EP0276724A2 - Core drilling tool with a direct drive - Google Patents

Core drilling tool with a direct drive Download PDF

Info

Publication number
EP0276724A2
EP0276724A2 EP88100667A EP88100667A EP0276724A2 EP 0276724 A2 EP0276724 A2 EP 0276724A2 EP 88100667 A EP88100667 A EP 88100667A EP 88100667 A EP88100667 A EP 88100667A EP 0276724 A2 EP0276724 A2 EP 0276724A2
Authority
EP
European Patent Office
Prior art keywords
core drilling
motor
core
outer tube
axial feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88100667A
Other languages
German (de)
French (fr)
Other versions
EP0276724B1 (en
EP0276724A3 (en
Inventor
Johann Biehl
Alfred Ostertag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Oilfield Operations LLC
Original Assignee
Eastman Christensen Co
Eastman Teleco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Christensen Co, Eastman Teleco Co filed Critical Eastman Christensen Co
Publication of EP0276724A2 publication Critical patent/EP0276724A2/en
Publication of EP0276724A3 publication Critical patent/EP0276724A3/en
Application granted granted Critical
Publication of EP0276724B1 publication Critical patent/EP0276724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors
    • E21B25/02Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe
    • E21B25/04Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe the core receiver having a core forming cutting edge or element, e.g. punch type core barrels
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/005Below-ground automatic control systems

Definitions

  • the invention relates to a directly driven core drilling tool according to the preamble of claim 1.
  • Such tools can be used for core drilling work of all common deep drilling rigs.
  • the entire drill string does not have to be removed to remove the core.
  • a core drilling tool of the type mentioned at the outset which allows the core drilling device to be pulled with the outer tube remaining in the borehole, and in which the core drilling device is axially displaceable in the outer tube during the core.
  • the motor of this tool remains in the core
  • the outer tube is axially secured and is rotatably coupled to the displaceable core drilling device via displaceable coupling members.
  • the core drilling device provides the rinsing liquid with reaction surfaces which, as a result of the drilling fluid pressure above it and in connection with the expansion of the surfaces, impart an axial feed force to it.
  • the drilling fluid pressure above the core drilling device is caused by the throttling action of the annular spaces and gaps in the core drilling device on the drilling fluid flowing through.
  • a first flow-through space is formed between a core tube and an inner tube carrying a drill bit.
  • a second flow-through space is located between the inner tube mentioned and a jacket tube surrounding it. While the throttling effect of the first room remains constant, the throttling effect of the second room decreases with increasing exposure of the core drilling device from the casing tube.
  • the drilling fluid pressure and thus the axial feed force are proportional to the sum of the throttling effects of both rooms.
  • the maximum value of the axial feed force is relatively low and the force cannot be influenced in terms of its size.
  • the object on which the invention is based is to improve a directly driven core drilling tool in such a way that a sufficiently large axial feed force, which is essentially independent of the exposure of the core drilling device and can be selected in terms of its size, can be impressed on the core drilling device.
  • the considerably higher drilling fluid pressure present above the motor can also be used to generate an axial feed force. Since this pressure is independent of the exposure of the core drilling device, the exposure-dependent influences on the total drilling fluid pressure above the unit are reduced.
  • the means for adjusting the axial feed force can also be used for other working conditions, e.g. a different mud weight or a different drill bit can be adjusted. The invention thus enables the tool to be used universally without inadvertently overloading the motor and consequently achieves optimum drilling progress.
  • the core drilling tool shown in Fig. 1 has an outer tube 1 which can be connected to a drill string, not shown. At the lower end, a roller core bit 2 is attached, which is used for drilling out an annular space and repositioning the outer tube 1 when the exposure area of the core tube is exhausted.
  • a unit 3 comprising a motor 4 and a core drilling device 5 is located within the outer tube 1. This unit 3 is axially displaceable. While the motor 4 is secured against rotating, the core drilling device 5 is rotatably arranged.
  • the core drilling device 5 itself consists of a core tube 7 carrying a drill bit 6 and an inner tube 8 rotatably supported therein.
  • a drilling fluid distributor 9 is arranged between the motor 4 and the core drilling device 5 and divides the drilling fluid emerging from the motor 4 into a first stream, which flows between the outer tube 1 and the core tube 7 and in a further stream between the core tube 7 and the inner tube 8.
  • the stream flowing between the outer tube 1 and the core tube 7 is controlled by a spring-loaded valve 10 so that it despite decreasing throttling effect of the flow path due to increasing exposure of the core drilling device 5 remains the same.
  • the motor 4 is provided with a collar 11 which fills the annular space between its housing and the outer tube 1.
  • the collar 11 is sealed off from the outer tube 1 and, with further housing areas of the motor 4, forms partial areas which fill the cross-sectional area of an inner passage area 12 of the outer tube 1. These partial areas result in the reaction areas of the drilling fluid pressure present above the unit 3 and generate the axial feed force for the unit 3.
  • a catching device 13 which serves to pull up the entire unit 3 after drilling a core.
  • the catching device 13 serves in the first embodiment according to the invention as a means for adjusting the axial feed force by opposing the core drilling device 5 with a retaining force which is fed to it via a cable 14 leading through the drill string by means of a winch located on the drilling tower.
  • values between a maximum value and zero can be set for the resulting axial feed force. The maximum value results when the axial feed force is determined in full by the drilling fluid pressure present above the unit 3 in connection with the reaction surfaces.
  • the pressurized reaction surfaces are designed as a cross-sectional surface of a flushing mandrel 15 connected to the motor.
  • the mandrel provided for the catching device 13 is used for this purpose, but it is hollow on the inside and has inlet openings 16.
  • the means for adjusting the axial feed force comprise a sleeve 17 which is supported and sealed in the outer tube 1, has an opening 18 and is penetrated by the flushing pin 15.
  • the flushing pin 15 is sealed against the sleeve 17.
  • the axial feed force is adjusted by selecting and preassembling a sleeve 17 with a specific cross section of the opening 18 and a mandrel 15 matched to it before the unit 3 is let into the outer tube 1.
  • the flushing mandrel 15 carries a piston 19 which has the cross-sectional area of a further passage area 20 and contains nozzles 21.
  • the inlet openings 22 of the flushing mandrel 15 are located below the piston 19 in the form of radial slots.
  • the piston 19 creates an additional portion of the axial feed force by making use of the differential pressure present across the nozzles 21. This differential pressure acts on the cross-sectional area of the inner passage area 20 of the outer tube 1 occupied by the piston 19 minus the nozzle cross section.
  • the additional portion of the axial feed force can be adjusted by the selection of the nozzles 21 and the volume flow of the drilling fluid.
  • the advantage of this embodiment is that a set of nozzles 21 of different sizes is less complex than such a differently sized flushing mandrel 15 and sleeves 17, as required by the embodiment of FIG. 2, and the time required for replacement is less.
  • valve 23 which is controlled by the return torque of the motor 4.
  • This valve 23 consists in detail of a fixed valve seat 24 and a valve body 26 which is coupled to the motor housing and can be pivoted to a limited extent against a torque spring 25.
  • the reaction surfaces for the axial feed force are again the same partial surfaces as those mentioned in the embodiment according to FIG. 1.
  • the drilling fluid pressure can then no longer propagate to the full extent or not at all in the region of the collar 11 and is only present on partial areas of the motor housing that are small in cross section. This causes a ver reduction of the axial feed force.
  • In stationary operation there will be an angular position between the valve body 26 and the valve seat 24, in which the torque of the drill bit 6 and the associated axial feed force assume an equilibrium state.
  • the third modification of the invention thus offers an independent setting possibility even within a large volume flow and pressure range of the drilling fluid.

Abstract

In einem direktangetriebenen Kernbohrwerkzeug, das aus einem mit einem Bohrstrang verbindbaren Außenrohr (1), einer in dem Außenrohr (1) dreh- und axial verschiebbar angeordneten Kernbohreinrichtung (5), die ihrerseits ein eine Bohrkrone (6) tragendes Kernrohr (7) und ein darin drehbar angestütztes Innenrohr (8) umfaßt, und einem mit der Kernbohreinrichtung (5) gekoppelten und im Außenrohr (1) gegen Mitdrehen gesicherten, bohrspülungsgetriebenen Motor (4) besteht, sind druckbeaufschlagbare Reaktionsflächen zur Erzeugung einer auf die Kernbohreinrichtung (5) in Sohlenrichtung wirkenden Axialvorschubkraft, sowie eine Fangeinrichtung (13) zum Heraufziehen des Motors (4) mitsamt der Kernbohreinrichtung (5) vorgesehen. Zur Erzeugung einer ausreichend großen, von der Exposition der Kernbohreinrichtung im wesentlichen unabhängigen und in ihrer Größe wählbaren Axialvorschubkraft ist der Motor (4) mit der Kernbohreinrichtung (5) zur Bildung einer gemeinsam verschiebbaren Einheit (3) verbunden und sind Mittel zur Einstellung der Axialvorschubkraft vorgesehen.In a directly driven core drilling tool, which consists of an outer tube (1) which can be connected to a drill string, a core drilling device (5) which is rotatably and axially displaceable in the outer tube (1) and which in turn has a core tube (7) carrying a core bit (6) and a therein rotatably supported inner tube (8), and there is a drilling fluid-driven motor (4) coupled to the core drilling device (5) and secured in the outer tube (1) against rotation, are pressurizable reaction surfaces for producing an acting on the core drilling device (5) in the sole direction Axial feed force and a catching device (13) for pulling up the motor (4) together with the core drilling device (5) are provided. The motor (4) is connected to the core drilling device (5) to form a jointly displaceable unit (3) and means are provided for adjusting the axial feeding force in order to generate a sufficiently large axial feed force that is essentially independent of the exposure of the core drilling device and can be selected in terms of its size .

Description

Die Erfindung betrifft ein direktangetriebenes Kernbohr­werkzeug nach dem Oberbegriff des Anspruchs 1.The invention relates to a directly driven core drilling tool according to the preamble of claim 1.

Derartige Werkzeuge können für Kernbohrarbeiten von allen üblichen Tiefbohranlagen verwendet werden. Zum Entnehmen des Kerns muß nicht der gesamte Bohrstrang ausgebaut wer­den.Such tools can be used for core drilling work of all common deep drilling rigs. The entire drill string does not have to be removed to remove the core.

Aus der US PS 4,518,050 ist ein Kernbohrwerkzeug der ein­gangs genannten Art bekannt, welches ein Ziehen der Kern­bohreinrichtung bei im Bohrloch verbleibendem Außenrohr gestattet, und bei welchem die Kernbohreinrichtung während der Kernens im Außenrohr axial verschiebbar ist. Der Motor dieses Werkzeuges bleibt während des Kernens im Außenrohr axial gesichert und ist über verschiebbare Kupplungsglieder mit der verschiebbaren Kernbohreinrich­tung drehgekoppelt. Die Kernbohreinrichtung bietet der Spülungsflüssigkeit Reaktionsflächen dar, die ihr als Folge des über ihr anstehenden Bohrspülungsdrucks in Verbindung mit der Ausdehnung der Flächen eine Axialvor­schubkraft aufprägen. Der über der Kernbohreinrichtung anstehende Bohrspülungsdruck wird durch die Drosselwirkung der Ringräume und Spalte der Kernbohreinrichtung auf die durchströmende Bohrspülung hervorgerufen. Ein erster durchströmter Raum wird zwischen einem Kernrohr und einem eine Bohrkrone tragenden Innenrohr gebildet. Ein zweiter durchströmter Raum befindet sich zwischen dem erwähnten Innenrohr und einem dieses umgebenden Mantelrohr. Während die Drosselwirkung des ersten Raumes konstant bleibt, nimmt die Drosselwirkung des zweiten Raumes mit zunehmender Exposition der Kernbohreinrichtung aus dem Mantelrohr ab. Der Bohrspülungsdruck und damit die Axialvorschubkraft sind proportional der Summe der Drosselwirkungen beider Räume. Neben der starken Abhängigkeit der Axialvorschubkraft von der Exposition der Kernbohreinrichtung ist weiter nachtei­lig, daß der maximale Wert der Axialvorschubkraft verhält­nismäßig niedrig und die Kraft zudem nicht in ihrer Größe beeinflußbar ist.From US Pat. No. 4,518,050 a core drilling tool of the type mentioned at the outset is known which allows the core drilling device to be pulled with the outer tube remaining in the borehole, and in which the core drilling device is axially displaceable in the outer tube during the core. The motor of this tool remains in the core The outer tube is axially secured and is rotatably coupled to the displaceable core drilling device via displaceable coupling members. The core drilling device provides the rinsing liquid with reaction surfaces which, as a result of the drilling fluid pressure above it and in connection with the expansion of the surfaces, impart an axial feed force to it. The drilling fluid pressure above the core drilling device is caused by the throttling action of the annular spaces and gaps in the core drilling device on the drilling fluid flowing through. A first flow-through space is formed between a core tube and an inner tube carrying a drill bit. A second flow-through space is located between the inner tube mentioned and a jacket tube surrounding it. While the throttling effect of the first room remains constant, the throttling effect of the second room decreases with increasing exposure of the core drilling device from the casing tube. The drilling fluid pressure and thus the axial feed force are proportional to the sum of the throttling effects of both rooms. In addition to the strong dependence of the axial feed force on the exposure of the core drilling device, it is further disadvantageous that the maximum value of the axial feed force is relatively low and the force cannot be influenced in terms of its size.

Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein direktangetriebenes Kernbohrwerkzeug so zu verbessern, daß auf die Kernbohreinrichtung eine ausreichend große, von der Exposition der Kernbohreinrichtung im wesentlichen unabhängige und in ihrer Größe wählbare Axialvorschubkraft aufprägbar ist.The object on which the invention is based is to improve a directly driven core drilling tool in such a way that a sufficiently large axial feed force, which is essentially independent of the exposure of the core drilling device and can be selected in terms of its size, can be impressed on the core drilling device.

Diese Aufgabe wird bei einem direktangetriebenen Kernbohr­werkzeug nach dem Oberbegriff des Anspruchs 1 durch die im kennzeichenden Teil angegebenen Merkmale gelöst.This object is achieved in a directly driven core drilling tool according to the preamble of claim 1 by the features specified in the characterizing part.

Durch die Vereinigung der Kernbohreinrichtung mit dem Motor zu einer gemeinsam verschiebbaren Einheit läßt sich zusätzlich der über dem Motor anstehende, erheblich höhere Bohrspülungsdruck für die Erzeugung einer Axial­vorschubkraft nutzen. Da dieser Druck von der Exposition der Kernbohreinrichtung unabhängig ist, werden die expositionsabhängigen Einflüsse auf den gesamten über der Einheit anstehenden Bohrspülungsdruck vermindert. Durch die Mittel zur Einstellung der Axialvorschubkraft kann diese auch an andere Arbeitsbedingungen, wie z.B. ein anderes Spülungsgewicht oder eine andere Bohrkrone angepaßt werden. Die Erfindung ermöglicht damit die universelle Einsetzbarkeit des Werkzeugs ohne eine versehentliche Überlastung des Motors und erzielt dem­zufolge optimale Bohrfortschritte.By uniting the core drilling device with the motor to form a jointly displaceable unit, the considerably higher drilling fluid pressure present above the motor can also be used to generate an axial feed force. Since this pressure is independent of the exposure of the core drilling device, the exposure-dependent influences on the total drilling fluid pressure above the unit are reduced. The means for adjusting the axial feed force can also be used for other working conditions, e.g. a different mud weight or a different drill bit can be adjusted. The invention thus enables the tool to be used universally without inadvertently overloading the motor and consequently achieves optimum drilling progress.

Weiterbildung und vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Ansprüchen 2-5 sowie der Beschreibung und der Zeichnung.Further development and advantageous embodiments of the invention result from claims 2-5 as well as the description and the drawing.

Die Zeichnung veranschaulicht Ausführungsbeispiele der Erfindung, die nachfolgend erläutert werden. Es zeigen:

  • Fig. 1 einen schematischen Längsschnitt durch ein erfindungsgemäßes Kernbohrwerkzeug,
  • Fig. 2 als Ausschnitt aus Fig. 1 eine erste Ab­wandlung der Erfindung,
  • Fig. 3 eine zweite Abwandlung der Erfindung und
  • Fig. 4 eine dritte Abwandlung der Erfindung.
The drawing illustrates exemplary embodiments of the invention, which are explained below. Show it:
  • 1 shows a schematic longitudinal section through a core drilling tool according to the invention,
  • 2 shows a detail of FIG. 1, a first modification of the invention,
  • Fig. 3 shows a second modification of the invention and
  • Fig. 4 shows a third modification of the invention.

Das in Fig. 1 dargestellte Kernbohrwerkzeug besitzt ein Außenrohr 1, welches mit einem nichtdargestellten Bohr­strang verbindbar ist. Am unteren Ende ist eine Rollen­bohrkrone 2 angebracht, die zum Aufbohren eines Ring­raums und Nachsetzen des Außenrohrs 1 dient, wenn der Expositionsbereich des Kernrohrs erschöpft ist. Inner­halb des Außenrohrs 1 befindet sich eine Einheit 3 aus einem Motor 4 und einer Kernbohreinrichtung 5. Diese Einheit 3 ist axial verschiebbar. Während der Motor 4 gegen Mitdrehen gesichert ist, ist die Kernbohrein­richtung 5 drehbar angeordnet. Die Kernbohreinrichtung 5 selbst besteht aus einem eine Bohrkrone 6 tragenden Kernrohr 7 und einem darin drehbar abgestützten Innen­rohr 8. Zwischen dem Motor 4 und der Kernbohreinrich­tung 5 ist ein Bohrspülungsverzweiger 9 angeordnet, der die aus dem Motor 4 austretende Bohrspülung in einen ersten Strom aufteilt, der zwischen dem Außenrohr 1 und dem Kernrohr 7 fließt und in einem weiteren Strom zwischen dem Kernrohr 7 und dem Innenrohr 8. Der zwischen dem Außenrohr 1 und dem Kernrohr 7 fließende Strom wird durch ein federbelastetes Ventil 10 so gesteuert, daß er trotz abnehmender Drosselwirkung des Strömungsweges infolge zunehmender Exposition der Kernbohreinrichtung 5 gleich bleibt.The core drilling tool shown in Fig. 1 has an outer tube 1 which can be connected to a drill string, not shown. At the lower end, a roller core bit 2 is attached, which is used for drilling out an annular space and repositioning the outer tube 1 when the exposure area of the core tube is exhausted. A unit 3 comprising a motor 4 and a core drilling device 5 is located within the outer tube 1. This unit 3 is axially displaceable. While the motor 4 is secured against rotating, the core drilling device 5 is rotatably arranged. The core drilling device 5 itself consists of a core tube 7 carrying a drill bit 6 and an inner tube 8 rotatably supported therein. A drilling fluid distributor 9 is arranged between the motor 4 and the core drilling device 5 and divides the drilling fluid emerging from the motor 4 into a first stream, which flows between the outer tube 1 and the core tube 7 and in a further stream between the core tube 7 and the inner tube 8. The stream flowing between the outer tube 1 and the core tube 7 is controlled by a spring-loaded valve 10 so that it despite decreasing throttling effect of the flow path due to increasing exposure of the core drilling device 5 remains the same.

Um eine unerwünschte Umgehung des Motors 4 durch die Bohrspülung zu verhindern, ist der Motor 4 mit einen Kragen 11, der den Ringraum zwischen seinem Gehäuse und dem Außenrohr 1 ausfüllt, versehen. Der Kragen 11 ist gegenüber dem Außenrohr 1 abgedichtet und bildet mit weiteren Gehäusebereichen des Motors 4 Teilflächen, die die Querschnittsfläche eines inneren Durchgangsbereichs 12 des Außenrohrs 1 ausfüllen. Diese Teilflächen ergeben die Reaktionsflächen des über der Einheit 3 anstehenden Bohr­spülungsdrucks und erzeugen die Axialvorschubkraft für die Einheit 3.In order to prevent undesirable bypassing of the motor 4 by the drilling fluid, the motor 4 is provided with a collar 11 which fills the annular space between its housing and the outer tube 1. The collar 11 is sealed off from the outer tube 1 and, with further housing areas of the motor 4, forms partial areas which fill the cross-sectional area of an inner passage area 12 of the outer tube 1. These partial areas result in the reaction areas of the drilling fluid pressure present above the unit 3 and generate the axial feed force for the unit 3.

Im oberen Bereich des Motors 4 ist eine Fangeinrichtung 13 ausgebildet, die zum Heraufziehen der gesamten Einheit 3 nach Erbohren eines Kerns dient. Die Fangeinrichtung 13 dient bei der ersten Ausführung nach der Erfindung als Mittel zur Einstellung der Axialvorschubkraft, indem sie der Kernbohrbohreinrichtung 5 eine Rückhaltekraft entgegen­setzt, die ihr über ein durch den Bohrstrang führendes Seil 14 mittels einer am Bohrturm befindlichen Winde zugeführt wird. Je nach Höhe der Rückhaltekraft sind für die resul­tierende Axialvorschubkraft Werte zwischen einem Maximal­wert und Null einstellbar. Der Maximalwert ergibt sich dann, wenn die Axialvorschubkraft in voller Höhe durch den über der Einheit 3 anstehenden Bohrspülungsdruck in Verbindung mit den Reaktionsflächen bestimmt wird.In the upper area of the motor 4, a catching device 13 is formed, which serves to pull up the entire unit 3 after drilling a core. The catching device 13 serves in the first embodiment according to the invention as a means for adjusting the axial feed force by opposing the core drilling device 5 with a retaining force which is fed to it via a cable 14 leading through the drill string by means of a winch located on the drilling tower. Depending on the level of the restraining force, values between a maximum value and zero can be set for the resulting axial feed force. The maximum value results when the axial feed force is determined in full by the drilling fluid pressure present above the unit 3 in connection with the reaction surfaces.

Bei der in Fig. 2 dargestellten abgewandelten Ausführungs­form sind die druckbeaufschlagten Reaktionsflächen als Querschnittsfläche eines mit dem Motor verbundenen Spü­lungsdorns 15 ausgebildet. Für den Spülungsdorn 15 wird hierfür der für die Fangeinrichtung 13 vorgesehene Dorn verwendet, der jedoch innen hohl ausgebildet ist und Einlauföffnungen 16 aufweist. Die Mittel zur Einstellung der Axialvorschubkraft umfassen eine Hülse 17, die im Außenrohr 1 angestützt und abgedichtet ist, eine Öffnung 18 aufweist und vom Spülungsdorn 15 durchdrungen ist.In the modified embodiment shown in FIG. 2, the pressurized reaction surfaces are designed as a cross-sectional surface of a flushing mandrel 15 connected to the motor. For the flushing mandrel 15, the mandrel provided for the catching device 13 is used for this purpose, but it is hollow on the inside and has inlet openings 16. The means for adjusting the axial feed force comprise a sleeve 17 which is supported and sealed in the outer tube 1, has an opening 18 and is penetrated by the flushing pin 15.

Der Spülungsdorn 15 ist dabei gegen die Hülse 17 abge­dichtet. Die Einstellung der Axialvorschubkraft erfolgt dadurch, daß vor Einlassen der Einheit 3 in das Außen­rohr 1 eine Hülse 17 mit einem bestimmten Querschnitt der Öffnung 18 sowie ein darauf abgestimmter Dorn 15 ausgewählt und vormontiert werden.The flushing pin 15 is sealed against the sleeve 17. The axial feed force is adjusted by selecting and preassembling a sleeve 17 with a specific cross section of the opening 18 and a mandrel 15 matched to it before the unit 3 is let into the outer tube 1.

Die in Fig. 3 dargestellte Abwandlung des erfindungs­gemäßen Kernbohrwerkzeugs baut auf der Ausführungsform nach Fig. 2 auf. Zusätzlich zu den bereits dort erwähn­ten Mitteln zur Einstellung der Axialvorschubkraft trägt der Spülungsdorn 15 einen Kolben 19, der die Quer­schnittsfläche eines weiteren Durchgangsbereichs 20 aufweist und Düsen 21 beinhaltet. Die Einlaßöffnungen 22 des Spülungsdorns 15 befinden sich unterhalb des Kolbens 19 in Form radialer Schlitze. Der Kolben 19 schafft einen zusätzlichen Anteil an der Axialvorschubkraft, indem der über den Düsen 21 anstehende Differenzdruck ausgenutzt wird. Dieser Differenzdruck beaufschlagt die von dem Kolben 19 abzüglich des Düsenquerschnitts eingenommene Querschnittsfläche des inneren Durchgangsbereichs 20 des Außenrohrs 1. Der zusätzliche Anteil an Axialvorschub­kraft ist durch die Auswahl der Düsen 21 sowie den Volumenstrom der Bohrspülung einstellbar. Der Vorteil dieser Ausführung besteht darin, daß ein Satz verschieden großer Düsen 21 weniger aufwendig als ein solcher ver­schieden großer Spülungsdorne 15 und Hülsen 17 ist, wie ihn die Ausführung nach Fig. 2 erfordert, und auch der Zeitaufwand beim Austausch geringer ist.The modification of the core drilling tool according to the invention shown in FIG. 3 is based on the embodiment according to FIG. 2. In addition to the means for adjusting the axial feed force already mentioned there, the flushing mandrel 15 carries a piston 19 which has the cross-sectional area of a further passage area 20 and contains nozzles 21. The inlet openings 22 of the flushing mandrel 15 are located below the piston 19 in the form of radial slots. The piston 19 creates an additional portion of the axial feed force by making use of the differential pressure present across the nozzles 21. This differential pressure acts on the cross-sectional area of the inner passage area 20 of the outer tube 1 occupied by the piston 19 minus the nozzle cross section. The additional portion of the axial feed force can be adjusted by the selection of the nozzles 21 and the volume flow of the drilling fluid. The advantage of this embodiment is that a set of nozzles 21 of different sizes is less complex than such a differently sized flushing mandrel 15 and sleeves 17, as required by the embodiment of FIG. 2, and the time required for replacement is less.

Fig. 4 zeigt schließlich noch eine dritte Abwandlung der Erfindung, bei der die Mittel zur Einstellung der Axial­vorschubkraft durch ein Ventil 23 gebildet werden, wel­ches durch das Rückdrehmoment des Motors 4 gesteuert ist. Dieses Ventil 23 besteht im einzelnen aus einem fest­stehenden Ventilsitz 24 und einem mit dem Motorgehäuse gekoppelten gegen eine Drehmomentfeder 25 begrenzt schwenkbaren Ventilkörper 26. Als Reaktionsflächen für die Axialvorschubkraft dienen wieder dieselben Teil­flächen, wie sie auch in der Ausführung gemäß Fig. 1 erwähnt sind.4 shows a third modification of the invention, in which the means for adjusting the axial feed force are formed by a valve 23, which is controlled by the return torque of the motor 4. This valve 23 consists in detail of a fixed valve seat 24 and a valve body 26 which is coupled to the motor housing and can be pivoted to a limited extent against a torque spring 25. The reaction surfaces for the axial feed force are again the same partial surfaces as those mentioned in the embodiment according to FIG. 1.

Im unbelasteten Zustand, d.h. wenn der Motor 4 kein Rückdrehmoment aufbringt, befinden sich die Öffnungen 27, 28 von Ventilkörper 26 und Ventilsitz 24 in Flucht. Die Bohrspülung kann dann bis in den Bereich des Kragens 11 vordringen und die gesamte Teilfläche des Motors 4 druckbeaufschlagen. Wird durch die Axialvor­schubkraft die Kernbohreinrichtung 5 nun gegen das Gestein gedrückt, so muß der Motor 4 das Bohrdrehmoment der Bohrkrone 6 überwinden, wodurch er ein Rückdrehmo­ment erfährt. Dieses gegen die Kraft der Feder 25 ge­richtete Rückdrehmoment bewirkt, daß der Motor 4 und damit der Ventilkörper 26 gegenüber dem Ventilsitz 24 geschwenkt wird, wodurch die Öffnungen 27, 28 im Ven­tilkörper 26 und Ventilsitz 24 teilweise oder ganz außer Verbindung gelangen. Der Bohrspülungsdruck kann sich dann nicht mehr in voller Höhe oder gar nicht mehr bis in den Bereich des Kragens 11 fort­pflanzen und steht nur noch an im Querschnitt geringen Teilflächen des Motorgehäuses an. Dadurch tritt eine Ver­ minderung der Axialvorschubkraft ein. Im stationären Betrieb wird sich eine Winkelstellung zwischen dem Ventilkörper 26 und Ventilsitz 24 ergeben, in der das Drehmoment der Bohrkrone 6 und die damit in Ver­bindung stehende Axialvorschubkraft einen Gleichge­wichtszustand einnehmen. Die dritte Abwandlung der Erfindung bietet damit eine selbständige Einstellmög­lichkeit auch innerhalb eines großen Volumenstrom- und Druckbereiches der Bohrspülung.In the unloaded state, ie when the motor 4 does not apply any back torque, the openings 27, 28 of the valve body 26 and valve seat 24 are in alignment. The drilling fluid can then penetrate into the region of the collar 11 and pressurize the entire partial surface of the motor 4. If the core drilling device 5 is now pressed against the rock by the axial feed force, the motor 4 must overcome the drilling torque of the drill bit 6, as a result of which it experiences a return torque. This reverse torque directed against the force of the spring 25 causes the motor 4 and thus the valve body 26 to be pivoted with respect to the valve seat 24, as a result of which the openings 27, 28 in the valve body 26 and valve seat 24 come partially or completely out of connection. The drilling fluid pressure can then no longer propagate to the full extent or not at all in the region of the collar 11 and is only present on partial areas of the motor housing that are small in cross section. This causes a ver reduction of the axial feed force. In stationary operation, there will be an angular position between the valve body 26 and the valve seat 24, in which the torque of the drill bit 6 and the associated axial feed force assume an equilibrium state. The third modification of the invention thus offers an independent setting possibility even within a large volume flow and pressure range of the drilling fluid.

Claims (5)

1. Direktangetriebenes Kernbohrwerkzeug, bestehen aus einem mit einem Bohrstrang verbindbaren Außenrohr (1), einer in dem Außenrohr (1) dreh- und axial verschiebbar angeordneten Kernbohreinrichtung (5), die ihrerseits ein eine Bohrkrone (6) tragendes Kernrohr (7) und ein darin drehbar abgestütztes Innenrohr (8) umfaßt, einem mit der Kernbohreinrichtung (5) gekoppelten und im Außenrohr (1) gegen Mitdrehen gesicherten, bohrspülungsgetriebenen Motor (4), durchbeaufschlagbaren Reaktionsflächen zur Erzeugung einer auf die Kernbohreinrichtung (5) in Sohlen­richtung wirkenden Axialvorschubkraft, sowie einer Fang­einrichtung (13) zum Heraufziehen des Motors (4) mitsamt der Kernbohreinrichtung (5), dadurch gekennzeichnet, daß der Motor (4) mit der Kernbohreinrichtung (5) zur Bildung einer gemeinsam verschiebbaren Einheit (3) verbunden ist und daß Mittel zur Einstellung der Axialvorschubkraft vorgesehen sind.1. Directly driven core drilling tool, consist of an outer tube (1) which can be connected to a drill string, a core drilling device (5) which is arranged in the outer tube (1) so as to be rotatable and axially displaceable, which in turn has a core tube (7) and a core bit (6) therein rotatably supported inner tube (8), a drilling fluid-driven motor (4) coupled to the core drilling device (5) and secured against rotation in the outer tube (1), reaction surfaces which can be acted upon for generating an axial feed force acting on the core drilling device (5) in the sole direction, and a catching device (13) for pulling up the motor (4) together with the core drilling device (5), characterized in that the motor (4) is connected to the core drilling device (5) to form a jointly displaceable unit (3) and that means for adjustment the axial feed force are provided. 2. Direktangetriebenes Kernbohrwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß die druckbeaufschlagbaren Reaktionsflächen als Teilflächen des Motors (4) ausgebildet sind, die die Querschnittsfläche eines inneren Durchgangs­bereichs (12) des Außenrohrs (1) ausfüllen, und daß die Mittel zur Einstellung der Axialvorschubkraft durch die Fangeinrichtung (13) gebildet sind, über die mittels eines durch den Bohrstrang führenden Seils (14) und einer am Bohrturm befindlichen Winde eine Rückhaltekraft auf­bringbar ist.2. Directly driven core drilling tool according to claim 1, characterized in that the pressurizable reaction surfaces are formed as partial surfaces of the motor (4) which fill the cross-sectional area of an inner passage area (12) of the outer tube (1), and that the means for adjusting the axial feed force by the catching device (13) is formed, by means of which a retaining force can be applied by means of a rope (14) leading through the drill string and a winch located on the drilling tower. 3. Direktangetriebenes Kernbohrwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß die druckbeaufschlagbaren Reaktionsflächen als Querschnittsfläche eines mit dem Motor (4) verbundenen Spülungsdorns (15) ausgebildet sind und daß die Mittel zur Einstellung der Axialvorschubkraft eine in dem Außenrohr (1) abgestützte und abgedichtete, mit einer Öffnung (18) versehene Hülse (17) umfassen, deren Öffnung (18) von dem Spülungsdorn (15) abdichtend durchdrungen ist, und daß die gemeinsame Querschnitts­fläche der Öffnung (18) und des Spülungsdorns (15) auf der Grundlage des über der Einheit (3) anstehenden Bohrspülungsdrucks nach der gewünschten Axialvorschubkraft bemessen ist.3. Directly driven core drilling tool according to claim 1, characterized in that the pressurizable reaction surfaces are designed as a cross-sectional area of a flushing mandrel (15) connected to the motor (4) and that the means for adjusting the axial feed force are supported and sealed in the outer tube (1). with an opening (18) provided sleeve (17), the opening (18) of which is penetrated by the flushing mandrel (15) and that the common cross-sectional area of the opening (18) and the flushing mandrel (15) on the basis of the above Unit (3) existing drilling fluid pressure is dimensioned according to the desired axial feed force. 4. Direktangetriebenes Kernbohrwerkzeug nach Anspruch 3, dadurch gekennzeichnet, das die Mittel zur Einstellung der Axialvorschubkraft zusätzlich einen auf dem Spülungs­dorn (15) angeordneten und die Querschnittsfläche eines weiteren inneren Durchgangsbereichs (20) des Außenrohrs (1) ausfüllenden Kolben (19) sowie in dem Kolben (19) angeord­nete Düsen (21) umfassen.4. Directly driven core drilling tool according to claim 3, characterized in that the means for adjusting the axial feed force additionally arranged on the flushing mandrel (15) and the cross-sectional area of a further inner passage area (20) of the outer tube (1) Filling piston (19) and nozzles (21) arranged in the piston (19). 5. Direktangetriebenes Kernbohrwerkzeug nach Anspruch 1, dadurch gekennzeichnet, daß die druckbeaufschlagbaren Reaktionsflächen als Teilflächen des Motors (4) ausgebildet sind, die die Querschnittsflächen des inneren Durchgangs­bereichs (12) des Außenrohrs (1) ausfüllen, und daß die Mittel zur Einstellung der Axialvorschubkraft ein durch das Rückdrehmoment des Motors (4) gesteuertes Ventil (23) umfassen, durch welches der Spülungsdurchtritt zu den die Reaktionsflächen bildenden Teilflächen des Motors (4) in Abhängigkeit des Rückdrehmoments drosselbar ist.5. Directly driven core drilling tool according to claim 1, characterized in that the pressurizable reaction surfaces are formed as partial surfaces of the motor (4) which fill the cross-sectional areas of the inner passage area (12) of the outer tube (1), and that the means for adjusting the axial feed force comprise valve (23) controlled by the reverse torque of the motor (4), through which the flushing passage to the partial surfaces of the engine (4) forming the reaction surfaces can be throttled as a function of the reverse torque.
EP88100667A 1987-01-23 1988-01-19 Core drilling tool with a direct drive Expired - Lifetime EP0276724B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3701914A DE3701914C1 (en) 1987-01-23 1987-01-23 Directly driven core drilling tool
DE3701914 1987-01-23

Publications (3)

Publication Number Publication Date
EP0276724A2 true EP0276724A2 (en) 1988-08-03
EP0276724A3 EP0276724A3 (en) 1990-08-22
EP0276724B1 EP0276724B1 (en) 1994-09-21

Family

ID=6319376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88100667A Expired - Lifetime EP0276724B1 (en) 1987-01-23 1988-01-19 Core drilling tool with a direct drive

Country Status (4)

Country Link
US (1) US4875531A (en)
EP (1) EP0276724B1 (en)
CA (1) CA1296319C (en)
DE (1) DE3701914C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380909A2 (en) * 1989-02-01 1990-08-08 Eastman Teleco Company Method and coring apparatus for subterranean rock drilling
FR2675197A1 (en) * 1991-04-12 1992-10-16 Leroy Andre OIL, GAS OR GEOTHERMAL DRILLING APPARATUS.
US6644424B1 (en) 1999-03-15 2003-11-11 Halliburton Energy Services, Inc. Core barrel

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902870A1 (en) * 1988-07-25 1990-02-01 Eastman Christensen Co Method of sinking bores in subterranean rock formations
DE3825225A1 (en) * 1988-07-25 1990-02-01 Eastman Christensen Co DRILLING TOOL
DE3912067C1 (en) * 1989-04-13 1990-09-06 Eastman Christensen Co., Salt Lake City, Utah, Us
US5007490A (en) * 1990-06-20 1991-04-16 Ide Russell D Progressive cavity drive train with elastomeric joint assembly for use in downhole drilling
US5135059A (en) * 1990-11-19 1992-08-04 Teleco Oilfield Services, Inc. Borehole drilling motor with flexible shaft coupling
US5186265A (en) * 1991-08-22 1993-02-16 Atlantic Richfield Company Retrievable bit and eccentric reamer assembly
US5168942A (en) * 1991-10-21 1992-12-08 Atlantic Richfield Company Resistivity measurement system for drilling with casing
US6095259A (en) * 1998-04-03 2000-08-01 Keyes; Robert C. Core sampler apparatus with specific attachment means
US8360174B2 (en) 2006-03-23 2013-01-29 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US8297378B2 (en) 2005-11-21 2012-10-30 Schlumberger Technology Corporation Turbine driven hammer that oscillates at a constant frequency
US7497279B2 (en) * 2005-11-21 2009-03-03 Hall David R Jack element adapted to rotate independent of a drill bit
US7753144B2 (en) 2005-11-21 2010-07-13 Schlumberger Technology Corporation Drill bit with a retained jack element
US8225883B2 (en) 2005-11-21 2012-07-24 Schlumberger Technology Corporation Downhole percussive tool with alternating pressure differentials
US8522897B2 (en) 2005-11-21 2013-09-03 Schlumberger Technology Corporation Lead the bit rotary steerable tool
US7571780B2 (en) 2006-03-24 2009-08-11 Hall David R Jack element for a drill bit
US7954401B2 (en) 2006-10-27 2011-06-07 Schlumberger Technology Corporation Method of assembling a drill bit with a jack element
MY155017A (en) * 2006-12-15 2015-08-28 Schlumberger Technology Corp System for steering a drill string
US7721826B2 (en) 2007-09-06 2010-05-25 Schlumberger Technology Corporation Downhole jack assembly sensor
US8701799B2 (en) 2009-04-29 2014-04-22 Schlumberger Technology Corporation Drill bit cutter pocket restitution
SI22761A (en) * 2009-07-22 2009-10-31 Kmetijski inštitut Slovenije Device for non-destructive sampling of soil
US8499856B2 (en) * 2010-07-19 2013-08-06 Baker Hughes Incorporated Small core generation and analysis at-bit as LWD tool
CN102619484B (en) * 2012-04-11 2014-09-10 中国石油集团川庆钻探工程有限公司钻采工程技术研究院 Well wall coring while drilling tool
CN103015932B (en) * 2012-12-27 2015-08-19 中国石油集团川庆钻探工程有限公司 The drilling system of coring with drilling
CN103015931B (en) * 2012-12-27 2015-08-19 中国石油集团川庆钻探工程有限公司 The system of coring of coring with drilling
CN104453765B (en) * 2013-09-24 2017-03-15 金川集团股份有限公司 The fisher of core plugging notifying mechanism of rope core drilling
CN110984878B (en) * 2019-11-08 2021-09-10 长江岩土工程有限公司 Rope coring drilling device for urban deep-buried tunnel exploration hole
CN113175307B (en) * 2021-04-29 2022-04-15 四川大学 Rotary seal core lifting mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326435A (en) * 1940-05-24 1943-08-10 Pink T Bynum Coring apparatus
GB2183272A (en) * 1985-11-22 1987-06-03 Amoco Corp Controlling the force applied to a drill bit while drilling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898086A (en) * 1954-12-02 1959-08-04 Jersey Prod Res Co Method of drilling
US2915285A (en) * 1956-05-23 1959-12-01 Jersey Prod Res Co Coring subterranean formations
US4518050A (en) * 1983-06-30 1985-05-21 Chevron Research Company Rotating double barrel core sampler
US4518051A (en) * 1983-06-30 1985-05-21 Chevron Research Company Percussion actuated core sampler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326435A (en) * 1940-05-24 1943-08-10 Pink T Bynum Coring apparatus
GB2183272A (en) * 1985-11-22 1987-06-03 Amoco Corp Controlling the force applied to a drill bit while drilling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380909A2 (en) * 1989-02-01 1990-08-08 Eastman Teleco Company Method and coring apparatus for subterranean rock drilling
EP0380909A3 (en) * 1989-02-01 1992-03-11 Eastman Teleco Company Method and coring apparatus for subterranean rock drilling
FR2675197A1 (en) * 1991-04-12 1992-10-16 Leroy Andre OIL, GAS OR GEOTHERMAL DRILLING APPARATUS.
WO1992018740A1 (en) * 1991-04-12 1992-10-29 Leroy Andre Oil, gas or geothermal drilling apparatus
US6644424B1 (en) 1999-03-15 2003-11-11 Halliburton Energy Services, Inc. Core barrel

Also Published As

Publication number Publication date
CA1296319C (en) 1992-02-25
EP0276724B1 (en) 1994-09-21
EP0276724A3 (en) 1990-08-22
US4875531A (en) 1989-10-24
DE3701914C1 (en) 1988-05-19

Similar Documents

Publication Publication Date Title
EP0276724B1 (en) Core drilling tool with a direct drive
DE2930014C2 (en)
DE60014641T2 (en) HYDRAULIC SETTING UNIT
DE60305733T2 (en) DRILLING A DRILL
DE3113749C2 (en) Device for the remote transmission of information from a borehole to the surface of the earth during the operation of a drilling rig
DE2919007C2 (en) Core drilling equipment for rock boreholes
DE2705191A1 (en) IMPACT DRILLING TOOL
DE3640631C1 (en) Device for the rotationally fixed connection of two coaxial components
EP0352427B1 (en) Drilling device
DE2418392B2 (en) Core and solid drilling device for use with deep-hole turbines
DE2423346C2 (en) Method and device for reducing wear in the axial bore of a subsea wellhead
EP0469317B1 (en) Method and device for modifying the weight on an earth drill bit
DE2933678A1 (en) DEVICE FOR REVERSING THE CIRCULATION DIRECTION OF A PRESSURE FLUID FEEDING A DRILLING TOOL
AT390303B (en) DRILLING DEVICE
DE69634399T2 (en) circulation piece
DE3024102A1 (en) Eccentric overburden drill bit - with lever on inner drill tube urging bit crown outside outer tube
DE2459982C3 (en) Coupling device for connecting a rotary hammer drill with a double rod
DE3343565C2 (en) Downhole hammer
DE3228106C2 (en) Device for earth drilling using the air lifting method
DE2953873C2 (en) Core drilling equipment for rock boreholes
DE2734020C3 (en) Stabilizer for deep drilling and drill rods therefor
DE3622934C2 (en) Compact drilling rig
DE2415645A1 (en) HYDROMECHANICAL CONTROL MECHANISM
DE2441553C3 (en) Device for deflecting a drilling tool connected to a downhole drilling motor via a drive shaft
DE2341163C3 (en) Impact drill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE FR GB NL

17P Request for examination filed

Effective date: 19901208

17Q First examination report despatched

Effective date: 19920710

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EASTMAN TELECO COMPANY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950131

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960131

BERE Be: lapsed

Owner name: EASTMAN TELECO CY

Effective date: 19960131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST