EP0482239B1 - Engine injection system - Google Patents

Engine injection system Download PDF

Info

Publication number
EP0482239B1
EP0482239B1 EP19900120421 EP90120421A EP0482239B1 EP 0482239 B1 EP0482239 B1 EP 0482239B1 EP 19900120421 EP19900120421 EP 19900120421 EP 90120421 A EP90120421 A EP 90120421A EP 0482239 B1 EP0482239 B1 EP 0482239B1
Authority
EP
European Patent Office
Prior art keywords
timax
tank ventilation
correction device
degree
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900120421
Other languages
German (de)
French (fr)
Other versions
EP0482239A1 (en
Inventor
Stefan Dr.-Ing. Krebs
Michael Dipl.-Ing. Föhr (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE90120421T priority Critical patent/DE59004362D1/en
Priority to EP19900120421 priority patent/EP0482239B1/en
Publication of EP0482239A1 publication Critical patent/EP0482239A1/en
Application granted granted Critical
Publication of EP0482239B1 publication Critical patent/EP0482239B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the invention relates to a device and a method for fuel injection into an internal combustion engine according to the preamble of claims 1 and 5.
  • a control unit determines a basic quantity depending on the load and speed. This basic quantity is corrected by a correction device present in the control unit with the aid of a superimposed lambda control (regulation of the fuel-air ratio).
  • the system also has a closed tank ventilation system that prevents fuel vapors from entering the atmosphere. For this purpose, these fuel vapors are retained in a store.
  • the memory is connected to the intake tract of the internal combustion engine via a feed line, so that fuel vapors emerging therefrom are fed to the engine for combustion.
  • the influence of the mixture ratios by the tank ventilation system is not known. In particular, it is not known when additional fuel reaches the intake tract from the accumulator and in what quantity.
  • the superimposed lambda control recognizes a mixture deviation caused by this, but cannot determine its cause.
  • EP-A-0 191 170 a device for venting fuel tanks in internal combustion engines is known, fuel vapors being formed being taken up in a buffer store containing an activated carbon filter and being released into the intake area of the internal combustion engine depending on the operating conditions.
  • the delivery takes place via an electrically controlled tank ventilation valve by continuously changing its passage cross-section, which is achieved by changing the duty cycle of the control pulse sequence for this valve.
  • the duty cycle is determined either in the sense of a pure control from a map as a function of speed and load, or taking into account preferably averaged ⁇ values.
  • W0 90/00225 describes a method for adapting the tank ventilation in the case of ⁇ control of the air / fuel mixture to be supplied to an internal combustion engine, in which a loading factor for the tank ventilation gas is determined and when the method is ended, the last value is stored as a loading factor.
  • the stored value of the load factor is multiplied by a reset factor, which is dependent on the value of a fuel temperature-dependent variable, which is a maximum of 1, and the value obtained in this way is used as the initial value of the load factor for the tank ventilation adaptation. The higher the value of the fuel temperature-dependent variable, the greater the reset factor.
  • the object of the present invention is to distinguish a lambda adaptation requirement from the need to correct the influence of the tank ventilation system and to specify such a correction.
  • the solution according to the invention provides for a tank ventilation map to be stored which characterizes the characteristic of the tank ventilation system. Maximum deviation values are stored in it depending on the load and the speed. Depending on the operating point, these deviation values represent a deviation of the fuel quantity from the basic quantity caused by the tank ventilation. They apply in the event that the accumulator is fully loaded with fuel.
  • the correction device uses the averaged control signal from the lambda control device to determine whether and to what extent such an influence is really present.
  • the control signal does not result in a deviation in a pressure-guided system which is insensitive to "leakage air" is. In other systems there is a slight lean shift due to the additional air. If, on the other hand, the memory is fully loaded, the deviation indicated by the control signal becomes equal to the maximum deviation value read from the tank ventilation map. In all cases between these two extremes, the ratio of the averaged control signal and the maximum deviation value from the tank ventilation map then indicates the degree of loading of the store. The correction device calculates this degree of loading and stores it.
  • the degree of loading of the store determined in this way can now be used in the following calculations of the injection quantity for the correction of the influence of the tank ventilation.
  • the maximum deviation value is read out from the tank ventilation map, depending on the operating point.
  • the actual loading of the storage tank it is multiplied by the loading level.
  • the correction device thus receives a correction value for correcting the basic quantity, which takes into account the influence of the tank ventilation system.
  • FIG. 1 An internal combustion engine is designated 1, an intake tract 11 and an exhaust tract 12.
  • a throttle valve actuated by the driver for filling control is arranged and a control unit 4 effects an injection quantity TI of fuel via an injection system, which is only indicated in the drawing.
  • the control unit 4 receives as input variables a throttle valve angle ⁇ from a corresponding position sensor, a speed n of the internal combustion engine 1 from a speed sensor and a probe signal ⁇ from a lambda probe 3 arranged in the exhaust tract 12.
  • the control unit 4 determines a basic quantity TIG from the throttle valve angle ⁇ and the speed n from a map.
  • a signal corresponding to the intake manifold pressure in the intake tract 11 or a signal from an air mass meter could also be used.
  • a correction device is provided in the control unit 4, which corrects the basic quantity TIG with the aid of a lambda control device.
  • a tank ventilation system consists of a tank 2, an activated carbon store 21 and a feed line 22. Fuel vapors generated in the tank 2 are stored in the activated carbon store 21. This is open to the atmosphere on one side and, on the other hand, is connected to the intake tract 11 via the feed line 22. Depending on the negative pressure prevailing in the intake tract 11 in connection with the throttle valve position and the loading of the activated carbon filter 21 with fuel, additional fuel therefore gets into the internal combustion engine 1.
  • a tank ventilation map according to FIG. 2 is provided.
  • maximum deviation values TImax are stored. These deviation values are determined experimentally for a specific internal combustion engine 1 and characterize the influence of the tank ventilation system at each operating point on the assumption that the activated carbon store 21 is 100% loaded with fuel vapor.
  • the maximum deviation values TImax are related to the corresponding basic quantity TIG, that is to say they mean a percentage or a factor that defines the deviation from the basic quantity TIG.
  • the maximum deviation values TImax are shown in FIG. 2 using a spatial envelope surface.
  • the correction device cyclically determines a degree of loading V of the activated carbon store 21 according to FIG. 3.
  • a first step S1 the values for the throttle valve angle ⁇ and the speed n are read.
  • step S2 the corresponding maximum deviation value TImax is then read out from the tank ventilation map.
  • step 3 This is followed by a query in step 3 as to whether the maximum deviation value TImax is greater than a limit value GW.
  • This limit value GW is shown in FIG. 2. Its height is determined experimentally. If the maximum deviation value TImax is below this limit value GW, there is either no influence at all by the tank ventilation system or it is too small. Accordingly, if there is no such influence, the correction device releases a customary lambda adaptation. However, if the limit value GW is exceeded, an influence of the tank ventilation system is possible and it is assumed that lambda deviations are then determined solely by the tank ventilation. Accordingly, every lambda adaptation is blocked.
  • step S4 the correction device then determines an averaged control signal R ⁇ from the current and previous output signals of the lambda control device. Then, in step S5, the degree of loading V of the activated carbon filter 21 is calculated from the quotient of the averaged control signal R ⁇ and the maximum deviation value TImax.
  • FIG. 4 shows the correction of the current calculation of the injection time TI for the individual cylinders.
  • step S7 the values for the throttle valve angle ⁇ and the speed n are read.
  • step S8 the basic quantity TIG results from a map.
  • step S9 the maximum deviation value TImax is determined from the tank ventilation map as in FIG. 2.
  • step S10 there is then a correction value TIK for correcting the influence of the tank ventilation from this maximum deviation value TImax multiplied by the loading degree V, which indicates the actual loading of the activated carbon filter 21.
  • the injection quantity TI which is injected into the next cylinder, is the product of the basic quantity TIG, the correction value TIK and a further correction value TI ⁇ .
  • This further correction value TI ⁇ results from the usual lambda adaptations and corrections not considered here, the calculation of which is carried out when it was recognized in step S3 from FIG. 3 that there is no influence of the tank ventilation system.
  • a shut-off valve can be provided in the feed line 22, which is indicated in FIG. 1 by the dashed line.
  • a pressure-controlled and / or thermostat-controlled valve serves as a shut-off valve.
  • the pressure-controlled valve serves to prevent the influence of the tank ventilation at full load and with the engine stopped, i.e. when the intake manifold pressure is close to or equal to the atmospheric pressure. In this case, fuel vapor could otherwise escape into the atmosphere via the intake manifold or the activated carbon storage.
  • the thermostat-controlled valve serves to prevent the influence of the tank ventilation when the engine is cold or when it is warming up, since in these operating states the mixture should not be influenced.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Kraftstoffeinspritzung in eine Brennkraftmaschine gemäß Oberbegriff von Anspruch 1 und 5.The invention relates to a device and a method for fuel injection into an internal combustion engine according to the preamble of claims 1 and 5.

Dabei ist ein Steuergerät vorgesehen, das eine Grundmenge abhängig von Last und Drehzahl ermittelt. Diese Grundmenge wird durch eine im Steuergerät vorhandene Korrektureinrichtung mit Hilfe einer überlagerten Lambda-Regelung (Regelung des Kraftstoff-Luft-Verhältnisses) korrigiert.A control unit is provided which determines a basic quantity depending on the load and speed. This basic quantity is corrected by a correction device present in the control unit with the aid of a superimposed lambda control (regulation of the fuel-air ratio).

Das System weist weiterhin ein geschlossenes Tankentlüftungssystem auf, das verhindert, daß Kraftstoffdämpfe in die Atmosphäre gelangen. Dazu werden diese Kraftstoffdämpfe in einem Speicher zurückgehalten. Der Speicher ist mit dem Ansaugtrakt der Brennkraftmaschine über eine Zuleitung verbunden, so daß daraus austretende Kraftstoffdämpfe der Maschine zur Verbrennung zugeführt werden.The system also has a closed tank ventilation system that prevents fuel vapors from entering the atmosphere. For this purpose, these fuel vapors are retained in a store. The memory is connected to the intake tract of the internal combustion engine via a feed line, so that fuel vapors emerging therefrom are fed to the engine for combustion.

Die Beeinflussung der Gemischverhältnisse durch das Tankentlüftungssystem ist nicht bekannt. Insbesondere ist nicht bekannt, wann zusätzlicher Kraftstoff aus dem Speicher in den Ansaugtrakt gelangt und in welcher Menge. Die überlagerte Lambda-Regelung erkennt zwar eine dadurch bewirkte Gemischabweichung, kann aber nicht deren Ursache feststellen. Dabei ist insbesondere nicht zu unterscheiden, ob die Gemischabweichung aufgrund von längerwirkenden Störeinflüssen eine Lambda-Adaption nötig macht, oder aufgrund des Einflusses des Tankentlüftungssystems nur eine kurzzeitige Störung darstellt. In diesem Fall wäre keine Lambda- Adaption nötig, da nach Abklingen der kurzzeitigen Störung diese wieder rückgängig gemacht werden müßte.The influence of the mixture ratios by the tank ventilation system is not known. In particular, it is not known when additional fuel reaches the intake tract from the accumulator and in what quantity. The superimposed lambda control recognizes a mixture deviation caused by this, but cannot determine its cause. In particular, it is not possible to distinguish whether the mixture deviation requires lambda adaptation due to longer-lasting interferences or only due to the influence of the tank ventilation system represents a brief disturbance. In this case, no lambda adaptation would be necessary, since after the short-term disturbance has subsided, it would have to be reversed.

Aus der EP-A-0 191 170 ist eine Vorrichtung zur Entlüftung von Kraftstofftanks bei Brennkraftmaschinen bekannt, wobei sich bildende Kraftstoffdämpfe in einem einen Aktivkohlefilter enthaltenen Zwischenspeicher aufgenommen und je nach Betriebsbedingungen in den Ansaugbereich der Brennkraftmaschine abgegeben werden. Die Abgabe erfolgt dabei über ein elektrisch gesteuertes Tankentlüftungsventil durch kontinuierliche Veränderung von dessen Durchgangsquerschnitt, die durch eine Veränderung des Tastverhältnisses der Ansteuerimpulsfolge für dieses Ventil erzielt wird. Die Bestimmung des Tastverhältnisses wird entweder im Sinne einer reinen Steuerung aus einem Kennfeld in Abhängigkeit zu Drehzahl und Last oder unter Berücksichtigung von vorzugsweise gemittelten λ-Werten erfolgen.From EP-A-0 191 170 a device for venting fuel tanks in internal combustion engines is known, fuel vapors being formed being taken up in a buffer store containing an activated carbon filter and being released into the intake area of the internal combustion engine depending on the operating conditions. The delivery takes place via an electrically controlled tank ventilation valve by continuously changing its passage cross-section, which is achieved by changing the duty cycle of the control pulse sequence for this valve. The duty cycle is determined either in the sense of a pure control from a map as a function of speed and load, or taking into account preferably averaged λ values.

In der W0 90/00225 ist ein Verfahren zur Tankentlüftungsadaption bei λ-Regelung des einem Verbrennungsmotor zuzuführenden Luft/Kraftstoff-Gemisches beschrieben, bei dem ein Beladungsfaktor für das Tankentlüftungsgas bestimmt wird und beim Beenden des Verfahrens der letzte Wert als Beladungsfaktor gespeichert wird. Beim Neustart des Verfahrens wird der gespeicherte Wert des Beladungsfaktors mit einem vom Wert einer kraftstofftemperaturabhängigen Größe abhängigen Rücksetzfaktor multipliziert, der maximal 1 ist und der so erhaltene Wert wird als Ausgangswert des Beladungsfaktors für die Tanktentlüftungsadaption verwendet. Der Rücksetzfaktor ist dabei umso größer, je höher der Wert der kraftstofftemperaturabhängigen Größe ist.W0 90/00225 describes a method for adapting the tank ventilation in the case of λ control of the air / fuel mixture to be supplied to an internal combustion engine, in which a loading factor for the tank ventilation gas is determined and when the method is ended, the last value is stored as a loading factor. When the method is restarted, the stored value of the load factor is multiplied by a reset factor, which is dependent on the value of a fuel temperature-dependent variable, which is a maximum of 1, and the value obtained in this way is used as the initial value of the load factor for the tank ventilation adaptation. The higher the value of the fuel temperature-dependent variable, the greater the reset factor.

Die Aufgabe der vorliegenden Erfindung liegt darin, einen Lambda-Adaptionsbedarf von der Notwendigkeit zur Korrektur des Einflusses des Tankentlüftungssystems zu unterscheiden und eine solche Korrektur anzugeben.The object of the present invention is to distinguish a lambda adaptation requirement from the need to correct the influence of the tank ventilation system and to specify such a correction.

Die erfindungsgemäße Lösung ist in den Ansprüchen 1 und 5 gekennzeichnet. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen.The solution according to the invention is characterized in claims 1 and 5. Advantageous developments of the invention can be found in the subclaims.

Die erfindungsgemäße Lösung sieht vor, ein Tankentlüftungskennfeld abzuspeichern, das die Charakteristik des Tankentlüftungssystems kennzeichnet. Darin sind abhängig von der Last und der Drehzahl maximale Abweichwerte abgelegt. Diese Abweichwerte stellen betriebspunktabhängig eine durch die Tankentlüftung bewirkte Abweichung der Kraftstoffmenge bezogen auf die Grundmenge dar. Sie gelten für den Fall, daß der Speicher voll mit Kraftstoff beladen ist.The solution according to the invention provides for a tank ventilation map to be stored which characterizes the characteristic of the tank ventilation system. Maximum deviation values are stored in it depending on the load and the speed. Depending on the operating point, these deviation values represent a deviation of the fuel quantity from the basic quantity caused by the tank ventilation. They apply in the event that the accumulator is fully loaded with fuel.

Anhand dieses Tankentlüftungskennfelds wird entschieden, ob ein Korrekturbedarf aufgrund der Tankentlüftung möglich ist. Dies ist dann der Fall, wenn der ausgelesene Abweichwert einen Grenzwert übersteigt. Dieser Grenzwert ist so hoch gewählt, daß geringfügige anderweitige Störeinflüsse nicht fälschlicherweise eine Tankentlüftungskorrektur auslösen. Ist der Abweichwert also größer als der Grenzwert, so ist ein Einfluß des Tankentlüftungssystems möglich. Die Korrektureinrichtung stellt dann anhand des gemittelten Regelsignals von der Lambda-Regeleinrichtung fest, ob und in welchem Maße ein solcher Einfluß wirklich vorhanden ist.On the basis of this tank ventilation map, a decision is made as to whether a correction is possible due to the tank ventilation. This is the case if the deviation value read out exceeds a limit value. This limit is chosen so high that minor other disturbances do not erroneously trigger a tank ventilation correction. If the deviation value is greater than the limit value, the tank ventilation system can have an influence. The correction device then uses the averaged control signal from the lambda control device to determine whether and to what extent such an influence is really present.

Ist der Speicher beispielsweise vollständig leer, so ergibt das Regelsignal keine Abweichung bei einem druckgeführten System, das gegen "Leckluft" unempfindlich ist. Bei anderen Systemen ergibt sich eine geringfügige Magerverschiebung durch die Zusatzluft. Ist der Speicher dagegen voll beladen, so wird die durch das Regelsignal angezeigte Abweichung gleich dem aus dem Tankentlüftungskennfeld ausgelesenen maximalen Abweichwert. In allen Fällen zwischen diesen beiden Extremen gibt dann das Verhältnis aus dem gemittelten Regelsignal und dem maximalen Abweichwert aus dem Tankentlüftungskennfeld den Beladungsgrad des Speichers an. Die Korrektureinrichtung berechnet diesen Beladungsgrad und speichert ihn ab.If, for example, the memory is completely empty, the control signal does not result in a deviation in a pressure-guided system which is insensitive to "leakage air" is. In other systems there is a slight lean shift due to the additional air. If, on the other hand, the memory is fully loaded, the deviation indicated by the control signal becomes equal to the maximum deviation value read from the tank ventilation map. In all cases between these two extremes, the ratio of the averaged control signal and the maximum deviation value from the tank ventilation map then indicates the degree of loading of the store. The correction device calculates this degree of loading and stores it.

Der so ermittelte Beladungsgrad des Speichers kann nun bei folgenden Berechnungen der Einspritzmenge für die Korrektur des Einflusses der Tankentlüftung herangezogen werden. Dazu wird bei jeder Berechnung der Einspritzmenge wiederum der maximale Abweichwert betriebspunktabhängig aus dem Tankentlüftungskennfeld ausgelesen. Um die wirkliche Beladung des Speichers zu berücksichtigen wird er mit dem Beladungsgrad multipliziert. Die Korrektureinrichtung erhält so einen Korrekturwert zur Korrektur der Grundmenge, der den Einfluß des Tankentlüftungssystems berücksichtigt.The degree of loading of the store determined in this way can now be used in the following calculations of the injection quantity for the correction of the influence of the tank ventilation. For each calculation of the injection quantity, the maximum deviation value is read out from the tank ventilation map, depending on the operating point. To take into account the actual loading of the storage tank, it is multiplied by the loading level. The correction device thus receives a correction value for correcting the basic quantity, which takes into account the influence of the tank ventilation system.

Die Erfindung wird anhand der Figuren näher erläutert.The invention is explained in more detail with reference to the figures.

Dabei zeigen:

Figur 1
ein vereinfachtes Blockschaltbild eines erfindungsgemäßen Kraftstoffeinspritzsystems,
Figur 2
eine Darstellung zur Veranschaulichung eines Tankentlüftungskennfelds,
Figur 3
ein Flußdiagramm für die Berechnung eines Beladungsgrades und
Figur 4
ein Flußdiagramm für die Berechnung einer Einspritzmenge.
Show:
Figure 1
a simplified block diagram of a fuel injection system according to the invention,
Figure 2
a representation to illustrate a tank ventilation map,
Figure 3
a flow chart for the calculation of a degree of loading and
Figure 4
a flowchart for the calculation of an injection quantity.

In Figur 1 ist ein Kraftstoffeinspritzsystem dargestellt. Darin ist eine Brennkraftmaschine mit 1, ein Ansaugtrakt mit 11 und ein Abgastrakt mit 12 bezeichnet.A fuel injection system is shown in FIG. An internal combustion engine is designated 1, an intake tract 11 and an exhaust tract 12.

Im Ansaugtrakt 11 ist eine vom Fahrer betätigte Drosselklappe zur Füllungssteuerung angeordnet und ein Steuergerät 4 bewirkt über ein in der Zeichnung nur angedeutetes Einspritzsystem eine Einspritzmenge TI an Kraftstoff. Zur Bestimmung dieser Einspritzmenge TI erhält das Steuergerät 4 als Eingangsgrößen einen Drosselklappenwinkel α von einem entsprechenden Positionsgeber, eine Drehzahl n der Brennkraftmaschine 1 von einem Drehzahlgeber und ein Sondensignal λ von einer im Abgastrakt 12 angeordneten Lambda-Sonde 3.In the intake tract 11, a throttle valve actuated by the driver for filling control is arranged and a control unit 4 effects an injection quantity TI of fuel via an injection system, which is only indicated in the drawing. To determine this injection quantity TI, the control unit 4 receives as input variables a throttle valve angle α from a corresponding position sensor, a speed n of the internal combustion engine 1 from a speed sensor and a probe signal λ from a lambda probe 3 arranged in the exhaust tract 12.

Das Steuergerät 4 bestimmt aus dem Drosselklappenwinkel α und der Drehzahl n aus einem Kennfeld eine Grundmenge TIG. Anstelle des Drosselklappenwinkels α als Maß für die Last der Brennkraftmaschine 1 könnte auch ein Signal entsprechend dem Saugrohrdruck im Ansaugtrakt 11 oder ein Signal von einem Luftmassenmesser verwendet werden.The control unit 4 determines a basic quantity TIG from the throttle valve angle α and the speed n from a map. Instead of the throttle valve angle α as a measure of the load of the internal combustion engine 1, a signal corresponding to the intake manifold pressure in the intake tract 11 or a signal from an air mass meter could also be used.

Im Steuergerät 4 ist eine Korrektureinrichtung vorgesehen, die mit Hilfe einer Lambda-Regeleinrichtung die Grundmenge TIG korrigiert.A correction device is provided in the control unit 4, which corrects the basic quantity TIG with the aid of a lambda control device.

Ein Tankentlüfungssystem besteht aus einem Tank 2, einem Aktivkohlespeicher 21 und einer Zuleitung 22. Im Tank 2 entstehende Kraftstoffdämpfe werden in dem Aktivkohlespeicher 21 gespeichert. Dieser ist einseitig zur Atmosphäre hin offen und andererseits über die Zuleitung 22 mit dem Ansaugtrakt 11 verbunden. Je nach dem im Ansaugtrakt 11 herrschenden Unterdruck in Verbindung mit der Drosselklappenstellung und der Beladung des Aktivkohlefilters 21 mit Kraftstoff gelangt daher zusätzlicher Kraftstoff in die Brennkraftmaschine 1.A tank ventilation system consists of a tank 2, an activated carbon store 21 and a feed line 22. Fuel vapors generated in the tank 2 are stored in the activated carbon store 21. This is open to the atmosphere on one side and, on the other hand, is connected to the intake tract 11 via the feed line 22. Depending on the negative pressure prevailing in the intake tract 11 in connection with the throttle valve position and the loading of the activated carbon filter 21 with fuel, additional fuel therefore gets into the internal combustion engine 1.

Zur Korrektur dieses Einflusses auf die Gemischverhältnisse ist ein Tankentlüftungskennfeld gemäß Figur 2 vorgesehen. Darin sind abhängig von den Eingangsgrößen Drosselklappenwinkel und Drehzahl n maximale Abweichwerte TImax abgelegt. Diese Abweichwerte werden experimentiell für eine bestimmte Brennkraftmaschine 1 ermittelt und charakterisieren in jedem Betriebspunkt den Einfluß des Tankentlüftungssystem unter der Annahme, daß der Aktivkohlespeicher 21 zu 100 % mit Kraftstoffdampf beladen ist. Die maximalen Abweichwerte TImax sind in jedem Betriebspunkt bezogen auf die entsprechende Grundmenge TIG, bedeuten also quasi eine Prozentzahl oder einen Faktor, der die Abweichung von der Grundmenge TIG festlegt. Zur Veranschaulichung sind die maximalen Abweichwerte TImax in Figur 2 anhand einer räumlichen Hüllfläche dargestellt.To correct this influence on the mixture ratios, a tank ventilation map according to FIG. 2 is provided. Depending on the input variables throttle valve angle and speed n, maximum deviation values TImax are stored. These deviation values are determined experimentally for a specific internal combustion engine 1 and characterize the influence of the tank ventilation system at each operating point on the assumption that the activated carbon store 21 is 100% loaded with fuel vapor. At each operating point, the maximum deviation values TImax are related to the corresponding basic quantity TIG, that is to say they mean a percentage or a factor that defines the deviation from the basic quantity TIG. For illustration, the maximum deviation values TImax are shown in FIG. 2 using a spatial envelope surface.

Zur Durchführung der Korrektur bestimmt die Korrektureinrichtung zyklisch einen Beladungsgrad V des Aktivkohlespeichers 21 gemäß Figur 3. In einem ersten Schritt S1 werden die Werte für den Drosselklappenwinkel α und die Drehzahl n eingelesen. Im Schritt S2 wird dann der entsprechende maximale Abweichwert TImax aus dem Tankentlüftungskennfeld ausgelesen.To carry out the correction, the correction device cyclically determines a degree of loading V of the activated carbon store 21 according to FIG. 3. In a first step S1, the values for the throttle valve angle α and the speed n are read. In step S2, the corresponding maximum deviation value TImax is then read out from the tank ventilation map.

Darauf folgt eine Abfrage im Schritt 3, ob der maximale Abweichwert TImax größer einem Grenzwert GW ist. Dieser Grenzwert GW ist in Figur 2 eingezeichnet. Seine Höhe ist experimentiell bestimmt. Liegt der maximale Abweichwert TImax unter diesem Grenzwert GW, so ist ein Einfluß durch das Tankentlüfungssystem entweder gar nicht vorhanden oder zu gering. Liegt also dementsprechend kein solcher Einfluß vor, so gibt die Korrektureinrichtung eine übliche Lambda-Adaption frei. Ist der Grenzwert GW dagegen überschritten, so ist ein Einfluß des Tankentlüftungssystems möglich und es wird angenommen, daß dann Lambda-Abweichungen allein durch die Tankentlüftung bestimmt sind. Dementsprechend wird jede Lambda-Adaption gesperrt.This is followed by a query in step 3 as to whether the maximum deviation value TImax is greater than a limit value GW. This limit value GW is shown in FIG. 2. Its height is determined experimentally. If the maximum deviation value TImax is below this limit value GW, there is either no influence at all by the tank ventilation system or it is too small. Accordingly, if there is no such influence, the correction device releases a customary lambda adaptation. However, if the limit value GW is exceeded, an influence of the tank ventilation system is possible and it is assumed that lambda deviations are then determined solely by the tank ventilation. Accordingly, every lambda adaptation is blocked.

Im Schritt S4 ermittelt die Korrektureinrichtung dann ein gemitteltes Regelsignal R λ aus dem aktuellen und vorhergehenden Ausgangssignalen der Lambda-Regeleinrichtung. Dann wird im Schritt S5 der Beladungsgrad V des Aktivkohlefilters 21 aus dem Quotienten des gemittelten Regelsignals R λ und des maximalen Abweichwerts TImax berechnet.In step S4, the correction device then determines an averaged control signal R λ from the current and previous output signals of the lambda control device. Then, in step S5, the degree of loading V of the activated carbon filter 21 is calculated from the quotient of the averaged control signal R λ and the maximum deviation value TImax.

Die Figur 4 zeigt schließlich die Korrektur der laufenden Berechnung der Einspritzzeit TI für die einzelnen Zylinder. Im Schritt S7 werden die Werte für den Drosselklappenwinkel α und die Drehzahl n eingelesen. Damit ergibt sich im Schritt S8 aus einem Kennfeld die Grundmenge TIG.Finally, FIG. 4 shows the correction of the current calculation of the injection time TI for the individual cylinders. In step S7, the values for the throttle valve angle α and the speed n are read. In step S8, the basic quantity TIG results from a map.

Im Schritt S9 wird der maximale Abweichwert TImax aus dem Tankentlüftungskennfeld wie in Figur 2 bestimmt. Im Schritt S10 ergibt sich dann ein Korrekturwert TIK zur Korrektur des Einflusses der Tankentlüfung aus diesem maximalen Abweichwert TImax multipliziert mit dem Bela dungsgrad V, der die wirkliche Beladung des Aktivkohlefilters 21 angibt. Die Einspritzmenge TI schließlich, die in den nächstfolgenden Zylinder eingespritzt wird, ist dann das Produkt aus der Grundmenge TIG, dem Korrekturwert TIK und einem weiteren Korrekturwert TI λ. Dieser weitere Korrekturwert TI λ resultiert aus hier nicht betrachteten üblichen Lambda-Adaptionen und Korrekturen, deren Berechnung erfolgt, wenn im Schritt S3 aus Figur 3 erkannt wurde, daß kein Einfluß des Tankentlüftungssystems vorliegt.In step S9, the maximum deviation value TImax is determined from the tank ventilation map as in FIG. 2. In step S10 there is then a correction value TIK for correcting the influence of the tank ventilation from this maximum deviation value TImax multiplied by the loading degree V, which indicates the actual loading of the activated carbon filter 21. Finally, the injection quantity TI, which is injected into the next cylinder, is the product of the basic quantity TIG, the correction value TIK and a further correction value TI λ. This further correction value TI λ results from the usual lambda adaptations and corrections not considered here, the calculation of which is carried out when it was recognized in step S3 from FIG. 3 that there is no influence of the tank ventilation system.

In der Zuleitung 22 kann ein Absperrventil vorgesehen sein, was in Figur 1 durch die gestrichelte Linie angedeutet ist. Als Absperrventil dient ein druckgesteuertes und/oder thermostatgesteuertes Ventil. Das druckgesteuerte Ventil dient zur Verhinderung des Tankentlüftungseinflusses bei Vollast und bei stehendem Motor, also wenn der Saugrohrdruck nahe oder gleich dem Atmosphärendruck ist. In diesem Fall könnte sonst über das Saugrohr oder über den Aktivkohlespeicher Kraftstoffdampf in die Atmosphäre entweichen.A shut-off valve can be provided in the feed line 22, which is indicated in FIG. 1 by the dashed line. A pressure-controlled and / or thermostat-controlled valve serves as a shut-off valve. The pressure-controlled valve serves to prevent the influence of the tank ventilation at full load and with the engine stopped, i.e. when the intake manifold pressure is close to or equal to the atmospheric pressure. In this case, fuel vapor could otherwise escape into the atmosphere via the intake manifold or the activated carbon storage.

Das thermostatgesteuerte Ventil dient zur Verhinderung des Tankentlüftungseinflusses bei kaltem Motor oder im Warmlauf, da in diesen Betriebszuständen keine Beeinflussung des Gemisches gewünscht ist.The thermostat-controlled valve serves to prevent the influence of the tank ventilation when the engine is cold or when it is warming up, since in these operating states the mixture should not be influenced.

Claims (5)

  1. Fuel injection system for an internal combustion engine (1)
    having a control unit (4) for determining the injection quantity (TI), which control unit (4) determines a basic quantity (TIG) as a function of load and rotational speed (n),
    which control unit (4) contains a correction device with a lambda control device whose averaged control signal (Rλ) represents the deviation of the injection quantity (TI) from the basic quantity (TIG) which, correspondingly corrected, gives the injection quantity (TI),
    having a closed tank ventilation system, which provides intermediate storage of fuel vapours in a reservoir (21) which is connected to an induction line (11) by means of a feed conduit (22),
    and the correction device determines and stores a degree of charge (V) of the reservoir (21) and in subsequent calculations of the injection quantity (TI) takes into account a correction factor which is assessed by means of the degree of charge (V),
    characterised in that a tank ventilation characteristic map is deposited in the correction device, which map contains maximum possible deviation values (TImax) as a function of load and rotational speed (n), which deviation values (TImax) represent the deviation, referred to the basic quantity (TIG) at the particular operating point, caused by the tank ventilation when the reservoir (21) is fully charged with fuel,
    in that when the maximum deviation value (TImax) exceeds a limiting value (GW), the correction device determines and stores the degree of charge (V) of the reservoir by forming a ratio from the control signal (Rλ) determined and the maximum deviation value (TImax) and
    in that in subsequent calculations of the injection quantity (TI), the correction device corrects the latter by using the product of the maximum deviation values (TImax), read anew from the tank ventilation characteristic map, and by using the previously stored degree of charge (V).
  2. Fuel injection system according to Claim 1, characterised in that when the maximum deviation value (TImax) is smaller than the limiting value (GW) at corresponding operating conditions, the correction device carries out a lambda adaptation.
  3. Fuel injection system according to Claim 1, characterised in that a shut-off valve is provided in the feed conduit (22), which shut-off valve closes the feed conduit (22) above a certain induction pipe pressure.
  4. Fuel injection system according to Claim 3, characterised in that the shut-off valve closes below a certain cooling water temperature.
  5. Method for correcting the injection quantity (TI) to be supplied to an internal combustion engine (1) in the case of tank ventilation with a closed tank ventilation system, which provides intermediate storage of fuel vapours in a reservoir (21) which is connected to an induction line (11) by means of a feed conduit (22), and in which a λ controller supplies an averaged control signal (Rλ) which represents the deviation of the injection quantity (TI) from a basic quantity (TIG), which is determined by a control unit (4) as a function of load and rotational speed (n), determines and stores a degree of charge (V) of the reservoir (21) by means of a correction device, and in subsequent calculations of the injection quantity (TI), a correction factor is taken into account which is weighted by means of the degree of charge (V),
    characterised in that
    maximum possible deviation values (TImax) are experimentally determined and deposited in a correction device tank ventilation characteristic map as a function of load and rotational speed (n) of the internal combustion engine as the deviation, referred to the basic quantity (TIG), caused by the tank ventilation when the reservoir (21) is fully charged with fuel,
    the current values for load and rotational speed (n) are recorded and from these, the associated maximum deviation value (TImax) is determined from the tank ventilation characteristic map,
    this deviation value (TImax) is compared with a limiting value (GW) and when this limiting value (GW) is exceeded, the correction device calculates and stores a degree of charge (V) by quotient formation from the averaged control signal (Rλ) and the current deviation value (TImax) and in subsequent calculations, the basic quantity (TIG) is corrected by using the product of the maximum deviation value (TImax), read anew from the tank ventilation characteristic map, and the previously stored degree of charge (V).
EP19900120421 1990-10-24 1990-10-24 Engine injection system Expired - Lifetime EP0482239B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE90120421T DE59004362D1 (en) 1990-10-24 1990-10-24 Fuel injection system for an internal combustion engine.
EP19900120421 EP0482239B1 (en) 1990-10-24 1990-10-24 Engine injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19900120421 EP0482239B1 (en) 1990-10-24 1990-10-24 Engine injection system

Publications (2)

Publication Number Publication Date
EP0482239A1 EP0482239A1 (en) 1992-04-29
EP0482239B1 true EP0482239B1 (en) 1994-01-19

Family

ID=8204649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900120421 Expired - Lifetime EP0482239B1 (en) 1990-10-24 1990-10-24 Engine injection system

Country Status (2)

Country Link
EP (1) EP0482239B1 (en)
DE (1) DE59004362D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69408377T2 (en) * 1993-07-20 1998-09-10 Magneti Marelli France Method and device for correcting the fuel injection duration as a function of the flow rate of a tank ventilation system for an injection engine
FR2722247B1 (en) * 1994-07-05 1996-08-30 Renault METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH RECYCLING OF PURGE GAS FROM THE TANK VENT
DE4430971A1 (en) * 1994-08-31 1996-03-07 Bayerische Motoren Werke Ag Method and device for supplying fuel vapor into an intake manifold of an internal combustion engine in motor vehicles
DE19708937A1 (en) * 1997-03-05 1998-09-17 Mannesmann Vdo Ag Combustion engine and method of its operation
DE102013224301A1 (en) * 2013-11-27 2015-05-28 Robert Bosch Gmbh Apparatus and method for determining the loading of a fuel vapor accumulator of an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502573C3 (en) * 1985-01-26 2002-04-25 Bosch Gmbh Robert Device for venting fuel tanks
DE3822300A1 (en) * 1988-07-01 1990-01-04 Bosch Gmbh Robert METHOD AND DEVICE FOR TANK VENTILATION ADAPTATION WITH LAMBAR CONTROL

Also Published As

Publication number Publication date
DE59004362D1 (en) 1994-03-03
EP0482239A1 (en) 1992-04-29

Similar Documents

Publication Publication Date Title
DE19701353C1 (en) Motor vehicle IC engine fuel-tank ventilation
DE3813220C2 (en) Method and device for setting a tank ventilation valve
DE4019188C2 (en)
DE69918914T2 (en) Method and device for controlling the air-fuel ratio in an internal combustion engine
DE102008026917A1 (en) Control device for an internal combustion engine
DE102007013993B4 (en) Control method for an internal combustion engine
DE10222808B4 (en) Method for controlling the air / fuel ratio for an internal combustion engine
WO2008101770A1 (en) Method for controlling an internal combustion engine and internal combustion engine
DE4433314A1 (en) Control method and device for substances escaping from tanks in internal combustion engines
DE102018106441A1 (en) Method for operating an internal combustion engine and internal combustion engine
DE102015006144A1 (en) Fuel vapor processing device
DE19726315A1 (en) Idling speed control system for motor vehicle IC engine
DE19539937C2 (en) Method for controlling the exhaust gas ratio of fuel to oxygen in the exhaust tract before a catalytic converter
DE102010054960A1 (en) Method for refueling of fuel tank, particularly of motor vehicle, involves maintaining excess pressure against ambient pressure during refueling of fuel tank
DE3918779C2 (en)
EP0482239B1 (en) Engine injection system
DE3528232C2 (en)
DE4335560A1 (en) Regulator for air=fuel mixt. for IC engine - has two oxygen@ sensors in exhaust, one either side of catalytic converter, feeding ECU controlling injectors
DE4011622C2 (en) Internal combustion engine
DE19610169A1 (en) Delay time adaptation method for motor vehicle fuel-tank breather valve
DE10323869B4 (en) Method for controlling a regeneration valve of a fuel vapor retention system
EP1672206B1 (en) Method and device for engine control in a vehicle
DE10252826A1 (en) Method for actuating a regeneration valve of a fuel vapor retention system
DE102008041689B4 (en) Method and engine control unit for adapting vaporization parameters of a fuel in a dual injection system
DE4019187C2 (en) Multi-component machine control with initial delay

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19920907

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940119

Ref country code: FR

Effective date: 19940119

Ref country code: GB

Effective date: 19940119

REF Corresponds to:

Ref document number: 59004362

Country of ref document: DE

Date of ref document: 19940303

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971218

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803