EP0288791B1 - Wireless transmission method for power and data transmission, and mechanically and electronically coded lock - Google Patents

Wireless transmission method for power and data transmission, and mechanically and electronically coded lock Download PDF

Info

Publication number
EP0288791B1
EP0288791B1 EP88105511A EP88105511A EP0288791B1 EP 0288791 B1 EP0288791 B1 EP 0288791B1 EP 88105511 A EP88105511 A EP 88105511A EP 88105511 A EP88105511 A EP 88105511A EP 0288791 B1 EP0288791 B1 EP 0288791B1
Authority
EP
European Patent Office
Prior art keywords
energy
data
electronics
lock
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88105511A
Other languages
German (de)
French (fr)
Other versions
EP0288791A2 (en
EP0288791A3 (en
Inventor
Volker Dipl.-Ing. Ziegler
Michael Dipl.-Ing. Bollerott
Klaus Dipl.-Ing. Scherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to AT88105511T priority Critical patent/ATE97188T1/en
Publication of EP0288791A2 publication Critical patent/EP0288791A2/en
Publication of EP0288791A3 publication Critical patent/EP0288791A3/en
Application granted granted Critical
Publication of EP0288791B1 publication Critical patent/EP0288791B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00182Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with unidirectional data transmission between data carrier and locks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00579Power supply for the keyless data carrier
    • G07C2009/00603Power supply for the keyless data carrier by power transmission from lock
    • G07C2009/00611Power supply for the keyless data carrier by power transmission from lock by using inductive transmission
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00777Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by induction

Definitions

  • the invention relates to a method for contactless energy and data transmission according to the preamble of the main claim, and a mechanically and electronically coded lock according to the preamble of claim 4.
  • a device for the inductive identification of information in access controls, in particular in an inductive electronic lock and key part, is known from DE-C-31 49 789.
  • an oscillator of the lock part vibrates at high frequency, these vibrations being picked up by the key part and transmitted back to the lock part in a modulated manner with a frequency or pulse pattern serving as a key identifier be processed there with a lock-side electronics.
  • the key part has an energy storage device which receives the energy received via an HF resonant circuit. In such a device, the data and energy transmission take place simultaneously with the same RF signal.
  • a mechanically and electronically coded key with a lock to be actuated thereby is known.
  • Such a key has a conventional mechanical coding and an electronic coding present in its casing, while the corresponding lock contains a mechanical locking device and an electronic storage and control system provided with a decoding or reading device and energy supply.
  • the lock is provided with a detector which can interact with a counter detector present on the key and transmitting a non-mechanical coding in a contact-free exchange of energy and data.
  • the detector is housed on the front side of the lock cylinder and the counter detector in the front side of the key lock facing the lock cylinder.
  • a module with a microprocessor, a data memory and a short-term energy store is accommodated in the key box, the key coding being programmed in the module.
  • the detectors can consist of RF transmitters or RF receivers.
  • Another device for contactless coupling of the control and power currents between lock electronics and key electronics in an electronic / mechanical locking device is known from DE-A 35 01 482.
  • the communication between the key and the lock takes place via a bidirectional, serial inductive interface, whereby both the key and the lock electronics can be equipped with a microcontroller and an erasable PROM.
  • a mechanical / electronic lock no adaptation to the actual energy consumption of the key electronics and the transmission link is provided, so that the main electronics have a significantly higher energy consumption, which excludes battery or accumulator operation.
  • the transmission of the data is susceptible to faults, which in the event of a fault means that the lock cannot be unlocked.
  • a mechanically and electronically coded lock is known, with a lock cylinder, with main electronics and with a key, which has both a mechanical and an electronic coding, which is arranged in the key electronics of the partial electronics is programmed.
  • the invention has for its object to provide a method and a combined mechanically / electronically coded lock for contactless energy and data transmission, which ensure energy transmission and transmission security with regard to the coded data even with different transmission ratios and enable low energy consumption.
  • the method according to the invention and the device according to the invention enable high transmission security even in the event of transmission losses or disruptive influences in the transmission link.
  • the transmitted energy automatically adapts to the power consumption of the sub-electronics including the losses in the transmission path.
  • This automatic adaptation of the transmitted power to the changing influences on the transmission line in practical operation allows adaptation to different doors and fittings made of different materials that have a more or less dampening effect on high-frequency energy, as well as to different geometrical characteristics of doors and fittings as well as an inaccurate alignment of the receiver and transmitter parts to dampen the HF transmission act and can thus interrupt the wireless energy supply of the key.
  • energy pulses of a defined period of time Ter are transmitted repeatedly until a reset acknowledgment signal of the sub-electronics is present, wherein after the presence of a reset acknowledgment signal, energy pulses (energy bursts) with a length te determined by the actual energy consumption are transmitted, based on the number or total length of the energy pulses of length Ter is determined. This enables the required supply voltage in the partial electronics to be reached as quickly as possible with small amounts of energy, ensuring that not too much energy is transmitted.
  • the transmission security is increased in that the data are binary coded, so that there is a large signal-to-noise ratio.
  • the lock cylinder In the mechanically / electronically coded lock, the lock cylinder is enclosed by a plug-in, integral, non-metallic lock interface module of a certain length, which receives a key detection switch, an electronically controllable locking mechanism and the lock-side coupling element.
  • Such an interface module can be used in conjunction with an unmodified conventional lock, the interface module being seated only on the part of the lock cylinder protruding from the lock case.
  • a non-metallic material e.g. Zirconium oxide
  • the key detection switch allows the device to be switched off when not in use, which enables a further increase in the number of lock actuations per battery set when operated on batteries.
  • the electronic coding of the key is provided in a serial EEPROM via an n-fold connector, which after programming and encapsulation is no longer accessible without being destroyed.
  • the encapsulation of the key electronics with the plug makes unauthorized key programming impossible.
  • the use of a serial code memory allows the number of pins on the programming connector to be kept small.
  • the lock-side coupling element can be isolated from metallic objects, e.g. of door panels, be arranged above the lock cylinder in the interface module.
  • the arrangement of the coupling element in non-metallic material of the lock interface module enables the transmission losses to be minimized, the influence of metal behind the lock interface being slight.
  • the main electronics 1 show a block diagram of the electronics required for the method for contactless energy and data transmission.
  • the main electronics 1 are suitably supplied with energy via a power supply unit 3, which can be transmitted from the main electronics 1 to a sub-electronics 2 via contactless coupling elements 4, 5.
  • Data can also be transmitted in both directions via the same contactless coupling elements 4, 5.
  • Fig. 2 shows a block diagram of the main electronics with a microcontroller 8 including software.
  • the microcontroller 8 controls a switch S1 via a data direction signal, which switches the data transmitted by the primary coupling element 4 from the partial electronics 2 to a demodulator 9 or, in the other switching position, the data output by the microcontroller 8 via a modulator 7 with a power level transmits the primary coupling element 4.
  • the power supply unit 3 must apply the energy for the main electronics 1, the sub-electronics 2 and the losses in the transmission link.
  • a high-frequency coupling element is used as the primary coupling element 4.
  • An RF oscillator 6 supplies the carrier oscillation for the energy and the data to the modulator 7 with the power stage.
  • the microcontroller 8 of the main electronics 1 switches the switch S1 to the demodulator 9.
  • the data energy coupled in by the sub-electronics 2 via the primary coupling element 4 is converted into a binary signal in the demodulator 9 and then evaluated by the microcontroller 8.
  • FIG. 3 shows the block diagram of the partial electronics 2.
  • the energy fed in periodically by the main electronics 1 via the secondary coupling element 5 is rectified in the energy recovery unit 11 and smoothed and stored in a capacitor.
  • the energy supply of the partial electronics 2 takes place from this capacitor.
  • the data / energy control signal recovery unit 12 is constructed similarly to the energy store of the energy recovery unit 11, except that the time constant of the smoothing is considerably shorter in order to quickly detect changes in the energy / data signal.
  • the generated control signal notifies a sequence controller 18 of the end of the energy phase.
  • the sequence controller 18 then starts a data direction changeover cycle or a useful data cycle.
  • a switch S3 controlled by the sequence controller 18 enables the realization of the time windows belonging to the phases, in which a switch is made to a memory logic 17, while the data direction is determined with the switch S2 likewise controlled by the sequence controller 18.
  • the memory logic 17 has the task of transporting data from or to a data memory 16 at the appropriate times while evaluating the read / write signal from the sequence controller 18.
  • the clock for the sequence control 18 and the carrier oscillation for the data information running to the main electronics 1 via a modulator 13 are derived from a quartz-controlled or oscillated by the main electronics 1 HF oscillator 13 of the sub-electronics 2.
  • the modulator 13 links the data binary signal from the memory logic 17 to the RF carrier.
  • Fig. 4 shows the transmission protocol of the energy and data transmission.
  • the sequence controller 18 starts a switchover or data phase after the energy has been switched off. Common to both is the decay phase t a . If the main electronics sends t u energy in the following switchover phase, the data direction for all subsequent data phases is switched in the subelectronics (key) and the cycle is ended. If the main electronics does not transmit any energy in the switchover phase, a user data phase td is started after the switchover phase t u . In this phase, data is transferred from or to the partial electronics.
  • the signal In the case of the transmission of data from the sub-electronics to the main electronics, the signal has a lower amplitude in order to keep the energy consumption of the sub-electronics low.
  • Each cycle ends with an energy refresh phase in which the main electronics again transmit energy to compensate for the energy consumed.
  • the course of the supply voltage of the partial electronics can be seen in the lower diagram in FIG. 4.
  • the supply voltage V cc decreases continuously until the end of the data transmission in the fifth section, in order then to rise again during the energy pulse in the energy refresh phase.
  • Fig. 5 shows the start-up phase after switching on the main electronics. This begins with the transmission of energy pulses with a fixed time period T er . A time window T r is provided between the energy pulses, in which the main electronics scans the coupling point after a reset acknowledgment of the partial electronics. If the partial electronics does not send a reset acknowledgment, energy pulses of length T er are transmitted until the partial electronics sends a reset acknowledgment. A reset acknowledgment is issued by the sub-electronics when the supply voltage has reached the value sufficient for normal operation. The required energy pulse time t e is then calculated by the microcontroller 8.
  • the supply voltage in the subelectronics rises continuously, whereby it drops slightly in the interim time windows T r .
  • the reset acknowledgment signal is used to switch to energy pulses of the length calculated by the microcontroller, which are virtually infinitely variable depending on the energy consumption of the sub-electronics and the efficiency of the adapted contactless coupling. The efficiency depends, for example, on the quality of the resonant circuit, the eddy current losses in the metal and / or the transmission distance.
  • the proposed circuit achieves a large signal-to-noise ratio for the transmitted signals, since the binary-coded data are represented either by an existing energy signal (HIGH) or a missing energy signal (LOW).
  • the signal-to-noise ratio and functional reliability are further increased by adapting the energy pulse length to changing transmission conditions at the beginning of a closing process.
  • the transmission conditions can change in practice, for example due to misalignment between the coupling elements, due to a different sized air gap between the coupling elements and due to contamination between the coupling elements, as well as due to different materials and geometries in the lock, door and fittings.
  • the circuit enables information to be transmitted bidirectionally without the circuit complexity being significantly increased.
  • the quartz clock-controlled microcontroller 8 enables synchronization and control of the transmission through the energy phase that takes place after each transmission. This means that there are practically no synchronization problems. Finally, only one coupling element is required for the energy and data transmission.
  • the figures 6 to 8 show an exemplary embodiment of a combined mechanically-electronically coded lock with a lock cylinder 10 which is connected to the main electronics 1 and with a mechanically coded key 23, in the key box 24 of which the Part electronics 2 is housed.
  • the lock cylinder 10 is surrounded by a non-metallic lock interface module 20 which is pushed onto the lock cylinder over part of its length.
  • the lock interface module 20 is seated only on the part of the lock cylinder 20 protruding from the lock case and thereby enables installation in an unmodified, conventional lock.
  • the lock interface module is in one piece and has a key detection switch 21 arranged in its upper part, an electrically controllable locking mechanism 22 arranged laterally on the lock interface module 20, and the lock-side primary coupling element 4 in the vicinity of the end face of the lock which closes with the lock cylinder 10 Interface module 20.
  • the lock-side coupling element 4 consists of a coil which has a ferrite core running parallel to the key insertion direction, the coupling element being provided above the lock cylinder. The ferrite cores of the coils are used for field focusing.
  • the lock-side coupling element 4 is isolated on the one hand from a possible metallic cover and, on the other hand, is brought as close as possible to the secondary key-side coupling element 5 located in the key ring 24.
  • the mechanical key recognition switch allows the device to be switched off when not in use, which enables a further increase in the number of locks per battery when operated on batteries.
  • the positive engagement of the lock cylinder 10 by the lock interface module 20 makes complicated adjustment of the lock interface module unnecessary.
  • the lock interface module 20 is fixed with a single screw.
  • the mechanically coded key 23 has the sequence control 18, the memory logic 17 and a serial EEPROM 25 in its casing 24. This contains the data memory 16 and can be programmed with the electronic coding via an n-fold connector 26. The use of a serial EEPROM 25 enables the number of pins of the programming connector 26 to be kept small.
  • the secondary coupling element 5 also consists of a coil which surrounds a ferrite core which, when the key 23 is inserted, runs coaxially to the ferrite core of the primary coupling element 4, a narrow air gap remaining between the coupling elements 4, 5 when the key 23 is inserted.
  • the sub-electronics 2 contained in the key lock 24 are encapsulated together with the other components so that the cover 24 can no longer be opened without being destroyed. This makes unauthorized key programming impossible.

Abstract

A wireless transmission method for power and data transmission, especially for a combined mechanically and electronically coded lock, uses power-supplied main electronics and part electronics with no power supply and with an energy storage circuit. Data and power transmission takes place respectively via coupling elements connected to the main electronics and part electronics. The power and data exchange is controlled by a microcontroller in the main unit in such a way that - power or data are transmitted alternately via the coupling elements, - the transmitted power is matched automatically to the consumption of the part electronics, including the transmission losses, by a variation of the power pulse length, - the starting times of the data sequences in the part electronics are synchronised with the cycles in the main electronics. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur berührungslosen Energie- und Datenübertragung nach dem Oberbegriff des Hauptanspruchs, sowie ein mechanisch und elektronisch kodiertes Schloß nach dem Oberbegriff des Anspruchs 4.The invention relates to a method for contactless energy and data transmission according to the preamble of the main claim, and a mechanically and electronically coded lock according to the preamble of claim 4.

Eine Vorrichtung zur induktiven Identifizierung einer Information bei Zugangskontrollen, insbesondere bei einem induktiv elektronischen Schloß- und Schlüsselteil, ist aus der DE-C-31 49 789 bekannt. Bei Annäherung des Schlüsselteils an den Schloßteil schwingt ein Oszillator des Schloßteils hochfrequent, wobei diese Schwingungen vom Schlüsselteil aufgenommen werden und mit einem als Schlüsselkennung dienenden Frequenz- oder Impulsmuster moduliert auf den Schloßteil zurückübertragen werden und dort mit einer schloßseitigen Elektronik weiterverarbeitet werden. Der Schlüsselteil weist eine Energiespeichereinrichtung auf, die die über einen HF-Schwingkreis empfangene Energie aufnimmt. Bei einer solchen Vorrichtung erfolgt die Daten- und Energieübertragung gleichzeitig mit dem gleichen HF-Signal.A device for the inductive identification of information in access controls, in particular in an inductive electronic lock and key part, is known from DE-C-31 49 789. When the key part approaches the lock part, an oscillator of the lock part vibrates at high frequency, these vibrations being picked up by the key part and transmitted back to the lock part in a modulated manner with a frequency or pulse pattern serving as a key identifier be processed there with a lock-side electronics. The key part has an energy storage device which receives the energy received via an HF resonant circuit. In such a device, the data and energy transmission take place simultaneously with the same RF signal.

Aus der DE-OS 35 00 353 ist ein mechanisch, sowie elektronisch kodierter Schlüssel mit einem dadurch zu betätigenden Schloß bekannt. Ein solcher Schlüssel weist eine herkömmliche mechanische Kodierung sowie eine in seiner Reide vorhandene elektronische Kodierung auf, während das entsprechende Schloß eine mechanische Sperrvorrichtung sowie ein mit einer Dekodier- bzw. Ableseeinrichtung und Energieversorgung versehenes elektronisches Speicher- und Steuersystem enthält. Das Schloß ist mit einem Detektor versehen, der mit einem am Schlüssel vorhandenen, eine nicht-mechanische Kodierung übertragenden Gegendetektor in berührungsfreiem Energie- und Datenaustausch zusammenwirken kann. Der Detektor ist an der Stirnseite des Schloßzylinders und der Gegendetektor in der dem Schloßzylinder zugewandten Stirnseite der Schlüsselreide untergebracht. In der Schlüsselreide ist ein Modul mit einem Microprozessor, einem Datenspeicher und einem Kurzzeitenergiespeicher untergebracht, wobei in dem Modul die Schlüsselkodierung programmiert ist. Die Detektoren können aus HF-Sendern bzw. HF-Empfängern bestehen. Bei Annäherung des am Schlüssel vorhandenen Gegendetektors an den Detektor des Schloßzylinders kommt es im Schwingkreis des Schlüssels zu einer entsprechenden Anregung und damit Energiezufuhr, die für die Datenübertragung bzw. dem Datenvergleich zwischen Schloß und Schlüsselelektronik erforderlich ist. Bei dieser mechanisch und nicht-mechanisch kodierten Schlüssel/Schloßkombination ist keine Anpassung der Energieübertragung an den Energieverbrauch der Schlüsselelektronik und der Übertragungsstrecke vorgesehen.From DE-OS 35 00 353 a mechanically and electronically coded key with a lock to be actuated thereby is known. Such a key has a conventional mechanical coding and an electronic coding present in its casing, while the corresponding lock contains a mechanical locking device and an electronic storage and control system provided with a decoding or reading device and energy supply. The lock is provided with a detector which can interact with a counter detector present on the key and transmitting a non-mechanical coding in a contact-free exchange of energy and data. The detector is housed on the front side of the lock cylinder and the counter detector in the front side of the key lock facing the lock cylinder. A module with a microprocessor, a data memory and a short-term energy store is accommodated in the key box, the key coding being programmed in the module. The detectors can consist of RF transmitters or RF receivers. When the counter detector present on the key approaches the detector of the lock cylinder, there is a corresponding excitation in the oscillating circuit of the key and thus the supply of energy required for the data transmission or the data comparison between the lock and the key electronics is. With this mechanically and non-mechanically coded key / lock combination, no adaptation of the energy transmission to the energy consumption of the key electronics and the transmission path is provided.

Eine weitere Einrichtung zur kontaktlosen Kopplung der Steuerungs- und Leistungsströme zwischen einer Schloßelektronik und einer Schlüsselelektronik bei einer elektronisch/mechanischen Schließeinrichtung ist aus der DE-A 35 01 482 bekannt. Die Kommunikation zwischen Schlüssel und Schloß erfolgt über eine bidirektionale, serielle induktive Schnittstelle, wobei sowohl die Schlüssel- als auch die Schloßelektronik mit einem Microcontroller und einem löschbaren PROM ausgestattet sein können. Bei einem solchen mechanisch/elektronischen Schloß ist keine Adaption an den tatsächlichen Energieverbrauch der Schlüsselelektronik und der Übertragungsstrecke vorgesehen, so daß die Hauptelektronik einen wesentlich höheren Energieverbrauch aufweist, der einen Batterie- bzw. Akkumulatorbetrieb ausschließt. Desweiteren ist die Übertragung der Daten störanfällig, was im Störungsfall zur Folge hat, daß sich das Schloß nicht aufschließen läßt.Another device for contactless coupling of the control and power currents between lock electronics and key electronics in an electronic / mechanical locking device is known from DE-A 35 01 482. The communication between the key and the lock takes place via a bidirectional, serial inductive interface, whereby both the key and the lock electronics can be equipped with a microcontroller and an erasable PROM. With such a mechanical / electronic lock, no adaptation to the actual energy consumption of the key electronics and the transmission link is provided, so that the main electronics have a significantly higher energy consumption, which excludes battery or accumulator operation. Furthermore, the transmission of the data is susceptible to faults, which in the event of a fault means that the lock cannot be unlocked.

Aus der GB-A-2 158 870 ist ein mechanisch und elektronisch kodiertes Schloß bekannt, mit einem Schloßzylinder, mit einer Hauptelektronik und mit einem Schlüssel, der sowohl eine mechanische als auch eine elektronische Kodierung aufweist, die in einer in der Schlüsselreide der angeordneten Teilelektronik programmiert ist. Es erfolgt eine Daten- und Energieübertragung berührungslos über Koppelelemente, die einerseits an der dem Schlüssel zugewandten Stirnfläche des Schloßzylinders und andererseits an dem Schlüssel derart angeordnet sind, daß die koppelnden Elemente sich bei eingeführtem Schlüssel gegenüberstehen.From GB-A-2 158 870 a mechanically and electronically coded lock is known, with a lock cylinder, with main electronics and with a key, which has both a mechanical and an electronic coding, which is arranged in the key electronics of the partial electronics is programmed. There is a contactless data and energy transmission via coupling elements, which on the one hand are connected to the Key-facing end face of the lock cylinder and on the other hand are arranged on the key such that the coupling elements face each other when the key is inserted.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie ein kombiniert mechanisch/elektronisch kodiertes Schloß zur berührungslosen Energie- und Datenübertragung, zu schaffen, die die Energieübertragung und die Übertragungssicherheit bezüglich der kodierten Daten auch bei unterschiedlichen Übertragungsverhältnissen gewährleisten und einen geringen Energieverbrauch ermöglichen.The invention has for its object to provide a method and a combined mechanically / electronically coded lock for contactless energy and data transmission, which ensure energy transmission and transmission security with regard to the coded data even with different transmission ratios and enable low energy consumption.

Zur Lösung dieser Aufgabe ist bei einem Verfahren zur berührungslosen Energie- und Datenübertragung, insbesondere für ein kombiniert mechanisch/elektronisch kodiertes Schloß, zwischen einer stromversorgten Hauptelektronik und einer nicht-stromversorgten Teilelektronik mit einer Energiespeicherschaltung über jeweils mit der Haupt- bzw. Teilelektronik verbundene Koppelelemente erfindungsgemäß vorgesehen,

  • daß abwechselnd Energie oder Daten über die Koppelelemente übertragen werden und
  • daß die übertragene Energie über eine Variation der Energieimpuls-Länge automatisch an den von variierenden Übertragungsverlusten abhängigen Energieverbrauch der Teilelektronik angepaßt wird,
  • indem nach dem Einschalten der Hauptelektronik wiederholt Energieimpulse festgelegter Zeitdauer
Ter übertragen werden, bis ein Reset-Quittungssignal der Teilelektronik vorliegt und indem nach dem Vorliegen eines Reset-Quittungssignals Energieimpulse mit einer Länge te in Abhängigkeit vom Energieverbrauch übertragen werden.To solve this problem, according to the invention in a method for contactless energy and data transmission, in particular for a mechanically / electronically coded lock, between a power-supplied main electronics and a non-power-supplied partial electronics with an energy storage circuit via coupling elements each connected to the main or partial electronics intended,
  • that energy or data are alternately transmitted via the coupling elements and
  • that the transmitted energy is automatically adapted to the energy consumption of the partial electronics, which is dependent on varying transmission losses, by varying the length of the energy pulse,
  • by repeatedly repeating energy pulses of a specified duration after switching on the main electronics
Ter are transmitted until a reset acknowledgment signal of the sub-electronics is present and in that energy pulses with a length te are transmitted as a function of the energy consumption after the presence of a reset acknowledgment signal.

Weiterhin sind zur Lösung dieser Aufgabe bei einem mechanisch und elektronisch kodierten Schloß, mit einem Schloßzylinder, mit einer Hauptelektronik, und mit einem Schlüssel, der sowohl eine mechanische als auch eine elektronische Kodierung aufweist, die in einer in der Schlüsselreide angeordneten nichtstromversorgten Teilelektronik programmiert ist, wobei Daten- und Energieübertragungen berührungslos über Koppelelemente erfolgen, die einerseits an der dem Schlüssel zugewandten Stirnfläche des Schloßzylinders und andererseits an dem Schlüssel derart angeordnet sind, daß die koppelnden Elemente sich bei eingeführtem Schlüssel gegenüberstehen, erfindungsgemäß vorgesehen:

  • Mittel zur abwechselnden Energie- oder Datenübertragung über die Koppelelemente
  • Mittel zur automatischen Anpassung der übertragenen Energie an den von variierenden Übertragungsverlusten abhängigen Energieverbrauch der Teilelektronik über eine Variation der Energieimpuls-Länge
  • wobei die Kauptelektronik nach dem Einschalten zunächst wiederholt Energieimpulse festgelegter Zeitdauer Ter sendet, bis die Teilelektronik ein Reset-Quittungssignal abgibt, und anschließend an die Übertragungsverluste angepaßte Energieimpulse mit einer Länge te in Abhängigkeit vom Energieverbrauch erhält.
Furthermore, to solve this problem in a mechanically and electronically coded lock, with a lock cylinder, with main electronics, and with a key, which has both a mechanical and an electronic coding, which is programmed in a non-powered partial electronics arranged in the key box, whereby data and energy transfers take place without contact via coupling elements, which are arranged on the one hand on the end face of the lock cylinder facing the key and on the other hand on the key in such a way that the coupling elements face each other when the key is inserted, according to the invention:
  • Means for alternating energy or data transmission via the coupling elements
  • Means for automatically adapting the transmitted energy to the energy consumption of the partial electronics, which is dependent on varying transmission losses, by varying the length of the energy pulse
  • wherein the main electronics after switching on first repeatedly sends energy pulses of a defined period of time Ter until the sub-electronics emits a reset acknowledgment signal, and then receives energy pulses adapted to the transmission losses with a length te as a function of energy consumption.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung ermöglichen eine hohe Übertragungssicherheit auch bei Übertragungsverlusten oder störenden Einflüssen in der Übertragungsstrecke. Die übertragene Energie paßt sich automatisch an die Leistungsaufnahme der Teilelektronik einschließlich der Verluste in der Übertragungsstrecke an. Diese automatische Adaption der übertragenen Leistung an die sich ändernden Einflüsse auf die Übertragungsstrecke im praktischen Betrieb erlaubt eine Anpassung an verschiedene Türen und Beschläge aus verschiedenen Materialien, die mehr oder weniger dämpfend auf die Hochfrequenzenergie wirken, sowie an verschiedene geometrische Ausprägungen von Türen und Beschlägen, die ebenfalls genau wie eine ungenaue Ausrichtung von Empfänger- und Sendeteil dämpfend auf die HF-Übertragung wirken und damit die drahtlose Energieversorgung des Schlüssels unterbrechen können. Ohne Anpassung würde dann der Betrieb nicht möglich sein oder - in einem Vorstadium der Betriebsunterbrechung - würden die Datencodes verfälscht werden mit der Folge, daß die Schloßbetätigung nicht möglich wäre. Als Nebenvorteil ergibt sich ein geringer Stromverbrauch bei hoher Übertragungssicherheit, der einen Batterie- oder Akkumulatorbetrieb zuläßt.The method according to the invention and the device according to the invention enable high transmission security even in the event of transmission losses or disruptive influences in the transmission link. The transmitted energy automatically adapts to the power consumption of the sub-electronics including the losses in the transmission path. This automatic adaptation of the transmitted power to the changing influences on the transmission line in practical operation allows adaptation to different doors and fittings made of different materials that have a more or less dampening effect on high-frequency energy, as well as to different geometrical characteristics of doors and fittings as well as an inaccurate alignment of the receiver and transmitter parts to dampen the HF transmission act and can thus interrupt the wireless energy supply of the key. Operation would then not be possible without adaptation or - in a preliminary stage of the business interruption - the data codes would be falsified, with the result that the lock actuation would not be possible. As a side advantage there is low power consumption with high transmission security, which allows battery or accumulator operation.

Nach dem Einschalten der Hauptelektronik werden wiederholt Energieimpulse festgelegter Zeitdauer Ter übertragen werden, bis ein Reset-Quittungssignal der Teilelektronik vorliegt, wobei nach dem Vorliegen eines Reset-Quittungssignals Energieimpulse (Energiebursts) mit durch den tatsächlichen Energieverbrauch bestimmter Länge te übertragen werden, der anhand der Anzahl bzw. Gesamtlänge der Energieimpulse der Länge Ter festgestellt wird. Dadurch wird ermöglicht, mit kleinen Energiemengen möglichst schnell auf die erforderliche Versorgungsspannung in der Teilelektronik zu kommen, wobei gewährleistet ist, daß nicht zu viel Energie übertragen wird.After the main electronics have been switched on, energy pulses of a defined period of time Ter are transmitted repeatedly until a reset acknowledgment signal of the sub-electronics is present, wherein after the presence of a reset acknowledgment signal, energy pulses (energy bursts) with a length te determined by the actual energy consumption are transmitted, based on the number or total length of the energy pulses of length Ter is determined. This enables the required supply voltage in the partial electronics to be reached as quickly as possible with small amounts of energy, ensuring that not too much energy is transmitted.

Desweiteren wird die Übertragungssicherheit dadurch erhöht, daß die Daten binär kodiert werden, so daß sich ein großer Störabstand ergibt.Furthermore, the transmission security is increased in that the data are binary coded, so that there is a large signal-to-noise ratio.

Bei dem mechanisch/elektronisch kodierten Schloß ist der Schloßzylinder von einem aufsteckbaren, integralen, nicht-metallischen Schloß-Schnittstellenmodul auf einer bestimmten Länge umschlossen, der einen Schlüsselerkennungsschalter, einen elektronisch ansteuerbaren Sperrmechanismus und das schloßseitige Koppelelement aufnimmt.In the mechanically / electronically coded lock, the lock cylinder is enclosed by a plug-in, integral, non-metallic lock interface module of a certain length, which receives a key detection switch, an electronically controllable locking mechanism and the lock-side coupling element.

Ein solcher Schnittstellenmodul kann in Verbindung mit einem unmodifizierten konventionellen Schloß verwendet werden, wobei der Schnittstellenmodul nur auf dem aus dem Schloßkasten herausragenden Teil des Schloßzylinders aufsitzt. Die Verwendung eines nicht-metallischen Materials, z.B. Zirkonoxid, ermöglicht die Übertragungsverluste zu verringern und trägt somit dazu bei, einen Batteriebetrieb des mechanisch/elektronisch kodierten Schlosses zu ermöglichen. Der Schlüsselerkennungsschalter läßt ein Abschalten der Einrichtung bei Nichtbenutzung zu, was bei Batteriebetrieb eine weitere Erhöhung der Schloßbetätigungszahl je Batteriesatz ermöglicht.Such an interface module can be used in conjunction with an unmodified conventional lock, the interface module being seated only on the part of the lock cylinder protruding from the lock case. The use of a non-metallic material, e.g. Zirconium oxide, enables the transmission losses to be reduced and thus contributes to the battery operation of the mechanically / electronically coded lock. The key detection switch allows the device to be switched off when not in use, which enables a further increase in the number of lock actuations per battery set when operated on batteries.

Bei einer bevorzugten Ausführungsform ist die elektronische Kodierung des Schlüssels in einen seriellen EEPROM über einen n-fach Stecker vorgesehen, der nach Programmierung und Verkapselung nicht mehr zerstörungsfrei zugänglich ist. Die Verkapselung der Schlüsselelektronik mit dem Stecker macht eine unbefugte Schlüsselprogrammierung unmöglich. Die Verwendung eines seriellen Codespeichers erlaubt die Stiftzahl des Programmiersteckers kleinzuhalten.In a preferred embodiment, the electronic coding of the key is provided in a serial EEPROM via an n-fold connector, which after programming and encapsulation is no longer accessible without being destroyed. The encapsulation of the key electronics with the plug makes unauthorized key programming impossible. The use of a serial code memory allows the number of pins on the programming connector to be kept small.

Das schloßseitige Koppelelement kann isoliert von metallischen Gegenständen, wie z.B. von Türblenden, oberhalb des Schloßzylinders im Schnittstellenmodul angeordnet sein. Die Anordnung des Koppelelementes in nicht-metallischem Material des Schloßschnittstellenmoduls ermöglicht eine Minimierung der Übertragungsverluste, wobei der Einfluß von Metall hinter der Schloßschnittstelle gering ist.The lock-side coupling element can be isolated from metallic objects, e.g. of door panels, be arranged above the lock cylinder in the interface module. The arrangement of the coupling element in non-metallic material of the lock interface module enables the transmission losses to be minimized, the influence of metal behind the lock interface being slight.

Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.In the following an embodiment of the invention will be explained with reference to the drawings.

Es zeigen:

Fig. 1
ein Blockschaltbild der für das erfindungsgemäße Verfahren verwendeten Elektronik,
Fig. 2
ein Blockschaltbild der Hauptelektronik,
Fig. 3
ein Blockschaltbild der Schlüsselelektronik,
Fig. 4
ein Zeitdiagramm mit der Ablaufsteuerung der Energie- und Datenübertragung,
Fig. 5
ein Zeitdiagramm gemäß Fig. 4 in der Anlaufphase,
Fig. 6
eine Frontansicht eines mechanisch/elektronisch kodierten Schlosses,
Fig. 7
ein Schlüssel des mechanisch/elektronisch kodierten Schlosses und
Fig. 8
eine Seitenansicht des vorderen Teils des Schloßzylinders mit eingestecktem Schlüssel.
Show it:
Fig. 1
2 shows a block diagram of the electronics used for the method according to the invention,
Fig. 2
a block diagram of the main electronics,
Fig. 3
a block diagram of the key electronics,
Fig. 4
a time diagram with the sequence control of the energy and data transmission,
Fig. 5
4 in the start-up phase,
Fig. 6
a front view of a mechanically / electronically coded lock,
Fig. 7
a key of the mechanically / electronically coded lock and
Fig. 8
a side view of the front part of the lock cylinder with the key inserted.

In Fig. 1 ist ein Blockschaltbild der für das Verfahren zur berührlosen Energie- und Datenübertragung benötigten Elektronik dargestellt. Die Hauptelektronik 1 wird in geeigneter Weise über eine Stromversorgungseinheit 3 mit Energie versorgt, die von der Hauptelektronik 1 über berührungslose Koppelelemente 4,5 an eine Teilelektronik 2 übertragen werden kann. Über die gleichen berührungslosen Koppelelemente 4,5 können außerdem Daten in beide Richtungen übertragen werden.1 shows a block diagram of the electronics required for the method for contactless energy and data transmission. The main electronics 1 are suitably supplied with energy via a power supply unit 3, which can be transmitted from the main electronics 1 to a sub-electronics 2 via contactless coupling elements 4, 5. Data can also be transmitted in both directions via the same contactless coupling elements 4, 5.

Fig. 2 zeigt ein Blockschaltbild der Hauptelektronik mit einem Microcontroller 8 einschließlich Software. Der Microcontroller 8 steuert über ein Datenrichtungssignal einen Schalter S1 an, der die von dem primären Koppelelement 4 von der Teilelektronik 2 übertragenen Daten auf einen Demodulator 9 schaltet bzw. in der anderen Schaltstellung die von dem Microcontroller 8 abgegebenen Daten über einen Modulator 7 mit Leistungsstufe auf das primäre Koppelelement 4 überträgt. Die Stromversorgungseinheit 3 muß die Energie für die Hauptelektronik 1, die Teilelektronik 2 und die Verluste in der Übertragungsstrecke aufbringen. Als primäres Koppelelement 4 wird ein Hochfrequenzkoppelelement verwendet. Ein Hf-Oszillator 6 liefert die Trägerschwingung für die Energie und die Daten an den Modulator 7 mit Leistungsstufe.Fig. 2 shows a block diagram of the main electronics with a microcontroller 8 including software. The microcontroller 8 controls a switch S1 via a data direction signal, which switches the data transmitted by the primary coupling element 4 from the partial electronics 2 to a demodulator 9 or, in the other switching position, the data output by the microcontroller 8 via a modulator 7 with a power level transmits the primary coupling element 4. The power supply unit 3 must apply the energy for the main electronics 1, the sub-electronics 2 and the losses in the transmission link. A high-frequency coupling element is used as the primary coupling element 4. An RF oscillator 6 supplies the carrier oscillation for the energy and the data to the modulator 7 with the power stage.

In der Empfangsphase schaltet der Microcontroller 8 der Hauptelektronik 1 den Schalter S1 auf den Demodulator 9. Die von der Teilelektronik 2 über das primäre Koppelelement 4 eingekoppelte Datenenergie wird im Demodulator 9 in ein Binärsignal umgeformt und dann vom Microcontroller 8 ausgewertet.In the reception phase, the microcontroller 8 of the main electronics 1 switches the switch S1 to the demodulator 9. The data energy coupled in by the sub-electronics 2 via the primary coupling element 4 is converted into a binary signal in the demodulator 9 and then evaluated by the microcontroller 8.

Fig. 3 zeigt das Blockschaltbild der Teilelektronik 2. Die von der Hauptelektronik 1 periodisch über das sekundäre Koppelelement 5 eingespeiste Energie wird in der Energierückgewinnungseinheit 11 gleichgerichtet und in einem Kondensator geglättet und gespeichert. Aus diesem Kondensator erfolgt die Energieversorgung der Teilelektronik 2.3 shows the block diagram of the partial electronics 2. The energy fed in periodically by the main electronics 1 via the secondary coupling element 5 is rectified in the energy recovery unit 11 and smoothed and stored in a capacitor. The energy supply of the partial electronics 2 takes place from this capacitor.

Die Daten-/Energie-Steuersignalgewinnungseinheit 12 ist ähnlich dem Energiespeicher der Energierückgewinnungseinheit 11 aufgebaut, nur daß die Zeitkonstante der Glättung wesentlich kürzer ist, um Änderungen des Energie-/Daten-Signal schnell zu erfassen. Das erzeugte Steuersignal teilt einer Ablaufsteuerung 18 das Ende der Energiephase mit.The data / energy control signal recovery unit 12 is constructed similarly to the energy store of the energy recovery unit 11, except that the time constant of the smoothing is considerably shorter in order to quickly detect changes in the energy / data signal. The generated control signal notifies a sequence controller 18 of the end of the energy phase.

Die Ablaufsteuerung 18 startet daraufhin einen Datenrichtungsumschaltzyklus oder einen Nutzdatenzyklus. Ein von der Ablaufsteuerung 18 angesteuerter Schalter S3 ermöglicht dabei die Realisierung der zu den Phasen gehörenden Zeitfenster, in denen zu einer Speicherlogik 17 durchgeschaltet wird, während mit dem ebenfalls von der Ablaufsteuerung 18 angesteuerten Schalter S2 die Datenrichtung bestimmt wird.The sequence controller 18 then starts a data direction changeover cycle or a useful data cycle. A switch S3 controlled by the sequence controller 18 enables the realization of the time windows belonging to the phases, in which a switch is made to a memory logic 17, while the data direction is determined with the switch S2 likewise controlled by the sequence controller 18.

Die Speicherlogik 17 hat die Aufgabe, unter Auswertung des Lese-/Schreibsignals von der Ablaufsteuerung 18 Daten zu den entsprechenden Zeitpunkten von einem oder zu einem Datenspeicher 16 zu transportieren.The memory logic 17 has the task of transporting data from or to a data memory 16 at the appropriate times while evaluating the read / write signal from the sequence controller 18.

Aus einem quarzgesteuerten oder von der Hauptelektronik 1 synchronisierten HF-Oszillator 13 der Teilelektronik 2 wird über eine Taktgewinnungseinheit 15 der Takt für die Ablaufsteuerung 18 und die Trägerschwingung für die an die Hauptelektronik 1 über einen Modulator 13 laufenden Dateninformationen abgeleitet. Der Modulator 13 verknüpft beim Senden an die Hauptelektronik 1 das Datenbinärsignal aus der Speicherlogik 17 mit dem HF-Träger.The clock for the sequence control 18 and the carrier oscillation for the data information running to the main electronics 1 via a modulator 13 are derived from a quartz-controlled or oscillated by the main electronics 1 HF oscillator 13 of the sub-electronics 2. When sent to the main electronics 1, the modulator 13 links the data binary signal from the memory logic 17 to the RF carrier.

Fig. 4 zeigt das Übertragungsprotokoll der Energie- und Datenübertragung. Die Ablaufsteuerung 18 startet nach Abschalten der Energie eine Umschalt- oder Datenphase. Beiden gemeinsam ist die Abklingphase ta. Sendet die Hauptelektronik in der folgenden Umschaltphase tu Energie, dann wird in der Teilelektronik (Schlüssel) die Datenrichtung für alle folgenden Datenphasen umgeschaltet und der Zyklus beendet. Sendet die Hauptelektronik in der Umschaltphase keine Energie, dann wird nach der Umschaltphase tu eine Nutzdatenphase td gestartet. In dieser Phase werden Daten von oder zur Teilelektronik übertragen.Fig. 4 shows the transmission protocol of the energy and data transmission. The sequence controller 18 starts a switchover or data phase after the energy has been switched off. Common to both is the decay phase t a . If the main electronics sends t u energy in the following switchover phase, the data direction for all subsequent data phases is switched in the subelectronics (key) and the cycle is ended. If the main electronics does not transmit any energy in the switchover phase, a user data phase td is started after the switchover phase t u . In this phase, data is transferred from or to the partial electronics.

Im Falle der Übertragung von Daten von der Teilelektronik zur Hauptelektronik hat das Signal eine geringere Amplitude, um den Energieverbrauch der Teilelektronik gering zu halten.In the case of the transmission of data from the sub-electronics to the main electronics, the signal has a lower amplitude in order to keep the energy consumption of the sub-electronics low.

Jeder Zyklus endet mit einer Energie-Auffrischphase, in der von der Hauptelektronik erneut Energie zum Ausgleich der verbrauchten Energie übertragen wird. Im unteren Diagramm der Fig. 4 ist dabei der Verlauf der Versorgungsspannung der Teilelektronik zu entnehmen. Nach Beendigung der Energiephase nimmt nämlich die Versorgungsspannung Vcc bis zum Abschluß der Datenübertragung im fünften Abschnitt kontinuierlich ab, um dann in der Energie-Auffrischphase erneut während des Energieimpulses anzusteigen.Each cycle ends with an energy refresh phase in which the main electronics again transmit energy to compensate for the energy consumed. The course of the supply voltage of the partial electronics can be seen in the lower diagram in FIG. 4. After the end of the energy phase, namely, the supply voltage V cc decreases continuously until the end of the data transmission in the fifth section, in order then to rise again during the energy pulse in the energy refresh phase.

Die Länge des Energieimpulses te sollte so eingestellt sein, daß in erster Näherung gilt:

Figure imgb0001

wobei Ig der Effektivstrom am primären Koppelelement 4, tges die Gesamtzeit der Daten- und Energie-Phase, Iverl der Verluststrom in der Übertragungsstrecke, ITE der Stromverbrauch des Schaltungsteiles der Teilelektronik, der über den gesamten Zeitraum aktiv ist, und IDTE der Stromverbrauch des Schaltungsteiles der Teilelektronik, der nur während der Datenphase aktiv ist (td = Dauer Datenphase).The length of the energy pulse t e should be set so that the following approximation applies:
Figure imgb0001

where I g the effective current at the primary coupling element 4, t tot the total time of the data and energy phase, I lose the leakage current in the transmission path, I TE the current consumption of the circuit part of the sub-electronics that is active over the entire period, and I DTE the current consumption of the circuit part of the sub-electronics that is only active during the data phase (t d = duration of the data phase).

Fig. 5 zeigt die Anlaufphase nach dem Einschalten der Hauptelektronik. Diese beginnt mit dem Übertragen von Energieimpulsen mit einer festgelegten Zeitdauer Ter. Zwischen den Energieimpulsen ist jeweils ein Zeitfenster Tr vorgesehen, in dem die Hauptelektronik die Koppelstelle nach einer Reset-Quittung der Teilelektronik abtastet. Sendet die Teilelektronik keinen Reset-Quittung, erfolgt eine weitere Übertragung von Energieimpulsen der Länge Ter, bis die Teilelektronik eine Reset-Quittung sendet. Eine Reset-Quittung wird von der Teilelektronik abgegeben, wenn die Versorgungsspannung den für einen Normalbetrieb ausreichenden Wert erreicht hat. Anschließend wird vom Mikro-Controller 8 die erforderliche Energieimpuls-Zeit te berechnet.Fig. 5 shows the start-up phase after switching on the main electronics. This begins with the transmission of energy pulses with a fixed time period T er . A time window T r is provided between the energy pulses, in which the main electronics scans the coupling point after a reset acknowledgment of the partial electronics. If the partial electronics does not send a reset acknowledgment, energy pulses of length T er are transmitted until the partial electronics sends a reset acknowledgment. A reset acknowledgment is issued by the sub-electronics when the supply voltage has reached the value sufficient for normal operation. The required energy pulse time t e is then calculated by the microcontroller 8.

Während der Abgabe der Energieimpulse konstanter Länge (Ter) steigt die Versorgungsspannung in der Teilelektronik ständig an, wobei sie in den zwischenzeitlichen Zeitfenstern Tr geringfügig abfällt. Wenn das erforderliche Spannungsniveau in der Teilelektronik erreicht ist, wird über das Reset-Quittungssignal auf Energieimpulse der vom Microcontroller berechneten Länge umgeschaltet, die sich quasi stufenlos an den Energieverbrauch der Teilelektronik und den Wirkungsgrad der berührungslosen Kopplung angepaßt. Der Wirkungsgrad ist dabei beispielsweise abhängig von der Schwingkreisgüte, den Wirbelstromverlusten im Metall und/oder dem Übertragungsabstand. Die vorgeschlagene Schaltung erzielt einen großen Störabstand bei den übertragenden Signalen, da die binärkodierten Daten entweder durch ein vorhandenes Energiesignal (HIGH) oder ein fehlendes Energiesignal (LOW) dargestellt werden. Der Störabstand und die Funktionssicherheit werden weiterhin dadurch erhöht, daß eine Anpassung der Energieimpulslänge an veränderte Übertragungsbedingungen zu Beginn eines Schließvorgangs erfolgt. Die Übertragungsbedingungen können sich z.B. infolge von Fluchtungsfehlern zwischen den Koppelelementen, infolge eines unterschiedlich großen Luftspaltes zwischen den Koppelelementen und infolge von Verschmutzungen zwischen den Koppelelementen, sowie auf Grund verschiedener Materialien und Geometrien in Schloß, Tür und Beschlägen in der Praxis in weiten Grenzen ändern.During the delivery of the energy pulses of constant length (T er ), the supply voltage in the subelectronics rises continuously, whereby it drops slightly in the interim time windows T r . When the required voltage level in the sub-electronics has been reached, the reset acknowledgment signal is used to switch to energy pulses of the length calculated by the microcontroller, which are virtually infinitely variable depending on the energy consumption of the sub-electronics and the efficiency of the adapted contactless coupling. The efficiency depends, for example, on the quality of the resonant circuit, the eddy current losses in the metal and / or the transmission distance. The proposed circuit achieves a large signal-to-noise ratio for the transmitted signals, since the binary-coded data are represented either by an existing energy signal (HIGH) or a missing energy signal (LOW). The signal-to-noise ratio and functional reliability are further increased by adapting the energy pulse length to changing transmission conditions at the beginning of a closing process. The transmission conditions can change in practice, for example due to misalignment between the coupling elements, due to a different sized air gap between the coupling elements and due to contamination between the coupling elements, as well as due to different materials and geometries in the lock, door and fittings.

Die Schaltung ermöglicht, Informationen bidirektional zu übertragen, ohne daß dabei der Schaltungsaufwand wesentlich erhöht ist. Der quarztaktgesteuerte Microcontroller 8 ermöglicht eine Synchronisierung und Steuerung der Übertragung durch die nach jeder Übertragung stattfindende Energiephase. Dadurch entstehen praktisch keine Synchronisierungsprobleme. Schließlich wird für die Energie- und Datenübertragung jeweils nur ein Koppelelement benötigt.The circuit enables information to be transmitted bidirectionally without the circuit complexity being significantly increased. The quartz clock-controlled microcontroller 8 enables synchronization and control of the transmission through the energy phase that takes place after each transmission. This means that there are practically no synchronization problems. Finally, only one coupling element is required for the energy and data transmission.

Die Fign. 6 bis 8 zeigen ein Ausführungsbeispiel eines kombiniert mechanisch-elektronisch kodierten Schlosses mit einem Schloßzylinder 10, der mit der Hauptelektronik 1 verbunden ist und mit einem mechanisch kodierten Schlüssel 23, in dessen Schlüsselreide 24 die Teilelektronik 2 untergebracht ist. Der Schloßzylinder 10 ist von einem nicht-metallischen Schloß-Schnittstellenmodul 20 umgeben, der auf den Schloßzylinder auf einen Teil seiner Länge aufgeschoben ist. Der Schloß-Schnittstellenmodul 20 sitzt nur auf dem aus dem Schloßkasten herausragenden Teil des Schloßzylinders 20 auf und ermöglicht dadurch den Einbau in ein unmodifiziertes, konventionelles Schloß. Der Schloß-Schnittstellenmodul ist einstückig und weist einen in seinem oberen Teil angeordneten Schlüsselerkennungsschalter 21, einen elektrisch ansteuerbaren und seitlich an dem Schloß-Schnittstellenmodul 20 angeordneten Sperrmechanismus 22, und das schloßseitige primäre Koppelelement 4 in der Nähe der mit dem Schloßzylinder 10 abschließenden Stirnfläche des Schloß-Schnittstellenmoduls 20 auf. Das schloßseitige Koppelelement 4 besteht aus einer Spule, die einen parallel zur Schlüsseleinsteckrichtung verlaufenden Ferritkern aufweist, wobei das Koppelelement oberhalb des Schloßzylinders vorgesehen ist. Die Ferritkerne der Spulen dienen zur Feldfokussierung.The figures 6 to 8 show an exemplary embodiment of a combined mechanically-electronically coded lock with a lock cylinder 10 which is connected to the main electronics 1 and with a mechanically coded key 23, in the key box 24 of which the Part electronics 2 is housed. The lock cylinder 10 is surrounded by a non-metallic lock interface module 20 which is pushed onto the lock cylinder over part of its length. The lock interface module 20 is seated only on the part of the lock cylinder 20 protruding from the lock case and thereby enables installation in an unmodified, conventional lock. The lock interface module is in one piece and has a key detection switch 21 arranged in its upper part, an electrically controllable locking mechanism 22 arranged laterally on the lock interface module 20, and the lock-side primary coupling element 4 in the vicinity of the end face of the lock which closes with the lock cylinder 10 Interface module 20. The lock-side coupling element 4 consists of a coil which has a ferrite core running parallel to the key insertion direction, the coupling element being provided above the lock cylinder. The ferrite cores of the coils are used for field focusing.

Das schloßseitige Koppelelement 4 ist einerseits von einer möglichen metallischen Blende isoliert und andererseits möglichst nahe an das in der Schlüsselreide 24 befindliche sekundäre schlüsselseitige Koppelelement 5 herangeführt.The lock-side coupling element 4 is isolated on the one hand from a possible metallic cover and, on the other hand, is brought as close as possible to the secondary key-side coupling element 5 located in the key ring 24.

Durch die optimale Plazierung der elektronischen Koppelelemente 4,5 und die Verwendung nicht-metallischen Materials sind die Übertragungsverluste minimiert.Due to the optimal placement of the electronic coupling elements 4, 5 and the use of non-metallic material, the transmission losses are minimized.

Der mechanische Schlüsselerkennungsschalter läßt ein Abschalten der Einrichtung bei Nichtbenutzung zu, was bei Batteriebetrieb eine weitere Erhöhung der Schließzahl pro Batterie ermöglicht. Das formschlüssige Umgreifen des Schloßzylinders 10 durch das Schloß-Schnittstellenmodul 20 macht eine komplizierte Justage des Schloß-Schnittstellenmoduls unnötig. Die Fixierung des Schloß-Schnittstellenmoduls 20 erfolgt mit einer einzigen Schraube.The mechanical key recognition switch allows the device to be switched off when not in use, which enables a further increase in the number of locks per battery when operated on batteries. The positive engagement of the lock cylinder 10 by the lock interface module 20 makes complicated adjustment of the lock interface module unnecessary. The lock interface module 20 is fixed with a single screw.

Der mechanisch kodierte Schlüssel 23 weist in seiner Reide 24 die Ablaufsteuerung 18, die Speicherlogie 17 und einen seriellen EEPROM 25 auf. Dieser enthält den Datenspeicher 16 und kann über einen n-fach Stecker 26 mit der elektronischen Kodierung programmiert werden. Die Verwendung eines seriellen EEPROMS 25 ermöglicht die Stiftzahl des Programmiersteckers 26 kleinzuhalten.The mechanically coded key 23 has the sequence control 18, the memory logic 17 and a serial EEPROM 25 in its casing 24. This contains the data memory 16 and can be programmed with the electronic coding via an n-fold connector 26. The use of a serial EEPROM 25 enables the number of pins of the programming connector 26 to be kept small.

Das sekundäre Koppelelement 5 besteht ebenfalls aus einer Spule, die einen Ferritkern umgibt, der bei eingestecktem Schlüssel 23 koaxial zum Ferritkern des primären Koppelelementes 4 verläuft, wobei im eingesteckten Zustand des Schlüssels 23 zwischen den Koppelelementen 4,5 ein schmaler Luftspalt verbleibt.The secondary coupling element 5 also consists of a coil which surrounds a ferrite core which, when the key 23 is inserted, runs coaxially to the ferrite core of the primary coupling element 4, a narrow air gap remaining between the coupling elements 4, 5 when the key 23 is inserted.

Nach Programmierung des seriellen EEPROMS 25 über den n-fach Stecker 26 wird die in der Schlüsselreide 24 enthaltene Teilelektronik 2 zusammen mit den übrigen Bauteilen so verkapselt, daß die Reide 24 nicht mehr zerstörungsfrei geöffnet werden kann. Dadurch ist eine unbefugte Schlüsselprogrammierung unmöglich.After programming the serial EEPROM 25 via the n-fold connector 26, the sub-electronics 2 contained in the key lock 24 are encapsulated together with the other components so that the cover 24 can no longer be opened without being destroyed. This makes unauthorized key programming impossible.

Claims (6)

  1. Process for contactless transfer of energy and data, in particular in connection with a combined mechanico-electronically coded lock, the transfer being performed between current-supplied main electronics (1) and sub-electronics (2) not supplied with current having an energy storage circuit via coupling elements (4, 5) connected to the main and subelectronics (1, 2), respectively,
    characterized in that
    - energy and data are transferred alternatingly via said coupling elements (4, 5),
    - via a variation of the energy pulse length, the transferred energy is automatically adapted to the energy consumption of the subelectronics (2) being dictated by varying transmission losses,
    - upon the powering of the main electronics (1), energy pulses of a determined time period (Ter) are transmitted repeatedly until a reset acknowledgement signal of the subelectronics (2) is present and, upon the presence of said reset acknowledgement signal, energy pulses of a length (te) dictated by the energy consumption are transmitted.
  2. Process as defined in claim 1, characterized in that the data flow direction in the subelectronics (2) is determined by the main electronics (1) and that the data transmission is bidirectional, the starting moments of the data sequences in the subelectronics (2) being synchronized with the sequences in the main electronics (1).
  3. Process as defined in one of claims 1 or 2, characterized in that the data are binary-coded according to the ASK (Amplitude Shift Keying) Method.
  4. Mechanically and electronically coded lock, comprising a lock cylinder (10), current-supplied main electronics (1), and a key (23) which contains a mechanical and an electronic coding programmed in subelectronics (2) not supplied with current and being accommodated in the key head (24), the data and energy transmission taking place contactlessly via coupling elements (4, 5) which are arranged at the end face of the lock cylinder (10) confronted with the key (23), on the one hand, and at the key (23), on the other hand, so that, if the key (23) is inserted, the coupling elements (4, 5) are confronted with each other,
    characterized by
    - means for an alternating transmission of data and energy via said coupling elements (4, 5),
    - means for automatically adapting the transmitted energy to the energy consumption of said subelectronics (2),
    which depends on the varying transmission losses, via a variation of the energy pulse length (te),
    - the main electronics (1), after having been energized, first repeatedly transmitting energy pulses of a defined time period (Ter) until the subelectronics (2) outputs a reset acknowledgement signal and subsequently obtains energy pulses adapted to the transmission losses and having a length (te) depending on the energy consumption.
  5. Lock as defined in claim 4, characterized in that the lock cylinder (10) is enclosed over a defined length by a mountable, integral, non-metallic lock interface module (20) which receives a key detection switch (21), an electronically energizable blocking mechanism (22) and the lock-sided coupling element (4).
  6. Lock as defined in claim 4 or 5, characterized in that the electronic coding of the key (23) is performed in a serial electronic memory (25) and via a n-way plug (26) which, upon programming and encapsulation, is no longer accessible, unless by destruction.
EP88105511A 1987-04-29 1988-04-07 Wireless transmission method for power and data transmission, and mechanically and electronically coded lock Expired - Lifetime EP0288791B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88105511T ATE97188T1 (en) 1987-04-29 1988-04-07 METHOD FOR CONTACTLESS ENERGY AND DATA TRANSMISSION, AS WELL AS MECHANICALLY AND ELECTRONICALLY CODED LOCK.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3714195 1987-04-29
DE19873714195 DE3714195A1 (en) 1987-04-29 1987-04-29 METHOD FOR CONTACTLESS ENERGY AND DATA TRANSFER, AND MECHANICAL AND ELECTRONICALLY CODED LOCK

Publications (3)

Publication Number Publication Date
EP0288791A2 EP0288791A2 (en) 1988-11-02
EP0288791A3 EP0288791A3 (en) 1989-11-23
EP0288791B1 true EP0288791B1 (en) 1993-11-10

Family

ID=6326460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105511A Expired - Lifetime EP0288791B1 (en) 1987-04-29 1988-04-07 Wireless transmission method for power and data transmission, and mechanically and electronically coded lock

Country Status (9)

Country Link
EP (1) EP0288791B1 (en)
JP (1) JPS63283439A (en)
AT (1) ATE97188T1 (en)
CA (1) CA1308484C (en)
DE (2) DE3714195A1 (en)
DK (1) DK234788A (en)
ES (1) ES2046227T3 (en)
FI (1) FI83125C (en)
NO (1) NO881802L (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393181A1 (en) 2010-06-02 2011-12-07 FRIWO Gerätebau GmbH Circuit for a system for a contactless, inductive energy transfer
US9424701B2 (en) 2006-09-14 2016-08-23 The Knox Company Electronic lock and key assembly

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3922556C3 (en) * 1989-07-08 1994-09-15 Gabriele Manner Arrangement for contactless energy and sensor signal transmission
DE4007453A1 (en) * 1990-03-09 1991-09-12 Telefunken Electronic Gmbh DEVICE FOR MONITORING OBJECTS
DE4018814A1 (en) * 1990-06-12 1992-01-02 Fraunhofer Ges Forschung METHOD AND SYSTEM FOR TRANSMITTING ENERGY AND DATA
ES2083985T3 (en) * 1990-07-16 1996-05-01 Siemens Ag INSTALLATION FOR THE TRANSMISSION OF DATA AND ENERGY WITHOUT CONTACT AS WELL AS USE OF THE SAME.
JPH0768805B2 (en) * 1990-08-10 1995-07-26 日和田電子株式会社 Electronic key device
DE9012505U1 (en) * 1990-08-31 1991-06-27 Siemens Ag, 8000 Muenchen, De
JPH0797120B2 (en) * 1990-09-28 1995-10-18 山武ハネウエル株式会社 Batteryless electronic device
DE4038970A1 (en) * 1990-12-06 1992-06-11 Schlafhorst & Co W METHOD AND DEVICE FOR BIDIRECTIONAL DATA TRANSMISSION BETWEEN A TEXTILE MACHINE AND A TEXTILE PRODUCT
GB9100336D0 (en) * 1991-01-08 1991-02-20 Chubb Lips Nederland Bv Locks
DE4107311C2 (en) * 1991-03-07 1996-02-08 Telefunken Microelectron Method for the wireless transmission of data on a data carrier
GB9105835D0 (en) * 1991-03-19 1991-05-01 Yale Security Prod Ltd Cylinder locks
FR2677396B1 (en) * 1991-06-10 1995-09-29 Ferco Int Usine Ferrures SELF-BACKED INTERACTIVE ELECTRONIC LOCK.
DE4129373C2 (en) * 1991-09-04 1995-05-18 Roland Man Druckmasch Device for register adjustment on a plate cylinder of a printing press
DE4207160C1 (en) * 1992-03-06 1993-02-11 Aug. Winkhaus Gmbh & Co Kg, 4404 Telgte, De
DE4207161A1 (en) * 1992-03-06 1993-09-09 Winkhaus Fa August ELECTRONIC LOCKING CYLINDER
JP3344593B2 (en) * 1992-10-13 2002-11-11 株式会社ソニー木原研究所 Wireless power supply
DE4329315C1 (en) * 1993-08-31 1994-12-08 Siemens Ag System for the contactless transmission of data or energy
FR2711716B1 (en) * 1993-10-29 1995-12-15 Setics Electronic key locking device.
DE4422081C2 (en) * 1994-06-24 1996-07-18 Telefunken Microelectron Locking system with a key module
FR2721648B1 (en) * 1994-06-27 1996-08-23 Alain Surzur Motorized lock with automatic and manual closing and opening by double step control.
DE4440250B4 (en) * 1994-11-10 2006-12-21 WTW Wissenschaftlich-Technische Werkstätten GmbH & Co. KG measured value acquisition
EP0774673B1 (en) * 1995-11-16 2004-08-18 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Transmission-reception system
DE19705301C1 (en) * 1997-02-13 1998-10-01 V W B Gmbh Device for contactless information and energy transmission
JP3430877B2 (en) * 1997-09-16 2003-07-28 松下電器産業株式会社 Terminal device and power supply device
FR2782402B1 (en) * 1998-08-13 2001-01-26 France Telecom ACCESS CONTROL DEVICE BETWEEN AN ELECTRONIC KEY AND LOCK
GB9824378D0 (en) * 1998-11-07 1998-12-30 Hammersley David G Improvements in or relating to key operated switches
JP4007932B2 (en) * 2002-03-19 2007-11-14 株式会社タキオン Microwave power transmission method, microwave power receiving apparatus and ID tag system
DE10240671A1 (en) 2002-09-04 2004-03-18 Christian Bauer Gmbh + Co Combustion engine knocking sensor has a piezo-resistive amorphous carbon, or DLC, layer as a sensor element, which provides an electrical signal that is evaluated to detect knocking
DE10246671B4 (en) * 2002-10-07 2009-05-14 Dorma Gmbh + Co. Kg Contactless energy transfer
NL1022525C2 (en) * 2003-01-30 2004-08-03 Integrated Residential Systems Power supply device for electric lock, includes sensor for sending information relating to lock component on movable wing to microcontroller
DE10329123B3 (en) 2003-06-27 2004-09-16 Christian Bauer Gmbh + Co Clutch, especially vehicle gearbox lamella clutch, has sensor for determining spring device output force, device for transferring measurement value for displacement force source control/regulation
KR200364451Y1 (en) * 2004-07-15 2004-10-16 (주)유니맥스 인터내셔널 Power supply for digital-doorlock using wireless power transmission
DE102004039557A1 (en) * 2004-08-13 2006-02-23 Siemens Ag Vending machine, in particular parking ticket machine
EP1854219A4 (en) * 2005-02-24 2011-12-21 Powercast Corp Method, apparatus and system for power transmitssion
DE102006051900A1 (en) * 2006-10-31 2008-05-08 Endress + Hauser Gmbh + Co. Kg Device for determining and / or monitoring at least one process variable
EP2741435A1 (en) 2012-12-04 2014-06-11 3M Innovative Properties Company Fibre-optic Enclosure
US9041510B2 (en) 2012-12-05 2015-05-26 Knox Associates, Inc. Capacitive data transfer in an electronic lock and key assembly
USD881677S1 (en) 2017-04-27 2020-04-21 Knox Associates, Inc. Electronic key
CN109138627A (en) * 2018-10-09 2019-01-04 芜湖市越泽机器人科技有限公司 Intelligent door lock system
DE102018131573A1 (en) * 2018-12-10 2020-06-10 Preh Gmbh Operating device
CN109629927A (en) * 2018-12-13 2019-04-16 力帆实业(集团)股份有限公司 Anti-theft electric motor car battery pack mechanism

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364043A (en) * 1979-05-30 1982-12-14 The University Of Adelaide Efficient object identification system
DE3149789C1 (en) * 1981-12-16 1983-08-25 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Device for inductive identification of an information item
FI841986A (en) * 1984-05-17 1985-11-18 Waertsilae Oy Ab LAOSNINGSSYSTEM.
DE3500353A1 (en) * 1985-01-08 1986-07-10 BKS GmbH, 5620 Velbert MECHANICAL AND NON-MECHANICALLY CODED KEY AND LOCK TO BE OPERATED BY IT
DE3501482A1 (en) * 1985-01-18 1986-07-24 Egon 5352 Zülpich Gelhard DEVICE FOR CONTACTLESS COUPLING OF THE CONTROL AND POWER CURRENTS BETWEEN THE ELECTRONICS ON THE LOCKING CYLINDER AND THE ELECTRONICS IN THE KEY WITH AN ELECTRONIC / MECHANICAL LOCKING DEVICE
US4797541A (en) * 1986-04-14 1989-01-10 American Telephone and Telegraph Company--AT&T Information Systems Power regulator for a contactless credit card system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9424701B2 (en) 2006-09-14 2016-08-23 The Knox Company Electronic lock and key assembly
EP2393181A1 (en) 2010-06-02 2011-12-07 FRIWO Gerätebau GmbH Circuit for a system for a contactless, inductive energy transfer
WO2011151038A1 (en) 2010-06-02 2011-12-08 Friwo Gerätebau Gmbh Circuit for a system for contactless, inductive power transmission

Also Published As

Publication number Publication date
EP0288791A2 (en) 1988-11-02
DK234788A (en) 1988-10-30
ES2046227T3 (en) 1994-02-01
ATE97188T1 (en) 1993-11-15
CA1308484C (en) 1992-10-06
JPS63283439A (en) 1988-11-21
DK234788D0 (en) 1988-04-28
NO881802L (en) 1988-10-31
FI881982A0 (en) 1988-04-27
DE3885498D1 (en) 1993-12-16
NO881802D0 (en) 1988-04-25
FI881982A (en) 1988-10-30
DE3714195A1 (en) 1988-11-10
FI83125B (en) 1991-02-15
DE3714195C2 (en) 1989-09-07
FI83125C (en) 1991-05-27
EP0288791A3 (en) 1989-11-23

Similar Documents

Publication Publication Date Title
EP0288791B1 (en) Wireless transmission method for power and data transmission, and mechanically and electronically coded lock
DE4003410C2 (en)
EP0502518B1 (en) Wireless data transmission method on a data carrier
EP2256662B1 (en) Method for detecting identification media
DE69532837T2 (en) Non-contact IC card reader / writer
DE10323202A1 (en) Electronic key system that can be operated with the energy of a capacitor charge
EP0590122B1 (en) Process and system for transmitting serial data structures for information carrier identification systems, and information carriers
DE3517858A1 (en) LOCKING SYSTEM
DE3501482A1 (en) DEVICE FOR CONTACTLESS COUPLING OF THE CONTROL AND POWER CURRENTS BETWEEN THE ELECTRONICS ON THE LOCKING CYLINDER AND THE ELECTRONICS IN THE KEY WITH AN ELECTRONIC / MECHANICAL LOCKING DEVICE
WO1998034818A1 (en) Code signal transmitter, especially for an anti-theft system in a motor vehicle
EP1479030A1 (en) Switching device actuated with a transponder
EP1041224A2 (en) Device and method for releasing a secure system, especially a motor vehicle access system
EP0539696B1 (en) Method for contactless energy and data transmission
DE3107928A1 (en) DEVICE FOR THE CONTACTLESS TRANSFER OF A NUMBER VALUE
DE19602316C1 (en) Device for transmitting data or energy
DE102004013080A1 (en) Remote control system for in-vehicle equipment
DE69831192T2 (en) Key system for vehicles
EP0877333A2 (en) Apparatus for wireless transfer of energy and execution of an action
DE4207160C1 (en)
EP0532989B1 (en) Wireless transmission equipment for power and data transmission
EP0730071A1 (en) Anti-theft system for a motor vehicle
DE19642017C1 (en) Data receiving system e.g. for motor vehicle locking system or immobiliser
DE10331059B4 (en) transceiver
EP0669591B1 (en) System for contactless data transmission
EP2474940B1 (en) Transponder unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19900122

17Q First examination report despatched

Effective date: 19911017

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 97188

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3885498

Country of ref document: DE

Date of ref document: 19931216

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931125

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046227

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940408

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940408

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940407

EUG Se: european patent has lapsed

Ref document number: 88105511.5

Effective date: 19941110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000417

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000421

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000425

Year of fee payment: 13

Ref country code: BE

Payment date: 20000425

Year of fee payment: 13

Ref country code: AT

Payment date: 20000425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000427

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010407

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010506

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010506

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020523

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050407