 et un ressort 43, prend appui sur la plaque supérieure 35. La plaque de cuivre 42 est reliée à une source de courant électrique par des moyens connus.The electric current is supplied by the tie rods 41, one end of which is for example screwed into the blocks 39 and the other end of which has a head which, by a copper plate 32 and a spring 43, bears on the plate upper 35. The copper plate 42 is connected to a source of electric current by known means.

L'électrode conforme à l'invention peut être placée à une très faible distance du substrat à revêtir, car l'électrolyte ne parcourt qu'un trajet très court entre l'anode et la cathode; il ne subit donc pas des pertes de charge élevées et une pression modérée lui assure une vitesse et une turbulence très favorables au dépôt électrolytique. Les parties électriquement actives couvrent toute la surface de l'élec­trode, à l'exception de la faible portion correspondant aux fentes d'alimentation et d'évacuation de l'électrolyte. L'électrode assure dès lors une répartition homogène du courant électrique avec de fai­bles pertes ohmiques, ce qui conduit à un excellent rendement de l'opération. Enfin, toute la surface du substrat subit un balayage homogène par l'électrolyte, ce qui favorise également l'homogénéité et le rendement du dépôt du revêtement.The electrode according to the invention can be placed at a very short distance from the substrate to be coated, since the electrolyte travels only a very short path between the anode and the cathode; it therefore does not undergo high pressure drops and a moderate pressure ensures a speed and a turbulence very favorable to the electrolytic deposition. The electrically active parts cover the entire surface of the electrode, with the exception of the small portion corresponding to the electrolyte supply and discharge slots. The electrode therefore ensures a homogeneous distribution of the electric current with low ohmic losses, which leads to an excellent efficiency of the operation. Finally, the entire surface of the substrate is subjected to a homogeneous sweep by the electrolyte, which also promotes the homogeneity and the yield of the coating deposition.

Claims (8)

1. Electrode pour une cellule d'électrolyse destinée au dépôt d'un re­vêtement métallique sur un substrat, qui comprend un corps d'élec­trode comportant des moyens d'alimentation en courant électrique et présentant au moins une surface profilée de façon correspondant à la surface dudit substrat, caractérisée en ce que ledit corps d'électrode présente une pluralité de fentes étroites parallèles débouchant dans ladite surface du corps d'électrode, en ce qu'un premier groupe desdites fentes sont reliées à des moyens d'alimentation en électro­lyte, en ce que l'autre groupe desdites fentes sont reliées à des moyens d'évacuation de l'électrolyte et en ce que les fentes de l'un et l'autre groupe se succèdent en alternance dans ladite surface du corps d'électrode.1. Electrode for an electrolysis cell intended for depositing a metal coating on a substrate, which comprises an electrode body comprising means for supplying electric current and having at least one surface profiled corresponding to the surface of said substrate, characterized in that said electrode body has a plurality of parallel narrow slots opening into said surface of the electrode body, in that a first group of said slots are connected to means for supplying electrolyte, in that the other group of said slots are connected to means for discharging the electrolyte and that the slots of one and the other group alternate in succession in said surface of the electrode body. 2. Electrode suivant la revendication 1, caractérisée en ce que la largeur desdites fentes n'excède pas 3 mm.2. Electrode according to claim 1, characterized in that the width of said slots does not exceed 3 mm. 3. Electrode suivant l'une ou l'autre des revendications 1 et 2, caractérisée en ce que la distance entre deux fentes voisines est comprise entre 20 mm et 50 mm.3. Electrode according to either of Claims 1 and 2, characterized in that the distance between two adjacent slots is between 20 mm and 50 mm. 4. Electrode suivant l'une ou l'autre des revendications 1 à 3, carac­térisée en ce que lesdites fentes s'étendent dans le corps d'électrode perpendiculairement à ladite surface dans laquelle elles débouchent.4. Electrode according to either of claims 1 to 3, characterized in that said slots extend in the electrode body perpendicular to said surface into which they open. 5. Electrode suivant l'une ou l'autre des revendications 1 à 4, ca­ractérisée en ce qu'à son extrémité éloignée de ladite surface, cha­cune desdites fentes débouche dans un canal parallèle à ladite surface du corps d'électrode, ledit canal étant fermé à l'une de ses extré­mités et étant relié par son autre extrémité auxdits moyens d'alimen­tation, respectivement d'évacuation de l'électrolyte.5. An electrode according to any one of claims 1 to 4, characterized in that at its end remote from said surface, each of said slots opens into a channel parallel to said surface of the electrode body, said channel being closed at one of its ends and being connected by its other end to said supply means, respectively for discharging the electrolyte. 6. Electrode suivant l'une ou l'autre des revendications 1 à 5, ca­ractérisée en ce que ledit corps d'électrode est composé d'une plu­ ralité de plaques juxtaposées, et en ce que lesdites plaques sont usinées de façon à former, lors de l'assemblage, les fentes, res­pectivement les canaux qui constituent le circuit de l'électrolyte.6. Electrode according to either of Claims 1 to 5, characterized in that the said electrode body is composed of more reality of juxtaposed plates, and in that said plates are machined so as to form, during assembly, the slots, respectively the channels which constitute the circuit of the electrolyte. 7. Electrode suivant l'une ou l'autre des revendications 5 et 6, caractérisée en ce que lesdits canaux sont disposés tête-bêche, l'ex­trémité fermée de l'un quelconque des canaux étant voisine de l'ex­trémité ouverte du ou des canaux adjacents.7. An electrode according to either of claims 5 and 6, characterized in that said channels are arranged head to tail, the closed end of any of the channels being close to the open end of the adjacent canals. 8. Electrode suivant l'une ou l'autre des revendications 1 à 7, ca­ractérisée en ce que lesdits moyens d'alimentation en courant élec­trique pénètrent dans ledit corps d'électrode jusqu'à proximité des fentes, respectivement des canaux, d'alimentation en électrolyte.8. Electrode according to either of Claims 1 to 7, characterized in that the said means for supplying electric current penetrate into the said body of the electrode as close as possible to the slots, respectively to the supply channels. in electrolyte.
EP88870094A 1987-05-19 1988-05-19 Electrode for an electrolytic cell Expired - Lifetime EP0292466B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE8700561 1987-05-19
BE8700561A BE1000571A7 (en) 1987-05-19 1987-05-19 Electrode cell for electrolysis.

Publications (3)

Publication Number Publication Date
EP0292466A2 true EP0292466A2 (en) 1988-11-23
EP0292466A3 EP0292466A3 (en) 1989-06-14
EP0292466B1 EP0292466B1 (en) 1993-02-03

Family

ID=3882681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88870094A Expired - Lifetime EP0292466B1 (en) 1987-05-19 1988-05-19 Electrode for an electrolytic cell

Country Status (3)

Country Link
EP (1) EP0292466B1 (en)
BE (1) BE1000571A7 (en)
DE (1) DE3878035T2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350142A1 (en) * 1976-05-05 1977-12-02 Hoechst Ag Continuous electrolytic treatment of metal strip - using turbulent flow of electrolyte to achieve very high current densities (NL 8.11.77)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE905588A (en) * 1986-10-09 1987-04-09 Centre Rech Metallurgique Enhancing electrolytic deposition of metallic materials on substrates - with promotion of turbulence to permit use of higher current densities, useful for products and very thin coatings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350142A1 (en) * 1976-05-05 1977-12-02 Hoechst Ag Continuous electrolytic treatment of metal strip - using turbulent flow of electrolyte to achieve very high current densities (NL 8.11.77)

Also Published As

Publication number Publication date
BE1000571A7 (en) 1989-02-07
EP0292466B1 (en) 1993-02-03
EP0292466A3 (en) 1989-06-14
DE3878035D1 (en) 1993-03-18
DE3878035T2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
EP2061114B1 (en) Fuel cell comprising a plurality of elementary cells connected in series by the current collectors
CA1278030C (en) Fuel cell structures
EP2936595B1 (en) Sealing frame providing electric insulation for a water electrolysis reactor (soec) or a fuel cell (sofc)
FR2579025A1 (en) FUEL CELL WITH IMPROVED SEPARATION
CA1277366C (en) Structural improvements to fuel cells
CA1277368C (en) Arrangements in fuel cell structures
FR2662534A1 (en) Plasma display panel and its method of fabrication
EP0292466B1 (en) Electrode for an electrolytic cell
FR3056337A1 (en) WATER ELECTROLYSIS REACTOR (SOEC) OR FUEL CELL (SOFC) AT RATES OF USE OF WATER VAPOR OR RESPECTIVELY FUEL INCREASE
EP1400150A1 (en) Improvements made to the structure of a graphite resistance furnace
FR2560223A1 (en) COATED METAL ANODE FOR THE ELECTROLYTIC EXTRACTION OF METALS OR METAL OXIDES
EP0294358B1 (en) Electrode for an electrolytic cell
EP2301101B1 (en) Fuel cell having a membrane/electrode stack perpendicular to the support substrate, and production process
FR2498126A1 (en) METHOD FOR MANUFACTURING HOLLOW STRUCTURES OF ANY TYPE, ESPECIALLY MIRRORS, AND LIGHT STRUCTURES OBTAINED, SUCH AS MIRRORS FOR LASER RADIATION
FR2460035A1 (en) ELECTRONIC GUN FOR CATHODE RAY TUBES AND ITS MANUFACTURING METHOD
EP0945935A1 (en) Device for electrical supply as well as a marine propulsion and steering assembly containing above device
BE1006220A6 (en) Device to produce a composite metal film by electrolytic deposit
BE1001295A6 (en) Device for electrolytic deposit of metal and method of use.
BE1001584A6 (en) Method and device for electrolytic deposition - of metal and moving substrate
LU86119A1 (en) ELECTROLYTIC DEPOSITION DEVICE AND METHOD FOR ITS IMPLEMENTATION
FR3059341A1 (en) ELECTRODE FOR INSTALLATION FOR SURFACE TREATMENT OF SUBSTRATE WITH MOTION, UNIT AND INSTALLATION THEREOF
CA2994642A1 (en) High-temperature, low-temperature-gradient methods for (co-)electrolysis of water (soec) or for producing electricity within a reactor or fuel-cell stack (sofc) respectively
BE1006653A6 (en) Anode structure for a vertical cathode electrolytic deposit cell
WO2022234214A1 (en) Method for producing a soec/sofc-type solid oxide stack, and associated stack
EP0061942A1 (en) Fuel cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT LU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT LU

17P Request for examination filed

Effective date: 19891130

17Q First examination report despatched

Effective date: 19920513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT LU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930203

Ref country code: GB

Effective date: 19930203

REF Corresponds to:

Ref document number: 3878035

Country of ref document: DE

Date of ref document: 19930318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930531

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST