EP0286077A2 - Method of burning refuse - Google Patents

Method of burning refuse Download PDF

Info

Publication number
EP0286077A2
EP0286077A2 EP88105522A EP88105522A EP0286077A2 EP 0286077 A2 EP0286077 A2 EP 0286077A2 EP 88105522 A EP88105522 A EP 88105522A EP 88105522 A EP88105522 A EP 88105522A EP 0286077 A2 EP0286077 A2 EP 0286077A2
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
combustion
flue gas
flue gases
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88105522A
Other languages
German (de)
French (fr)
Other versions
EP0286077B2 (en
EP0286077A3 (en
EP0286077B1 (en
Inventor
Sedat Dipl.-Ing. Temelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWG ABFALLWIRTSCHAFTSGESELLSCHAFT MIT BESCHRAENKTE
Original Assignee
Awg Abfallwirtschaftsgesellschaft Wuppertal mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25854498&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0286077(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19873712039 external-priority patent/DE3712039A1/en
Application filed by Awg Abfallwirtschaftsgesellschaft Wuppertal mbH filed Critical Awg Abfallwirtschaftsgesellschaft Wuppertal mbH
Priority to AT88105522T priority Critical patent/ATE70611T1/en
Publication of EP0286077A2 publication Critical patent/EP0286077A2/en
Publication of EP0286077A3 publication Critical patent/EP0286077A3/en
Application granted granted Critical
Publication of EP0286077B1 publication Critical patent/EP0286077B1/en
Publication of EP0286077B2 publication Critical patent/EP0286077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire

Definitions

  • the present invention relates to a method for incinerating, in particular refuse, in which substances to be incinerated are introduced into a combustion chamber and burned on a fire grate in the combustion chamber, and the flue gases are drawn off from the combustion chamber, these being swirled by adding secondary air and afterburning the Flue gases occur.
  • Such a method and a suitable combustion boiler are known for example from DE-PS 30 38 875.
  • the transition from the combustion chamber to the flue gas outlet is constricted by nose-shaped projections of the walls of the combustion chamber which are formed on opposite sides.
  • secondary air is injected, whereby the flue gases are swirled in order to mix the flue gas strands created in the combustion chamber and thereby prevent caking on the oblique wall surfaces of the noses.
  • the exhausting flue gases still contain a high level of pollutants, in particular halogenated hydrocarbons, which is why such incineration plants no longer meet the air quality requirements to be expected in the future.
  • the present invention is based on the object, starting from a method of the type described above, to improve it in such a way that such guidance and mixing of the flue gases is possible that a considerably improved degradation of the pollutants contained in the flue gases, in particular the halogenated hydrocarbons, is effected.
  • this is achieved in that the secondary air is injected over the entire flow cross section of the flue gases before the flue gases enter the afterburning zone in such a way that the flue gases are braked in a uniform temperature zone of the combustion chamber in the exhaust direction in front of the injection zone.
  • a flue gas build-up is brought about within the combustion chamber, so that the dwell time of the flue gases in the combustion chamber is increased. This smoke gas accumulation takes place in an area of the combustion chamber where there is an approximately uniform temperature level of 900 ° C to 1050 ° C.
  • the complete swirling of the flue gas being caused at the same time as the flue gas accumulation causing the strands of flue gas to dissolve completely before entering the afterburning zone.
  • a uniform temperature zone can form within the combustion chamber, since this is the only way to achieve targeted control and thus optimization by means of a defined injection of the secondary air into a defined combustion area. It is advantageous according to the invention if the flue gases remain for about 8 seconds.
  • the secondary air is preferably injected into the combustion chamber at a flow rate of approximately 60 to 90 m / s.
  • the afterburning of the flue gases takes place by accelerating and decelerating the flue gases following the injection zone of the secondary air.
  • This post-combustion process which is advantageously implemented by a venturi-like constriction of the flue gas discharge cross-section behind the injection area of the secondary air, brings about an additional deceleration of the flue gases before entering the post-combustion zone, which supports the deceleration in the combustion chamber caused by injection of the secondary air. It is known from DE-OS 31 25 429 to use venturi-like afterburning zones.
  • the present invention relates to a combustion boiler, in particular for waste incineration, consisting of a combustion chamber with a fire grate and with a task arranged above the fire grate, the combustion chamber having a throttle in its upper area opposite the fire grate and pointing in the direction of a flue gas outlet, and wherein in the area of the throttling there is an air injection device which has a plurality of nozzle openings, in particular for carrying out the above-mentioned method according to the invention, the injection device for the secondary air in the flow direction of the flue gases being arranged directly in front of the throttle valve-shaped, symmetrical to the axis of the flue gas discharge, and the nozzle openings point towards the firebox.
  • a combustion boiler 1 according to the invention in particular a waste incineration boiler, as shown in FIG. 1, consists of a combustion chamber 2, in the bottom of which a combustion grate 3 is arranged.
  • this is a roller grate that slopes downwards at an angle to the horizontal.
  • the roller grate consists of six rollers arranged one behind the other and running parallel to one another.
  • Below the combustion grate 3 there are feeds 4 for feeding cold combustion air, so-called primary air, into the combustion zone 5 surrounding the grate 3.
  • the feeds 4 fed through the feeds Combustion air is drawn in from the waste bunker by an underwind fan. This suction is carried out so that the dust load of the sucked air is as low as possible.
  • the air is preferably taken directly from the bunker wall on the boiler house side. Appropriate measures ensure that the intake noise only slightly increases the noise level in the bunker.
  • the primary air intake ducts are provided with sufficiently large and easily accessible cleaning openings at the dust accumulation points.
  • In the combustion chamber 2 opens above the upper end of the combustion grate 3, seen in the direction of transport of the waste, see arrow X, a waste task 6.
  • the outlet 7 of the waste task 6 widens over inclined surfaces 8, 9 in the fire chamber 2.
  • the fire chamber 2 above the Combustion grate 3 consists of a lower section 2a, which is formed above the lower end of the grate in the region of an opening 10 forming the boiler outlet and the two lower rollers of the roller grate, so that this section is located approximately in the lower third of the combustion grate 3 and of one Ceiling wall 11, which runs parallel to the grate 3, is limited at the top.
  • the height of the section 2a above the combustion grate 3, ie above the rollers, corresponds approximately to the diameter of the rollers.
  • the zone corresponds approximately to the cooling zone of the combustion slag.
  • the combustion chamber 2 widens upwards and opens into a flue gas outlet 12, the width of the flue gas outlet 12 corresponding approximately to half the length of the grate 3 and, in the exemplary embodiment shown, being approximately 5 m, for example, in adaptation the desired combustion output of the combustion boiler 1 according to the invention.
  • the approximately horizontal connection opening 13 between the combustion chamber 2 and the flue gas outlet 12 is located directly above the mouth of the waste task 6 and forms a flow cross section symmetrical to the axis of the flue gas discharge.
  • the combustion chamber 2 has a rear wall 14, which extends vertically upward from the ceiling wall 11 and extends directly into the rear wall 15 of the flue gas outlet 12.
  • the front wall 16 of the flue gas outlet 12 runs parallel to the rear wall 15 and extends upwards from the end of the inclined surface 9, which adjoins the waste application 6.
  • the area of the flue gas outlet 12 directly in the flow direction of the flue gases behind the connection opening 13 has a throttle 17, which is also symmetrical to the flue gas outlet axis and, in the advantageous exemplary embodiment shown, is designed like a venturi tube.
  • This venturi tube-like zone 17 represents an afterburning chamber in which the flue gas mixture first accelerates to approximately 8 to 10 m / s and then reduces its speed to approximately 4 to 5 m / s. This results in relative movements within the flue gas flow, so that the flue gas and temperature strands are mixed intensively. This results in an improved combustion of the flue gas mixture and thus an increased breakdown of the residual pollutants contained therein, in particular the halogenated residual hydrocarbons contained therein (e.g. dioxins).
  • the smooth-faced and relatively high design of the combustion chamber 2 with a preferably rectangular or square cross section above the drying and combustion zone of the combustion grate 3 without projections and noses prevents caking from occurring.
  • the configuration according to the invention enables a uniform flow of the flue gases and the formation of defined combustion zones, as a result of which the combustion behavior is improved in the sense of a uniform combustion.
  • an injection device 18 for further supply air is provided within the connection opening 13 between the combustion chamber 2 and the flue gas outlet 12, ie before entering the venturi tube-like zone 17.
  • This supply air supplied via the injection device 18 is referred to below as secondary air.
  • the injection device 18 is designed in such a way that the air jets emerging from it form a quasi-seamless grid, so that no streak of flue gas can penetrate this area without coming into intensive contact with the injected secondary air.
  • this injection device 18 consists of a nozzle bar which extends transversely to the direction of the flue gas flow from the front to the rear of the flue gas outlet 12 and is mounted in the walls.
  • nozzle bar 18 Depending on the size of the cross section of the connection opening 13, two or more spaced, parallel nozzle bars 18 can also be provided.
  • a nozzle bar 18 according to the invention consists of a pressure-resistant, heat-resistant material and preferably has an approximately square or circular cross section, nozzle openings 19 being formed in two adjacent sides and arranged in a line arrangement in the box sides 20, 21.
  • a nozzle bar is known per se from DE-PS 30 38 875, but in the present invention it counteracts precisely sets to the direction of action according to DE-PS 30 38 875.
  • the nozzle bar 18 is arranged such that the box sides 20, 21 having the nozzle opening 19 run obliquely to the flue gas discharge longitudinal axis, preferably at an internal angle of 45 °, facing the combustion chamber 2.
  • the emerging air jets form a gapless grille, so that no streak of flue gas can penetrate this area without coming into intensive contact with the injected air.
  • the direction of injection of the secondary air is opposite to the direction of exhaust of the flue gas, so that turbulence and a separation of the flue gases are generated in the area in front of the throttle 17, which increases the dwell time of the flue gases in this area, which has a temperature level of 900 ° C to 1050 ° C has, is additionally increased and a residence time of the flue gases in this area of approximately 8 seconds is achieved. This ensures the degradation of the halogenated hydrocarbons.
  • the secondary air can escape from the nozzle openings 19 at a speed of over 60 to 90 m / s.
  • the air injection means that the combustible components carried in the flue gases burn out completely in the upper combustion chamber zone as a result of the intensive supply of oxygen. Ensuring the burnout in all operating conditions within the furnace performance diagram is ensured by the newly developed design of the combustion chamber as well as in particular the prevention of the formation of halogenated hydrocarbons.
  • Clearly positive results with regard to the PCDD / F reduction show studies with increased turbulence and residence time of the combustion gases in hot temperature zones, as is achieved according to the invention. According to the current state of knowledge, it is possible to achieve a homogeneous heating of the flue gases to 1000 ° C above the combustion temperatures offered by waste combustion Duration of 2 seconds to break down the undesired products, in particular halogenated hydrocarbons.
  • tertiary air nozzles 22 can advantageously be arranged in the front wall in the area of the inclined surface 9 shortly before the transition to the venturi-like zone 17 and in the rear wall 14 just above the end of the ceiling wall 11.
  • tertiary air is blown into the flue gas stream, preferably at a speed of more than 60 m / s. This is intended to achieve thorough mixing, the depth of penetration of the air jets and the distribution of the nozzles being dimensioned such that the flue gas stream, in particular in the wall area, is completely detected.
  • These nozzles are advantageous as a supplement to the nozzle bars 18, since with them in particular the areas in the vicinity of the walls are adequately penetrated with air in order to effect complete combustion in this area as well.
  • the secondary and tertiary air systems are completely separate from the primary air system.
  • the suction is carried out by separate air blowers below the Kesserldecke.
  • all intake ducts and pressure-side air ducts are dimensioned so that the flow speed of 15 m / s is not exceeded. It is also advantageous if the air ducts are adequately stiffened and the connections of the ducts and the suspensions on parts of the building, boiler and furnace scaffolding are designed to be elastic and structure-borne noise-reducing.
  • an ammonia system 24 is connected to the secondary air system.
  • the nitrogen oxide content is as follows, 5 to 10% NO2 and 90 to 95% NO.
  • the invention ensures a uniform penetration of the flue gas with ammonia, both in the combustion chamber and in connection with the combustion chamber in the afterburning area of the venturi-like zone.
  • the invention also makes it possible to control or regulate the supply of the secondary air and / or the ammonia supply as a function of the temperature existing in the injection zone of the secondary air, which can be measured by temperature sensors attached to the nozzle bar.
  • the temperature can be increased or decreased by increasing or reducing the secondary air values.
  • this injection device preferably consists of two nozzle bars 18, which extend transversely to the direction of the flue gas flow from the front to the rear of the flue gas outlet 12 and are rotatably mounted in the walls by means of fixed and floating bearings.
  • the speed and direction of rotation of the nozzle bar can be steplessly controlled.
  • the flue gas that arises during combustion on the roller grate 3 is mixed even more intensively, in particular by the rotating atmospheric oxygen. This preferably creates two counter-rotating fire rollers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The invention relates to a method of burning in particular refuse, and a combustion boiler (1) in particular for the refuse combustion, materials to be burned being fed into a furnace body (2) and burned on a furnace grate (3) in the furnace body (2), the resulting flue gases being drawn off from the furnace body (2) and swirled by the addition of secondary air, and post-combustion of the flue gases taking place. In this connection, the secondary air is injected into the post- combustion zone over the entire flow cross-section of the flue gases, before the entry of the flue gases, in such a manner that the flue gases are braked, i.e. retained in a uniform temperature zone of the furnace body (2) in the exhaust direction before the injection region. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Verbrennen, insbesondere von Müll, wobei zu verbrennende Stoffe in einen Feuerraum eingeleitet und auf einem Feuerrost im Feuerraum verbrannt werden sowie die entste­henden Rauchgase aus dem Feuerraum abziehen, wobei diese durch Zugabe von Sekundärluft verwirbelt werden und eine Nachverbrennung der Rauchgase erfolgt.The present invention relates to a method for incinerating, in particular refuse, in which substances to be incinerated are introduced into a combustion chamber and burned on a fire grate in the combustion chamber, and the flue gases are drawn off from the combustion chamber, these being swirled by adding secondary air and afterburning the Flue gases occur.

Ein derartiges Verfahren und ein hierzu geeigneter Verbren­nungskessel sind beispielsweise aus der DE-PS 30 38 875 bekannt. Hierbei ist der Übergang vom Feuerraum zum Rauchgasabzug durch nasenförmige, auf einander gegenüberlie­genden Seiten ausgebildete Vorsprünge der Wandungen des Feuerraums eingeschnürt. Im Bereich dieser Nasen innerhalb der Nachverbrennungszone wird hierbei Sekundärluft einge­düst, wodurch die Rauchgase verwirbelt werden, um eine Durchmischung der im Feuerraum entstandenen Rauchgassträhnen zu erreichen und hiermit das Entstehen von Anbackungen an den schrägen Wandflächen der Nasen zu vermeiden. Bei dieser bekannten Müllverbrennungsanlage enthalten die abziehenden Rauchgase jedoch noch eine hohe Belastung von Schadstoffen, insbesondere von halogenierten Kohlenwasserstoffen, weshalb derartige Verbrennungsanlagen nicht mehr den in Zukunft zu erwartenden Anforderungen an die Reinhaltung der Luft entsprechen.Such a method and a suitable combustion boiler are known for example from DE-PS 30 38 875. The transition from the combustion chamber to the flue gas outlet is constricted by nose-shaped projections of the walls of the combustion chamber which are formed on opposite sides. In the area of these noses within the post-combustion zone, secondary air is injected, whereby the flue gases are swirled in order to mix the flue gas strands created in the combustion chamber and thereby prevent caking on the oblique wall surfaces of the noses. In this known waste incineration plant, however, the exhausting flue gases still contain a high level of pollutants, in particular halogenated hydrocarbons, which is why such incineration plants no longer meet the air quality requirements to be expected in the future.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ausgehend von einem Verfahren der eingangs beschriebenen Art, dieses derart zu verbessern, daß eine derartige Führung und Durchmischung der Rauchgase möglich ist, daß ein beträchtlich verbesserter Abbau der in den Rauchgasen enthaltenen Schadstoffe, insbesondere der halogenierten Kohlenwasserstoffe, bewirkt wird.The present invention is based on the object, starting from a method of the type described above, to improve it in such a way that such guidance and mixing of the flue gases is possible that a considerably improved degradation of the pollutants contained in the flue gases, in particular the halogenated hydrocarbons, is effected.

Erfindungsgemäß wird dies dadurch erreicht, daß die Sekundärluft vor dem Eintritt der Rauchgase in die Nachver­brennungszone derart über den gesamten Strömungsquerschnitt der Rauchgase eingedüst wird, daß die Rauchgase in einer einheitlichen Temperaturzone des Feuerraums in Abzugsrich­tung vor dem Eindüsbereich abgebremst werden. Erfindungsge­mäß wird demnach innerhalb des Feuerraums ein Rauchgasstau bewirkt, so daß die Verweilzeit der Rauchgase im Feuerraum vergrößert wird. Dabei findet dieser Rauchgasstau in einem Bereich des Feuerraums statt, wo ein etwa einheitliches Temperaturniveau von 900° C bis 1050° C vorhanden ist. Hierdurch wird aber ein wirksamer Abbau der halogenierten Kohlenwasserstoffe im Rauchgas erzielt, wobei durch die gleichzeitig mit dem Rauchgasstau hervorgerufene intensive Durchwirbelung der Rauchase eine vollständige Auflösung der Rauchgassträhnen noch vor dem Eintritt in die Nachverbren­nungszone bewirkt wird. Erfindungsgemäß ist es dabei wesentlich, daß sich innerhalb des Feuerraums eine einheit­liche Temperaturzone ausbilden kann, da nur hierdurch, durch eine definierte Eindüsung der Sekundärluft in einen definierten Verbrennungsbereich, eine gezielte Steuerung und somit eine Optimierung herbeigeführt werden kann. Dabei ist es erfindungsgemäß von Vorteil, wenn eine Verweildauer der Rauchgase von ca. 8 Sekunden erreicht wird. Hierbei wird die Sekundärluft vorzugsweise mit einer Strömungsgeschwindigkeit von ca. 60 bis 90 m/s in den Feuerraum eingedüst.According to the invention, this is achieved in that the secondary air is injected over the entire flow cross section of the flue gases before the flue gases enter the afterburning zone in such a way that the flue gases are braked in a uniform temperature zone of the combustion chamber in the exhaust direction in front of the injection zone. According to the invention, therefore, a flue gas build-up is brought about within the combustion chamber, so that the dwell time of the flue gases in the combustion chamber is increased. This smoke gas accumulation takes place in an area of the combustion chamber where there is an approximately uniform temperature level of 900 ° C to 1050 ° C. In this way, however, an effective decomposition of the halogenated hydrocarbons in the flue gas is achieved, the complete swirling of the flue gas being caused at the same time as the flue gas accumulation causing the strands of flue gas to dissolve completely before entering the afterburning zone. According to the invention, it is essential that a uniform temperature zone can form within the combustion chamber, since this is the only way to achieve targeted control and thus optimization by means of a defined injection of the secondary air into a defined combustion area. It is advantageous according to the invention if the flue gases remain for about 8 seconds. The secondary air is preferably injected into the combustion chamber at a flow rate of approximately 60 to 90 m / s.

Weiterhin kann es erfindungsgemäß vorteilhaft sein, wenn die Nachverbrennung der Rauchgase durch eine Beschleunigung und Abbremsung der Rauchgase im Anschluß an die Eindüsungszone der Sekundärluft erfolgt. Durch dieses Nachverbrennungsver­fahren, was vorteilhafterweise durch eine venturirohrartige Einschnürung des Rauchgasabzugquerschnittes hinter dem Eindüsbereich der Sekundärluft verwirklicht wird, wird eine zusätzliche Abbremsung der Rauchgase vor dem Eintritt in die Nachverbrennungszone bewirkt, die die durch Eindüsung der Sekundärluft bewirkte Abbremsung im Feuerraum unterstützt. Dabei ist es aus der DE-OS 31 25 429 an sich bekannt, venturirohrartige Nachverbrennungszonen zu verwenden.Furthermore, it can be advantageous according to the invention if the afterburning of the flue gases takes place by accelerating and decelerating the flue gases following the injection zone of the secondary air. This post-combustion process, which is advantageously implemented by a venturi-like constriction of the flue gas discharge cross-section behind the injection area of the secondary air, brings about an additional deceleration of the flue gases before entering the post-combustion zone, which supports the deceleration in the combustion chamber caused by injection of the secondary air. It is known from DE-OS 31 25 429 to use venturi-like afterburning zones.

Weiterhin betrifft die vorliegende Erfindung einen Verbren­nungskessel, insbesondere für die Müllverbrennung, bestehend aus einem Feuerraum mit einem Feuerrost und mit einer oberhalb des Feuerrostes angeordneten Aufgabe, wobei der Feuerraum in seinem oberen, dem Feuerrost gegenüberliegen­den, in Richtung eines Rauchgasabzuges weisenden Bereich eine Drosselung aufweist und wobei im Bereich der Drosse­lung eine Lufteindüsvorrichtung angeordnet ist, die mehrere Düsenöffnungen besitzt, insbesondere zum Durchführen des erfindungsgemäßen, vorstehenden Verfahrens, wobei die Eindüsvorrichtung für die Sekundärluft in Strömungsrichtung der Rauchgase unmittelbar vor der symmetrisch zur Achse des Rauchgasabzuges venturirohrartig ausgebildeten Drosselung angeordnet ist und die Düsenöffnungen in Richtung des Feuerraums weisen.Furthermore, the present invention relates to a combustion boiler, in particular for waste incineration, consisting of a combustion chamber with a fire grate and with a task arranged above the fire grate, the combustion chamber having a throttle in its upper area opposite the fire grate and pointing in the direction of a flue gas outlet, and wherein in the area of the throttling there is an air injection device which has a plurality of nozzle openings, in particular for carrying out the above-mentioned method according to the invention, the injection device for the secondary air in the flow direction of the flue gases being arranged directly in front of the throttle valve-shaped, symmetrical to the axis of the flue gas discharge, and the nozzle openings point towards the firebox.

Durch die vorliegenden Erfindung, bedingt durch die hiermit erzielte Abbremsung in einem definierten Temperaturbereich des Feuerraums, wobei Verbrennungstemperaturen von etwa 900° C bis 1050° C vorliegen, wird eine derartig vollständi­ge Verbrennung der Rauchgase bewirkt, daß ein umfassender Abbau der halogenierten Kohlenwasserstoffe, insbesondere der Dioxine, gewährleistet ist. Auch die in den Rauchgasen mitgeführten, brennbaren Bestandteile werden infolge der intensiven Versorgung mit Sauerstoff und der innigen Vermischung schon in der der Eindüszone vorgelagerten Feuerraumzone vollständig ausgebrannt. Dadurch wird ein wesentlicher Beitrag zur Verbesserung der PCDD- und PCDF-­Emissionen gewährleistet.By means of the present invention, due to the braking achieved in this way in a defined temperature range of the combustion chamber, with combustion temperatures of approximately 900 ° C. to 1050 ° C., such a complete combustion of the flue gases is effected that a comprehensive Degradation of the halogenated hydrocarbons, especially the dioxins, is guaranteed. The flammable components carried in the flue gases are also completely burned out in the combustion chamber zone upstream of the injection zone due to the intensive supply of oxygen and the intimate mixing. This ensures a significant contribution to the improvement of PCDD and PCDF emissions.

Weitere vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen enthalten und werden anhand der in den beiliegenden Zeichnungen dargestellten Ausführungsbei­spiele der Erfindung näher erläutert. Es zeigen:

  • Fig. 1 einen Querschnitt durch einen erfindungsgemäßen Verbrennungskes­sel in Prinzipdarstellung,
  • Fig. 2 und 3 jeweils einen Schnitt durch eine weitere Ausführungsform eines erfindungsgemäßen Verbrennungskes­sels.
Further advantageous embodiments of the invention are contained in the subclaims and are explained in more detail with reference to the exemplary embodiments of the invention illustrated in the accompanying drawings. Show it:
  • 1 shows a cross section through a combustion boiler according to the invention in a basic representation,
  • 2 and 3 each show a section through a further embodiment of a combustion boiler according to the invention.

Ein erfindungsgemäße Verbrennungskessel 1, insbesondere ein Müllverbrennungskessel, wie in Fig. 1 dargestellt, besteht aus einem Feuerraum 2, in dessen Boden ein Verbrennungsrost 3 angeordnet ist. Hierbei handelt es sich im dargestellten Ausführungsbeispiel um einen Walzenrost, der schräg zur Horizontalen nach unten geneigt verläuft. Im gezeigten Ausführungsbeispiel besteht der Walzenrost aus sechs hintereinander angeordneten, parallel zueinander verlaufen­den Walzen. Unterhalb des Verbrennungsrostes 3 befinden sich Zuführungen 4 zum Zuführen kalter Verbrennungsluft, sogenannter Primärluft, in die den Rost 3 umgebende Verbrennungszone 5. Die über die Zuführungen 4 zugeführte Verbrennungsluft wird von einem Unterwindventilator aus dem Müllbunker angesaugt. Dabei wird diese Ansaugung so durchgeführt, daß die Staubfracht der angesaugten Luft möglichst gering ist. Durch große Ansaugquerschnitte, d. h. geringe Strömungsgeschwindigkeiten, wird die Luft vorzugs­weise direkt an der kesselhausseitigen Bunkerwand entnommen. Durch geeignete Maßnahmen ist dabei sichergestellt, daß die Ansauggeräusche den Schallpegel im Bunker nur unwesentlich erhöhen. Die Primärluftansaugkanäle sind an den Staubanfall­punkten mit ausreichend großen und leicht zugänglichen Reinigungsöffnungen versehen. In den Feuerraum 2 mündet oberhalb des oberen Endes deres Verbrennungsrostes 3, gesehen in Transportrichtung des Mülls, siehe Pfeil X, eine Müllaufgabe 6. Die Austrittsöffnung 7 der Müllaufgabe 6 erweitert sich über Schrägflächen 8, 9 in den Feuerraum 2. Der Feuerraum 2 oberhalb des Verbrennungsrostes 3 besteht aus einem unteren Abschnitt 2a, der oberhalb des unteren Endes des Rostes im Bereich einer den Kesselausgang bildenden Öffnung 10 und den beiden unteren Walzen des Walzenrostes ausgebildet ist, so daß dieser Abschnitt sich etwa im unteren Drittel des Verbrennungsrostes 3 befindet und von einer Deckenwandung 11, die parallel zum Rost 3 verläuft, nach oben begrenzt wird. Die Höhe des Abschnitts 2a oberhalb des Verbrennungsrostes 3, d. h. oberhalb der Walzen entspricht etwa dem Durchmesser der Walzen. Die Zone entspricht etwa der Abkühlzone der Verbrennungsschlacke. Im Anschluß an den Abschnitt 2a erweitert sich der Feuerraum 2 nach oben und mündet in einen Rauchgasabzug 12, wobei die Breite des Rauchgasabzuges 12 etwa der halben Länge des Rostes 3 entspricht und im dargestellten Ausführungsbeispiel beispielsweise ca. 5 m beträgt, und zwar in Anpassung an die gewünschte Verbrennungsleistung des erfindungsgemäßen Verbrennungskessels 1. Die etwa horizontale Verbindungsöff­nung 13 zwischen dem Feuerraum 2 und dem Rauchgasabzug 12 liegt unmittelbar oberhalb der Einmündung der Müllaufgabe 6 und bildet einen symmetrisch zur Achse des Rauchgasabzuges ausgebildeten Strömungsquerschnitt. Der Feuerraum 2 weist eine Rückwand 14 auf, die sich von der Deckenwandung 11 aus vertikal nach oben erstreckt und sich unmittelbar in die Rückwand 15 des Rauchgasabzuges 12 verlängert. Die Vorder­wand 16 des Rauchgasabzuges 12 verläuft parallel zu dessen Rückwand 15 und erstreckt sich vom Ende der Schrägfläche 9, die sich an die Müllaufgabe 6 anschließt, nach oben. Der Bereich des Rauchgasabzuges 12 unmittelbar in Strömungsrich­tung der Rauchgase gesehen hinter der Verbindungsöffnung 13 weist eine Drosselung 17 auf, die ebenfalls symmetrisch zur Rauchgasabzugsachse und im dargestellten vorteilhaften Ausführungsbeispiel venturirohrartig ausgebildet ist. Diese venturirohrartige Zone 17 stellt eine Nachbrennkammer dar, in dem das Rauchgasgemisch zunächst eine Beschleunigung auf ca. 8 bis 10 m/s erhält und dann eine Geschwindigkeitsver­ringerung auf etwa 4 bis 5 m/s. Hierdurch ergeben sich Relativbewegungen innerhalb des Rauchgasstromes, so daß eine intensive Mischung der Rauchgas- und Temperatursträhnen erfolgt. Dies bewirkt eine verbesserte Verbrennung des Rauchgasgemisches und damit einen erhöhten Abbau der darin enthaltenen Restschadstoffe, insbesondere der darin enthaltenen halogenierten Restkohlenwasserstoffe (z. B. Dioxine).A combustion boiler 1 according to the invention, in particular a waste incineration boiler, as shown in FIG. 1, consists of a combustion chamber 2, in the bottom of which a combustion grate 3 is arranged. In the exemplary embodiment shown, this is a roller grate that slopes downwards at an angle to the horizontal. In the exemplary embodiment shown, the roller grate consists of six rollers arranged one behind the other and running parallel to one another. Below the combustion grate 3 there are feeds 4 for feeding cold combustion air, so-called primary air, into the combustion zone 5 surrounding the grate 3. The feeds 4 fed through the feeds Combustion air is drawn in from the waste bunker by an underwind fan. This suction is carried out so that the dust load of the sucked air is as low as possible. Due to large intake cross-sections, ie low flow velocities, the air is preferably taken directly from the bunker wall on the boiler house side. Appropriate measures ensure that the intake noise only slightly increases the noise level in the bunker. The primary air intake ducts are provided with sufficiently large and easily accessible cleaning openings at the dust accumulation points. In the combustion chamber 2 opens above the upper end of the combustion grate 3, seen in the direction of transport of the waste, see arrow X, a waste task 6. The outlet 7 of the waste task 6 widens over inclined surfaces 8, 9 in the fire chamber 2. The fire chamber 2 above the Combustion grate 3 consists of a lower section 2a, which is formed above the lower end of the grate in the region of an opening 10 forming the boiler outlet and the two lower rollers of the roller grate, so that this section is located approximately in the lower third of the combustion grate 3 and of one Ceiling wall 11, which runs parallel to the grate 3, is limited at the top. The height of the section 2a above the combustion grate 3, ie above the rollers, corresponds approximately to the diameter of the rollers. The zone corresponds approximately to the cooling zone of the combustion slag. Following section 2a, the combustion chamber 2 widens upwards and opens into a flue gas outlet 12, the width of the flue gas outlet 12 corresponding approximately to half the length of the grate 3 and, in the exemplary embodiment shown, being approximately 5 m, for example, in adaptation the desired combustion output of the combustion boiler 1 according to the invention. The approximately horizontal connection opening 13 between the combustion chamber 2 and the flue gas outlet 12 is located directly above the mouth of the waste task 6 and forms a flow cross section symmetrical to the axis of the flue gas discharge. The combustion chamber 2 has a rear wall 14, which extends vertically upward from the ceiling wall 11 and extends directly into the rear wall 15 of the flue gas outlet 12. The front wall 16 of the flue gas outlet 12 runs parallel to the rear wall 15 and extends upwards from the end of the inclined surface 9, which adjoins the waste application 6. The area of the flue gas outlet 12 directly in the flow direction of the flue gases behind the connection opening 13 has a throttle 17, which is also symmetrical to the flue gas outlet axis and, in the advantageous exemplary embodiment shown, is designed like a venturi tube. This venturi tube-like zone 17 represents an afterburning chamber in which the flue gas mixture first accelerates to approximately 8 to 10 m / s and then reduces its speed to approximately 4 to 5 m / s. This results in relative movements within the flue gas flow, so that the flue gas and temperature strands are mixed intensively. This results in an improved combustion of the flue gas mixture and thus an increased breakdown of the residual pollutants contained therein, in particular the halogenated residual hydrocarbons contained therein (e.g. dioxins).

Die erfindungsgemäße glattflächige und relativ hohe Ausgestaltung des Feuerraums 2 mit einem vorzugsweise rechteckigen bzw. quadratischen Querschnitt oberhalb der Trocknungs- und Verbrennungszone des Verbrennungsrostes 3 ohne Vorsprünge und Nasen verhindert das Auftreten von Anbackungen. Darüber hinaus ermöglicht die erfindungsgemäße Ausgestaltung eine gleichmäßige Strömung der Rauchgase und die Ausbildung definierter Verbrennungszonen, wodurch das Verbrennungsverhalten im Sinne einer gleichmäßigen Verbren­nung verbessert wird. Dies wird noch dadurch unterstützt, daß bedingt durch die am Ausgang des Feuerraums angeordnete Drosselung zunächst ein Stau erzeugt wird, der die Verweil­zeit der Rauchgase im Feuerraum verlängert, wobei dies auch deshalb besonders vorteilhaft ist, da gerade im Bereich vor der Drosselung eine Temperaturzone vorhanden ist, die einen Temperaturbereich von etwa 900° C bis 1050° C aufweist, und gerade dieser Temperaturbereich für die Verbrennung der in den Rauchgasen enthaltenen halogenierten Kohlenwasserstoffe maßgeblich ist.The smooth-faced and relatively high design of the combustion chamber 2 with a preferably rectangular or square cross section above the drying and combustion zone of the combustion grate 3 without projections and noses prevents caking from occurring. In addition, the configuration according to the invention enables a uniform flow of the flue gases and the formation of defined combustion zones, as a result of which the combustion behavior is improved in the sense of a uniform combustion. This is further supported by that due to the throttling arranged at the exit of the combustion chamber, a congestion is first generated which prolongs the dwell time of the flue gases in the combustion chamber, which is also particularly advantageous since there is a temperature zone in the area before the throttling which has a temperature range of approximately 900 ° C to 1050 ° C, and it is precisely this temperature range that is decisive for the combustion of the halogenated hydrocarbons contained in the flue gases.

Weiterhin ist es vorteilhaft, wenn innerhalb der Verbin­dungsöffnung 13 zwischen dem Feuerraum 2 und dem Rauchgasab­zug 12, d. h. vor dem Eintritt in die venturirohrartige Zone 17, eine Eindüsvorrichtung 18 für weitere Zuluft vorgesehen ist. Diese über die Eindüsvorrichtung 18 zugeführte Zuluft wird im folgenden als Sekundärluft bezeichnet. Die Eindüs­vorrichtung 18 ist derart ausgestaltet, daß die aus dieser austretenden Luftstrahlen ein quasi lückloses Gitter bilden, so daß keine Rauchgassträhne diesen Bereich durchdringen kann, ohne intensiv mit der eingedüsten Sekundärluft in Berührung zu kommen. Im dargestellten Ausführungsbeispiel besteht diese Eindüsvorrichtung 18 aus einem Düsenbalken, welcher sich quer zur Richtung des Rauchgasstromes von der Vorder- zur Rückseite des Rauchgasabzuges 12 erstreckt und in den Wandungen gelagert ist. Je nach Größe des Quer­schnitts der Verbindungsöffnung 13 können aber auch zwei oder mehr beabstandete, parallele Düsenbalken 18 vorgesehen sein. Ein derartiger erfindungsgemäßer Düsenbalken 18 besteht aus einem druckfesten, hitzebständigen Material und weist vorzugsweise einen etwa quadratischen oder kreisförmi­gen Querschnitt auf, wobei in zwei benachbarten Seiten Düsenöffnungen 19 ausgebildet sind, die in Zeilenanordnung in den Kastenseiten 20, 21 angeordnet sind. Ein derartiger Düsenbalken ist an sich der DE-PS 30 38 875 bekannt, jedoch wirkt er bei der vorliegenden Erfindung gerade entgegenge­ setzt zu der Wirkungsrichtung gemäß der DE-PS 30 38 875. Der Düsenbalken 18 ist derart angeordnet, daß die die Düsenöff­nung 19 aufweisenden Kastenseiten 20, 21 schräg zur Rauchgasabzuglängsachse, vorzugsweise unter einem Innenwin­kel von 45°, dem Feuerraum 2 zugekehrt verlaufen. Infolge der zeilenartigen Anordnung der Düsenöffnungen 19 bilden die austretenden Luftstrahlen ein lückenloses Gitter, so daß keine Rauchgassträhne diesen Bereich durchdringen kann, ohne intensiv mit der eingedüsten Luft in Berührung zu kommen. Dabei ist die Eindüsrichtung der Sekundärluft der Abzugs­richtung des Rauchgases entgegengesetzt, so daß hierdurch Turbulenzen und eine Abtrennung der Rauchgase im Bereich vor der Drosselung 17 erzeugt werden, wodurch die Verweilzeit der Rauchgase in diesem Bereich, der ein Temperaturniveau von 900° C bis 1050° C aufweist, zusätzlich erhöht wird und eine Verweildauer der Rauchgase in diesem Bereich von ca. 8 Sekunden erreicht wird. Hierdurch wird der Abbau der halogenierten KohIenwasserstoffe gewährleistet. Die Sekundärluft kann aus den Düsenöffnungen 19 mit einer Geschwindigkeit von über 60 bis 90 m/s austreten. Weiterhin wird durch die Lufteindüsung bewirkt, daß die in den Rauchgasen mitgeführten brennbaren Bestandteile infolge der intensiven Versorgung mit Sauerstoff schon in der oberen Feuerraumzone vollständig ausbrennen. Die Sicherstellung des Ausbrandes bei allen Betriebszuständen innerahlb des Feuerungsleistungsdiagrammes wird durch die neuentwickelte Gestaltung des Feuerraums ebenso gewährleistet wie insbeson­dere auch die Verhinderung der Entstehung von halogenierten Kohlenwasserstoffen. Eindeutig positive Resultate bezüglich der PCDD/F-Verminderung zeigen Untersuchungen bei Erhöhung der Turbulenz und Verweilzeit der Verbrennungsgase in heißen Temperaturzonen, wie dies erfindungsgemäß bewirkt wird. Nach derzeitigem Kenntnisstand ist es möglich, bei den Verbren­nungstemperaturen, die eine Müllfeuerung bietet, bei einer homogenen Erwärmung der Rauchgase auf 1000° C über eine Dauer von 2 Sekunden, die unerwünschten entstandenen Produkte, wie insbesondere halogenierte Kohlenwasserstoffe, abzubauen.Furthermore, it is advantageous if an injection device 18 for further supply air is provided within the connection opening 13 between the combustion chamber 2 and the flue gas outlet 12, ie before entering the venturi tube-like zone 17. This supply air supplied via the injection device 18 is referred to below as secondary air. The injection device 18 is designed in such a way that the air jets emerging from it form a quasi-seamless grid, so that no streak of flue gas can penetrate this area without coming into intensive contact with the injected secondary air. In the exemplary embodiment shown, this injection device 18 consists of a nozzle bar which extends transversely to the direction of the flue gas flow from the front to the rear of the flue gas outlet 12 and is mounted in the walls. Depending on the size of the cross section of the connection opening 13, two or more spaced, parallel nozzle bars 18 can also be provided. Such a nozzle bar 18 according to the invention consists of a pressure-resistant, heat-resistant material and preferably has an approximately square or circular cross section, nozzle openings 19 being formed in two adjacent sides and arranged in a line arrangement in the box sides 20, 21. Such a nozzle bar is known per se from DE-PS 30 38 875, but in the present invention it counteracts precisely sets to the direction of action according to DE-PS 30 38 875. The nozzle bar 18 is arranged such that the box sides 20, 21 having the nozzle opening 19 run obliquely to the flue gas discharge longitudinal axis, preferably at an internal angle of 45 °, facing the combustion chamber 2. As a result of the line-like arrangement of the nozzle openings 19, the emerging air jets form a gapless grille, so that no streak of flue gas can penetrate this area without coming into intensive contact with the injected air. The direction of injection of the secondary air is opposite to the direction of exhaust of the flue gas, so that turbulence and a separation of the flue gases are generated in the area in front of the throttle 17, which increases the dwell time of the flue gases in this area, which has a temperature level of 900 ° C to 1050 ° C has, is additionally increased and a residence time of the flue gases in this area of approximately 8 seconds is achieved. This ensures the degradation of the halogenated hydrocarbons. The secondary air can escape from the nozzle openings 19 at a speed of over 60 to 90 m / s. Furthermore, the air injection means that the combustible components carried in the flue gases burn out completely in the upper combustion chamber zone as a result of the intensive supply of oxygen. Ensuring the burnout in all operating conditions within the furnace performance diagram is ensured by the newly developed design of the combustion chamber as well as in particular the prevention of the formation of halogenated hydrocarbons. Clearly positive results with regard to the PCDD / F reduction show studies with increased turbulence and residence time of the combustion gases in hot temperature zones, as is achieved according to the invention. According to the current state of knowledge, it is possible to achieve a homogeneous heating of the flue gases to 1000 ° C above the combustion temperatures offered by waste combustion Duration of 2 seconds to break down the undesired products, in particular halogenated hydrocarbons.

Weiterhin können vorteilhafterweise, wie in Fig. 2 darge­stellt ist, in der Vorderwand im Bereich der Schrägfläche 9 kurz vor dem Übergang zur venturirohrartigen Zone 17 sowie in der Rückwand 14 kurz oberhalb des Endes der Deckenwandung 11 Tertiärluftdüsen 22 angeordnet sein. Durch diese wird Tertiärluft in den Rauchgasstrom eingeblasen, und zwar mit einer Geschwindigkeit vorzugsweise von mehr als 60 m/s. Hierdurch soll eine gute Durchmischung erreicht werden, wobei die Eindringtiefe der Luftstrahlen und die Verteilung der Düsen derart bemessen sind, daß der Rauchgasstrom, insbesondere im Wandungsbereich vollständig erfaßt wird. Diese Düsen sind als Ergänzung zu den Düsenbalken 18 vorteilhaft, da mit ihnen insbesondere die Bereiche in Nähe der Wandungen hinreichend mit Luft durchdrungen werden ,um eine vollständige Verbrennung auch in diesem Bereich zu bewirken.Furthermore, as shown in FIG. 2, tertiary air nozzles 22 can advantageously be arranged in the front wall in the area of the inclined surface 9 shortly before the transition to the venturi-like zone 17 and in the rear wall 14 just above the end of the ceiling wall 11. Through this, tertiary air is blown into the flue gas stream, preferably at a speed of more than 60 m / s. This is intended to achieve thorough mixing, the depth of penetration of the air jets and the distribution of the nozzles being dimensioned such that the flue gas stream, in particular in the wall area, is completely detected. These nozzles are advantageous as a supplement to the nozzle bars 18, since with them in particular the areas in the vicinity of the walls are adequately penetrated with air in order to effect complete combustion in this area as well.

Das Sekundär- und Tertiärluftsystem sind völlig getrennt vom Primärluftsystem ausgebildet. Die Ansaugung erfolgt durch separate Luftgebläse unterhalb der Kesserldecke. Mit Rücksicht auf Geräuschentwicklung sind sämtliche Ansaugkanä­le und druckseitige Luftkanäle so dimensioniert, daß die Strömungsgeschwindigkeit von 15 m/s nicht überschritten wird. Weiterhin ist es vorteilhaft, wenn die Luftkanäle ausreichend ausgesteift sind, und die Verbindungen der Kanäle und der Aufhängungen an Gebäudeteilen, Kessel- und Feuerungsgerüst elastisch und körperschalldämmend ausgeführt sind.The secondary and tertiary air systems are completely separate from the primary air system. The suction is carried out by separate air blowers below the Kesserldecke. With regard to the development of noise, all intake ducts and pressure-side air ducts are dimensioned so that the flow speed of 15 m / s is not exceeded. It is also advantageous if the air ducts are adequately stiffened and the connections of the ducts and the suspensions on parts of the building, boiler and furnace scaffolding are designed to be elastic and structure-borne noise-reducing.

Die Zufuhr von Sekundärluft und vorzugsweise auch von Tertiärluft gemäß der Erfindung ermöglicht eine Verminderung der zugeführten Primärluftmenge auf etwa η = 1 bis 1,2 (η = Luftüberschußzahl), so daß in der Verbrennungszone 5 eine unvollständige Verbrennung erfolgt und der Verbren­nungsvorgang verzögert wird. Hierdurch reduziert sich die NOx-Gasbildung im Feuerraum. Die erfindungsgemäße Zufuhr der Sekundärluft mit der Vermischung im Venturirohr 17 sichert die abschließende vollkommene Verbrennung und die Einhaltung einer Luftüberschußzahl von ca. η = 1,5 - 1,8 im Rauchgas­abzug. Somit kann durch die Erfindung der NOx-Anteil im Rauchgas insgesamt bei vollständiger Verbrennung verringert werden.The supply of secondary air and preferably also tertiary air according to the invention enables a reduction the amount of primary air supplied to about η = 1 to 1.2 (η = excess air number), so that incomplete combustion takes place in combustion zone 5 and the combustion process is delayed. This reduces the NO x gas formation in the combustion chamber. The supply of secondary air according to the invention with the mixing in the venturi tube 17 ensures the final perfect combustion and the maintenance of an excess air number of approx. Η = 1.5-1.8 in the flue gas outlet. Thus, the total NO x content in the flue gas can be reduced with complete combustion by the invention.

In weiterer Ausgestaltung der Erfindung kann es zweckmäßig sein, wenn wie in Fig. 1 dargestellt ist, mit dem Sekundär­luftsystem eine Ammoniak-Anlage 24 verbunden ist. Hierdurch ist es erfindungsgemäß möglich, über die Düsenbalken 18 in den Bereich der Verbindungsöffnung 13 Ammoniak einzudüsen, das sich dort innig mit dem Rauchgasstrom vermischt, wobei die Eindüsung in einen Feuerraumbereich erfolgt, in dem ein effektives Temperaturniveau von ca. 1000° C herrscht. Bei diesem Temperaturniveau ist der Stickoxidanteil wie folgt, 5 bis 10 % NO₂ und 90 bis 95 % NO. Indem nun gemäß der Erfindung im Bereich der Verbindungsöffnung vor dem Venturirohr 17 Ammoniak eingedüst wird, erfolgt eine selektive Reduktion der Stickoxide, so daß durch die Zugabe von Ammoniak Stickstoff und Wasser entsteht, und zwar ohne daß hierzu Katalysatoren erforderlich sind. Auch hier gewährleistet die Erfindung eine gleichmäßige Durchdringung des Rauchgases mit Ammoniak, und zwar sowohl im Feuerraum als auch im Anschluß an den Feuerraum im Nachbrennbereich der venturirohrartigen Zone. Zwar ist aus der DE-PS 24 11 672 an sich ein Verfahren zum Entfernen von Stick­stoffmonoxid aus sauerstoffhaltigen Verbrennungsabgasen durch selektive Reduktion mit Ammoniak bekannt, jedoch ergibt sich die Anwendbarkeit dieses Verfahrensprinzips bei der Müllverbrennung erst in Verbindung mit der erfindungsge­mäßen Anordnung und dem erfindungsgemäßen Prinzip der Eindüsung des Ammoniaks mit dem erfindungsgemäßen Sekundär­luftsystem, wobei eine Mischung aus Sekundärluft und Ammoniak wird.In a further embodiment of the invention, it may be expedient if, as shown in FIG. 1, an ammonia system 24 is connected to the secondary air system. This makes it possible according to the invention to inject ammonia via the nozzle bars 18 into the area of the connection opening 13, which there mixes intimately with the flue gas stream, the injection being carried out in a combustion chamber area in which there is an effective temperature level of approximately 1000 ° C. At this temperature level, the nitrogen oxide content is as follows, 5 to 10% NO₂ and 90 to 95% NO. By injecting ammonia in the area of the connection opening in front of the venturi tube 17 according to the invention, a selective reduction of the nitrogen oxides takes place, so that nitrogen and water are formed by the addition of ammonia, without the need for catalysts. Here too, the invention ensures a uniform penetration of the flue gas with ammonia, both in the combustion chamber and in connection with the combustion chamber in the afterburning area of the venturi-like zone. From DE-PS 24 11 672 a method for removing nitrogen monoxide from oxygen-containing combustion exhaust gases by selective reduction with ammonia is known per se, but the applicability of this method principle results in waste incineration only in connection with the arrangement according to the invention and the principle according to the invention of the injection of ammonia with the secondary air system according to the invention, whereby a mixture of secondary air and ammonia.

Die Erfindung ermöglicht zudem eine Steuerung bzw. Regelung der Zufuhr der Sekundärluft und/oder der Ammoniakzufuhr in Abhängigkeit von der in der Eindüszone der Sekundärluft bestehenden Temperatur, die durch an den Düsenbalken angebrachte Temperaturfühler gemessen werden kann. Hierbei kann die Temperatur durch Erhöhung bzw. Reduzierung der Sekundärluftwerte erhöht bzw. verringert werden.The invention also makes it possible to control or regulate the supply of the secondary air and / or the ammonia supply as a function of the temperature existing in the injection zone of the secondary air, which can be measured by temperature sensors attached to the nozzle bar. The temperature can be increased or decreased by increasing or reducing the secondary air values.

Im dargestellten Ausführungsbeispiel gemäß Fig. 3 besteht diese Eindüsvorrichtung aus vorzugsweise zwei Düsenbalken 18, welche sich quer zur Richtung des Rauchgasstromes von der Vorder- zur Rückseite des Rauchgasabzuges 12 erstrecken und in den Wandungen mittels Fest- und Loslager drehbar gelagert sind. Die Drehzahl und die Drehrichtung des Düsenbalkens können stufenlos geregelt gefahren werden.In the exemplary embodiment shown in FIG. 3, this injection device preferably consists of two nozzle bars 18, which extend transversely to the direction of the flue gas flow from the front to the rear of the flue gas outlet 12 and are rotatably mounted in the walls by means of fixed and floating bearings. The speed and direction of rotation of the nozzle bar can be steplessly controlled.

Das bei Verbrennung auf dem Walzenrost 3 entstehende Rauchgas wird insbesondere durch den rotierenden Luftsauer­stoff noch intensiver durchmischt. Hierbei entstehen vorzugsweise zwei gegenläufig rotierende Feuerwalzen.The flue gas that arises during combustion on the roller grate 3 is mixed even more intensively, in particular by the rotating atmospheric oxygen. This preferably creates two counter-rotating fire rollers.

Im übrigen sind gleiche Teile, wie in den Fig. 1 und 2, mit denselben Bezugsziffern versehen.Otherwise, the same parts as in FIGS. 1 and 2 are provided with the same reference numerals.

Claims (20)

1. Verfahren zum Verbrennen, insbesondere von Müll, wobei zu verbrennende Stoffe in einen Feuerraum eingeleitet und auf einem Feuerrost im Feuerraum verbrannt werden sowie die entstehenden Rauchgase aus dem Feuerraum abziehen und durch Zugabe von Sekundärluft verwirbelt werden und eine Nachverbrennung der Rauchgase erfolgt, dadurch gekennzeichnet,
daß die Sekundärluft vor dem Eintritt der Rauchgase in die Nachverbrennungszone derart über den gesamten Strömungsquerschnitt der Rauchgase eingedüst wird, daß die Rauchgase in einer einheitlichen Temperaturzone des Feuerraums in Abzugrichtung vor dem Eindüsbereich abgebremst, d. h. gestaut werden.
1.Procedure for incineration, in particular waste, in which substances to be incinerated are introduced into a combustion chamber and burned on a fire grate in the combustion chamber, and the resulting smoke gases are removed from the combustion chamber and swirled by adding secondary air and the smoke gases are afterburned, characterized ,
that the secondary air is injected over the entire flow cross-section of the flue gases before the flue gases enter the afterburning zone in such a way that the flue gases are braked in a uniform temperature zone of the combustion chamber in the exhaust direction in front of the injection area, ie are stowed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß die Abbremsung derart erfolgt, daß eine Verweil­dauer der Rauchgase von ca. 8 Sekunden erreicht wird.
2. The method according to claim 1, characterized in that
that the braking takes place in such a way that the fumes remain for about 8 seconds.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
daß die Sekundärluft mit einer Strömungsgeschwindigkeit von ca. 60 bis 90 m/s eingedüst wird.
3. The method according to claim 1 or 2, characterized in
that the secondary air is injected at a flow rate of about 60 to 90 m / s.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet,
daß die Sekundärluft in einem Bereich des Feuerraums mit einem Temperaturniveau von 900° C bis 1050° C eingedüst wird.
4. The method according to one or more of claims 1 to 3, characterized in that
that the secondary air is injected into an area of the combustion chamber with a temperature level of 900 ° C to 1050 ° C.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet,
daß die Sekundärluft in dünnen, dicht nebeneinander liegenden Strahlen eingedüst wird, und zwar vorzugswei­se unter einem Winkel von ca. 45° zur Abzugsrichtung der Rauchgase.
5. The method according to one or more of claims 1 to 4, characterized in
that the secondary air is injected in thin, closely spaced jets, preferably at an angle of approximately 45 ° to the direction of the flue gases.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet,
daß die Nachverbrennung der Rauchgase durch eine Beschleunigung und Abbremsung der Rauchgase erfolgt.
6. The method according to one or more of claims 1 to 5, characterized in
that the afterburning of the flue gases takes place by accelerating and decelerating the flue gases.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet,
daß die Eindüsung der Sekundärluft auf einer Kreisbahn erfolgt.
7. The method according to one or more of claims 1 to 6, characterized in that
that the secondary air is injected on a circular path.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet,
daß eine Steuerung der eingedüsten Sekundärluft in bezug auf die Strömungsgeschwindigkeit in Abhängigkeit von der Feuerraumtemperatur im Eindüsbereich erfolgt.
8. The method according to one or more of claims 1 to 7, characterized in
that the injected secondary air is controlled in relation to the flow rate as a function of the combustion chamber temperature in the injection region.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet,
daß die Strömungsgeschwindigkeit der Rauchgase nach der Erhöhung der Nachverbrennungszone wieder etwa auf die Feuerraum-Strömungsgeschwindigkeit verringert wird.
9. The method according to claim 8, characterized in
that the flow rate of the flue gases after the increase in the afterburning zone is reduced again to about the combustion chamber flow rate.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet,
daß vor dem Übergang vom Feuerraum zum Rauchgasabzug Tertiärluft, vorzugsweise mit einer Geschwindigkeit von mindestens 60 m/s, eingeblasen wird.
10. The method according to one or more of claims 1 to 9, characterized in
that tertiary air, preferably at a speed of at least 60 m / s, is blown in before the transition from the combustion chamber to the flue gas outlet.
11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet,
daß zusammen mit der Sekundärluft Ammoniak in den Rauchgasstrom eingedüst wird.
11. The method according to one or more of claims 1 to 10, characterized in that
that ammonia is injected into the flue gas stream together with the secondary air.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet,
daß das Ammoniak in einen Bereich des Feuerraumes eingedüst wird, indem eine effektive Temperatur von ca. 1000° C vorliegt.
12. The method according to claim 11, characterized in
that the ammonia is injected into an area of the combustion chamber at an effective temperature of approx. 1000 ° C.
13. Verbrennungskessel, insbesondere für die Müllverbren­nung, bestehend aus einem Feuerraum mit einem Feuerrost und mit einer oberhalb des Feuerrostes angeordneten Aufgabe, wobei der Feuerraum in seinem oberen, dem Feuerrost gegenüberliegenden, in Richtung eines Rauchgasabzuges weisenden Bereich eine Drosselung aufweist und wobei im Bereich der Drosselung eine Lufteindüsvorrichtung angeordnet ist, die mehrere Düsenöffnungen besitzt, insbesondere zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet,
daß die Eindüsvorrichtung (18) für die Sekundärluft in Strömungsrichtung der Rauchgase unmittelbar vor der symmetrisch zur Achse X-X des Rauchgasabzuges (12) venturirohrartig ausgebildeten Drosselung angeordnet ist und die Düsenöffnungen (19) in Richtung des Feuerraums (2) weisen.
13.Burning boiler, in particular for waste incineration, consisting of a combustion chamber with a fire grate and with a task arranged above the fire grate, the combustion chamber having a throttle in its upper area opposite the fire grate, pointing in the direction of a flue gas outlet, and in the area of Throttling an air injection device is arranged, which has a plurality of nozzle openings, in particular for performing the method according to claims 1 to 12, characterized in that
that the injection device (18) for the secondary air is arranged in the flow direction of the flue gases immediately in front of the throttle valve-like throttle, which is symmetrical to the axis XX of the flue gas outlet (12), and the nozzle openings (19) point in the direction of the combustion chamber (2).
14. Verbrennungskessel nach Anspruch 13, dadurch gekennzeichnet,
daß im Bereich des engsten Querschnitts der Drosselung (17) eine Strömungsgeschwindigkeit von 8 bis m/s und im in Strömungsrichtung dahinterliegenden, auf den Querschnitt des Rauchgasabzuges (12) erweiterten Bereich eine Strömungsgeschwindigkeit von 4 bis 5 m/s vorhanden ist.
14. Combustion boiler according to claim 13, characterized in
that there is a flow velocity of 8 to m / s in the area of the narrowest cross section of the throttling (17) and a flow velocity of 4 to 5 m / s in the area behind in the flow direction, expanded to the cross section of the flue gas discharge (12).
15. Verbrennungskessel nach Anspruch 13 oder 14, dadurch gekennzeichnet,
daß in Strömungsrichtung der Rauchgase unmittelbar vor der Drosselung (17) mindestens ein die Eindüsvorrich­tung bildender Düsenbalken (18) angeordnet ist, in dessen beiden angrenzenden, dem Feuerraum (2) zuge­kehrten zur Längsachse des Rauchgasabzuges (12) geneigt verlaufenden Kastenseiten (20, 21) mehrere Düsenöffnungen (19) in Zeilenordnung ausgebildet sind.
15. Combustion boiler according to claim 13 or 14, characterized in
that at least one nozzle bar (18) forming the injection device is arranged in the flow direction of the flue gases directly in front of the throttling (17), in its two adjacent box sides (20, 21) which are inclined to the longitudinal axis of the flue gas outlet (12) and which face the combustion chamber (2) a plurality of nozzle openings (19) are formed in line order.
16. Verbrennungskessel nach Anspruch 15, dadurch gekennzeichnet,
daß der Düsenbalken (18) drehbar innerhalb der Wandungen des Feuerraums gelagert ist und über eine Antriebsvorrichtung angetrieben wird.
16. Combustion boiler according to claim 15, characterized in
that the nozzle bar (18) is rotatably mounted within the walls of the combustion chamber and is driven by a drive device.
17. Verbrennungskessel nach einem oder mehreren der Ansprüche 13 bis 16, dadurch gekennzeichnet,
daß die Lufteindüsvorrichtung (18) mit einer Luftzu­führeinrichtung und einer Ammoniakgasanlage (24) verbunden ist.
17. Combustion boiler according to one or more of claims 13 to 16, characterized in that
that the air injection device (18) is connected to an air supply device and an ammonia gas system (24).
18. Verbrennungskessel nach einem oder mehreren der Ansprüche 13 bis 17, dadurch gekennzeichnet,
daß zwei Düsenbalken (18) parallel zueinander derart angeordnet sind, daß zwischen ihnen und den jeweils benachbarten Wänden (15, 16) des Rauchgasabzuges (12) dieselben Abstände gegeben sind.
18. Combustion boiler according to one or more of claims 13 to 17, characterized in
that two nozzle bars (18) are arranged parallel to each other such that between them and each adjacent walls (15, 16) of the flue gas outlet (12) are given the same distances.
19. Verbrennungskessel nach einem oder mehreren der Ansprüche 13 bis 18, dadurch gekennzeichnet,
daß der Feuerraum (2) glattwandig ausgebildet ist und in seinem Querschnitt dem Querschnitt des Rauchgasabzu­ges (12) angepaßt ist, wobei seine Rückwand (14) parallel zur Achse X-X vertikal verläuft und in den Rauchgasabzug (12) unmittelbar geradlinig übergeht.
19. Combustion boiler according to one or more of claims 13 to 18, characterized in
that the combustion chamber (2) is smooth-walled and its cross-section is adapted to the cross-section of the flue gas outlet (12), its rear wall (14) running parallel to the axis XX vertically and merging directly into the flue gas outlet (12).
20. Verbrennungskessel nach einem oder mehreren der Ansprüche 13 bis 19, dadurch gekennzeichnet,
daß im Feuerraum (2) Tertiärluftdüsen (22) angeordnet sind, die einerseits in der Vorderwand des Feuerraums kurz vor dem Übergang zur venturirohrartigen Zone (17) und andererseits in der Rückwand (14) oberhalb des Endes einer oberhalb des Feuerrostes (3) parallel zu diesem verlaufenden Deckenwandung (11) in Zeilenanord­nung hintereinander angeordnet sind.
20. Combustion boiler according to one or more of claims 13 to 19, characterized in
that in the combustion chamber (2) tertiary air nozzles (22) are arranged, on the one hand in the front wall of the combustion chamber shortly before the transition to the venturi tube-like zone (17) and on the other hand in the rear wall (14) above the end of one above the fire grate (3) parallel to this extending ceiling wall (11) are arranged in a row in a row.
EP88105522A 1987-04-09 1988-04-07 Method of burning refuse Expired - Lifetime EP0286077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88105522T ATE70611T1 (en) 1987-04-09 1988-04-07 METHOD OF BURNING WASTE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3712039 1987-04-09
DE19873712039 DE3712039A1 (en) 1987-04-09 1987-04-09 Incineration boiler, in particular for incinerating wastes
DE19873716088 DE3716088A1 (en) 1987-04-09 1987-05-14 METHOD FOR BURNING IN PARTICULAR MUELL
DE3716088 1987-05-14

Publications (4)

Publication Number Publication Date
EP0286077A2 true EP0286077A2 (en) 1988-10-12
EP0286077A3 EP0286077A3 (en) 1989-03-15
EP0286077B1 EP0286077B1 (en) 1991-12-18
EP0286077B2 EP0286077B2 (en) 1996-07-31

Family

ID=25854498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88105522A Expired - Lifetime EP0286077B2 (en) 1987-04-09 1988-04-07 Method of burning refuse

Country Status (6)

Country Link
US (2) US4940006A (en)
EP (1) EP0286077B2 (en)
JP (1) JPH0656255B2 (en)
AT (1) ATE70611T1 (en)
DE (2) DE3716088A1 (en)
ES (1) ES2005521T5 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509364A2 (en) * 1991-04-15 1992-10-21 Ebara Corporation Incinerator
US5257585A (en) * 1991-04-15 1993-11-02 Ebara Corporation Incinerator
DE4236073A1 (en) * 1992-10-26 1994-04-28 Waermetechnik Dr Pauli Gmbh Burnout device and method for burning out fuels
US5741130A (en) * 1992-06-05 1998-04-21 Ecological Combustion I Stockholm Ab Method and apparatus for minimizing disruption caused by depositions on a supply means for a combustion of gasification plant
EP1493967A1 (en) 2003-07-03 2005-01-05 VISSER &amp; SMIT HANAB B.V. Incineration system and bluff body therefor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458967B1 (en) * 1989-02-17 1994-07-20 Ebara Corporation Fluidized bed combustion furnace
DE3939197C3 (en) * 1989-11-27 1999-02-25 Martin Umwelt & Energietech Method and device for reducing the nitrogen oxide concentration in the exhaust gas stream from combustion processes
JPH03244908A (en) * 1990-02-22 1991-10-31 Hitachi Zosen Corp Combustion promoting device in incinerator
JPH03244907A (en) * 1990-02-22 1991-10-31 Hitachi Zosen Corp Incinerator
US5054405A (en) * 1990-11-02 1991-10-08 Serawaste Systems Corporation High temperature turbulent gasification unit and method
US5395596A (en) * 1993-05-11 1995-03-07 Foster Wheeler Energy Corporation Fluidized bed reactor and method utilizing refuse derived fuel
US5546875A (en) * 1993-08-27 1996-08-20 Energy And Environmental Research Center Foundation Controlled spontaneous reactor system
US5401130A (en) * 1993-12-23 1995-03-28 Combustion Engineering, Inc. Internal circulation fluidized bed (ICFB) combustion system and method of operation thereof
ATE203809T1 (en) * 1995-05-05 2001-08-15 Bbp Environment Gmbh METHOD AND FIREPLACE FOR BURNING WASTE
JP3415079B2 (en) * 1999-10-04 2003-06-09 要太郎 内田 Incinerator
DE10050575C5 (en) * 2000-10-12 2009-10-29 Martin GmbH für Umwelt- und Energietechnik Process for burning waste products
US20080149010A1 (en) * 2006-12-22 2008-06-26 Covanta Energy Corporation Tertiary air addition to solid waste-fired furnaces for nox control
EP2505919A1 (en) * 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Method for optimising the burn-off of exhaust gases of an incinerator assembly by homogenization of the flue gases above the combustion bed by means of flue gas injection
DE102012000262B4 (en) 2012-01-10 2015-12-17 Jörg Krüger Method and device for improving the burnout of slags on combustion grates
CN103032885B (en) * 2012-12-20 2016-08-03 北京中煤神州节能环保技术开发有限公司 Waveform separates rotation flying dust and burns device
CN103062757B (en) * 2012-12-20 2016-07-06 北京中煤神州节能环保技术开发有限公司 The multiple overheavy firing chain-grate boiler of subregion
WO2015069784A1 (en) * 2013-11-08 2015-05-14 Zheng Shi Adjusting the flame characteristic within a combustor
CN106642133B (en) * 2017-01-06 2019-08-09 舟山旺能环保能源有限公司 A kind of rubbish utilization system
PL243551B1 (en) * 2017-11-24 2023-09-11 Ics Ind Combustion Systems Spolka Z Ograniczona Odpowiedzialnoscia Method for reduction of nitrogen oxides and carbon monoxide in combustion chambers of water boilers and steam boilers, particularly the stoker-fired boilers and the system for reduction of nitrogen oxides and carbon monoxide in combustion chambers of water boilers and steam boilers, particularly the stoker-fired boilers
JP7081407B2 (en) 2018-09-11 2022-06-07 株式会社Ihi boiler
EP3896337A1 (en) * 2020-04-16 2021-10-20 General Electric Company Combustion system for a boiler with fuel stream distribution means in a burner and method of combustion
KR102523670B1 (en) * 2022-08-02 2023-04-20 진도종합건설(주) Incinerator with ammonia injection nozzle device with improved nitrogen oxide removal efficiency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE84844C (en) *
FR482877A (en) * 1916-09-13 1917-05-02 Anders Borch Reck Sectional boiler
FR587356A (en) * 1924-10-13 1925-04-17 Air barrier for fireplaces
DE1054645B (en) * 1954-12-22 1959-04-09 Babcoc & Wilcox Dampfkessel We Coal dust firing with a radiation chamber above the combustion chamber
FR2290243A1 (en) * 1974-11-11 1976-06-04 Mitsubishi Chem Ind PROCESS FOR THE TREATMENT OF AN EXHAUST GAS PRODUCED BY COMBUSTION AND CONTAINING NITROGEN OXIDES
DE3207433A1 (en) * 1982-03-02 1983-09-08 Rudolf Dr. 6800 Mannheim Wieser Water-tube boiler with grate firing
WO1987006999A1 (en) * 1986-05-12 1987-11-19 Konstantin Mavroudis Device for supply of secondary air, and boiler with the device
DE3038875C2 (en) * 1980-10-15 1990-05-31 Vereinigte Kesselwerke AG, 4000 Düsseldorf Waste incineration plant

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2235335B1 (en) * 1973-06-27 1978-01-27 Martin Feuerungsbau
US4172720A (en) * 1978-07-06 1979-10-30 United States Bronze Powders, Inc. Flaked metal powders and method of making same
JPS5520380A (en) * 1978-08-01 1980-02-13 Hitachi Zosen Corp Catalyst-free denitration method of incinerator
JPS6137956Y2 (en) * 1978-11-22 1986-11-04
DE2935494A1 (en) * 1979-09-03 1981-03-19 Saxlund, geb. Eriksen, Astrid Alice, 3040 Soltau METHOD AND DEVICE FOR OPERATING A BOILER SYSTEM WITH STOKER FIRE
DE3125429A1 (en) * 1981-06-27 1983-02-03 Erk Eckrohrkessel Gmbh, 1000 Berlin Device for thorough mixing of gas strands
JPS5837415A (en) * 1981-08-28 1983-03-04 株式会社 タクマ Nox decreasing incinerator
GB2136939B (en) * 1983-03-23 1986-05-08 Skf Steel Eng Ab Method for destroying refuse
JPS6036826A (en) * 1983-09-05 1985-02-26 Hitachi Zosen Corp Method of reducing production of nox in furnace by blowing in steam
US4589353A (en) * 1985-01-29 1986-05-20 Combustion Engineering, Inc. Wood burning furnace
JPH0799253B2 (en) * 1986-01-21 1995-10-25 石川島播磨重工業株式会社 Secondary combustion promotion method of fluidized bed furnace.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE84844C (en) *
FR482877A (en) * 1916-09-13 1917-05-02 Anders Borch Reck Sectional boiler
FR587356A (en) * 1924-10-13 1925-04-17 Air barrier for fireplaces
DE1054645B (en) * 1954-12-22 1959-04-09 Babcoc & Wilcox Dampfkessel We Coal dust firing with a radiation chamber above the combustion chamber
FR2290243A1 (en) * 1974-11-11 1976-06-04 Mitsubishi Chem Ind PROCESS FOR THE TREATMENT OF AN EXHAUST GAS PRODUCED BY COMBUSTION AND CONTAINING NITROGEN OXIDES
DE3038875C2 (en) * 1980-10-15 1990-05-31 Vereinigte Kesselwerke AG, 4000 Düsseldorf Waste incineration plant
DE3207433A1 (en) * 1982-03-02 1983-09-08 Rudolf Dr. 6800 Mannheim Wieser Water-tube boiler with grate firing
WO1987006999A1 (en) * 1986-05-12 1987-11-19 Konstantin Mavroudis Device for supply of secondary air, and boiler with the device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509364A2 (en) * 1991-04-15 1992-10-21 Ebara Corporation Incinerator
EP0509364A3 (en) * 1991-04-15 1993-01-20 Ebara Corporation Incinerator
US5257585A (en) * 1991-04-15 1993-11-02 Ebara Corporation Incinerator
CN1039154C (en) * 1991-04-15 1998-07-15 株式会社荏原制作所 Incinerator
US5741130A (en) * 1992-06-05 1998-04-21 Ecological Combustion I Stockholm Ab Method and apparatus for minimizing disruption caused by depositions on a supply means for a combustion of gasification plant
DE4236073A1 (en) * 1992-10-26 1994-04-28 Waermetechnik Dr Pauli Gmbh Burnout device and method for burning out fuels
EP1493967A1 (en) 2003-07-03 2005-01-05 VISSER &amp; SMIT HANAB B.V. Incineration system and bluff body therefor

Also Published As

Publication number Publication date
DE3866919D1 (en) 1992-01-30
EP0286077B2 (en) 1996-07-31
JPS63282414A (en) 1988-11-18
EP0286077A3 (en) 1989-03-15
US5009173A (en) 1991-04-23
ES2005521A4 (en) 1989-03-16
ES2005521T5 (en) 1996-10-16
DE3716088A1 (en) 1989-02-02
US4940006A (en) 1990-07-10
ES2005521T3 (en) 1992-07-01
EP0286077B1 (en) 1991-12-18
JPH0656255B2 (en) 1994-07-27
ATE70611T1 (en) 1992-01-15

Similar Documents

Publication Publication Date Title
EP0286077B1 (en) Method of burning refuse
DE3038875C2 (en) Waste incineration plant
EP0629817B1 (en) Furnace
DE69225555T2 (en) Combustion process with recirculation and plug flow
EP0111874A1 (en) A device for burning coal dust
DE69203647T2 (en) Method and device for the thermal decomposition of environmentally harmful waste.
DE2231001A1 (en) WASTE INCINERATOR
EP0741267B1 (en) Method and furnace for incinerating waste
EP1081434B1 (en) Device for generating a rotating gas flow
EP2691701B1 (en) Method for optimising the burnout of exhaust gases of an incinerator
DE3712039C2 (en)
EP0635676B1 (en) Method and burner for the combustion of liquid and gaseous fuels
DE4402172C2 (en) Process for combusting fuel and plant for carrying out the process
DE2745756A1 (en) INCINERATOR
DE19613777C2 (en) Incinerator and post-combustion process
EP0381946B1 (en) Apparatus for refuse incineration and method for its operation
DE69209340T3 (en) Combustion process for the equilateral control of nitrogen oxides and products of incomplete combustion
AT397554B (en) DEVICE FOR BURNING SOLID FUELS, IN PARTICULAR WOOD
DE3625397C2 (en)
EP0829678B1 (en) Burner and method of heating a flowing gas
EP0798511B1 (en) Heating boiler and its method of operation
EP0867658B1 (en) Process and device for combustion of liquid fuel
DE2410592A1 (en) METHOD AND DEVICE FOR BURNING EXHAUST GAS
DE2406826B2 (en) AFTERBURNING DEVICE
DE3317507C2 (en) Process for reducing the NO &amp;darr; X &amp;darr; content in flue gases from a smelting furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: ING. A. GIAMBROCONO & C. S.R.L.

EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

TCNL Nl: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890321

17Q First examination report despatched

Effective date: 19900118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AWG ABFALLWIRTSCHAFTSGESELLSCHAFT MIT BESCHRAENKTE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 70611

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
REF Corresponds to:

Ref document number: 3866919

Country of ref document: DE

Date of ref document: 19920130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2005521

Country of ref document: ES

Kind code of ref document: T5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: L. & C. STEINMUELLER GMBH

Effective date: 19920917

Opponent name: DEUTSCHE BABCOCK ANLAGEN GMBH

Effective date: 19920916

NLR1 Nl: opposition has been filed with the epo

Opponent name: L. & C. STEINMUELLER GMBH.

Opponent name: DEUTSCHE BABCOCK ANLAGEN GMBH.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BABCOCK-BSH AKTIENGESELLSCHAFT VORMALS BUETTNER-SC

Effective date: 19920916

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT.BUL.24/92 CORR.:BABCOCK-BSH AG VORMALS BUETTNER-SCHILDE-HAAS AG

EPTA Lu: last paid annual fee
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DEUTSCHE BABCOCK ANLAGEN GMBH * 920917 L. & C. STE

Effective date: 19920916

EAL Se: european patent in force in sweden

Ref document number: 88105522.2

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19960731

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

ITF It: translation for a ep patent filed
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19960731

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19960828

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19960828

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040225

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040407

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040414

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040415

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040416

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040423

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040426

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040429

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040621

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050407

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050408

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

BERE Be: lapsed

Owner name: *AWG ABFALLWIRTSCHAFTS G.M.B.H. WUPPERTAL

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050408

BERE Be: lapsed

Owner name: *AWG ABFALLWIRTSCHAFTS G.M.B.H. WUPPERTAL

Effective date: 20050430