EP0288090B1 - Fuel vapour purging device for a fuel tank - Google Patents

Fuel vapour purging device for a fuel tank Download PDF

Info

Publication number
EP0288090B1
EP0288090B1 EP19880106880 EP88106880A EP0288090B1 EP 0288090 B1 EP0288090 B1 EP 0288090B1 EP 19880106880 EP19880106880 EP 19880106880 EP 88106880 A EP88106880 A EP 88106880A EP 0288090 B1 EP0288090 B1 EP 0288090B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
tank
venting
ate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880106880
Other languages
German (de)
French (fr)
Other versions
EP0288090A2 (en
EP0288090A3 (en
Inventor
Helmut Ing. Grad. Breitkreutz
Albrecht Dipl.-Ing. Clement
Dieter Dipl.-Ing. Mayer
Claus Dipl.-Ing. Ruppmann
Dieter Dipl.-Ing. Walz
Ernst Dipl.-Ing. Wild
Martin Dr. Ing. Zechnall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6260813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0288090(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0288090A2 publication Critical patent/EP0288090A2/en
Publication of EP0288090A3 publication Critical patent/EP0288090A3/en
Application granted granted Critical
Publication of EP0288090B1 publication Critical patent/EP0288090B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to an object according to the preamble of claim 1 or. 15.>
  • known devices of this type US-A-4 275 697; US-A-4 013 054
  • the composition of the exhaust gas ⁇ -probes are used to control tank ventilation valves so that depending on the signal of the ⁇ -probe such valve is opened or closed continuously.
  • the tank ventilation valve is in each case arranged between an intermediate store and the inlet of the internal combustion engine and is electrically controlled; a corresponding, but pneumatically controlled tank ventilation valve is also known from DE-A-2 612 300.
  • tank ventilation systems that are dependent for the output signal of a ⁇ probe or, depending on a fuel control pulse, actuate tank ventilation valves so that the release of vapors from the intermediate storage is always permitted if the output signal of the ⁇ probe results in a lean mixture composition while the tank ventilation valve is closed or almost closed when the ⁇ probe indicates a rich mixture composition.
  • This is to achieve a balancing effect with regard to a steady ratio of the fuel air mixture supplied to the internal combustion engine as a whole, but the treatment of the fuel air mixture via the gasification provided in both US patents remains unaffected by the tank ventilation means. This means that when a correspondingly lean mixture is indicated by the ⁇ probe, the enrichment takes place simultaneously and therefore in parallel via the mixture preparation system and the tank ventilation.
  • tank ventilation device according to US Pat. No. 4,275,697, which parallelly converts the output signal of the ⁇ probe, which is converted into a clock pulse sequence, and which is originally fed to the solenoid of a control nozzle in the carburetor, in order to ensure a stoichiometric mixture used to switch off the tank ventilation or to keep it to minimum values when either a minimum or a maximum fuel is added via the carburetor.
  • the additional tank ventilation should lead to an undesirable over-greasing of the mixture; in normal operation, the additional fuel quantities coming from the tank ventilation remain without major ones Influence and ultimately, also indirectly, namely indirectly via the reaction of the ⁇ probe, in its effect on the mixture composition, albeit with a time delay and possibly out of phase, are approximately corrected.
  • US-A-4 467 769 describes lambda-controlled mixture formation with tank ventilation and adaptive correction of pilot control values for the fuel metering.
  • the tank ventilation only takes place in the phases in which the adaptation is at a standstill.
  • the tank ventilation is only permitted under certain operating conditions of the internal combustion engine (see Bosch "Motronic" - Technical Description C5 / 1 from August 1981; DE-OS 28 29 958).
  • the intermediate storage container containing the activated carbon filter is able to store fuel vapors up to a certain maximum amount, the filter being flushed during engine operation by the vacuum developed by the internal combustion engine in the intake tract, for which purpose the filter has an opening to the outside air.
  • the filter has an opening to the outside air.
  • Such an additional amount of fuel which in particular also influences the driving behavior under certain conditions, which in extreme cases can consist of almost 100% air or 100% fuel vapor as a tank ventilation mixture, is also not acceptable if the influence of this disturbance variable is directly influenced by pneumatic actuators obtains the intake manifold pressure developed by the internal combustion engine or completely excludes the supply of the tank ventilation mixture by means of an electronic on / off control for particularly sensitive operating conditions, such as idling.
  • the invention is therefore based on the object of providing a device which supplies the tank ventilation mixture, which cannot be predetermined in terms of its proportions or quantities, to the intake tract of the respective internal combustion engine in such a way that, on the one hand, there is effective ventilation of the buffer store, but on the other hand none disruptive influence on the fuel metering for the internal combustion engine operating under the guidance of a ⁇ control results.
  • the invention solves this problem with the characterizing features of claim 1 or. 15> and has the advantage that, despite the fact that the extent of the tank ventilation influence is beyond a mathematical prediction, the actual fuel metering can still be adjusted to the tank ventilation influence and measures can be taken to adapt the so-called adaptive learning systems (adaptive pilot control systems ) to ensure that the unavoidable, long-term deviations of the controller output in the presence of a tank ventilation, which can only be attributed to this additional influence, do not introduce unwanted input tax corrections per se, which would permanently impair the adaptation behavior overall.
  • adaptive learning systems adaptive pilot control systems
  • the TE being set to a minimum value at start, overrun fuel cutoff and when the lambda control is inactive; it is also possible to introduce a limit control around the limit of a minimum permissible adaptation value of the tank ventilation.
  • the deviation of the control factor from the setpoint value caused by the tank ventilation causes a correction value to run away, which in the present case
  • a constant amount of fuel or air is compensated for regardless of load and speed.
  • tank ventilation valve in the tank ventilation line between the filter and the suction tract is periodically controlled by an associated control device, the period resulting from the change between opening and closing the valve and by varying this ratio of opening duration to closing duration (which is the duty cycle of the Tank ventilation control corresponds) a corresponding adjustment of the tank ventilation mixture amount can be achieved.
  • tank ventilation can also be incorporated and implemented in the overall behavior of the internal combustion engine over a wide range depending on the lambda control factor.
  • FIG. 1 shows a fuel tank or tank 10 which is ventilated and vented exclusively via an activated carbon filter located in a temporary storage container 11, the fuel evaporating from the tank being stored in the activated carbon filter up to a limited maximum amount. This stored fuel is then sucked into the engine by the running internal combustion engine - only the intake area 12 with the throttle valve 12a is shown in FIG. 1.
  • the metering of the fuel drawn off from the area of the tank ventilation or of the fuel air mixture formed there, the proportions of which cannot be determined, takes place via a special tank ventilation valve 13 in such a way that in all operating states of the system there is no impairment of driving behavior and exhaust gas behavior and no impairment of the control circuits involved in the fuel metering and adaptive systems occurs.
  • the tank ventilation valve 13 is actuated on its magnetic part 13a by a tank ventilation control (TE) 34, which outputs a control pulse sequence with a variable pulse duty factor TV, whereby a suitable variation of the opening cross section of the tank ventilation system 13 can be set.
  • TE tank ventilation control
  • the characteristic curve of the tank ventilation valve 13 between the minimum throughput Qmin and Qmax over the pulse duty factor can be approximately linear, possibly also exponential, which can be included in the calculation.
  • the following information relates to special numerical data of a suitable tank ventilation valve with a passage cross-section that can be changed continuously depending on the duty cycle of the control pulse sequence.
  • the basic function of a fuel injection system can therefore be such that for the generation of the fuel metering signal in connection with a lambda control circuit in a multiplication stage, starting from the output signal of a load sensor shown, for example an air flow meter, and a speed sensor, a load signal, namely an injection time duration signal t L, is generated and a further, downstream multiplier stage, ultimately for the control of the or injection valves.
  • the second multiplier stage corrects the injection duration with a correction factor F R , which is generated as a lambda correction factor behind a comparator from the actual lambda value generated by the lambda probe and a desired lambda value from a lambda controller 22, which is shown in FIG. 2 is shown.
  • the invention now succeeds in also adaptively adapting the tank ventilation TE, in other words, the components, switching means, regulating and control processes involved in the tank ventilation are such that what the tank ventilation brings to the mixture for the internal combustion engine the actual mixture formation is subtracted again, which results in a particular advantage in those mixture preparation systems and fuel injection systems which themselves have an adaptive pilot control for lambda control and in which tank ventilation can therefore cause certain difficulties because this adaptive pilot control (basic adaptation) is customary uses the longer-term deviations of the controller output (lambda controller) as a measure for a correction of the pilot control - the invention makes it possible to maintain the advantages of adapting the pilot control in its extent.
  • FIG. 2 therefore shows schematically and without going into special detailed solutions, in the upper area the lambda control circuit for the mixture preparation, for example by a fuel injection system with basic adaptation, and in the lower part the extension of this basic principle to an adaptive pilot control of the tank ventilation.
  • the lambda controller 22 connected downstream of the actual value setpoint comparison point 20 for the output signal of the lambda probe generates the lambda correction factor F R , which leads to an intervention point 19, where, multiplicative and additive, preferably multiplicative, an effective injection time period t L ⁇ ⁇ i ⁇ F i generated by other components of the mixture preparation system, for example fuel injection system, is supplied.
  • the output signal F R of the lambda controller 22 is smoothed via a low-pass filter 23, that is to say subjected to averaging, and the smoothed or mean value signal F R of the correction factor is led after a comparison point 31 via a switch S3 to the basic adaptation block 32, which is usually a controller.
  • the basic adaptation block 32 which is usually a controller.
  • a downstream multiplier block 33 there is also a multiplication by a normalized speed value; memory (not shown) can also be provided, which temporarily stores the value of the basic pre-control adaptation, for example, for periods during which a lambda signal is not available, for example due to an inactive lambda probe.
  • the controller 32 for the basic adaptation adjusts its output variable for the multiplicative or additive factor resulting at the point of engagement 30, which originates from it, until the mean value of the output variable of the lambda controller 22 matches the setpoint at the comparison point 31, which is preferably the assumes neutral value 1, corresponds.
  • this basic pilot control adaptation can include various correction values - speed-proportional, speed-independent, which, depending on the load state of the internal combustion engine, intervene in the calculated injection period in an additive or multiplicative corrective manner, which is not shown.
  • the adaptive pilot control of the tank ventilation which is assigned to the pilot control adaptation of the injection duration, initially comprises a logic circuit or sequence control circuit, which is represented at 34 as representative of all conceivable embodiments, also in software version, and an assigned block 35 for the TE adaptation, which alternatively via the already mentioned switch S3 from the mean value of the lambda correction factor F R is applied. Therefore, in this exemplary embodiment the control factor F R is used to intervene in the tank ventilation, an adaptation to the load value t L , for example additively, would of course also be conceivable.
  • block 35 for the TE adaptation passes information from block 34 of the sequence control TE, mainly via the duty cycle of the control pulse sequence for the tank ventilation valve 13, active lambda control, transition to pilot control map and the like.
  • the result of a limit value detection block 36 from the output of the TE adaptation block 35, at which a value of the adaptive pilot control for tank ventilation (ATE) is present, is whether this correction factor ATE (adaptation value) has a negative threshold value (ATEmin) or has reached a positive threshold value ATEpos, which threshold values can also be referred to as fat or lean.
  • ATE adaptive pilot control for tank ventilation
  • the adaptation value ATE passes through an intermediate multiplication stage 37, at which in turn, so that the two intervention values of the basic adaptation and the TE adaptation are equivalent, a standardized speed value is supplied, and via a switch S4 to a further intervention point 38 in the course of the t i preparation where multiplicative or additive interventions can be made.
  • a multiplier 39 with a speed value n is then connected downstream, so that a fuel / time-air mass / time mixture information is obtained at an addition point 40, which is then fed to the TE mixture at point 41.
  • the tank ventilation line leading the TE mixture from the tank ventilation valve 13 in front of the throttle valve can be connected to the intake tract of the internal combustion engine, as a result of which the amount of the extracted TE mixture remains approximately constant while the cross section of the TE valve 13 remains the same, since the negative pressure in front of the throttle valve in is approximately constant and the amount increases with the root of the negative pressure.
  • the tank ventilation is activated at the start, when the overrun is switched off and also set a minimum value when the lambda control is inactive; a defined mixture should enable starting and reinsertion after overrun fuel cutoff.
  • the TE control starts softly and the duty cycle of the tank ventilation becomes TVTE, as in b) in 3 shown, ramped, but with change limitation 1, increased starting from a predetermined minimum value TVTEmin1.
  • the slope of the duty cycle of the control pulse sequence for the TE valve is chosen so that the pilot control to be explained further below can compensate for the resulting disturbance in the mixture balance of the internal combustion engine in good time.
  • the pulse duty factor is increased until the adaptation value ATE has reached a minimum negative threshold value ATEmin, which can also be referred to as a fat stroke in relation to the adaptation value.
  • a limit control then starts.
  • the duty cycle TVTE can already have reached a pre-control stop value at t 1, which can result from the pre-control map; therefore, the duty cycle is not changed until the time t2, at which the negative threshold ATEmin is reached.
  • the duty cycle TVTE is decremented until the threshold falls below (in the positive direction) again.
  • the pulse duty factor is incremented again until the threshold is exceeded again in the negative direction, etc. This results in continuous oscillation around the negative minimum value (limit value control), the change limitation in the adjustment of the pulse duty factor being an integral part (ITE ) works, therefore yields yourself
  • TVTE KFTE (n, t L ) - ITE (ATEmin)
  • the operating time of the fuel from the intermediate storage decreases, so that with this limit value control the pilot control value from the map is reached and therefore the pulse duty factor remains constant for a predetermined period of time during which the adaptation value ATE runs from the negative stop in the positive direction.
  • the adaptation value reaches a positive threshold value ATEmax, then this means that the filter has been sufficiently rinsed - the two threshold values go to the sequence control 34 via the threshold value block 36 - and the pulse duty factor is then gradually moved to a second minimum value TVTEmin2, namely from time t3.
  • the TE mixture is checked in that the control sequence just explained begins in block 34 by regulating the duty cycle from the beginning - it should also be pointed out that the duty cycle is reduced with a change limit 2 to the minimum value TVTEmin2, which enables a faster change of the duty cycle to small passage cross-sections of the tank ventilation valve.
  • This adaptation of the tank ventilation pre-control is expediently limited to a load-speed range which is only effective below the air quantity threshold, as shown in FIG. 4, since it can only be calculated precisely enough in this range.
  • the adapted value ATE is expediently only stored in a memory (not mentioned) assigned to block 35 of the TE adaptation when the engine is running - for use, for example, in the case of a temporarily inactive ⁇ probe, and deleted when the engine is switched off.
  • the TE precontrol adaptation is interrupted above the range indicated in FIG. 4, and the last adapted value ATE is buffered in the memory (not shown) assigned to block 35.
  • the memory not shown assigned to block 35.
  • the switch S3 is switched to the block 32 in this case, which can also be done by the sequence control 34 by evaluating corresponding load and speed information.
  • sequence control specified on the next page 11 for the control of the tank ventilation valve in the form of a flow chart indicates the function of the sequence control 34 in software terms. It is therefore understood that, although the invention has been improved for better ver was explained on the basis of a block diagram using individual components, and a software version of the device according to the invention by means of a microcomputer or microcomputer is easily within the scope of the invention and can be carried out; Such an embodiment is not a problem for the person skilled in the field of fuel metering in internal combustion engines, since he can also call in experts in the field of data processing technology if necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen Gegenstand nach dem Oberbegriff des Anspruchs 1 <bzw. 15.> Bei bekannten Vorrichtungen dieser Art (US-A-4 275 697; US-A-4 013 054) werden die Zusammensetzung des Abgases erfassende λ-Sonden zur Steuerung von Tankentlüftungsventilen so eingesetzt, daß abhängig vom Signal der λ-Sonde ein solches Ventil kontinuierlich geöffnet bzw. geschlossen wird. Das Tankenlüftungsventil ist dabei jeweils zwischen einem Zwischenspeicher und dem Einlaß der Brennkraftmaschine angeordnet und elektrisch gesteuert; ein entsprechendes, jedoch pneumatisch gesteuertes Tankentlüftungsventil ist ferner bekannt aus DE-A-2 612 300.The invention relates to an object according to the preamble of claim 1 or. 15.> In known devices of this type (US-A-4 275 697; US-A-4 013 054) the composition of the exhaust gas λ-probes are used to control tank ventilation valves so that depending on the signal of the λ-probe such valve is opened or closed continuously. The tank ventilation valve is in each case arranged between an intermediate store and the inlet of the internal combustion engine and is electrically controlled; a corresponding, but pneumatically controlled tank ventilation valve is also known from DE-A-2 612 300.

Bemerkenswert ist aber bei allen bekannten Ausführungsformen von Tankentlüftungssystemen, die in Abhängigkeit zum Ausgangssignal einer λ-Sonde oder auch abhängig von einem Kraftstoffregelimpuls Tankentlüftungsventile ansteuern, daß eine Freigabe von Dämpfen aus dem Zwischenspeicher immer dann zugelassen wird, wenn sich aus dem Ausgangssignal der λ-Sonde eine magere Gemischzusammensetzung ergibt, während das Tankentlüftungsventil geschlossen oder nahezu geschlossen ist, wenn die λ-Sonde eine fette Gemischzusammensetzung anzeigt. Hierdurch soll eine ausgleichende Wirkung im Hinblick auf eine Verstetigung der Verhältnisanteile des der Brennkraftmaschine insgesamt zugeführten Kraftstoffluftgemisches erzielt werden, wobei aber die Aufbereitung des Kraftstoffluftgemisches über die in beiden US-Patentschriften vorgesehene Vergasung durch die Tankentlüftungsmittel unbeeinflußt bleibt. Das bedeutet, daß bei Anzeige eines entsprechend mageren Gemisches durch die λ-Sonde die Anfettung gleichzeitig und daher parallel über das Gemischaufbereitungssystem und die Tankentlüftung erfolgt.However, it is noteworthy in all known embodiments of tank ventilation systems that are dependent for the output signal of a λ probe or, depending on a fuel control pulse, actuate tank ventilation valves so that the release of vapors from the intermediate storage is always permitted if the output signal of the λ probe results in a lean mixture composition while the tank ventilation valve is closed or almost closed when the λ probe indicates a rich mixture composition. This is to achieve a balancing effect with regard to a steady ratio of the fuel air mixture supplied to the internal combustion engine as a whole, but the treatment of the fuel air mixture via the gasification provided in both US patents remains unaffected by the tank ventilation means. This means that when a correspondingly lean mixture is indicated by the λ probe, the enrichment takes place simultaneously and therefore in parallel via the mixture preparation system and the tank ventilation.

Unterschiedlich hierzu ist lediglich die Tankentlüftungsvorrichtung nach der US-A-4 275 697, die das in eine Taktimpulsfolge umgewandelte Ausgangssignal der λ-Sonde, welches ursprünglich dem Solenoid einer Steuerdüse im Vergaser zugeführt ist, um für ein möglichst stöchiometrisches Gemisch zu sorgen, parallel dazu benutzt, die Tankentlüftung immer dann abzuschalten oder auf minimale Werte zu halten, wenn entweder eine minimale oder eine maximale Kraftstoffzugabe über den Vergaser erfolgt. In diesen beiden Fällen soll die zusätzliche Tankentlüftung zu einer nicht wünschenswerten Überfettung des Gemisches führen; bei Normalbetrieb bleiben die zusätzlichen, aus der Tankentlüftung stammenden Kraftstoffmengen ohne größeren Einfluß und werden letztlich auch, nämlich indirekt über die Reaktion der λ-Sonde, in ihrer Einwirkung auf die Gemischzusammensetzung, wenn auch mit Zeitverzögerung und unter Umständen phasenverschoben, in etwa ausgeregelt.The only difference is the tank ventilation device according to US Pat. No. 4,275,697, which parallelly converts the output signal of the λ probe, which is converted into a clock pulse sequence, and which is originally fed to the solenoid of a control nozzle in the carburetor, in order to ensure a stoichiometric mixture used to switch off the tank ventilation or to keep it to minimum values when either a minimum or a maximum fuel is added via the carburetor. In these two cases, the additional tank ventilation should lead to an undesirable over-greasing of the mixture; in normal operation, the additional fuel quantities coming from the tank ventilation remain without major ones Influence and ultimately, also indirectly, namely indirectly via the reaction of the λ probe, in its effect on the mixture composition, albeit with a time delay and possibly out of phase, are approximately corrected.

Die genannten Veröffentlichungen sind Beispiele dafür, daß man bei dem Betrieb von Brennkraftmaschinen bestrebt ist, die sich aufgrund und Abhängigkeit bestimmter Parameter (Kraftstoff-Temperatur, -Menge, Dampfdruck, Luftdruck, Spülmenge...) bildenden Kraftstoffdämpfe nicht lediglich ins Freie zu entlüften, sondern der Brennkraftmaschine wieder zuzuführen; üblicherweise so, daß der erwähnte, mit Aktivhohle gefüllte Zwischenspeicher vorgesehen ist, der die sich bildenden Kraftstoffdämpfe, beispielsweise bei stehendem Fahrzeug, aufnimmt und über eine Leitung dem Ansaugbereich der Brennkraftmaschine zuführt. Die bisher genannten Veröffentlichungen enthalten keine adaptiv lernenden Systeme für die Korrektur von Kraftstoffvorsteuergrößen. Eine solche adaptive Vorsteuerung wird beispielsweise in der DE 3341015 offenbart. Dort wird ein Lambda-Regelungsverfahren mit adaptiver Vorsteuerung beschrieben, in dem in Abhängigkeit vom vorliegenden Betriebszustand unterschiedliche Adaptionsvorgänge stattfinden. Das Problem der Adaptionsstörung durch die Tankentlüftung wird nicht betrachtet. Die US-A-4 467 769 beschreibt eine Lambda-geregelte Gemischbildung mit Tank-Entlüftung und adaptiver Korrektur von Vorsteuerwerten für die Kraftstoffzumessung. Die Tankentlüftung findet hier in Abhängigkeit von Betriebskenngrößen jedoch nur in den Phasen statt, in denen die Adaption ruht. In diesem Zusammenhang ist es ferner bekannt, daß die Tankentlüftung nur bei bestimmten Betriebszuständen der Brennkraftmaschine zugelassen wird (s. Bosch "Motronic"- Technische Beschriebung C5/1 vom August 1981; DE-OS 28 29 958).The publications mentioned are examples of the fact that efforts are made in the operation of internal combustion engines not only to vent the fuel vapors due to and depending on certain parameters (fuel temperature, quantity, vapor pressure, air pressure, flushing volume ...), but to feed the internal combustion engine again; Usually so that the aforementioned, filled with active hollow buffer is provided, which absorbs the fuel vapors that form, for example when the vehicle is stationary, and feeds it to the intake area of the internal combustion engine via a line. The publications mentioned so far do not contain any adaptive learning systems for the correction of fuel pilot variables. Such an adaptive feedforward control is disclosed, for example, in DE 3341015. There, a lambda control method with adaptive precontrol is described, in which different adaptation processes take place depending on the existing operating state. The problem of the adaptation disruption due to the tank ventilation is not considered. US-A-4 467 769 describes lambda-controlled mixture formation with tank ventilation and adaptive correction of pilot control values for the fuel metering. Depending on the operating parameters, the tank ventilation only takes place in the phases in which the adaptation is at a standstill. In this context it is also known that the tank ventilation is only permitted under certain operating conditions of the internal combustion engine (see Bosch "Motronic" - Technical Description C5 / 1 from August 1981; DE-OS 28 29 958).

Der den Aktivkohlefilter enthaltende Zwischenspeicherbehälter ist in der Lage, Kraftstoffdämpfe bis zu einer bestimmten Maximalmenge zu speichern, wobei eine Spülung des Filters während des Motorbetriebes durch den von der Brennkraftmaschine entwickelten Unterdruck im Ansaugtrakt erfolgt, wozu das Filter eine Öffnung zur Außenluft besitzt. Notwendigerweise ergibt sich daher auch dann, wenn man nur bei bestimmten Betriebsbedingungen die Spülung des Zwischenspeichers zuläßt, ein zusätzliches, auf diese Tankentlüftung zurückzuführendes Kraftstoffluftgemisch, welches als nicht gemessenes oder mit sinnvollem Aufwand nicht meßbares Gemisch das normalerweise mit hohem Berechnungsaufwand sehr exakt erstellt Kraftstoffzumeßsignal - bei einer Kraftstoffeinspritzanlage die Dauer des Einspritzsteuerbefehls ti - und die sich hierdurch ergebende, der Brennkraftmaschine zugeführte Kraftstoffmenge verfälscht. Eine solche, insbesondere auch das Fahrverhalten unter bestimmten Bedingungen beeinflussende zusätzliche Kraftstoffmenge, die in den Extremfällen als Tankentlüftungsgemisch auch aus nahezu 100 % Luft oder 100 % Kraftstoffdampf bestehen kann, ist auch dann nicht akzeptierbar, wenn man den Einfluß dieser Störgröße durch pneumatische Stellglieder unmittelbar auf den von der Brennkraftmaschine entwickelten Saugrohrdruck bezieht oder die Zuführung des Tankentlüftungs-Gemisches durch eine elektronische Ein/Aus-Steuerung für besonders empfindliche Betriebszustände, etwa Leerlauf, völlig ausschließt.The intermediate storage container containing the activated carbon filter is able to store fuel vapors up to a certain maximum amount, the filter being flushed during engine operation by the vacuum developed by the internal combustion engine in the intake tract, for which purpose the filter has an opening to the outside air. Necessarily Therefore, if you only allow the buffer to be flushed under certain operating conditions, there is an additional fuel-air mixture that can be traced back to this tank ventilation, which, as a mixture that is not measured or cannot be measured with reasonable effort, produces the fuel metering signal, which is usually very precisely calculated at great expense - with one Fuel injection system falsifies the duration of the injection control command t i - and the resulting quantity of fuel supplied to the internal combustion engine. Such an additional amount of fuel, which in particular also influences the driving behavior under certain conditions, which in extreme cases can consist of almost 100% air or 100% fuel vapor as a tank ventilation mixture, is also not acceptable if the influence of this disturbance variable is directly influenced by pneumatic actuators obtains the intake manifold pressure developed by the internal combustion engine or completely excludes the supply of the tank ventilation mixture by means of an electronic on / off control for particularly sensitive operating conditions, such as idling.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die das in seinen Verhältnisanteilen bzw. seinen Mengen nicht vorgebbare Tankentlüftungs-Gemisch in einer solchen Weise dem Ansaugtrakt der jeweiligen Brennkraftmaschine zuführt, daß sich einerseits eine wirksame Entlüftung des Zwischenspeichers, andererseits aber kein störender Einfluß auf die unter der Führung einer λ-Regelung arbeitende Kraftstoffdosierung für die Brennkraftmaschine ergibt.The invention is therefore based on the object of providing a device which supplies the tank ventilation mixture, which cannot be predetermined in terms of its proportions or quantities, to the intake tract of the respective internal combustion engine in such a way that, on the one hand, there is effective ventilation of the buffer store, but on the other hand none disruptive influence on the fuel metering for the internal combustion engine operating under the guidance of a λ control results.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung löst diese Aufgabe mit den kennzeichnenden Merkmalen des Anspruchs 1 <bzw. 15> und hat den Vorteil, daß trotz des Umstandes, daß das Ausmaß des Tankentlüftungseinflusses sich einer rechnerischen Vorhersage entzieht, dennoch sowohl die eigentliche Kraftstoffdosierung auf den Tankentlüftungseinfluß abgestimmt werden kann als auch Maßnahmen getroffen werden, um bei den sogenannten adaptiv lernenden Systemen (adaptive Vorsteuerungssysteme) dafür zu sorgen, daß durch die nicht vermeidbaren, längerfristigen Abweichungen des Reglerausgangs bei Vorliegen einer Tankentlüftung, die insofern nur auf diesen zusätzlichen Einfluß zurückzuführen sind, an sich ungewollte Vorsteuer-Korrekturen nicht eingeführt werden, wodurch das Adaptionsverhalten insgesamt nachhaltig gestört werden würde.The invention solves this problem with the characterizing features of claim 1 or. 15> and has the advantage that, despite the fact that the extent of the tank ventilation influence is beyond a mathematical prediction, the actual fuel metering can still be adjusted to the tank ventilation influence and measures can be taken to adapt the so-called adaptive learning systems (adaptive pilot control systems ) to ensure that the unavoidable, long-term deviations of the controller output in the presence of a tank ventilation, which can only be attributed to this additional influence, do not introduce unwanted input tax corrections per se, which would permanently impair the adaptation behavior overall.

Auf diese Weise gelingt es, auch den Tankentlüftungsbereich adaptiv vorzusteuern, wobei die TE bei Start, Schubabschaltung und bei inaktiver Lambda-Regelung auf einen Minimalwert gesetzt wird; ferner ist es möglich, eine Grenzwertregelung um den Grenzwert eines minimal zulässigen Adaptionswertes der Tankentlüftung einzuführen.In this way, it is also possible to adaptively pre-control the tank ventilation area, the TE being set to a minimum value at start, overrun fuel cutoff and when the lambda control is inactive; it is also possible to introduce a limit control around the limit of a minimum permissible adaptation value of the tank ventilation.

Grundsätzlich verursacht die durch die Tankentlüftung hervorgerufene Abweichung des Regelfaktors vom Sollwert ein Weglaufen eines Korrekturwerts, der im vorliegenden Fall allerdings mit Vorteil so in der Berechnung des normalen Einspritzsignals, hier bezogen auf eine Kraftstoffeinspritzanlage, berücksichtigt wird, daß unabhängig von Last und Drehzahl eine konstante Kraftstoff- bzw. Luftmenge kompensiert wird. Auf diese Weise ist es möglich, den Einfluß der Tankentlüftung auf die Lambda-Regelung und die dazu gehörige Adaption der Vorsteuerung des Kraftstoffeinspritzsignals auszuschalten. Bei Veränderung in der Tankentlüftungs-Gemischzusammensetzung und bei Lastwechsel läßt sich daher eine Beeinträchtigung des Fahrverhaltens vermeiden.Basically, the deviation of the control factor from the setpoint value caused by the tank ventilation causes a correction value to run away, which in the present case In this case, however, it is advantageously taken into account in the calculation of the normal injection signal, here based on a fuel injection system, that a constant amount of fuel or air is compensated for regardless of load and speed. In this way it is possible to switch off the influence of the tank ventilation on the lambda control and the associated adaptation of the pilot control of the fuel injection signal. With changes in the tank ventilation mixture composition and with load changes, an impairment of driving behavior can be avoided.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Vorrichtung möglich. Hier ist vorteilhaft, daß das Tankentlüftungsventil in der Tankentlüftungsleitung zwischen Filter und Saugtrakt von einem zugeordneten Steuergerät periodisch angesteuert wird, wobei die Periode sich aus dem Wechsel zwischen Öffnen und Schließen des Ventils ergibt und durch eine Variation dieses Verhältnisses Öffnungsdauer zu Schließdauer (was dem Tastverhältnis der Tankentlüftungsansteuerung entspricht) eine entsprechende Verstellung der Tankentlüftung-Gemischmenge erzielt werden kann. Auf diese Weise kann über einen weiten Bereich in Abhängigkeit zum Lambda-Regelfaktor auch die Tankentlüftung im Sinne einer Regelung in das Gesamtverhalten der Brennkraftmaschine einbezogen und realisiert werden.Advantageous further developments and improvements of the device specified in the main claim are possible through the measures listed in the subclaims. It is advantageous here that the tank ventilation valve in the tank ventilation line between the filter and the suction tract is periodically controlled by an associated control device, the period resulting from the change between opening and closing the valve and by varying this ratio of opening duration to closing duration (which is the duty cycle of the Tank ventilation control corresponds) a corresponding adjustment of the tank ventilation mixture amount can be achieved. In this way, tank ventilation can also be incorporated and implemented in the overall behavior of the internal combustion engine over a wide range depending on the lambda control factor.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
stark schematisiert das Grundprinzip der Tankentlüftung mit Tankentlüftungsventil mit kontinuierlich änderbarem Öffnungsquerschnitt und elektronischem Steuergerät,
Fig. 2
ein Blockschaltbild einer adaptiven Tankentlüftungsregelung mit möglicher Einflußnahme auf die vom Kraftstoffdosiersystem der Brennkraftmaschine zugeführten Kraftstoffmenge,
Fig. 3
Kurvenverläufe über der Zeit des Tankentlüftungsverlaufs, des Tastverhältnisses der Ansteuerimpulsfolge, der adaptiven Vorsteuerung bei Tankentlüftung und des Lambda-Regelfaktors und
Fig. 4
den Bereich der Tankentlüftungsadaption im Lastdrehzahldiagramm.
Embodiments of the invention are shown in the drawing and are explained in more detail in the following description. Show it:
Fig. 1
highly schematized the basic principle of tank ventilation with tank ventilation valve with continuously changing opening cross-section and electronic control unit,
Fig. 2
2 shows a block diagram of an adaptive tank ventilation control with possible influence on the fuel quantity supplied by the fuel metering system to the internal combustion engine,
Fig. 3
Curves over the time of the tank ventilation process, the duty cycle of the control pulse sequence, the adaptive pilot control for tank ventilation and the lambda control factor and
Fig. 4
the area of the tank ventilation adaptation in the load speed diagram.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Fig. 1 ist ein Kraftstoffbehälter oder Tank 10 gezeigt, der ausschließlich über ein in einem Zwischenspeicherbehälter 11 befindliches Aktivkohlefilter be-und entlüftet wird, wobei der aus dem Tank verdampfende Kraftstoff bis zu einer begrenzten Maximalmenge im Aktivkohlefilter gespeichert wird. Dieser gespeicherte Kraftstoff wird dann die laufender Brennkraftmaschine - in Fig. 1 ist lediglich der Ansaugbereich 12 mit Drosselklappe 12a dargestellt - in den Motor abgesaugt.1 shows a fuel tank or tank 10 which is ventilated and vented exclusively via an activated carbon filter located in a temporary storage container 11, the fuel evaporating from the tank being stored in the activated carbon filter up to a limited maximum amount. This stored fuel is then sucked into the engine by the running internal combustion engine - only the intake area 12 with the throttle valve 12a is shown in FIG. 1.

Die Zumessung des aus dem Bereich der Tankentlüftung abgesaugten Kraftstoffs oder des dort gebildeten, in seinen Verhältnisanteilen nicht bestimmbaren Kraftstoffluftgemisches erfolgt über ein spezielles Tankentlüftungsventil 13 so, daß in allen Betriebszuständen des Systems keine Beeinträchtigung von Fahrverhalten und Abgasverhalten und keine Beeinträchtigung der an der Kraftstoffzumessung beteiligten Regelkreise und adaptiver Systeme auftritt.The metering of the fuel drawn off from the area of the tank ventilation or of the fuel air mixture formed there, the proportions of which cannot be determined, takes place via a special tank ventilation valve 13 in such a way that in all operating states of the system there is no impairment of driving behavior and exhaust gas behavior and no impairment of the control circuits involved in the fuel metering and adaptive systems occurs.

Die Ansteuerung des Tankentlüftungsventils 13 erfolgt auf dessen Magnetteil 13a von einer Steuerung Tankentlüftung (TE) 34, wobei diese eine Ansteuerimpulsfolge mit veränderbarem Tastverhältnis TV ausgibt, wodurch sich eine geeignete Variation des Öffnungsquerschnitts des Tankentlüftungssystems 13 einstellen läßt. Dabei kann die Kennlinie des Tankentlüftungsventils 13 zwischen Minimaldurchsatz Qmin und Qmax über dem Tastverhältnis angenähert linear, gegebenenfalls auch exponentiell verlaufen, was in die Berechnung einbezogen werden kann.The tank ventilation valve 13 is actuated on its magnetic part 13a by a tank ventilation control (TE) 34, which outputs a control pulse sequence with a variable pulse duty factor TV, whereby a suitable variation of the opening cross section of the tank ventilation system 13 can be set. The characteristic curve of the tank ventilation valve 13 between the minimum throughput Qmin and Qmax over the pulse duty factor can be approximately linear, possibly also exponential, which can be included in the calculation.

Die folgenden Angaben beziehen sich auf speziell numerische Daten eines geeigneten Tankentlüftungsventils mit in Abhängigkeit zum Tastverhältnis der Ansteuerimpulsfolge kontinuierlich veränderbarem Durchlaßquerschnitt.The following information relates to special numerical data of a suitable tank ventilation valve with a passage cross-section that can be changed continuously depending on the duty cycle of the control pulse sequence.

Mit Vorteil basiert das Tankentlüftungsventil auf dem Hubmagnetprinzip, welches im stromlosen Zustand offen ist und einer geeigneten Taktfrequenz-Impulsfolge von 10 Hz angesteuert wird. Hierbei ergibt sich dann bei einem Druckunterschied Δp = 20 mbar ein Maximaldurchsatz von 2<Q≦4 m³/h und ein Minimaldurchsatz beim gleichen Druckunterschied von 0<Q≦0,1 m³/h, wobei bei diesem bevorzugten Ausführungsbeispiel die über das Tastverhältnis herstellbare Variation zwischen Qmin und Qmax im Verhältnis 1:20 liegen kann.The tank ventilation valve is advantageously based on the solenoid principle, which is open when de-energized and controlled by a suitable pulse frequency pulse sequence of 10 Hz. This results in a maximum throughput at a pressure difference Δp = 20 mbar of 2 <Q ≦ 4 m³ / h and a minimum throughput at the same pressure difference of 0 <Q ≦ 0.1 m³ / h, whereby in this preferred exemplary embodiment the variation between Qmin and Qmax that can be produced via the pulse duty factor can be 1:20.

In diesem Zusammenhang wird darauf hingewiesen, daß die nachfolgenden Ausführungen sich im wesentlichen auf die Anwendung der Tankentlüftung auf eine Kraftstoffeinspritzanlage beziehen, so daß im folgenden für die Einspritzung gebräuchliche Bezeichnungen verwendet werden. Hierdurch wird die Erfindung jedoch nicht auf die Zuordnung zu einer Kraftstoffeinspritzanlage eingeschränkt, sondern umfaßt Anwendungsmöglichkeit bei beliebigen Kraftstoffzumeßeinrichtungen für Brennkraftmaschinen.In this context, it is pointed out that the following explanations essentially relate to the application of the tank ventilation to a fuel injection system, so that common names for the injection are used in the following. As a result, however, the invention is not restricted to the assignment to a fuel injection system, but rather includes possible applications with any fuel metering devices for internal combustion engines.

Die Grundfunktion einer Kraftstoffeinspritzanlage kann daher so verlaufen, daß für die Erstellung des Kraftstoffzumeßsignals in Verbindung mit einem Lambda-Regelkreis in einer Multiplizierstufe, ausgehend von dem Ausgangssignal eines dargestellten Lastsensors, beispielsweise eines Luftmengenmessers, und eines Drehzahlgebers ein Lastsignal, nämlich ein Einspritzzeitdauersignal tL erzeugt und einer weiteren, nachgeschalteten Multiplizierstufe, letztlich für die Ansteuerung des oder Einspritzventile, zugeführt wird. Die zweite Multiplizierstufe korrigiert die Einspritzzeitdauer mit einem Korrekturfaktor FR, der als Lambda-Korrekturfaktor hinter einem Vergleicher aus dem von der Lambda-Sonde erzeugten Lambda-Istwert und einem Lambda-Sollwert von einem Lambda-Regler 22 erzeugt wird, der in Fig. 2 gezeigt ist.The basic function of a fuel injection system can therefore be such that for the generation of the fuel metering signal in connection with a lambda control circuit in a multiplication stage, starting from the output signal of a load sensor shown, for example an air flow meter, and a speed sensor, a load signal, namely an injection time duration signal t L, is generated and a further, downstream multiplier stage, ultimately for the control of the or injection valves. The second multiplier stage corrects the injection duration with a correction factor F R , which is generated as a lambda correction factor behind a comparator from the actual lambda value generated by the lambda probe and a desired lambda value from a lambda controller 22, which is shown in FIG. 2 is shown.

Der Erfindung gelingt es nun, auch die Tankentlüftung TE ergänzend adaptiv auszubilden, mit anderen Worten, die an der Tankentlüftung beteiligten Komponenten, Schaltmittel, Regel- und Steuerungsabläufe sind so beschaffen, daß das, was die Tankentlüftung an zusätzlichem Gemisch für die Brennkraftmaschine bringt, bei der eigentlichen Gemischbildung wieder abgezogen wird, was sich als besonderer Vorteil bei solchen Gemischaufbereitungssystemen und Kraftstoffeinspritzanlagen ergibt, die selbst über eine adaptive Vorsteuerung zur Lambda-Regelung verfügen und bei denen daher die Tankentlüftung gewisse Schwierigkeiten deshalb bereiten kann, weil diese adaptive Vorsteuerung (Grundadaption) üblicherweise die längerfristigen Abweichungen des Reglerausgangs (Lambda-Regler) als Maß für eine Korrektur der Vorsteuerung benutzt - die Erfindung ermöglicht die Beibehaltung der Vorteile einer Adaption der Vorsteuerung in deren Ausdehnung.The invention now succeeds in also adaptively adapting the tank ventilation TE, in other words, the components, switching means, regulating and control processes involved in the tank ventilation are such that what the tank ventilation brings to the mixture for the internal combustion engine the actual mixture formation is subtracted again, which results in a particular advantage in those mixture preparation systems and fuel injection systems which themselves have an adaptive pilot control for lambda control and in which tank ventilation can therefore cause certain difficulties because this adaptive pilot control (basic adaptation) is customary uses the longer-term deviations of the controller output (lambda controller) as a measure for a correction of the pilot control - the invention makes it possible to maintain the advantages of adapting the pilot control in its extent.

Im Blockschaltbild der Fig. 2 ist daher schematisch und ohne auf spezielle Detaillösungen einzugehen, im oberen Bereich der Lambda-Regelkreis für die Gemischaufbereitung, beispielsweise durch eine Kraftstoffeinspritzanlage mit Grundadaption dargestellt und im unteren Teil die Erweiterung dieses Grundprinzips auf eines adaptive Vorsteuerung der Tankentlüftung.The block diagram of FIG. 2 therefore shows schematically and without going into special detailed solutions, in the upper area the lambda control circuit for the mixture preparation, for example by a fuel injection system with basic adaptation, and in the lower part the extension of this basic principle to an adaptive pilot control of the tank ventilation.

In Fig. 2 erzeugt der der Istwert-Sollwertvergleichsstelle 20 für das Ausgangssignal der Lambda-Sonde nachgeschaltete Lambda-Regler 22 den Lambda-Korrekturfaktor FR, der zu einer Eingriffsstelle 19 führt, wo, multiplikativ und additiv, vorzugsweise multiplikativ, eine von anderen Komponenten des Gemischaufbereitungssystems, beispielsweise Kraftstoffeinspritzanlage, erzeugte effektiv Einspritzzeitdauer tL · πi · Fi zugeführt ist.2, the lambda controller 22 connected downstream of the actual value setpoint comparison point 20 for the output signal of the lambda probe generates the lambda correction factor F R , which leads to an intervention point 19, where, multiplicative and additive, preferably multiplicative, an effective injection time period t L · π i · F i generated by other components of the mixture preparation system, for example fuel injection system, is supplied.

Ein weiterer Eingriff in die Einspritzzeitdauer erfolgt dann bein 30; dieser Eingriff dient bzw. ist repräsentativ dargestellt zur Anpassung der Vorsteuerung (Grundadaption). Hierzu wird das Ausgangssignal FR des Lambda-Reglers 22 über einen Tiefpaß 23 geglättet, also einer Mittelwertbildung unterworfen und das geglättete oder Mittelwertsignal F R des Korrekturfaktors wird nach einer Vergleichsstelle 31 über einen Schalter S3 zum Grundadaptionsblock 32 geführt, der üblicherweise ein Regler ist. In einem nachgeschalteten Multiplizierblock 33 erfolgt noch eine Multiplikation mit einem normierten Drehzahlwert; auch können nichtdargestellte Speicher vorgesehen sein, die den Wert der Vorsteuergrundadaption beispielsweise für Zeiträume zwischenspeichern, während welcher ein Lambda-Signal, etwa wegen inaktiver Lambda-Sonde, nicht zur Verfügung steht.A further intervention in the injection period then takes place at 30; this intervention serves or is represented representatively for adapting the pilot control (basic adaptation). For this purpose, the output signal F R of the lambda controller 22 is smoothed via a low-pass filter 23, that is to say subjected to averaging, and the smoothed or mean value signal F R of the correction factor is led after a comparison point 31 via a switch S3 to the basic adaptation block 32, which is usually a controller. In a downstream multiplier block 33 there is also a multiplication by a normalized speed value; memory (not shown) can also be provided, which temporarily stores the value of the basic pre-control adaptation, for example, for periods during which a lambda signal is not available, for example due to an inactive lambda probe.

Der Regler 32 für die Grundadaption verstellt seine Ausgangsgröße für den an der Eingriffsstelle 30 sich ergebenden, von ihm herrührenden multiplikativen oder additiven Faktor so lange, bis der Mittelwert der Ausgangsgröße des Lambda-Reglers 22 dem an der Vergleichsstelle 31 anliegenden Sollwert, der vorzugsweise den neutralen Wert 1 annimmt, entspricht. Es versteht sich, daß diese Vorsteuerungs-Grundadaption verschiedene Korrekturwerte - drehzahlproportional, drehzahlunabhängig, die je nach Lastzustand der Brennkraftmaschine additiv oder multiplikativ korrigierend in die errechnete Einspritzzeitdauer eingreifen, umfassen kann, was nicht dargestellt ist.The controller 32 for the basic adaptation adjusts its output variable for the multiplicative or additive factor resulting at the point of engagement 30, which originates from it, until the mean value of the output variable of the lambda controller 22 matches the setpoint at the comparison point 31, which is preferably the assumes neutral value 1, corresponds. It is understood that this basic pilot control adaptation can include various correction values - speed-proportional, speed-independent, which, depending on the load state of the internal combustion engine, intervene in the calculated injection period in an additive or multiplicative corrective manner, which is not shown.

Die adaptive Vorsteuerung der Tankentlüftung, die der Vorsteuerungsadaption der Einspritzzeitdauer zugeordnet ist, umfaßt zunächst eine Logikschaltung oder Ablaufsteuerungsschaltung, die bei 34 repräsentativ für alle denkbaren Ausführungsformen, auch in softwaremäßiger Ausführung, dargestellt ist, sowie einen zugeordneten Block 35 für die TE-Adaption, der alternativ über den schon erwähnten Schalter S3 vom Mittelwert des Lambda-Korrekturfaktors F R beaufschlagt ist. Daher wird bei diesem Ausführungsbeispiel der Regelfaktor FR benutzt, um auf die Tankentlüftung einzugreifen, wobei eine Adaption natürlich auch auf den Lastwert tL, beispielsweise additiv, denkbar wäre.The adaptive pilot control of the tank ventilation, which is assigned to the pilot control adaptation of the injection duration, initially comprises a logic circuit or sequence control circuit, which is represented at 34 as representative of all conceivable embodiments, also in software version, and an assigned block 35 for the TE adaptation, which alternatively via the already mentioned switch S3 from the mean value of the lambda correction factor F R is applied. Therefore, in this exemplary embodiment the control factor F R is used to intervene in the tank ventilation, an adaptation to the load value t L , for example additively, would of course also be conceivable.

Ferner gelangen zum Block 35 zur TE-Adaption Angaben vom Block 34 der Ablaufsteuerung TE, hauptsächlich über das Tastverhältnis der Ansteuerimpulsfolge für das Tankentlüftungsventil 13, aktive Lambda-Regelung, übergang auf Vorsteuer-Kennfeld u. dgl. Über einen Grenzwerterfassungsblock 36 ergibt sich vom Ausgang des TE-Adaptionsblocks 35, an welchem ein Wert der adaptiven Vorsteuerung bei Tankentlüftung (ATE) anliegt, eine Mitteilung darüber, ob dieser Korrekturfaktor ATE (Adaptionswert) einen negativen Schwellwert (ATEmin) oder einen positiven Schwellwert ATEpos erreicht hat, welche Schwellwerte auch als Fettanschlag bzw. Mageranschlag bezeichnet werden können. Der Adaptionswert ATE gelangt über eine Zwischenmultiplizierstufe 37, an welcher wiederum, damit die beiden Eingriffswerte der Grundadaption und der TE-Adaption gleichwertig sind, ein normierter Drehzahlwert zugeführt wird, sowie über einen Schalter S4 zu einer weiteren Eingriffsstelle 38 im Verlauf der ti-Aufbereitung, wo multiplikativ oder additiv eingegriffen werden kann.Furthermore, block 35 for the TE adaptation passes information from block 34 of the sequence control TE, mainly via the duty cycle of the control pulse sequence for the tank ventilation valve 13, active lambda control, transition to pilot control map and the like. The result of a limit value detection block 36 from the output of the TE adaptation block 35, at which a value of the adaptive pilot control for tank ventilation (ATE) is present, is whether this correction factor ATE (adaptation value) has a negative threshold value (ATEmin) or has reached a positive threshold value ATEpos, which threshold values can also be referred to as fat or lean. The adaptation value ATE passes through an intermediate multiplication stage 37, at which in turn, so that the two intervention values of the basic adaptation and the TE adaptation are equivalent, a standardized speed value is supplied, and via a switch S4 to a further intervention point 38 in the course of the t i preparation where multiplicative or additive interventions can be made.

Nachgeschaltet ist dann noch eine Multiplizierstufe 39 mit einem Drehzahlwert n, so daß sich an einer Additionsstelle 40 eine Kraftstoff/Zeit-Luftmasse/Zeit-Gemischangabe ergibt, der dann an der Stelle 41 noch das TE-Gemisch zugeführt wird.A multiplier 39 with a speed value n is then connected downstream, so that a fuel / time-air mass / time mixture information is obtained at an addition point 40, which is then fed to the TE mixture at point 41.

Dabei kann die das TE-gemischführende Tankentlüftungsleitung vom Tankenlüftungsventil 13 vor der Drosselklappe an den Saugtrakt der Brennkraftmaschine angeschlossen sein, wodurch die Menge des abgesaugten TE-Gemisches bei gleichbleibendem Querschnitt des TE-Ventils 13 in etwa konstant bleibt, da der Unterdruck vor der Drosselklappe in etwa konstant ist und die Menge mit der Wurzel des Unterdrucks anwächst. Tatsächlich variiert der Unterdruck etwas über Last und Drehzahl auch vor der Drosselklappe, so daß die Öffnung des TE-Ventils 13 im weiter vorn schon erwähnten Kennfeld KFTE = f (n, tL) etwas korrigiert werden muß, um eine konstante Menge QTE zu erreichen. Eine konstante Menge ist auch für die adaptive Steuerung hilfreich, da sie durch einen additiven Korrekturwert kompensiert werden kann. Wie erwähnt gelten daher die folgende Gleichungen:

Δp = p LUFT - p DK

Figure imgb0001

Q TE = const · TVTE · (Δp) 1/2
Figure imgb0002

In this case, the tank ventilation line leading the TE mixture from the tank ventilation valve 13 in front of the throttle valve can be connected to the intake tract of the internal combustion engine, as a result of which the amount of the extracted TE mixture remains approximately constant while the cross section of the TE valve 13 remains the same, since the negative pressure in front of the throttle valve in is approximately constant and the amount increases with the root of the negative pressure. In fact, the negative pressure varies somewhat above the load and speed even in front of the throttle valve, so that the opening of the TE valve 13 in the map KFTE = f (n, t L ) mentioned earlier must be corrected somewhat in order to obtain a constant amount Q TE to reach. A constant amount is also helpful for adaptive control as it is based on an additive correction value can be compensated. As mentioned, the following equations therefore apply:

Δp = p AIR - p DK
Figure imgb0001

Q TE = constTVTE (Δp) 1/2
Figure imgb0002

Bei einer ebenfalls möglichen Einleitung des TE-Gemisches hinter der Drosselklappe - hierauf wird weiter hinten noch anhand einer Tabelle eingegangen - ins Saugrohr würde der Unterdruck und damit die Menge wesentlich stärker variieren, so daß gerade im Leerlauf, wo die Tankentlüftung besonders störend sein kann, diese TE-Menge am größten wäre und bei steigender Last, wo sie immer weniger stört, als Spülmenge immer geringer würde.If the TE mixture was likewise introduced behind the throttle valve - this will be discussed further below with the aid of a table - the vacuum and thus the quantity would vary considerably more so that especially when idling, where the tank ventilation can be particularly troublesome, this amount of TE would be greatest and with increasing load, where it is less and less disturbing, the amount of flushing would be less and less.

Unter Zugrundelegung des Blockschaltbilds der Fig. 2 gelten folgende Grundfunktionen.Based on the block diagram of FIG. 2, the following basic functions apply.

Die Abweichung des Lambda-Regelfaktors vom Sollwert FR = 1 verursacht ein Weglaufen eines Korrekturwertes, der in die Berechnung des Einspritzsignals additiv zur Luftmenge eingerechnet wird, wie weiter vorn erläutert, so daß unabhängig von Last und Drehzahl eine konstante Kraftstoff- bzw. Luftmenge kompensiert wird (adaptive Vorsteuerung). Entsprechend dem Blockschaltbild der Fig. 2 ergibt sich dann für

t i = (t L +ATE·n o /n)·π i F i +TVTE

Figure imgb0003

The deviation of the lambda control factor from the nominal value F R = 1 causes a correction value to run away, which is included in the calculation of the injection signal in addition to the air quantity, as explained further above, so that a constant fuel or air quantity is compensated for regardless of load and speed (adaptive feedforward control). According to the block diagram of FIG. 2, this then results in

t i = (t L + ATE · n O / n) · π i F i + TVTE
Figure imgb0003

Die Tankentlüftung wird bei Start, bei Schubabschalten und bei inaktiver Lambda-Regelung auch einen Minimalwert gesetzt; ein definiertes Gemisch soll Start und Wiedereinsetzen nach Schubabschalten ermöglichen.The tank ventilation is activated at the start, when the overrun is switched off and also set a minimum value when the lambda control is inactive; a defined mixture should enable starting and reinsertion after overrun fuel cutoff.

Der weitere Ablauf der adaptiven Vorsteuerung bei Tankentlüftung entsprechend dem Blockschaltbild der Fig. 2 unter Einbeziehung der Angaben aus dem Vorsteuerkennfeld wird im folgenden anhand der Kurvenverläufe der Fig. 3 "Zeitablauf der Tankentlüftung" genauer erläutert: diese Funktionsangaben sind daher Teil der erfinderischen Gesamtkonzeption für die Tankentlüftung.The further course of the adaptive pilot control for tank ventilation in accordance with the block diagram of FIG. 2, including the information from the pilot control map, is explained in more detail below with the aid of the curves of FIG. 3 "time sequence of the tank ventilation": these functional details are therefore part of the inventive overall concept for the Tank ventilation.

Ist die Lambda-Regelung aktiv, also der Schalter S5 vor dem Lambda-Regler 22 geschlossen, wobei ein entsprechendes Signal auch zur Ablaufsteuerung 34 gelangt, dann setzt die TE-Steuerung weich ein und das Tastverhältnis der Tankentlüftung TVTE wird, wie bei b) in Fig. 3 gezeigt, rampenförmig, jedoch mit Änderungsbegrenzung 1, von einem vorgegebenen Minimalwert TVTEmin1 ausgehend erhöht. Die Steigung des Tastverhältnisses der Ansteuerimpulsfolge für das TE-Ventil ist dabei so gewählt, daß die weiter unten noch zu erläuternde Vorsteuerung die sich hierdurch ergebende Störung im Gemischhaushalt der Brennkraftmaschine rechtzeitig kompensieren kann.If the lambda control is active, that is to say the switch S5 in front of the lambda controller 22 is closed, and a corresponding signal also reaches the sequence control 34, then the TE control starts softly and the duty cycle of the tank ventilation becomes TVTE, as in b) in 3 shown, ramped, but with change limitation 1, increased starting from a predetermined minimum value TVTEmin1. The slope of the duty cycle of the control pulse sequence for the TE valve is chosen so that the pilot control to be explained further below can compensate for the resulting disturbance in the mixture balance of the internal combustion engine in good time.

Die durch diese Änderung hervorgerufene Abweichung des Lambda-Regelfaktors - vergleiche den Kurvenverlauf bei a), wo zu dem Zeitpunkt der TVTE-Erhöhung von einem Kraftstoffanteil im TE-Gemisch von 100 % (voraussetzungsgemäß) ausgegangen wird, vom Sollwert FR = 1 (vergleiche Kurvenverlauf d) bei Fig. 3 in Richtung fett verursacht das Weglaufen des Korrekturwertes, der dann so in die Berechnung des Einspritzsignals eingerechnet wird, daß unabhängig von Last und Drehzahl eine konstante Kraftstoff- bzw. Luftmenge kompensiert wird, so daß sich die adaptive Vorsteuerung bei Tankenlüftung ergibt - s. auch den Verlauf des Adaptionswertes ATE bei c) in Fig. 3, der bis auf einen maximalen negativen Wert ATEmax ansteigt und so, wie weiter vorn im Blockschaltbild der Fig. 2 schon erläutert, als adaptive Vorsteuerung bei Tankentlüftung auf die Lambda-Regelung einwirkt.The deviation of the lambda control factor caused by this change - compare the curve at a), where a fuel share in the TE mixture of 100% (as required) is assumed at the time of the TVTE increase, from the target value F R = 1 (compare 3 in the direction bold causes the correction value to run away, which is then included in the calculation of the injection signal in such a way that a constant amount of fuel or air is compensated for regardless of load and speed, so that the adaptive pilot control results in tank ventilation - see also the course of the adaptation value ATE at c) in FIG. 3, which increases to a maximum negative value ATEmax and, as already explained further above in the block diagram in FIG. 2, acts on the lambda control as adaptive pilot control in tank ventilation.

Das Tastverhältnis wird so lange erhöht, bis der Adaptionswert ATE einen minimalen negativen Schwellwert ATEmin, der auch als Fettanschlag bezogen auf den Adaptionswert, bezeichnet werden kann, erreicht hat. Anschließend setzt eine Grenzwertregelung ein. Vorher kann im übrigen das Tastverhältnis TVTE bei t₁ schon einen Vorsteuer-Anschlagwert erreicht haben, der sich aus dem Vorsteuerkennfeld ergeben kann; daher wird das Tastverhältnis bis zum Zeitpunkt t₂, bei welchem der negative Schwellwert ATEmin erreicht ist, nicht mehr verändert. Anschließend, also ab t₂, wird das Tastverhältnis TVTE dekrementiert, bis die erwähnte Schwelle wieder (in positiver Richtung) unterschritten wird. Von da an wird im Tastverhältnis wieder inkrementiert, bis die Schwelle wieder in negativer Richtung überschritten wird usw. Auf diese Weise ergibt sich um den negativen Minimalwert eine Dauerschwingung (Grenzwertregelung), wobei die Änderungsbegrenzung in der Verstellung des Tastverhältnisses wie ein Integral-Anteil (ITE) wirkt, daher ergibt sich

TVTE = KFTE(n,t L ) - ITE(ATEmin)

Figure imgb0004

The pulse duty factor is increased until the adaptation value ATE has reached a minimum negative threshold value ATEmin, which can also be referred to as a fat stroke in relation to the adaptation value. A limit control then starts. Before that, the duty cycle TVTE can already have reached a pre-control stop value at t 1, which can result from the pre-control map; therefore, the duty cycle is not changed until the time t₂, at which the negative threshold ATEmin is reached. Then, from t₂, the duty cycle TVTE is decremented until the threshold falls below (in the positive direction) again. From then on, the pulse duty factor is incremented again until the threshold is exceeded again in the negative direction, etc. This results in continuous oscillation around the negative minimum value (limit value control), the change limitation in the adjustment of the pulse duty factor being an integral part (ITE ) works, therefore yields yourself

TVTE = KFTE (n, t L ) - ITE (ATEmin)
Figure imgb0004

Im allgemeinen nimmt zunehmender Betriebsdauer der Kraftstoff aus dem Zwischenspeicher ab, so daß bei dieser Grenzwertregelung der Vorsteuerwert aus dem Kennfeld erreicht wird und daher das Tastverhältnis während einer vorgegebenen Zeitdauer, währen welcher der Adaptionswert ATE vom negativen Anschlag in positiver Richtung läuft, konstant bleibt.In general, the operating time of the fuel from the intermediate storage decreases, so that with this limit value control the pilot control value from the map is reached and therefore the pulse duty factor remains constant for a predetermined period of time during which the adaptation value ATE runs from the negative stop in the positive direction.

Erreicht der Adaptionswert einen positiven Schwellwert ATEmax, dann bedeutet dies, daß das Filter ausreichend gespült ist - die beiden Schwellwertangaben gelangen über den Schwellwertblock 36 zur Ablaufsteuerung 34 - und das Tastverhältnis wird dann, nämlich ab dem Zeitpunkt t₃ schrittweise auf einen zweiten Minimalwert TVTEmin2 gefahren.If the adaptation value reaches a positive threshold value ATEmax, then this means that the filter has been sufficiently rinsed - the two threshold values go to the sequence control 34 via the threshold value block 36 - and the pulse duty factor is then gradually moved to a second minimum value TVTEmin2, namely from time t₃.

Gleichzeitig und nach Erreichen dieses Minimalwertes ist es dann möglich, die Grundadaption über dem Block 32 (= Adaption ohne TE) durch Umschalten des Schalters S3 für eine vorgegebene (programmierbare) Zeit (in der Größenordnung von einigen Minuten) freizugeben.At the same time and after reaching this minimum value, it is then possible to enable the basic adaptation via block 32 (= adaptation without TE) by switching switch S3 for a predetermined (programmable) time (on the order of a few minutes).

Nach Ablauf dieser Zeit wird das TE-Gemisch überprüft, indem der soeben erläuterte Steuerungsablauf durch den Block 34 mit dem Aufregeln des Tastverhältnisses von vorn beginnt - hierbei ist noch darauf hinzuweisen, daß die Abregelung des Tastverhältnisses mit einer Änderungsbegrenzung 2 auf den Minimalwert TVTEmin2 erfolgt, die eine schnellere Veränderung des Tastverhältnisses auf kleine Durchlaßquerschnitte des Tankentlüftungsventils ermöglicht.After this time has elapsed, the TE mixture is checked in that the control sequence just explained begins in block 34 by regulating the duty cycle from the beginning - it should also be pointed out that the duty cycle is reduced with a change limit 2 to the minimum value TVTEmin2, which enables a faster change of the duty cycle to small passage cross-sections of the tank ventilation valve.

Diese Adaption der Tankentlüftungsvorsteuerung beschränkt sich zweckmäßigerweise auf einen Last-Drehzahl-Bereich, der nur unterhalb Luftmengenschwelle wirksam ist, wie dies in Fig. 4 dargestellt ist, da sie nur in diesem Bereich genau genug zu berechnen ist. Im übrigen wird der adaptierte Wert ATE zweckmäßigerweise nur bei laufendem Motor in einem nicht erwähnten, dem Block 35 der TE-Adaption zugeordneten Speicher gespeichert - zur Anwendung etwa bei zwischenzeitlich inaktiver λ-Sonde-, bei Abstellen des Motors wieder gelöscht.This adaptation of the tank ventilation pre-control is expediently limited to a load-speed range which is only effective below the air quantity threshold, as shown in FIG. 4, since it can only be calculated precisely enough in this range. Otherwise, the adapted value ATE is expediently only stored in a memory (not mentioned) assigned to block 35 of the TE adaptation when the engine is running - for use, for example, in the case of a temporarily inactive λ probe, and deleted when the engine is switched off.

Oberhalb des in Fig. 4 angegebenen Bereichs wird die TE-Vorsteuerungsadaption unterbrochen, und der letzte adaptierte Wert ATE wird in dem nicht dargestellten, dem Block 35 zugeordneten Speicher zwischengespeichert. Oberhalb des Wirksamkeitsbereichs der TE-Vorsteuerungsadaption entsprechend Fig. 4 kann über das Kennfeld KFTE so viel Tankentlüftungsgemisch ausgegeben werden, daß der Einfluß auf die Lambda-Regelung vernachlässigt werden kann (die TE-Menge ist proportional zur Luftmenge), so daß in diesem Teilbereich Grundadaption auch während der Tankentlüftung wirksam sein kann - mit anderen Worten, der Schalter S3 ist in diesem Fall auf den Block 32 geschaltet, was ebenfalls von der Ablaufsteuerung 34 durch Auswertung entsprechender Last- und Drehzahlangaben erfolgen kann.The TE precontrol adaptation is interrupted above the range indicated in FIG. 4, and the last adapted value ATE is buffered in the memory (not shown) assigned to block 35. Above the effective range of the TE pilot control adaption according to Fig. 4, so much tank ventilation mixture can be output via the KFTE map that the influence on the lambda control can be neglected (the TE amount is proportional to the air volume), so that basic adaptation in this sub-area can also be effective during the tank ventilation - in other words, the switch S3 is switched to the block 32 in this case, which can also be done by the sequence control 34 by evaluating corresponding load and speed information.

Die auf der nächsten Seite 11 angegebene Ablaufsteuerung für die Ansteuerung des Tankentlüftungsventils in Form eines Flußdiagramms gibt die Funktion der Ablaufsteuerung 34 in Software-Begriffen an. Es versteht sich daher, daß, obwohl die Erfindung zum besseren Ver

Figure imgb0005

ständnis anhand eines Blockschaltbilds unter Verwendung von Einzelkomponenten erläutert wurde, auch eine softwaremäßige Ausführung der erfindungsgemäßen Einrichtung mittels eines Mikrorechners oder Mikrocomputers ohne weiteres innerhalb des erfindungsgemäßen Rahmens liegt und durchgeführt werden kann; eine solche Ausführungsform stellt für den Fachmann auf dem Gebiet der Kraftstoffzumessung bei Brennkraftmaschinen kein Problem dar, da er notfalls auch Fachleute auf dem Gebiet der Datenverarbeitungstechnik heranziehen kann.The sequence control specified on the next page 11 for the control of the tank ventilation valve in the form of a flow chart indicates the function of the sequence control 34 in software terms. It is therefore understood that, although the invention has been improved for better ver
Figure imgb0005

was explained on the basis of a block diagram using individual components, and a software version of the device according to the invention by means of a microcomputer or microcomputer is easily within the scope of the invention and can be carried out; Such an embodiment is not a problem for the person skilled in the field of fuel metering in internal combustion engines, since he can also call in experts in the field of data processing technology if necessary.

Folgende Varianten der Vorsteuerung der Tankentlüftung seien noch erwähnt und sind im übrigen in der auf Seite 24 in Form einer Tabelle übersichtlich zusammengefaßt.

  • 1. Zur Erzielung einer konstanten TE-Menge pro Zeit (Variante 1.1) wird die Tankentlüftungsleitung vor der Drosselklappe dem Ansaugtrakt zugeführt, wie weiter vorn schon erläutert. Da in diesem Fall die Menge des abgesaugten TE-Gemisches bei gleichbleibendem Querschnitt des Tankentlüftungsventils in etwa konstant ist, braucht dieses, um die weiter vorn erwähnten Funktionen und Werte zu realisieren, nur eine vergleichsweise kleine Variationsfähigkeit aufzuweisen, zur Einhaltung der Minimal- und Maximalwerte, die bei etwa 1:20 liegt.
    Die weiteren Alternativen der Vorsteuerung sind nach den verschiedenen Bewertungskriterien in Form der weiter vorn schon erwähnten tabellenartigen Entscheidungsmatrix zusammengefaßt (S. 24).
  • 2. Um einen konstanten relativen TE-Fehler zu erzielen (Var. 1.2), wird auch hier die Tankentlüftung vor der Drosselklappe eingeleitet. Das Kennfeld wird so ausgelegt, daß die TE-Menge proportional zur Luftmenge ist (bis zu einer bestimmten maximalen Luftmenge, ca. das 10 fache der Leerlaufmenge). Dann ist der relative Fehler in diesem Last- und Drehzahlbereich konstant. Allerdings ist die Spülmenge im Leerlaufgebiet relativ klein; mit:

    KFTE ∼ (Δp) -1/2 ·Q L
    Figure imgb0006
    Variation 1:8

    folgt:

    Q TE = const·Q L
    Figure imgb0007

  • 3. Zur Erzielung einer konstanten TE-Menge pro Umdrehung (Var. 2.1) müßte die Einleitung der Tankentlüftung hinter die Drosselklappe im Saugrohr erfolgen, wobei jedoch der Unterdruck wesentlich stärker variieren würde. Bei steigendem Unterdruck ist dann die Strömung nicht mehr laminar, sondern auf jeden Fall turbulent, bis zum Erreichen des kritischen, Druckverhältnisses, bei dem die Strömung die Schallgeschwindigkeit erreicht; bei überkritischem Druckverhältnis ist dann die Menge konstant. Die Berechnung hierfür ist komplex, und die folgenden Angaben stellen lediglich eine grobe Abschätzung dar, die auf der Annahme beruhen, daß die Gleichung nach Bernoulli gilt.
    Dabei muß einerseits das TE-Ventil eine wesentlich größere Variation bewältigen, um die obengenannten Minimal- und Maximalmengen einzuhalten, und zwar eine Variation von 1:110; wegen QTEmin/max = 1/20; Δpmin/max = 30/900.
    Andererseits müßte, um zu erreichen, daß der Fehler durch die Tankentlüftung pro Umdrehung konstant ist, das Tankentlüftungskennfeld eine größere Variation aufweisen, was für eine additive Adaption - hier additiv auf tL) hilfreich ist.
    Es gilt dann näherungsweise:

    Q TE = const·KFTE(Δp) 1/2
    Figure imgb0008

    Δp = p LUFT - p SAUG
    Figure imgb0009

    30 < Δp < 900 mbar

    mit KFTE ∼ (Δp)-1/2/n Variation 1:22 (bei Variation Drehzahl 1:4)
    folgt: QTE = const/n → ΔtL = const
  • 4. Zur Erzielung eines konstanten Vorsteuerwerts (Variante 2.2)erfolgt die Einleitung der Tankentlüftung ebenfalls im Saugrohr, also hinter der Drosselklappe, wobei bei der einfachsten Vorsteuerung, einem Festwert anstelle des Kennfeldes, Unterdruck und damit die Menge viel stärker variieren würden, so daß gerade im Leerlauf-und Anfahrt-Bereich, wo die Tankentlüftung besonders stört, die Tankentlüftungsmenge am größten wäre, und bei steigender Last, wo die Tankentlüftung immer weniger stört, die Spülmenge immer geringer würde, wie es aus dem seitherigen System bekannt ist. Der Fehler wäre in einem luftmengenmessenden System von verschiedenen Größen wie Last (aus Luftmenge) und Drehzahl abhängig; eine Adaption daher besonders aufwendig, wobei näherungsweise gilt:

    QTE = const·(Δp)1/2

    Dabei sind die Varianten 1.1 und 1.2 für Systeme geeignet, die einen näherungsweise konstanten Druckabfall vor der Drosselklappe erzeugen (Luftmengenmesser mit Stauklappe). Systeme mit vor allem im Leerlauf sehr kleinem Druckabfall (HLM, Alpha/n, P/n) sind nur mit Variante 2.1 abzudecken. Wenn diese Variante 2.1 der Vorsteuerung der TE gewählt werden muß (additiv auf tL), sind entsprechende Maßnahmen einzusetzen. Die Einrechnung der TE-Adaption erfolgt dann additiv auf tL, der Adaptionsbereich ist dann durch eine tL-Schwelle nach oben zu begrenzen.
Figure imgb0010
The following variants of the pilot control of the tank ventilation are also mentioned and are clearly summarized in the table on page 24.
  • 1. To achieve a constant amount of TE per time (variant 1.1), the tank ventilation line in front of the throttle valve is fed to the intake tract, as already explained earlier. In this case, since the amount of extracted TE mixture is approximately constant with the cross-section of the tank ventilation valve remaining the same, in order to implement the functions and values mentioned above, it only needs to have a comparatively small variability to comply with the minimum and maximum values, which is around 1:20.
    The other pre-control alternatives are summarized according to the various evaluation criteria in the form of the table-like decision matrix mentioned earlier (p. 24).
  • 2. In order to achieve a constant relative TE error (Var. 1.2), the tank ventilation in front of the throttle valve is also initiated here. The map is designed so that the TE quantity is proportional to the air volume (up to a certain maximum air volume, approx. 10 times the idling volume). Then the relative error in this load and speed range is constant. However, the amount of flushing in the idle area is relatively small; With:

    KFTE ∼ (Δp) -1/2 · Q L
    Figure imgb0006
    Variation 1: 8

    follows:

    Q TE = const · Q L
    Figure imgb0007

  • 3. To achieve a constant TE quantity per revolution (Var. 2.1), the tank ventilation would have to be introduced behind the throttle valve in the intake manifold, although the vacuum would vary considerably more. When the vacuum increases, the flow is no longer laminar, but in any case turbulent, until the critical pressure ratio is reached, at which the flow reaches the speed of sound; at a supercritical pressure ratio, the quantity is constant. The calculation for this is complex, and the following information is only a rough estimate based on the assumption that the Bernoulli equation holds.
    On the one hand, the TE valve has to cope with a much larger variation to the above Observe minimum and maximum quantities, namely a variation of 1: 110; because of Q TEmin / max = 1/20; Δp min / max = 30/900.
    On the other hand, in order to ensure that the error caused by the tank ventilation per revolution would have to be constant, the tank ventilation map would have to have a greater variation, which is helpful for an additive adaptation - here additive to t L ).
    The following then approximately applies:

    Q TE = const · KFTE (Δp) 1/2
    Figure imgb0008

    Δp = p AIR - p SUCTION
    Figure imgb0009

    30 <Δp <900 mbar

    with KFTE ∼ (Δp) -1/2 / n variation 1:22 (with variation speed 1: 4)
    follows: Q TE = const / n → Δt L = const
  • 4. To achieve a constant pilot control value (variant 2.2), the tank ventilation is also initiated in the intake manifold, i.e. behind the throttle valve, whereby with the simplest pilot control, a fixed value instead of the map, the vacuum and thus the quantity would vary much more, so that straight in the idle and start-up area, where the tank ventilation is particularly troublesome, the tank ventilation amount would be greatest, and with increasing load, where the tank ventilation is less and less disturbing, the amount of flushing would decrease, as is known from the system since then. In an air volume measuring system, the error would depend on various variables such as load (from air volume) and speed; an adaptation is therefore particularly complex, the following roughly applies:

    Q TE = const · (Δp) 1/2

    Variants 1.1 and 1.2 are suitable for systems that generate an approximately constant pressure drop in front of the throttle valve (air volume meter with damper). Systems with a very low pressure drop (especially when idling) (HLM, Alpha / n, P / n) can only be covered with variant 2.1. If this variant 2.1 of the pre-control of the TE has to be selected (additive to t L ), appropriate measures must be taken. The TE adaptation is then calculated additively to t L , the adaptation range is then to be limited by a t L threshold.
Figure imgb0010

Claims (15)

  1. Method for venting fuel tanks in internal combustion engines or the like, the mixture composition of which is determined by a lambda closed-loop control with precontrol adaptation, and in which the fuel vapours forming in the fuel tank are collected in an activated-carbon filter canister and released in controlled fashion to the internal combustion engine as tank venting mixture as a function of selected operating conditions comprising at least the output signal of a lambda probe by continuous variation of the cross-section of a passage opening of an electrically controlled tank venting valve switched between the intermediate store and the internal combustion engine, characterised in that
    - to compensate the influence of the tank venting mixture on the composition of the overall mixture, an adaptation factor (ATE) is formed as a function of the averaged lambda control factor,
    - the adaptation factor (ATE) influences the basic injection quantity additively or multiplicatively,
    - the adaptation factor (ATE) is compared (36) to one or more values
    - and, depending on the result of the comparison, a reduction or enlargement of the cross-section of the passage opening of the tank venting valve is performed.
  2. Method according to Claim 1, characterised in that the adaptive tank venting by influencing the calculated value of the fuel quantity is furthermore dependent on the load (tL) and/or the speed (n) of the internal combustion engine in the sense of a limitation to a predetermined load/speed range.
  3. Method according to Claim 1 or 2, characterised in that the adaptation is effected multiplicatively or additively per unit time to the air quantity (QL) or additively to the injection quantity/stroke or to load signal (tL).
  4. Method according to Claim 1, 2 or 3, characterised in that, at certain values of air flow rate and speed, the averaged output signal as λ control factor F R of the λ controller (22) is switched between a basic adaptation block (32) for the adaptive corrective influencing of the calculated fuel quantity and a tank-venting adaptation block (35) for the issuing of an adaptation value (ATE) of the tank venting, with the result that the basic adaptation remains unaffected by the tank venting.
  5. Method according to Claim 4, characterised in that a sequence control circuit (34) is provided for adaptive precontrol in the case of tank venting, said circuit also driving the tank-venting adaptation block (35), starting from which the precontrol adaptation value (ATE) intervenes in the calculation process for the fuel quantity to be fed to the internal combustion engine, with the result that a constant fuel or air quantity per unit time is compensated irrespective of load and speed.
  6. Method according to Claim 5, characterised in that a limiting-value detection block (36) which responds at predetermined maximum and minimum values (ATEmax, ATEmin) of the adaptive precontrol correction value in the case of tank venting (ATE) and drives the sequence control circuit (34) in the sense of a correspondingly directed alteration of the duty factor (TVTE) is provided.
  7. Method according to one of Claims 4, 5 or 6, characterised in that in the case of active λ closed-loop control, the duty factor (TVTE) of the drive pulse sequence for the tank venting valve (13) is increased in the form of a ramp with a predetermined first alteration limit, starting from a minimum value (TVTEmin1), until a negative maximum threshold value ATEmin of the adaptation value (ATE) is reached, with a resulting in reduction of the duty factor of the drive pulse sequence until the undershooting of the threshold value and a subsequent gradual increase, to form a sustained oscillation around the negative minimum threshold value (ATEmin) - limit control.
  8. Method according to Claim 7, characterised in that as the rise in the adaptation value (ATE) from the negative stop in the positive direction proceeds, the duty factor (TVTE) of the drive pulse sequence is held constant at a predetermined value, preferably a value stemming from the precontrol characteristic map, and, when a positive maximum stop value (ATEmax) is reached, an alteration of the duty factor, preferably with a second, steeper alteration limitation, is initiated, with simultaneous enabling of the basic adaptation in the λ control loop of the fuel-quantity calculation, in particular injection-signal calculation.
  9. Method according to Claim 8, characterised in that, following the enabling of the basic adaptation corresponding to an adaptation without tank venting, a recheck of the tank venting mixture is effected for a fixed, predetermined, programmable time by increasing the duty factor in a controlled fashion.
  10. Method according to one of Claims 5-9, characterised in that the tank-venting precontrol adaptation is limited to a predetermined load/speed range effective below a particular air flow rate limit and below a particular speed limit, and above this range, upon interruption of the tank-venting precontrol adaptation and enabling of the basic adaptation for the fuel-quantity calculation, the determination of the duty factor for the release of the tank venting mixture is effected via the stored characteristic map as a function of the speed and load.
  11. Method according to Claim 10, characterised in that, upon transition from the range of the tank-venting precontrol adaptation into the controlled characteristic map range of the tank-venting mixture delivery, a temporary storage of the last adaptation value (ATE) is effected, with which value the adapted tank venting precontrol starts after the return to the adaptation range.
  12. Method according to one of Claims 7-11, characterised in that the tank-venting mixture quantity is formed proportionally to the air quantity and the adaptation acts multiplicatively.
  13. Method according to one of Claims 7-11, characterised in that the tank-venting mixture quantity is formed additively per stroke irrespective of the speed and the adaptation acts additively on the calculated precontrol injection signal (tL).
  14. Method according to Claim 13, characterised in that the range of adaptation is limited at the top by a tL threshold (Fig. 4).
  15. Device for venting fuel tanks in internal combustion engines or the like and for carrying out the method according to one of Claims 1-14, the mixture composition being determined by a lambda closed-loop control with precontrol adaptation, and in which the fuel vapours forming in the fuel tank are collected in an activated-carbon filter canister and released in controlled fashion to the internal combustion engine as tank venting mixture as a function of selected operating conditions comprising at least the output signal of a lambda probe by continuous variation of the cross-section of a passage opening of an electrically controlled tank venting valve switched between the intermediate store and the internal combustion engine, characterised in that
    - there are means (23, 31, S3, 35) for the formation of an adaptation factor (ATE) as a function of the averaged lambda control factor in order to compensate the influence of the tank venting mixture on the composition of the overall mixture,
    - in that, furthermore, there are means (38) for the additive or multiplicative influencing of a basic injection quantity by the adaptation factor (ATE) and
    - means (36) for comparing the adaptation factor (ATE) to one or more values
    - and means which, depending on the result of the comparison, perform a reduction or enlargement of the cross-section of the passage opening of the tank venting valve.
EP19880106880 1985-01-26 1985-12-05 Fuel vapour purging device for a fuel tank Expired - Lifetime EP0288090B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3502573A DE3502573C3 (en) 1985-01-26 1985-01-26 Device for venting fuel tanks
DE3502573 1985-01-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP85115458.3 Division 1985-12-05

Publications (3)

Publication Number Publication Date
EP0288090A2 EP0288090A2 (en) 1988-10-26
EP0288090A3 EP0288090A3 (en) 1989-01-04
EP0288090B1 true EP0288090B1 (en) 1991-09-25

Family

ID=6260813

Family Applications (2)

Application Number Title Priority Date Filing Date
EP85115458A Expired - Lifetime EP0191170B2 (en) 1985-01-26 1985-12-05 Fuel vapour purging device for a fuel tank
EP19880106880 Expired - Lifetime EP0288090B1 (en) 1985-01-26 1985-12-05 Fuel vapour purging device for a fuel tank

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP85115458A Expired - Lifetime EP0191170B2 (en) 1985-01-26 1985-12-05 Fuel vapour purging device for a fuel tank

Country Status (4)

Country Link
US (1) US4683861A (en)
EP (2) EP0191170B2 (en)
JP (3) JPH0759917B2 (en)
DE (3) DE3502573C3 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355357A (en) * 1986-08-22 1988-03-09 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPH0718390B2 (en) * 1986-09-26 1995-03-06 日産自動車株式会社 Fuel evaporative gas purge amount control device
DE3639946C2 (en) * 1986-11-22 1997-01-09 Bosch Gmbh Robert Method and device for compensating for the tank ventilation error in an adaptively learning fuel supply system
JPH0726598B2 (en) * 1988-02-18 1995-03-29 トヨタ自動車株式会社 Air-fuel ratio controller for internal combustion engine
DE3813220C2 (en) * 1988-04-20 1997-03-20 Bosch Gmbh Robert Method and device for setting a tank ventilation valve
DE3822300A1 (en) * 1988-07-01 1990-01-04 Bosch Gmbh Robert METHOD AND DEVICE FOR TANK VENTILATION ADAPTATION WITH LAMBAR CONTROL
DE3826527A1 (en) * 1988-08-04 1990-02-08 Bosch Gmbh Robert STEREO LAMBING
US5482024A (en) * 1989-06-06 1996-01-09 Elliott; Robert H. Combustion enhancer
NL8902897A (en) * 1989-11-23 1991-06-17 Tno PURIFYING AIR.
DE4025544A1 (en) * 1990-03-30 1991-10-02 Bosch Gmbh Robert FUEL VENTILATION SYSTEM FOR A MOTOR VEHICLE AND METHOD FOR CHECKING THEIR FUNCTIONALITY
DE59000761D1 (en) * 1990-04-12 1993-02-25 Siemens Ag TANK BLEEDING SYSTEM.
DE4030948C1 (en) * 1990-09-29 1991-10-17 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Monitoring removal of petrol vapour from IC engine fuel tank - detecting change in fuel-air mixt. composition during selected working conditions
EP0482239B1 (en) * 1990-10-24 1994-01-19 Siemens Aktiengesellschaft Engine injection system
JP3173661B2 (en) * 1990-12-28 2001-06-04 本田技研工業株式会社 Evaporative fuel control system for internal combustion engine
DE4108856C2 (en) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tank ventilation system and method and device for checking the tightness thereof
DE4109401A1 (en) * 1991-03-22 1992-09-24 Bosch Gmbh Robert METHOD AND DEVICE FOR TANK BLEEDING
DE4122975A1 (en) * 1991-07-11 1993-01-14 Bosch Gmbh Robert TANK VENTILATION SYSTEM FOR A MOTOR VEHICLE AND METHOD AND DEVICE FOR CHECKING THEIR FUNCTIONALITY
US5263460A (en) * 1992-04-30 1993-11-23 Chrysler Corporation Duty cycle purge control system
JP3378304B2 (en) * 1992-08-06 2003-02-17 マツダ株式会社 Engine air-fuel ratio control device
US5438967A (en) * 1992-10-21 1995-08-08 Toyota Jidosha Kabushiki Kaisha Internal combustion device
DE4319772A1 (en) * 1993-06-15 1994-12-22 Bosch Gmbh Robert Method and device for controlling a tank ventilation system
US5529047A (en) * 1994-02-21 1996-06-25 Nippondenso Co., Ltd. Air-fuel ratio system for an internal combustion engine
JP3689126B2 (en) * 1994-03-18 2005-08-31 本田技研工業株式会社 Evaporative fuel control device for internal combustion engine
FR2722247B1 (en) * 1994-07-05 1996-08-30 Renault METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH RECYCLING OF PURGE GAS FROM THE TANK VENT
DE4430971A1 (en) 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Method and device for supplying fuel vapor into an intake manifold of an internal combustion engine in motor vehicles
DE19610169B4 (en) * 1996-03-15 2007-08-02 Robert Bosch Gmbh Method for adapting the delay time of an electromagnetic tank vent valve
JP3880655B2 (en) * 1996-05-31 2007-02-14 本田技研工業株式会社 Evaporative fuel control device for internal combustion engine
JP3890576B2 (en) * 1997-04-02 2007-03-07 株式会社デンソー Air-fuel ratio control device for internal combustion engine
JP3707221B2 (en) * 1997-12-02 2005-10-19 スズキ株式会社 Air-fuel ratio control device for internal combustion engine
JP3861446B2 (en) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 Evaporative fuel concentration detection device for lean combustion internal combustion engine and its application device
JPH11280567A (en) * 1998-03-30 1999-10-12 Toyota Motor Corp Evaporation fuel concentration detecting device for lean combustion internal combustion engine and its applied device
JP4233694B2 (en) * 1999-07-26 2009-03-04 本田技研工業株式会社 Evaporative fuel emission prevention device for internal combustion engine
DE10014564A1 (en) * 2000-03-23 2001-09-27 Opel Adam Ag Fuel proportioning system for IC engines has hot-start recognition unit and Lambda regulation for ventilation valve regulation
DE10037511C1 (en) * 2000-08-01 2002-01-03 Siemens Ag Diagnosing twisting flap displacement device involves actuating twisting flap by defined distance under defined conditions, diagnosing defect if no defined step pressure change
DE10043698A1 (en) 2000-09-04 2002-03-14 Bosch Gmbh Robert Method for forming the delay time of an electromagnetic tank ventilation valve
DE10043862A1 (en) 2000-09-04 2002-03-14 Bosch Gmbh Robert Method for controlling the regeneration of a fuel vapor buffer in internal combustion engines
DE10335902B4 (en) * 2003-08-06 2015-12-31 Robert Bosch Gmbh Method for tank ventilation in an internal combustion engine
DE102006002717B3 (en) * 2006-01-19 2007-05-24 Siemens Ag Method for controlling valve of fuel vapor restraint system of internal-combustion engine involves increasing degree of opening of valve gradually or continuously during determination phase
US9200600B1 (en) * 2006-05-15 2015-12-01 Brunswick Corporation Method for controlling a fuel system of a marine propulsion engine
JP4877328B2 (en) * 2006-12-28 2012-02-15 トヨタ自動車株式会社 Control device for internal combustion engine
DE102007013993B4 (en) * 2007-03-23 2011-12-22 Continental Automotive Gmbh Control method for an internal combustion engine
DE102007039830A1 (en) * 2007-08-23 2009-02-26 Robert Bosch Gmbh Valve control when refueling pressure tanks
DE102007046489B3 (en) 2007-09-28 2009-05-07 Continental Automotive Gmbh Method for operating an internal combustion engine
DE102007046481B3 (en) * 2007-09-28 2009-04-09 Continental Automotive Gmbh Method and device for controlling an internal combustion engine
US7950375B2 (en) * 2008-06-11 2011-05-31 GM Global Technology Operations LLC Noise minimization for evaporative canister ventilation valve cleaning
US9527718B2 (en) * 2013-10-10 2016-12-27 Ford Global Technologies, Llc Refueling systems and methods for mixed liquid and gaseous fuel
US9388775B2 (en) 2014-04-24 2016-07-12 Ford Global Technologies, Llc Systems and methods for refueling canister system
US9644552B2 (en) 2014-06-24 2017-05-09 Ford Global Technologies, Llc System and methods for refueling a vehicle
FR3042230A1 (en) * 2015-10-13 2017-04-14 Continental Automotive France NOISE REDUCTION OF AN ISOLATION VALVE OF A FUEL TANK OF AN AUTOMOTIVE VEHICLE.
US10533506B2 (en) * 2017-10-02 2020-01-14 Ford Global Technologies, Llc Systems and methods for an evaporative emissions system and fuel system having a single delta pressure sensor
JP2020133503A (en) * 2019-02-20 2020-08-31 愛三工業株式会社 Evaporation fuel treatment device
US20220256778A1 (en) * 2021-02-12 2022-08-18 Carlos T. Santiago System and method for portable self-contained greenhouse

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690307A (en) * 1970-08-13 1972-09-12 Physics Int Co Vapor venting and purging system for engines
JPS51110130A (en) * 1975-03-25 1976-09-29 Nissan Motor Nainenkikanno taikiosenboshisochi
US4013054A (en) * 1975-05-07 1977-03-22 General Motors Corporation Fuel vapor disposal means with closed control of air fuel ratio
US4130095A (en) * 1977-07-12 1978-12-19 General Motors Corporation Fuel control system with calibration learning capability for motor vehicle internal combustion engine
JPS5458111A (en) * 1977-10-19 1979-05-10 Hitachi Ltd Engine controller
JPS5851394Y2 (en) * 1979-04-19 1983-11-22 本田技研工業株式会社 Tank internal pressure control device
US4275697A (en) * 1980-07-07 1981-06-30 General Motors Corporation Closed loop air-fuel ratio control system
JPS5741443A (en) * 1980-08-26 1982-03-08 Toyo Denso Co Ltd Emission controlling apparatus for internal combustion engine
JPS5762955A (en) * 1980-08-28 1982-04-16 Honda Motor Co Ltd Device employed in internal combustion engine for preventing escape of vaporized fuel
DE3039436C3 (en) * 1980-10-18 1997-12-04 Bosch Gmbh Robert Control device for a fuel metering system of an internal combustion engine
JPS6055810B2 (en) * 1980-11-25 1985-12-06 日本ビクター株式会社 Method of manufacturing optical low-pass filter
JPS57129247A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Preventive device for fuel evaporation and dispersion
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS5882040A (en) * 1981-11-11 1983-05-17 Hitachi Ltd Controller for air-fuel ratio
JPS58110853A (en) * 1981-12-25 1983-07-01 Honda Motor Co Ltd Vaporized fuel controlling apparatus for internal-combustion engine with supercharger
JPS58191361U (en) * 1982-06-16 1983-12-19 日産自動車株式会社 Fuel evaporative gas recovery device
JPS59213941A (en) * 1983-05-19 1984-12-03 Fuji Heavy Ind Ltd Fuel evaporation gas suppressor

Also Published As

Publication number Publication date
DE3502573C2 (en) 1994-03-03
DE3502573A1 (en) 1986-07-31
EP0288090A2 (en) 1988-10-26
US4683861A (en) 1987-08-04
EP0288090A3 (en) 1989-01-04
JPH07293361A (en) 1995-11-07
DE3584257D1 (en) 1991-10-31
JP2945882B2 (en) 1999-09-06
DE3502573C3 (en) 2002-04-25
EP0191170B2 (en) 1995-08-16
EP0191170A1 (en) 1986-08-20
JP2694123B2 (en) 1997-12-24
JPH0759917B2 (en) 1995-06-28
JPH1068359A (en) 1998-03-10
JPS61175260A (en) 1986-08-06
DE3569143D1 (en) 1989-05-03
EP0191170B1 (en) 1989-03-29

Similar Documents

Publication Publication Date Title
EP0288090B1 (en) Fuel vapour purging device for a fuel tank
DE3813220C2 (en) Method and device for setting a tank ventilation valve
DE3623894C2 (en) System for suppressing the escape of fuel evaporative gas in an internal combustion engine
DE2803750C2 (en)
DE4001616A1 (en) METHOD AND DEVICE FOR FUEL QUANTITY CONTROL FOR AN INTERNAL COMBUSTION ENGINE WITH CATALYST
DE102013202989A1 (en) DYNAMIC CATALYST CONTROL AND REGULATION
DE3639946A1 (en) METHOD AND DEVICE FOR COMPENSATING THE TANK BLEEDING ERROR IN AN ADAPTIVE LEARNING FUEL SUPPLY SYSTEM
DE4120062C2 (en) Device for detecting fuel which is difficult to evaporate
DE4319772A1 (en) Method and device for controlling a tank ventilation system
DE3226283A1 (en) IDLE CONTROLLER, IN PARTICULAR FOR MOTOR VEHICLES
DE3918779C2 (en)
DE4434517A1 (en) Electronic control device for an internal combustion engine
EP0359791B1 (en) Process and system for adjusting the lambda value
DE4224893B4 (en) Method for fuel metering for an internal combustion engine in conjunction with a hot start
DE19727297C2 (en) Method for operating an internal combustion engine, in particular a motor vehicle
DE19610169B4 (en) Method for adapting the delay time of an electromagnetic tank vent valve
DE4322270B4 (en) Method and device for controlling an internal combustion engine
DE3218793C2 (en)
EP1561024A1 (en) Method for controlling a regeneration valve of a fuel vapor retention system
EP2089621B1 (en) Method for controlling an internal combustion engine, and internal combustion engine
DE69718386T2 (en) Fuel vapor ventilation system for an internal combustion engine
DE3119966A1 (en) CONTROL DEVICE FOR CONTROLLING THE FUEL / AIR RATIO FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR CONTROLLING THE SAME
DE69605246T2 (en) Exhaust gas recirculation system for internal combustion engines
EP0438433B1 (en) Process and device for emergency fuel regulation
DE102019203409A1 (en) Method for adapting an amount of fuel to be injected into an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 191170

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890701

17Q First examination report despatched

Effective date: 19900117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 191170

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3584257

Country of ref document: DE

Date of ref document: 19911031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031120

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050208

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041205