EP0277939B1 - Fuel injection device - Google Patents
Fuel injection device Download PDFInfo
- Publication number
- EP0277939B1 EP0277939B1 EP88890027A EP88890027A EP0277939B1 EP 0277939 B1 EP0277939 B1 EP 0277939B1 EP 88890027 A EP88890027 A EP 88890027A EP 88890027 A EP88890027 A EP 88890027A EP 0277939 B1 EP0277939 B1 EP 0277939B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- piston
- nozzle needle
- fuel injection
- injection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 title claims abstract description 72
- 239000007924 injection Substances 0.000 title claims abstract description 72
- 239000000446 fuel Substances 0.000 title claims abstract description 29
- 238000013016 damping Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 230000006978 adaptation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
- F02M45/04—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
- F02M45/08—Injectors peculiar thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M57/00—Fuel-injectors combined or associated with other devices
- F02M57/02—Injectors structurally combined with fuel-injection pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/20—Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
- F02M61/205—Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/50—Arrangements of springs for valves used in fuel injectors or fuel injection pumps
- F02M2200/505—Adjusting spring tension by sliding spring seats
Definitions
- the invention relates to a fuel injection device for injection internal combustion engines, in particular pump nozzle, with a nozzle needle arranged in a nozzle body and spring-loaded in the closing direction, in which the pressure chamber in front of the seat of the nozzle needle communicates with the pump working chamber and in which one in a storage chamber in one with the nozzle body clamped, separate part is displaceable and spring-loaded in the direction of the pump work chamber, which is displaced when a predetermined pressure in the work chamber of the pump piston is displaced against the spring load and determines the receiving volume of the storage space in its displaced position, the storage space corresponding to its receiving volume Receives the amount of fuel from the working area of the pump piston, which is essentially returned to the working area of the pump piston after the end of the injection process and where preferably, the escape piston is supported against the nozzle needle spring, the escape piston being acted upon by the pressure in its piston surface facing away from the storage space in a space which can be filled with fuel and which is connected to an outlet and / or another space.
- pump nozzle is understood to mean an injection device in which the injection nozzle is connected to the pump piston liner and the pump piston to form a structural unit.
- a device of the type mentioned in the introduction can be found, for example, in DE-A-34 09 924.
- the arrangement of the evasive piston which is connected in parallel to the nozzle needle with respect to the action of the fuel, serves the purpose of dividing the injection process into a pre-injection and a separate main injection.
- the nozzle needle is first raised against the force of the nozzle needle spring, as a result of which the injection process begins.
- the alternative piston becomes counter to its spring load shifted, due to the evasive volume released a short drop in pressure occurs, which leads to a short-term closure of the nozzle needle.
- the pressure that subsequently builds up is then able to raise the nozzle needle again against the pressure, as a result of which the main injection begins.
- the evasive piston is supported against the nozzle needle spring, when the evasive piston evades, if the storage space is connected to the working space of the pump piston, the spring load of the nozzle needle is increased and thus the opening pressure of the nozzle needle is increased.
- This is advantageous because in this way the opening pressure is higher than in the pre-injection due to the higher preload of the nozzle needle spring as a result of the evasive piston stroke, which prevents an undesired premature opening of the nozzle needle as a result of pressure fluctuations after the pre-injection and shortens the injection time.
- the interval between the end of the pre-injection and the start of the main injection is also not well adapted to the ignition delay period. This interval should decrease with increasing speed and disappear from a certain speed. The same applies to increasing loads. This means that the interval should be zero in a certain area in the engine map.
- the evasive piston, nozzle needle spring and nozzle needle form a system which is capable of oscillation and which is in any case susceptible to vibration in the wide speed range of a diesel engine. Vibrations of the escape piston and the nozzle needle lead to reduced throughput during the main injection, which means that the main injection takes longer.
- AT-PS 292 382 it has become known to switch on a throttle point in the inlet to the storage space of the evasive piston.
- this is disadvantageous because the opening pressure is influenced by this throttling point and gas bubbles form which change the compressibility of the medium in the storage space. This makes it difficult to control the fuel volume flowing into the storage space of the evasive piston.
- the invention now aims to ensure an optimal injection course over the entire speed range or over the entire map.
- the invention consists essentially in that the fuel-fillable space for the formation of a damping space is connected to the outlet and / or another space via a throttle cross-section, and in that the throttle cross-section is connected through a hole in a limiting plate and an immersion in the hole Pin of the evasive piston is formed. Damping the movement of the evasive piston reduces the evasive movement of the evasive piston when idling.
- the limiting plate having the throttle cross section in the form of a hole delimits the damping space.
- the pre-injection quantity is increased when idling, thereby reducing the pre-injection quantity at higher speeds relative to the pre-injection quantity when idling.
- This results in an approximately constant pre-injection quantity and, with increasing load or speed, the interval between pre-injection and main injection decreases and can completely disappear at high speed and high load, so that uninterrupted injection is made possible.
- This results in a full injection course and thus a short injection period.
- the damping vibrations of the alternative piston, nozzle needle spring and nozzle needle are reduced or switched off, which also results in less mechanical stress results. Avoiding or reducing the vibrations results in a better throughput of the injection quantity, as a result of which the injection duration is reduced. Overall, there is a reduction in pollutant emissions.
- the alternative piston with a larger cross section can also be dimensioned, which results in a more favorable injection diagram.
- the throttle opening is expediently adjustable, as a result of which an adaptation to different engine types can be achieved.
- the drain from the damping chamber can be connected to the suction chamber of the pump.
- the damping chamber can be in a throttled connection with the fuel pressure chamber in front of the seat of the nozzle needle. This is connected to the suction chamber of the pump element (pre-pressure).
- the damping chamber can also be filled in that the damping chamber can be filled with fuel by leak fuel passing through it between the escape piston and the guide bore. This has the advantage that separate connecting channels, which must be throttled, are eliminated between the fuel pressure chamber and the damping chamber.
- the escape piston can be supported against the nozzle needle spring. On the one hand, this saves a separate spring for the load on the evasive piston and, on the other hand, there is the advantage that the pretensioning of the nozzle needle spring is increased by the evasive movement of the evasive piston and thus the nozzle needle closes more quickly.
- the separate part for receiving the escape piston is clamped with the part receiving the nozzle needle spring with the interposition of the limiting plate delimiting the damping space.
- the invention is such that the hole is circular and the pin has a circular cross-section and has a lateral bevel.
- the cylindrical pin can largely be adapted exactly to the hole diameter in the boundary plate and the throttle cross section is essentially determined only by the chamfering of the cylindrical pin. This enables a more precise calibration of the throttle cross-section, since the tolerance of the chamfer is only linear in the throttle cross-section.
- the damping space is preferably located in the alternative piston bushing, part of the damping space being formed by an annular recess surrounding the guide bore of the alternative piston bushing. The size and thus the effect of the damping space can thus be changed by replacing the alternative piston bush.
- the hole is expediently arranged centrally in the circular limiting plate and the pin is arranged centrally on the escape piston.
- the fact that the pin centers the boundary plate facilitates the installation of the boundary plate.
- the evasive piston is preferably supported by means of the pin against the spring plate thereof which is turned away from the point of attack of the nozzle needle spring on the nozzle needle. This is made possible by the fact that the pin is arranged centrally on the escape piston.
- Fig. 1 shows an axial section through a pump nozzle.
- Fig. 2 shows a plan view of the boundary plate.
- 3 and 4 show diagrams at idle and higher speeds of a known embodiment.
- 5 and 6 show diagrams at idle and high speed of an embodiment according to the invention.
- 1 and 2 1 represents the pump piston liner, 2 the nozzle body with the nozzle needle 3, and 4 the nozzle needle spring, which is arranged in a component 5 braced with the pump piston liner.
- 6 is the backup piston and 7 is the backup piston liner.
- the end face 8 of the escape piston 6 is pressurized via a bore 9 by the pressure in the working space 10 of the pump piston 11 guided in the pump piston bushing 1.
- 12 is the storage space in the alternative piston liner 7, which is in communication with the working chamber 10 when the alternative piston 6 is lifted off.
- the piston surface 13 of the evasive piston 6 opposite the end face 8 is acted upon by the pressure in a damping chamber 14.
- the damping chamber 14 can also be filled by leakage fuel passing between the alternative piston 6 and the alternative piston bushing 7.
- the limiting plate 15 has a central bore 16, into which a cylinder pin 17 formed in one piece with the escape piston 6 is immersed.
- the cylinder pin 17 fits into the bore 16.
- This cylinder pin has a bevel 18 on one side, the depth of which determines a throttle cross section between the pin and the bore 16 of the limiting plate 15.
- the fuel emerging through the throttle opening 20 can flow through the spring chamber and an outlet 21.
- the evasive piston 6 is pressed upwards by the nozzle needle spring 4.
- the damping chamber 14 fills with fuel flowing in from the spring chamber. Much more time is available for this than for displacing the fuel from the damping chamber 14, so that the small pressure difference is usually sufficient to overcome the throttle opening 20.
- the evasive piston bushing 7 has an annular depression 22 which surrounds the evasive piston 6 and which enlarges the damping space 14.
- the limiting plate 15 and also the evasive piston 6 are interchangeable, so that the calibration of the throttle opening 20 can be changed to adapt to different engine types.
- the escape piston 6 is supported by the central pin 17 against the spring plate 24 which is turned away from the point of attack 23 on the nozzle needle 3.
- the diagrams according to FIGS. 3 and 4 represent the injection course according to the state of the art.
- the diagram according to FIG. 3 shows the injection course at idling and the diagram according to FIG. 4 shows the injection course at highest speed and full load the injection quantity and the injection time is plotted on the abscissa.
- a represents the pre-injection and b the main injection.
- the interval c ' is reduced, but has not disappeared.
- a1 represents the pilot injection
- b1 the main injection.
- the pre-injection a 1 in relation to the main injection b 1 is larger than in the diagram according to FIG. 3. Relative to the pre-injection a 1, the main injection b 1 is thus reduced when idling.
- the pilot injection a 1 passes completely into the main injection b 1, i.e. the interval c 'according to FIG. 4 has completely disappeared.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Feeding And Controlling Fuel (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Kraftstoffeinspritzeinrichtung für Einspritzbrennkraftmotoren, insbesondere Pumpedüse, mit einer in einem Düsenkörper angeordneten, im Schließsinne federbelasteten Düsennadel, bei welcher der Druckraum vor dem Sitz der Düsennadel mit dem Pumpenarbeitsraum in Verbindung steht und bei welcher ein in einem Speicherraum in einem mit dem Düsenkörper verspannten, gesonderten Teil verschiebbarer und in Richtung zum Pumpenarbeitsraum federbelasteter Ausweichkolben vorgesehen ist, der bei Überschreitung eines vorbestimmten Druckes im Arbeitsraum des Pumpenkolbens entgegen der Federbelastung verschoben wird und in seiner verschobenen Stellung das Aufnahmevolumen des Speicherraumes bestimmt, wobei der Speicherraum eine seinem Aufnahmevolumen entsprechende Kraftstoffmenge aus dem Arbeitsraum des Pumpenkolbens aufnimmt, welche nach Beendigung des Einspritzvorganges im wesentlichen wieder in den Arbeitsraum des Pumpenkolbens zurückgefördert wird und wobei vorzugsweise der Ausweichkolben gegen die Düsennadelfeder abgestützt ist, wobei der Ausweichkolben an seiner dem Speicherraum abgewendeten Kolbenfläche vom Druck in einem mit Kraftstoff füllbaren Raum beaufschlagt ist, welcher mit einem Ablauf und/oder einem anderen Raum verbunden ist.The invention relates to a fuel injection device for injection internal combustion engines, in particular pump nozzle, with a nozzle needle arranged in a nozzle body and spring-loaded in the closing direction, in which the pressure chamber in front of the seat of the nozzle needle communicates with the pump working chamber and in which one in a storage chamber in one with the nozzle body clamped, separate part is displaceable and spring-loaded in the direction of the pump work chamber, which is displaced when a predetermined pressure in the work chamber of the pump piston is displaced against the spring load and determines the receiving volume of the storage space in its displaced position, the storage space corresponding to its receiving volume Receives the amount of fuel from the working area of the pump piston, which is essentially returned to the working area of the pump piston after the end of the injection process and where preferably, the escape piston is supported against the nozzle needle spring, the escape piston being acted upon by the pressure in its piston surface facing away from the storage space in a space which can be filled with fuel and which is connected to an outlet and / or another space.
Unter der Bezeichnung Pumpedüse ist hiebei eine Einspritzeinrichtung zu verstehen, bei welcher die Einspritzdüse mit der Pumpenkolbenbüchse und dem Pumpenkolben zu einer Baueinheit verbunden ist.The term pump nozzle is understood to mean an injection device in which the injection nozzle is connected to the pump piston liner and the pump piston to form a structural unit.
Eine Einrichtung der eingangs genannten Art ist beispielsweise der DE-A-34 09 924 zu entnehmen. Die Anordnung des Ausweichkolbens, welcher hinsichtlich der Beaufschlagung durch den Kraftstoff parallel zur Düsennadel geschaltet ist, dient dem Zweck, den Einspritzvorgang in eine Voreinspritzung und eine getrennte Haupteinspritzung zu unterteiien. Zu diesem Zweck wird bei einem Druckaufbau in der Kraftstoffdruckleitung zunächst die Düsennadel entgegen der Kraft der Düsennadelfeder angehoben, wodurch der Einspritzvorgang beginnt. In der Folge wird auf Grund des Druckanstieges im Arbeitsraum des Pumpenkolbens der Ausweichkolben entgegen seiner Federbelastung verschoben, wodurch auf Grund des freiwerdenden Ausweichvolumens eine kurze Absenkung des Druckes eintritt, welche zu einem kurzfristigen Schließen der Düsennadel führt. Der in der Folge sich weiter aufbauende Druck vermag dann die Düsennadel neuerlich gegen den Druck zu heben, wodurch die Haupteinspritzung beginnt. Wenn der Ausweichkolben gegen die Düsennadelfeder abgestützt ist, so wird beim Ausweichen des Ausweichkolbens, wenn der Speicherraum dem Arbeitsraum des Pumpenkolbens zugeschaltet wird, die Federbelastung der Düsennadel vergrößert und damit der Öffnungsdruck der Düsennadel erhöht. Dies ist vorteilhaft, da auf diese Weise der Öffnungsdruck wegen der höheren Vorspannung der Düsennadelfeder infolge des Ausweichkolbenhubs höher ist als bei der Voreinspritzung, was ein ungewolltes vorzeitiges Öffnen der Düsennadel infolge von Druckschwingungen nach der Voreinspritzung verhindert und die Spritzdauer verkürzt.A device of the type mentioned in the introduction can be found, for example, in DE-A-34 09 924. The arrangement of the evasive piston, which is connected in parallel to the nozzle needle with respect to the action of the fuel, serves the purpose of dividing the injection process into a pre-injection and a separate main injection. For this purpose, when the pressure in the fuel pressure line builds up, the nozzle needle is first raised against the force of the nozzle needle spring, as a result of which the injection process begins. As a result, due to the pressure increase in the working area of the pump piston, the alternative piston becomes counter to its spring load shifted, due to the evasive volume released a short drop in pressure occurs, which leads to a short-term closure of the nozzle needle. The pressure that subsequently builds up is then able to raise the nozzle needle again against the pressure, as a result of which the main injection begins. If the evasive piston is supported against the nozzle needle spring, when the evasive piston evades, if the storage space is connected to the working space of the pump piston, the spring load of the nozzle needle is increased and thus the opening pressure of the nozzle needle is increased. This is advantageous because in this way the opening pressure is higher than in the pre-injection due to the higher preload of the nozzle needle spring as a result of the evasive piston stroke, which prevents an undesired premature opening of the nozzle needle as a result of pressure fluctuations after the pre-injection and shortens the injection time.
Die Voreinspritzmenge hängt nun stark von der Drehzahl ab. Bei der erwünschten niedrigen Leerlaufdrehzahl bleibt mehr Zeit für die Ausweichbewegung des Ausweichkolbens und es wird daher die Voreinspritzmenge zu stark verringert, während die Voreinspritzmenge bei höheren Drehzahlen relativ zur Voreinspritzmenge bei Leerlaufdrehzahl vergrößert wird. Dies ist unerwünscht, da sich dadurch Lärmentwicklung bei niedriger Drehzahl und unsaubere Verbrennung bei hoher Drehzahl ergibt. Auch das Intervall zwischen dem Ende der Voreinspritzung und dem Beginn der Haupteinspritzung ist der Zündverzugdauer nicht gut angepaßt. Dieses Intervall soll sich bei steigender Drehzahl verringern und ab einer bestimmten Drehzahl verschwinden. Das selbe gilt auch bei steigender Last. Dies bedeutet, daß in einem bestimmten Bereich im Motorkennfeld das Intervall Null werden soll. Dies ist bei der bekannten Ausbildung nicht der Fall und dadurch wird die Gesamteinspritzdauer zu lang, was eine unvollständige Verbrennung zur Folge hat. Überdies bilden Ausweichkolben, Düsennadelfeder und Düsennadel ein schwingungsfähiges System, das in dem weiten Drehzahlbereich eines Dieselmotors jedenfalls schwingungsanfällig ist. Schwingungen des Ausweichkolbens und der Düsennadel führen zu vermindertem Durchsatz während der Haupteinspritzung, wodurch die Haupteinspritzung länger dauert. Aus der AT-PS 292 382 ist es bekannt geworden, in den Zulauf zum Speicherraum des Ausweichkolbens eine Drosselstelle einzuschalten. Dies ist aber nachteilig, weil durch diese Drosselstelle der Öffnungsdruck beeinflußt wird und eine Gasblasenbildung auftritt, die die Kompressibilität des Mediums im Speicherraum verändert. Dadurch wird die Beherrschung des in den Speicherraum des Ausweichkolbens einströmenden Kraftstoffvolumens erschwert.The amount of pre-injection now depends heavily on the speed. At the desired low idling speed, there is more time for the evasive piston to move and the pre-injection quantity is therefore reduced too much, while the pre-injection quantity is increased at higher speeds relative to the pre-injection quantity at idling speed. This is undesirable because it creates noise at low speed and dirty combustion at high speed. The interval between the end of the pre-injection and the start of the main injection is also not well adapted to the ignition delay period. This interval should decrease with increasing speed and disappear from a certain speed. The same applies to increasing loads. This means that the interval should be zero in a certain area in the engine map. This is not the case with the known design and as a result the total injection duration is too long, which results in incomplete combustion. In addition, the evasive piston, nozzle needle spring and nozzle needle form a system which is capable of oscillation and which is in any case susceptible to vibration in the wide speed range of a diesel engine. Vibrations of the escape piston and the nozzle needle lead to reduced throughput during the main injection, which means that the main injection takes longer. From AT-PS 292 382 it has become known to switch on a throttle point in the inlet to the storage space of the evasive piston. However, this is disadvantageous because the opening pressure is influenced by this throttling point and gas bubbles form which change the compressibility of the medium in the storage space. This makes it difficult to control the fuel volume flowing into the storage space of the evasive piston.
Die Erfindung zielt nun darauf ab, einen optimalen Einspritzverlauf über den gesamten Drehzahlbereich bzw. über das gesamte Kennfeld zu gewährleisten. Zu diesem Zweck besteht die Erfindung im wesentlichen darin, daß der mit Kraftstoff füllbare Raum zur Ausbildung als Dämpfungsraum über einen Drosselquerschnitt mit dem Ablauf und/oder einem anderen Raum verbunden ist, und daß der Drosselquerschnitt durch ein Loch einer Begrenzungsplatte und einen in das Loch eintauchenden Zapfen des Ausweichkolbens gebildet ist. Durch die Dämpfung der Bewegung des Ausweichkolbens wird die Ausweichbewegung des Ausweichkolbens bei Leerlauf verringert. Die den Drosselquerschnitt in Form eines Loches aufweisende Begrenzungsplatte begrenzt dabei den Dämpfungsraum. Die Voreinspritzmenge wird bei Leerlauf vergrößert und dadurch die Voreinspritzmenge bei höheren Drehzahlen relativ zur Voreinspritzmenge bei Leerlauf verringert. Es ergibt sich somit eine ungefähr konstante Voreinspritzmenge und bei steigender Last oder Drehzahl verringert sich das Intervall zwischen Voreinspritzung und Haupteinspritzung und kann bei hoher Drehzahl und hoher Last völlig verschwinden, so daß eine ununterbrochene Einspritzung ermöglicht wird. Dadurch ergibt sich ein fülliger Einspritzverlauf und dadurch eine kurze Einspritzdauer. Es werden durch die Dämpfung Schwingungen von Ausweichkolben, Düsennadelfeder und Düsennadel herabgesetzt oder ausgeschaltet, wodurch sich auch eine geringere mechanische Beanspruchung ergibt. Durch die Vermeidung oder Herabsetzung der Schwingungen ergibt sich ein besserer Durchsatz der Einspritzmenge, wodurch die Einspritzdauer verringert wird. Insgesamt ergibt sich eine Verringerung der Schadstoffemission. In Anbetracht der Dämpfung kann auch der Ausweichkolben mit größerem Querschnitt dimensioniert werden, wodurch sich ein günstigeres Einspritzdiagramm ergibt. Die Drosselöffnung ist zweckmäßig einstellbar, wodurch eine Anpassung an verschiedene Motortypen erreicht werden kann. Hiebei kann der Ablauf aus dem Dämpfungsraum mit dem Saugraum der Pumpe in Verbindung stehen.The invention now aims to ensure an optimal injection course over the entire speed range or over the entire map. For this purpose, the invention consists essentially in that the fuel-fillable space for the formation of a damping space is connected to the outlet and / or another space via a throttle cross-section, and in that the throttle cross-section is connected through a hole in a limiting plate and an immersion in the hole Pin of the evasive piston is formed. Damping the movement of the evasive piston reduces the evasive movement of the evasive piston when idling. The limiting plate having the throttle cross section in the form of a hole delimits the damping space. The pre-injection quantity is increased when idling, thereby reducing the pre-injection quantity at higher speeds relative to the pre-injection quantity when idling. This results in an approximately constant pre-injection quantity and, with increasing load or speed, the interval between pre-injection and main injection decreases and can completely disappear at high speed and high load, so that uninterrupted injection is made possible. This results in a full injection course and thus a short injection period. The damping vibrations of the alternative piston, nozzle needle spring and nozzle needle are reduced or switched off, which also results in less mechanical stress results. Avoiding or reducing the vibrations results in a better throughput of the injection quantity, as a result of which the injection duration is reduced. Overall, there is a reduction in pollutant emissions. In view of the damping, the alternative piston with a larger cross section can also be dimensioned, which results in a more favorable injection diagram. The throttle opening is expediently adjustable, as a result of which an adaptation to different engine types can be achieved. The drain from the damping chamber can be connected to the suction chamber of the pump.
Der Dämpfungsraum kann in gedrosselter Verbindung mit dem Kraftstoffdruckraum vor dem Sitz der Düsennadel stehen. Dieser steht mit dem Saugraum des Pumpenelementes (Vordruck) in Verbindung. Die Füllung des Dämpfungsraumes kann aber auch dadurch erfolgen, daß der Dämpfungsraum durch zwischen dem Ausweichkolben und der Führungsbohrung desselben durchtretenden Leckkraftstoff mit Kraftstoff füllbar ist. Dies hat den Vorteil, daß gesonderte Verbindungskanäle, welche gedrosselt sein müssen, zwischen dem Kraftstoffdruckraum und dem Dämpfungsraum entfallen.The damping chamber can be in a throttled connection with the fuel pressure chamber in front of the seat of the nozzle needle. This is connected to the suction chamber of the pump element (pre-pressure). However, the damping chamber can also be filled in that the damping chamber can be filled with fuel by leak fuel passing through it between the escape piston and the guide bore. This has the advantage that separate connecting channels, which must be throttled, are eliminated between the fuel pressure chamber and the damping chamber.
Der Ausweichkolben kann gegen die Düsennadelfeder abgestützt sein. Damit wird einerseits eine gesonderte Feder für die Belastung des Ausweichkolbens erspart und es tritt anderseits der Vorteil auf, daß durch die Ausweichbewegung des Ausweichkolbens die Vorspannung der Düsennadelfeder erhöht wird und damit das Schließen der Düsennadel schneller erfolgt.The escape piston can be supported against the nozzle needle spring. On the one hand, this saves a separate spring for the load on the evasive piston and, on the other hand, there is the advantage that the pretensioning of the nozzle needle spring is increased by the evasive movement of the evasive piston and thus the nozzle needle closes more quickly.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist der gesonderte Teil zur Aufnahme des Ausweichkolbens mit dem die Düsennadelfeder aufnehmenden Teil unter Zwischenschaltung der den Dämpfungsraum begrenzenden Begrenzungsplatte verspannt Dadurch wird eine Anpassung, beispielsweise an verschiedene Motorentypen, in einfacher Weise durch Austausch der Begrenzungsplatte ermöglicht. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist die Ausbildung so getroffen, daß das Loch kreisförmig ist und der Zapfen Kreisquerschnitt hat und eine seitliche Anfasung aufweist. Hiebei kann der zylindrische Zapfen weitgehend genau an den Lochdurchmesser in der Begrenzungsplatte angepaßt werden und es wird der Drosselquerschnitt im wesentlichen nur durch die Anfasung des zylindrischen Zapfens bestimmt. Dadurch wird eine präzisere Kalibrierung des Drosselquerschnittes ermöglicht, da die Toleranz der Anfasung nur linear in den Drosselquerschnitt eingeht. Bei einer Kalibrierung des Drosselquerschnittes durch Änderung des Durchmessers der Bohrung in der Begrenzungsplatte bei gleichbleibendem Durchmesser des Zapfens würde die Toleranz mit dem Quadrat der Durchmesserdifferenz in die Kalibrierung eingehen. Im Falle der Kalibrierung des Drosselquerschnittes durch Anfassuns des zylindrischen Zapfens muß allerdings bei einer Veränderung der Kalibrierung des Drosselquerschnittes der Ausweichkolben mit dem Zapfen ausgewechselt werden.According to a preferred embodiment of the invention, the separate part for receiving the escape piston is clamped with the part receiving the nozzle needle spring with the interposition of the limiting plate delimiting the damping space. This enables adaptation, for example to different engine types, in a simple manner by exchanging the limiting plate. According to a further preferred embodiment the invention is such that the hole is circular and the pin has a circular cross-section and has a lateral bevel. Here, the cylindrical pin can largely be adapted exactly to the hole diameter in the boundary plate and the throttle cross section is essentially determined only by the chamfering of the cylindrical pin. This enables a more precise calibration of the throttle cross-section, since the tolerance of the chamfer is only linear in the throttle cross-section. If the throttle cross section was calibrated by changing the diameter of the bore in the boundary plate while the diameter of the pin remained the same, the tolerance with the square of the diameter difference would be included in the calibration. In the case of calibration of the throttle cross-section by touching the cylindrical pin, however, if the calibration of the throttle cross-section changes, the alternating piston must be replaced with the pin.
Gemäß der Erfindung liegt vorzugsweise der Dämpfungsraum in der Ausweichkolbenbüchse, wobei ein Teil des Dämpfungsraumes von einer die Führungsbohrung der Ausweichkolbenbüchse umgebenden ringförmigen Vertiefung gebildet ist. Damit kann die Größe und damit die Wirkung des Dämpfungsraumes durch Auswechslung der Ausweichkolbenbüchse verändert werden.According to the invention, the damping space is preferably located in the alternative piston bushing, part of the damping space being formed by an annular recess surrounding the guide bore of the alternative piston bushing. The size and thus the effect of the damping space can thus be changed by replacing the alternative piston bush.
Gemäß der Erfindung ist zweckmäßig das Loch zentrisch in der kreisförmig ausgebildeten Begrenzungsplatte und der Zapfen zentrisch am Ausweichkolben angeordnet. Dadurch, daß der Zapfen die Begrenzungsplatte zentriert, wird der Einbau der Begrenzungsplatte erleichtert. Vorzugsweise ist gemäß der Erfindung der Ausweichkolben mittels des Zapfens gegen den von der Angriffsstelle der Düsennadelfeder an der Düsennadel abgewendeten Federteller derselben abgestützt. Dies wird dadurch ermöglicht, daß der Zapfen zentrisch am Ausweichkolben angeordnet ist.According to the invention, the hole is expediently arranged centrally in the circular limiting plate and the pin is arranged centrally on the escape piston. The fact that the pin centers the boundary plate facilitates the installation of the boundary plate. According to the invention, the evasive piston is preferably supported by means of the pin against the spring plate thereof which is turned away from the point of attack of the nozzle needle spring on the nozzle needle. This is made possible by the fact that the pin is arranged centrally on the escape piston.
In der Zeichnung ist die Erfindung an Hand von Ausführungsbeispielen erläutert.In the drawing, the invention is explained using exemplary embodiments.
Fig. 1 zeigt einen Axialschnitt durch eine Pumpedüse. Fig. 2 zeigt eine Draufsicht auf die Begrenzungsplatte. Fig. 3 und 4 zeigen Diagramme bei Leerlauf und höheren Drehzahlen einer bekannten Ausführungsform. Fig. 5 und 6 zeigen Diagramme bei Leerlauf und hoher Drehzahl einer erfindungsgemäßen Ausführungsform.Fig. 1 shows an axial section through a pump nozzle. Fig. 2 shows a plan view of the boundary plate. 3 and 4 show diagrams at idle and higher speeds of a known embodiment. 5 and 6 show diagrams at idle and high speed of an embodiment according to the invention.
Bei der Anordnung nach Fig. 1 und 2 stellt 1 die Pumpenkolbenbüchse, 2 den Düsenkörper mit der Düsennadel 3, und 4 die Düsennadelfeder dar, welche in einem mit der Pumpenkolbenbüchse verspannten Bauteil 5 angeordnet ist. 6 ist der Ausweichkolben und 7 ist die Ausweichkolbenbüchse. Die Stirnfläche 8 des Ausweichkolbens 6 ist über eine Bohrung 9 vom Druck im Arbeitsraum 10 des in der Pumpenkolbenbüchse 1 geführten Pumpenkolbens 11 beaufschlagt. 12 ist der Speicherraum in der Ausweichkolbenbüchse 7, welcher bei abgehobenem Ausweichkolben 6 mit dem Arbeitsraum 10 in Verbindung steht. Die der Stirnfläche 8 gegenüberliegende Kolbenfläche 13 des Ausweichkolbens 6 ist vom Druck in einem Dämpfungsraum 14 beaufschlagt. Der Dämpfungsraum 14 kann auch durch zwischen dem Ausweichkolben 6 und der Ausweichkolbenbüchse 7 hindurchtretenden Leckkraftstoff gefüllt werden.1 and 2, 1 represents the pump piston liner, 2 the nozzle body with the
Zwischen der Ausweichkolbenbüchse 7 und dem die Düsennadelfeder 4 aufnehmenden Bauteil 5 ist eine Begrenzungsplatte 15 eingespannt, welche den Dämpfungsraum 14 einseitig begrenzt. Die Begrenzungsplatte 15 weist eine zentrale Bohrung 16 auf, in welche ein mit dem Ausweichkolben 6 einteilig ausgebildeter Zylinderzapfen 17 eintaucht. Der Zylinderzapfen 17 paßt in die Bohrung 16. Dieser Zylinderzapfen weist eine einseitige Anfasung 18 auf, deren Tiefe einen Drosselquerschnitt zwischen dem Zapfen und der Bohrung 16 der Begrenzungsplatte 15 bestimmt. Bei der Ausweichbewegung des Ausweichkolbens 6, d.h. also beim Abheben des Konus 19 von der Bohrung 9 wird der Ausweichkolben 6 durch den Druck im Speicherraum 12 in Richtung zur Düsennadelfeder 4 gedrückt, wobei seine Bewegung durch den Druck im Dämpfungsraum 14 gedämpft wird. Hiebei kann der durch die Drosselöffnung 20 austretende Brennstoff durch den Federraum und einen Ablauf 21 abfließen. Nach Erreichen des Schließdruckes wird der Ausweichkolben 6 durch die Düsennadelfeder 4 aufwärts gedrückt. Dabei füllt sich der Dämpfungsraum 14 mit aus dem Federraum nachströmendem Kraftstoff. Dafür steht wesentlich mehr Zeit zur Verfügung als für das Verdrängen des Kraftstoffes aus dem Dämpfungsraum 14, so daß die geringe Druckdifferenz für die Überwindung der Drosselöffnung 20 meist ausreicht. Die Ausweichkolbenbüchse 7 weist eine ringförmige, den Ausweichkolben 6 umgebende Vertiefung 22 auf, welche den Dämpfungsraum 14 vergrößert.A
Die Begrenzungsplatte 15 und auch der Ausweichkolben 6 sind auswechselbar, so daß die Kalibrierung der Drosselöffnung 20 zur Anpassung an verschiedene Motortypen geändert werden kann.The limiting
Der Ausweichkolben 6 ist durch Vermittlung des zentralen Zapfens 17 gegen den von der Angriffsstelle 23 an der Düsennadel 3 abgewendeten Federteller 24 abgestützt.The
Die Diagramme nach Fig. 3 und 4 stellen den Einspritzverlauf nach dem Stand der Technik dar. Das Diagramm nach Fig. 3 stellt den Einspritzverlauf bei Leerlauf und das Diagramm nach Fig. 4 stellt den Einspritzverlauf bei größter Drehzahl und Vollast dar. Auf der Ordinate ist die Einspritzmenge und auf der Abszisse ist die Einspritzzeit aufgetragen. Im Diagramm nach Fig. 3 stellt a die Voreinspritzung und b die Haupteinspritzung dar. Zwischen Voreinspritzung a und Haupteinspritzung b besteht ein Intervall c. Im Diagramm nach Fig. 4 stellt a' die Voreinspritzung und b' die Haupteinspritzung dar. Das Intervall c' ist verkleinert, jedoch nicht verschwunden. Wie das Diagramm nach Fig. 4 zeigt, ist sowohl bei der Voreinspritzung a', als auch bei der Haupteinspritzung b' die Kurve nicht glatt verlaufend. Die Wellen sind auf die ungedämpften Schwingungen von Ausweichkolben, Düsennadelfeder und Düsennadel zurückzuführen. Infolge dieser Wellen ergibt sich ein verlängerter Einspritzverlauf, wobei die Einspritzung in Punkt d beendet ist.The diagrams according to FIGS. 3 and 4 represent the injection course according to the state of the art. The diagram according to FIG. 3 shows the injection course at idling and the diagram according to FIG. 4 shows the injection course at highest speed and full load the injection quantity and the injection time is plotted on the abscissa. In the diagram according to FIG. 3, a represents the pre-injection and b the main injection. There is an interval c between pre-injection a and main injection b. In the diagram according to FIG. 4, a 'represents the pre-injection and b' the main injection. The interval c 'is reduced, but has not disappeared. As the diagram according to FIG. 4 shows, both in the pre-injection a 'and in the main injection b' the curve is not smooth. The waves are due to the undamped vibrations of the alternate piston, nozzle needle spring and nozzle needle. As a result of these waves, the injection process is prolonged, the injection being terminated at point d.
Die Diagramme nach Fig. 5 und 6 zeigen den Einspritzverlauf bei der erfindungsgemäßen Ausbildung. Im Leerlauf (Diagramm nach Fig. 5) stellt a₁ die Voreinspritzung dar, b₁ die Haupteinspritzung. Es ist ersichtlich, daß bei der erfindungsgemäßen Anordnung die Voreinspritzung a₁ im Verhältnis zur Haupteinspritzung b₁ größer ist als im Diagramm nach Fig. 3. Relativ zur Voreinspritzung a₁ wird somit beim Leerlauf die Haupteinspritzung b₁ verringert. Im Diagramm nach Fig. 6, welches die erfindungsgemäße Ausbildung bei Vollast und Nenndrehzahl betrifft, geht die Voreinspritzung a₁ völlig in die Haupteinspritzung b₁ über, d.h. das Intervall c' gemäß Fig. 4 ist völlig verschwunden. Wie die Diagramme nach Fig. 5 und 6 zeigen, ist infolge der Ausschaltung der Schwingungen von Ausweichkolben, Düsennadelfeder und Düsennadel der Diagrammverlauf ein glatter und fülliger bzw. unterbrechungsfreier. Es wird daher der Kraftstoff binnen kürzerer Zeit eingespritzt und die Einspritzung ist bereits in Punkt d₁ beendet.5 and 6 show the course of the injection in the embodiment according to the invention. At idle (diagram according to Fig. 5) a₁ represents the pilot injection, b₁ the main injection. It can be seen that in the arrangement according to the invention, the pre-injection a 1 in relation to the
Claims (8)
- Fuel injection device for injection internal combustion engines, in particular an injector pump unit, having a nozzle needle which is arranged in a nozzle body (2) and is spring loaded in the closing sense, in which the pressure chamber upstream of the seat of the nozzle needle is connected to the pump working chamber (10), and in which there is provided a yielding piston (6), which can be displaced in a storage chamber (12) in a separate part (7) clamped to the nozzle body (2), is spring loaded in the direction towards the pump working chamber (10), and upon overshooting of a prescribed pressure in the working chamber (10) of the pump plunger (11) is displaced against the spring loading and in its displaced position determines the accommodating volume of the storage chamber (12), the storage chamber accommodating from the working chamber (10) of the pump plunger (11) a fuel quantity which corresponds to its accommodating volume and upon termination of the injection process is essentially conveyed back once again into the working chamber (10) of the pump plunger (11), and the yielding piston (6) preferably being supported against the nozzle needle spring (4), the yielding piston, (6) being subjected on its piston face averted from the storage chamber (12) to the pressure in a chamber (14) that can be filled with fuel and which is connected to an outlet (21) and/or another chamber, characterised in that for the purpose of forming a damping chamber the chamber (14) that can be filled with fuel is connected via a throttle cross-section (20) to the outlet (21) and/or another chamber, and in that the throttle cross-section (20) is formed by a hole (16) of a restrictor plate (15) and by a pintle (17) of the yielding piston (6) that digs into the hole.
- Fuel injection device according to Claim 1, characterised in that for the purpose of accommodating the yielding piston (6) the separate part (7) is clamped to the part (5) which accommodates the nozzle needle spring (4) with the interposition of the restrictor plate (15) which delimits the damping chamber (14.
- Fuel injection device according to Claim 1 or 2, characterised in that the outlet (21) is connected to the suction chamber of the pump.
- Fuel injection device according to Claim 1, 2 or 3, characterised in that the hole (16) is circular and the pintle (17) has a circular cross-section and a lateral chamfer (18).
- Fuel injection device according to one of Claims 1 to 4, characterised in that the damping chamber (14) is located in the yielding piston bush (7).
- Fuel injection device according to one of Claims 1 to 5, characterised in that a part of the damping chamber (14) is formed by an annular depression surrounding the guide bore of the yielding piston bush (7).
- Fuel injection device according to one of Claims 1 to 6, characterised in that a hole (16) is arranged centrally in the circularly constructed restrictor plate (15) and the pintle (17) is arranged centrally on the yielding piston (6).
- Fuel injection device according to one of Claims 1 to 7, characterised in that the yielding piston (6) is supported by means of the pintle (17) against the spring plate (24) of the nozzle needle, which is averted from the point of application of the nozzle needle spring (4) on the nozzle needle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT22887 | 1987-02-04 | ||
AT228/87 | 1987-02-04 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0277939A2 EP0277939A2 (en) | 1988-08-10 |
EP0277939A3 EP0277939A3 (en) | 1989-12-06 |
EP0277939B1 true EP0277939B1 (en) | 1992-11-04 |
Family
ID=3484958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88890027A Expired - Lifetime EP0277939B1 (en) | 1987-02-04 | 1988-02-04 | Fuel injection device |
Country Status (5)
Country | Link |
---|---|
US (1) | US4928886A (en) |
EP (1) | EP0277939B1 (en) |
JP (1) | JP2523759B2 (en) |
AT (1) | ATE82042T1 (en) |
DE (1) | DE3875627D1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3900763A1 (en) * | 1989-01-12 | 1990-07-19 | Voest Alpine Automotive | Fuel injection nozzle |
WO1990008257A1 (en) * | 1989-01-12 | 1990-07-26 | Voest-Alpine Automotive Gesellschaft M.B.H. | Fuel injection nozzle |
DE10160080A1 (en) * | 2001-12-07 | 2003-06-26 | Siemens Ag | Pump-nozzle unit for supplying fuel to combustion chamber of internal combustion engine has three chambers with different pressures and has pressure limiting and holding valve between first and second pressure chambers |
WO2003067074A1 (en) | 2002-02-07 | 2003-08-14 | Volkswagen Mechatronic Gmbh & Co. Kg | Method and device for controlling a control valve of a pump-nozzle unit |
WO2003081007A1 (en) | 2002-03-27 | 2003-10-02 | Siemens Aktiengesellschaft | Method and device for detecting the moment of impact of the valve needle of a piezo control valve |
DE10242376A1 (en) * | 2002-09-12 | 2004-03-25 | Siemens Ag | Pump-nozzle unit for transporting fuel into combustion engine combustion chamber has control valve system regions that come into contact with converter at least partly harder than adjacent regions |
DE10310120B4 (en) * | 2003-03-07 | 2014-02-13 | Continental Automotive Gmbh | Method for determining the load applied to a piezoactuator, and method and device for controlling a piezoactuator of a control valve of a pump-nozzle unit |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9302344D0 (en) * | 1993-02-06 | 1993-03-24 | Lucas Ind Plc | Fuel system for engines |
DE4340874C2 (en) * | 1993-12-01 | 1996-10-24 | Bosch Gmbh Robert | Fuel injection nozzle for internal combustion engines |
US5645224A (en) * | 1995-03-27 | 1997-07-08 | Caterpillar Inc. | Modulating flow diverter for a fuel injector |
GB9609382D0 (en) * | 1996-05-03 | 1996-07-10 | Lucas Ind Plc | Fuel injection system |
GB9624513D0 (en) * | 1996-11-26 | 1997-01-15 | Lucas Ind Plc | Injector |
US5743237A (en) * | 1997-01-28 | 1998-04-28 | Caterpillar Inc. | Hydraulically-actuated fuel injector with needle valve operated spill passage |
GB9714647D0 (en) * | 1997-07-12 | 1997-09-17 | Lucas Ind Plc | Injector |
DE19844891A1 (en) * | 1998-09-30 | 2000-04-06 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
US6749130B2 (en) | 2000-12-08 | 2004-06-15 | Caterpillar Inc | Check line valve faster venting method |
DE10203264A1 (en) * | 2001-02-20 | 2002-11-07 | Volkswagen Ag | Fuel injection nozzle has means of damping designed so that movement of deflection piston takes place cavitation-free, with degree of damping of piston's movement increasing as piston gets nearer to corresponding end position |
DE10119602A1 (en) * | 2001-04-21 | 2002-10-24 | Bosch Gmbh Robert | Fuel injection unit consists of fuel pump with piston and chamber, control valve, closure spring, stop, shaft part, connecting hole and smaller and larger diameter shaft parts |
US20050156057A1 (en) * | 2002-09-12 | 2005-07-21 | Volkswagen Mechatronic Gmbh & Co. Kg | Pump-nozzle unit and method for setting the hardness of bearing regions of a control valve |
CN116006367B (en) * | 2023-03-24 | 2023-07-21 | 哈尔滨工程大学 | Electric control fuel injector for realizing high-precision fuel injection based on double electromagnetic valve control |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA487403A (en) * | 1952-10-21 | Edward Walter Nicolls Wilfrid | Liquid fuel injection nozzles for internal combustion engines | |
US2420550A (en) * | 1942-10-20 | 1947-05-13 | Miller Ralph | Liquid fuel injection apparatus |
GB634030A (en) * | 1948-03-09 | 1950-03-15 | Cav Ltd | Improvements relating to liquid fuel injection nozzles for internal combustion engines |
FR1515388A (en) * | 1966-03-30 | 1968-03-01 | Bosch Gmbh Robert | Fuel injection valve for pre-injection and main injection |
GB1180630A (en) * | 1966-08-01 | 1970-02-04 | Peugeot | Improvements in or relating to Fuel Injection Devices for Compression Ignited Internal Combustion Engines |
CH447714A (en) * | 1967-03-22 | 1967-11-30 | Huber Robert | Safety device on electromagnetic injection valves of internal combustion engines |
GB1406216A (en) * | 1971-10-30 | 1975-09-17 | Cav Ltd | Fuel injection nozzle units |
JPS5523375A (en) * | 1978-08-09 | 1980-02-19 | Diesel Kiki Co Ltd | Fuel injection valve for internal combustion engine |
DE3409924A1 (en) * | 1983-03-31 | 1984-10-11 | AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH, Prof. Dr.Dr.h.c. Hans List, Graz | NOZZLE HOLDER FOR A FUEL INJECTION NOZZLE |
US4566635A (en) * | 1983-08-10 | 1986-01-28 | Robert Bosch Gmbh | Fuel injection nozzle for internal combustion engines |
JPS6155362A (en) * | 1984-08-25 | 1986-03-19 | Isuzu Motors Ltd | Fuel injection nozzle |
ATE59434T1 (en) * | 1984-09-14 | 1991-01-15 | Bosch Gmbh Robert | ELECTRICALLY CONTROLLED FUEL INJECTION PUMP FOR INTERNAL ENGINES. |
DE3521428A1 (en) * | 1985-06-14 | 1986-12-18 | Robert Bosch Gmbh, 7000 Stuttgart | FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES |
JPH0424136Y2 (en) * | 1985-12-02 | 1992-06-05 | ||
GB2189596B (en) * | 1986-04-16 | 1990-08-01 | Pa Consulting Services | Methods of and apparatus for preparing tissue specimens |
-
1988
- 1988-02-03 JP JP63022171A patent/JP2523759B2/en not_active Expired - Lifetime
- 1988-02-04 EP EP88890027A patent/EP0277939B1/en not_active Expired - Lifetime
- 1988-02-04 DE DE8888890027T patent/DE3875627D1/en not_active Expired - Fee Related
- 1988-02-04 AT AT88890027T patent/ATE82042T1/en not_active IP Right Cessation
-
1989
- 1989-10-02 US US07/415,470 patent/US4928886A/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3900763A1 (en) * | 1989-01-12 | 1990-07-19 | Voest Alpine Automotive | Fuel injection nozzle |
WO1990008257A1 (en) * | 1989-01-12 | 1990-07-26 | Voest-Alpine Automotive Gesellschaft M.B.H. | Fuel injection nozzle |
US5125581A (en) * | 1989-01-12 | 1992-06-30 | Voest-Alpine Automotive Gesellschaft M.B.H. | Fuel injection nozzle |
DE10160080A1 (en) * | 2001-12-07 | 2003-06-26 | Siemens Ag | Pump-nozzle unit for supplying fuel to combustion chamber of internal combustion engine has three chambers with different pressures and has pressure limiting and holding valve between first and second pressure chambers |
WO2003067074A1 (en) | 2002-02-07 | 2003-08-14 | Volkswagen Mechatronic Gmbh & Co. Kg | Method and device for controlling a control valve of a pump-nozzle unit |
WO2003081007A1 (en) | 2002-03-27 | 2003-10-02 | Siemens Aktiengesellschaft | Method and device for detecting the moment of impact of the valve needle of a piezo control valve |
DE10242376A1 (en) * | 2002-09-12 | 2004-03-25 | Siemens Ag | Pump-nozzle unit for transporting fuel into combustion engine combustion chamber has control valve system regions that come into contact with converter at least partly harder than adjacent regions |
DE10310120B4 (en) * | 2003-03-07 | 2014-02-13 | Continental Automotive Gmbh | Method for determining the load applied to a piezoactuator, and method and device for controlling a piezoactuator of a control valve of a pump-nozzle unit |
Also Published As
Publication number | Publication date |
---|---|
US4928886A (en) | 1990-05-29 |
ATE82042T1 (en) | 1992-11-15 |
JP2523759B2 (en) | 1996-08-14 |
DE3875627D1 (en) | 1992-12-10 |
JPS63198774A (en) | 1988-08-17 |
EP0277939A3 (en) | 1989-12-06 |
EP0277939A2 (en) | 1988-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0277939B1 (en) | Fuel injection device | |
DE4313852B4 (en) | Fuel injection device for internal combustion engines | |
EP1117920B1 (en) | Common rail injector | |
EP1342005B1 (en) | Fuel injection system for internal combustion engines | |
WO1998040623A1 (en) | Valve for controlling fluids | |
DE3423340A1 (en) | FUEL INJECTION UNIT WITH ELECTROMAGNETIC CONTROL VALVE | |
WO2002046601A1 (en) | Fuel injection system for internal combustion engines | |
EP1387937B1 (en) | Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations | |
DE2825982A1 (en) | FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES | |
DE10020867B4 (en) | Common rail injector | |
EP0688950A1 (en) | Fuel injection system | |
DE2938412A1 (en) | FUEL INJECTION NOZZLE | |
DE19946830A1 (en) | Valve for controlling liquids | |
EP1621759B1 (en) | Common Rail Injector | |
EP2836696B1 (en) | Injector of a modular common-rail fuel injection system with throughflow limiter | |
EP1518050B1 (en) | Injector for an injection system | |
EP0135872A2 (en) | Fuel injector for internal-combustion engines | |
DE10307873A1 (en) | Blind hole and seat hole injection nozzle for an internal combustion engine with a transition cone between the blind hole and nozzle needle seat | |
DE3325451A1 (en) | FUEL INLET VALVE FOR INTERNAL COMBUSTION ENGINES | |
EP1384000B1 (en) | Fuel injection device for an internal combustion engine | |
DE3006390A1 (en) | FUEL INJECTION NOZZLE | |
DE2641203C2 (en) | Fuel injection pump for an internal combustion engine | |
DE3343157A1 (en) | FUEL INJECTION DEVICE | |
DE102004054589A1 (en) | Control valve for use in injection valve, has control space that is formed by free volume between valve housing and valve body, and absorber designed and arranged such that it absorbs axial oscillations of valve body | |
EP0267421B1 (en) | Fuel injection nozzle for internal-combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19900104 |
|
17Q | First examination report despatched |
Effective date: 19910212 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19921104 |
|
REF | Corresponds to: |
Ref document number: 82042 Country of ref document: AT Date of ref document: 19921115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3875627 Country of ref document: DE Date of ref document: 19921210 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ROBERT BOSCH AKTIENGESELLSCHAFT |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19930204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930228 Ref country code: CH Effective date: 19930228 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930203 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970114 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980112 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990204 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050204 |