EP0271857B1 - Filament incandescent bispiralé compact muni de supports - Google Patents
Filament incandescent bispiralé compact muni de supports Download PDFInfo
- Publication number
- EP0271857B1 EP0271857B1 EP19870118489 EP87118489A EP0271857B1 EP 0271857 B1 EP0271857 B1 EP 0271857B1 EP 19870118489 EP19870118489 EP 19870118489 EP 87118489 A EP87118489 A EP 87118489A EP 0271857 B1 EP0271857 B1 EP 0271857B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filament
- lamp
- diameter
- supports
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/18—Mountings or supports for the incandescent body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/02—Incandescent bodies
- H01K1/14—Incandescent bodies characterised by the shape
Definitions
- the present invention is directed to a unique coiled coil incandescent filament and supports therefor, especially useful in a European version of Sylvania's Capsylite lamps.
- Both PAR and A-line versions of these lamps are commercially available in the United States.
- the U.S. versions of these lamps are characterized by a low-wattage, tungsten - halogen, hard glass light-source capsule, mounted within a heavy outer envelope. See, for example, U.S. Patent No. 4,598,225.
- US-A-4 208 606 discloses a lamp of the first part of claim 1.
- parabolic aluminized reflector (PAR), elliptical reflector (ER), or reflector (R) lamps for general spot, downlighting, and/or flood lighting applications is well established.
- PAR, ER type lamps have been accepted as the lamps of choice for short to medium distance outdoor uses, as well as for indoor display, decoration, accent, and inspection applications of down lighting.
- incandescent PAR-type lamps particularly Sylvania's PAR38, have used a filament mounted transversely in the reflector, that is, perpendicular to its axis of symmetry, because this was the simplest configuration to manufacture.
- Capsylite lamps operating under United States type electrical systems i.e., 120-130V; 60 Hertz
- such compact filaments are made possible by the use of a halfwave rectifying diode which effectively reduces the capsule voltage from 120V to about 84V.
- the lamp need not be hermetic and bonded beam lamps have appeared.
- Coiled filaments are known, see for example, U.S. Patent Nos. 1,180,159; 1,247,068; 2,142,865; 2,306,925; 2,774,918; 4,208,609; and 4,316,116. However, none of these coiled filaments provides the unique features of the filament of the present invention.
- Filament supports are also known, see for example, U.S. Patent Nos. 4,359,665; 4,208,606; 3,780,333; 3,736,455; 3,678,319; 3,634,722; 3,335,312; and 3,173,051.
- previously employed filament supports typically caused problems in terms of shadowing and/or scattering of light.
- quartz halogen capsules in the 220-250V range have been made, they are generally inefficient and complicated affairs with zig-zagged" filaments and multiple coil supports.
- quartz capsules and the typical filaments and/or supports usually associated therewith are not well suited for use in PAR lamps since they are lacking both in luminous efficiency and in optical efficiency. They are also more expensive to produce than hard glass capsules due to the high cost of materials and processes involved and the amount of labor required.
- the present invention overcomes the difficulties mentioned above with respect to European type PAR and A-line lamps by providing a unique filament and non-interfering supports therefor.
- the present invention is directed to a low wattage ( ⁇ 150W) high voltage (220-250V) halogen coil filament particularly well suited for use in European type PAR and A-line lamps.
- the invention is directed to an improved halogen coil filament, the improvements including a compact high efficiency filament mounted axially in a single ended hard glass capsule with a unique system of supports sufficient to prevent significant coil sag over the useful life thereof.
- the parameters of the filament of the present invention are new.
- a filament prepared in accordance with these parameters demonstrates improved compactness and structural rigidity which, together with the unique supplementary supports therefor, provides a suitable light-source for lamps operating under European electrical systems (220-250 volts and 50 Hertz).
- the coil may include a skip-space for the supports.
- Figure 1 illustrates one embodiment of an incandescent lamp, particularly of the tungsten halogen variety, made in accordance with the teachings of the prior art, suitable for modification in accordance with the teachings of the present invention.
- Figure 2 illustrates a filament wire which was wound to form a coiled filament.
- Figure 3 illustrates a filament wire which was wound to form a coiled coil filament.
- Figure 4 illustrates a filament wire wound around a primary mandrel to form a primary coil.
- Figure 5 illustrates a primary coil which is wound around a secondary mandrel to form the coiled coil filament.
- Figure 6 illustrates the various parameters related to determining the outer diameter of a coiled coil filament of the present invention.
- Figure 7 illustrates a lamp of the type depicted in Figure 1, modified in accordance with the present invention, and identifying the various parameters related to determining the overall filament length (BL) and the section length (SL) of a coiled coil filament of the present invention.
- This invention relates to a multiple coiled filament and system of supports.
- the filament consists of a single strand wire, coreless, coiled coil filament for an incandescent lamp.
- the supports allow a simple, inexpensive and efficient coil to be constructed.
- Figure 1 represents an example of an incandescent lamp 10, in this embodiment being of the tungsten halogen variety, prepared in accordance with the teachings of the prior art.
- lamp 10 comprises a tubular envelope 12, prepared from a suitably hard, light transmissive material, such as quartz, or aluminosilicate glass.
- a pair of lead in wires 14 and 16, portions of which serve as mounting means, are press sealed in envelope 12 at press seal 18.
- Lead in wires 14 and 16 can be formed from any suitable material, for example, molybdenum, which will form a relatively strain free hermetic seal with glass envelope 12.
- a refractory metal such as tungsten, is used to form the filament 20.
- the filament 20 is provided with legs 21 at each end thereof during its formation.
- envelope 12 is filled with a fill gas, comprising an inert gas and a suitable halogen or halide.
- a fill gas comprising an inert gas and a suitable halogen or halide.
- fill gases include the inert gases; argon, krypton, xenon, and/or nitrogen; plus the halogen or halide.
- the present invention is directed to an improved filament for use in incandescent lamps such as that depicted in Figure 1.
- FIGS 2 and 3 illustrate enlarged views of the preferred tungsten filament of the present invention and its coiled and coiled coiled stages, respectively.
- Each stage has a pitch or percent pitch, which is equal to S, the center to center spacing of the turns, divided by d, the diameter of the wire or coil, multiplied by 100.
- Figure 2 illustrates the primary pitch of a filament 20A having a center to center spacing of S 1 , wire diameter d 1 , and outer diameter D 1 .
- the primary pitch P 1 is equal to S 1 /d 1 and the secondary pitch P 2 is equal to S 2 /d 2 .
- d 2 D 1 ).
- P 1 has a value that does not exceed 1.70 (or 170%).
- S 2 is the center to center spacing of the coiled coil filament
- BL is the body length of the coiled coil (or secondary) filament.
- the secondary pitch of the filament is in the range of from 1.40 to 1.60.
- the present method comprises the steps of (1) providing a strand of fibrous filament wire 19 having a particular length L and a diameter d (for a particular wattage, voltage and efficiency) and (2) winding filament wire 19 around a primary mandrel 30 having a diameter of M 1 to produce a primary coil 20A.
- the method of the present invention further includes the step (3) of winding the primary coil 20A around a secondary mandrel 40 having a secondary mandrel diameter of M 2 to produce a coiled coil filament configuration, where A ⁇ B ⁇ 4.0.
- the method of the present invention further includes the step (4) of removing substantially all of the core of the coiled coil filament 20 except for the core in legs 21.
- the core in legs 21 is preferably left intact in order to preserve the structural integrity of filament 20 when it is mounted within the envelope and crimped or attached by the legs to a mounting means.
- Figure 6 illustrates the outer diameter D 2 of the filament winding illustrated in Figure 5, wherein the primary mandrel diameter M 1 is greater than the diameter of filament wire 19 and the secondary mandrel diameter M 2 is greater than the diameter of the primary filament coil 20A.
- the most preferred coil configuration is centered in the bulb (CC8 configuration) to equalize bulb wall temperature. At the higher wattages, this allows bulb wall loading to be minimized. At the lower wattages, this allows the minimum bulb wall temperature (required for operation of the tungsten halogen cycle) to be achieved without cold spots.
- Centering the coil in the bulb is also important for filaments focussed in reflectors since this equalizes the light distribution about the central axis of the reflector.
- Figure 7 illustrates the preferred arrangement and spacing of the intermediate filament supports 22 and 26.
- the distance (SL 1 ) from leg 21 to support 22 (and SL 3 , the distance from leg 21 to support 26) is approximately equal to the distance (SL 2 ) from support 22 to support 26, although other support spacing may be used if desired.
- supports 22 and 26 are preferably mounted directly in the press seal 18 of lamp 10 at positions 24 and 28, respectively.
- the preferred intermediate filament supports 22 and 26 are small, generally less than 0.25 mm (10 mils) in diameter, thus minimizing heat conduction from the lighted filament.
- the preferred supports are not in contact with the outer bulb, thereby minimizing thermal conduction from the lighted filament.
- the intermediate filament supports 22 and 26 are clamped to the filament, preferably so as to provide approximately equal sections of filament. Coil sag is thus minimized over a number of smaller sections of filament.
- the intermediate filament supports are stiff enough to dampen most coil vibrations and to serve as non-movable supports for the filament.
- the support routing (from the clamped filament to the press) be distributed angularly about the circumference of the circular cross-section of the outer envelope so as to tend to equalize the scattered light from these supports.
- the system of supports described herein allows the use of a sufficient number of supports so that (especially for those cases where an extremely long filament is needed to provide the watts and lumens at a predetermined voltage) a high degree of compacting becomes possible through the use of large mandrel ratios.
- the shorter coil achieved in this manner should preferably be axially centered in the glass envelope for the reasons given above when the filament is to be utilized in a reflector.
- This shorter axial coil can result in a more efficient and simpler reflector and lens design since stray light is reduced, that is, channeled into the central angular region in front of the reflector where it can be more easily controlled.
- two lamps having a visible difference in value and wattage and voltage will be used: a 105 watt lamp operated at 245 volts and a 35 watt lamp operated at 84 volts.
- Each example illustrates first a filament which was wound using low mandrel ratios, which was thought to be the preferred method of developing a filament which exhibits a high degree of structural rigidity but instead the rigidity is between the supported portions of the filament (see “Sample Winding").
- the long filaments When subjected to shock, the long filaments tend to vibrate excessively. This is due in part to their length and to the fact that these filaments are heated less uniformly due to the closer or smaller inner pitch that results from small mandrel ratios.
- Each example then describes the improved method of winding the filament with the use of larger values of mandrel ratios in order to achieve a high degree of compactness and thereby channel the light emitted therefrom into the central angular regions of the reflector of the lamp (see, "Improved Winding).
- the resulting body length (BL) to outer diameter (D 2 ) ratio is about 77:1; this results in a long flimsy filament which will ultimately require at least one or more additional filament supports to support such a filament within a small incandescent lamp envelope.
- the improved winding utilizes larger mandrel ratios, particularly a secondary mandrel ratio that is larger than a primary mandrel ratio, which results in a body length to outer diameter ratio of about 33:1.
- the improved filament design is much more compact and should require 2 supports compared to 3 or 4 supports needed by the sample winding.
- the total length of an axially mounted filament must be no longer than twice the focal length or about 23 mm.
- the improved winding has a length that will just fit if there is a slight recess in the base, but the sample winding will have to be installed in a double or triple hung configuration which will result in complex mountings, larger bulbs and focus loss.
- the test was conducted with two hard glass halogen (HGH) capsules having wattages close to 45 watts and operating at a voltage of about 84 volts but having filaments of different lengths.
- HGH hard glass halogen
- a 1.1 cm (0.45 inch) focal length, continuous contour (no rear cup recess), aluminum, parabolic reflector was used with a PAR 38 flood lens having a center filled with a continuous pattern.
- Lamp A had a beam angle of about 24° and flood angle of about 41°, while lamp B had a beam angle of about 26° and a flood angle of about 48°.
- the longer filament gave a minimum beam size of 40° while the shorter filament gave a minimum beam size of 27° degrees. These were the relatively sharp visual edges when adjusted to minimum beam size.
- the longer filament produces more spread into the tails of the pattern and consequencly has a lower efficiency of utilization, 62% compared to 67% for the shorter filament. This illustrates the advantage of improved collection for the shorter, more compact filament design of the present invention.
- the aforementioned example also illustrates that in designing filament configurations for reflector-type lamp applications it is preferable to utilize a filament design that evenly spreads out the light energy throughout the central angular region, while maintaining a reasonable amount of compactness, in order to simplify the task of shaping the light emitted from the lamp with an appropriate lens.
- a long filament on the other hand spreads the light out too much, beyond the desired central region, such that portions of the reflector will be hit which will greatly disperse the light, making it much more difficult to shape the beam with a lens.
- a filament design that has a small diameter also tends to have a hot spot in the middle which creates a bright spot in the middle of the filament that makes it difficult to disperse the light effectively with a lens.
- filaments designed to operate at line voltage such as 120 or 130 volts also require starting with a long filament wire.
- the improved method for reducing focus loss and improving collection efficiency will provide for winding a filament wire into a compact coil which is especially useful for these applications and can lead to enhanced operation at high voltages since typical winding techniques hae lead to extremely long filaments requiring larger envelopes, more complex mounting arrangements and a greater dispersion of light.
- the aforementioned filament design can also lead to operation without voltage reducing or recitfying means (e.g., a diode) which eliminates the modulation of the light and power fluctuations that result from the use of such rectifying means. Elimination of the rectifying means is particularly important in the 225 to 245 volt range since the small filament mass leads to greater thermal fluctuations and useful where small reflector lamp designs are sought due to the heat generated by the lamp capsule that the rectifier is exposed to.
- voltage reducing or recitfying means e.g., a diode
Landscapes
- Resistance Heating (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Claims (14)
- Lampe à incandescence comprenant un filament bispiralé (20) réalisé dans un fil (19) d'un métal réfractaire, le filament bispiralé (20) présentant une longueur de corps, BL, et le fil (19) en métal réfractaire présentant un diamètre d, dans laquelle le diamètre D1 du bobinage primaire et le diamètre D2 du bobinage secondaire du dit filament (20) sont définis par les équations :
caractérisée en ce que la distance SL entre chacune des extrémités de montage du dit filament et un support voisin (22, 26) et entre tout deux supports voisins (22, 26), satisfait les équations - Lampe selon la revendication 1 ou 2, dans laquelle le rapport du pas primaire est inférieur à 1,70.
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle le fil en métal réfractaire (19) comprend du tungstène.
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle la bobine (20) inclut, en outre, un espace de saut pour le support (22, 26).
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle les supports intermédiaires (22, 26) ont un diamètre inférieur à 0,25 mm (10 millièmes de pouce).
- Lampe selon l'une quelconque des revendications précédentes, qui comprend, en outre, un réflecteur.
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle la dit lampe inclut une ampoule (12) ayant un revêtement réfléchissant les infrarouges, de telle manière que la lumière infrarouge soit réfléchie en arrière vers le dit filament (20).
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle la dite lampe inclut, en outre, un moyen de redressement ou autre moyen réduisant la tension, relié électriquement à l'une des dites entrées de courant (14, 16), en série avec le dit filament (20), et relié à une source de tension de manière à réduire la tension aux bornes du dit filament (20).
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle la dite lampe est une lampe au tungstène-halogène ayant un halogène ou un halogénure comme partie du gaz de remplissage.
- Lampe selon l'une quelconque des revendications précédentes, dans laquelle la configuration de la bobine du filament (20) est centrée dans le bulbe.
- Procédé de fabrication d'une lampe à incandescence ayant un filament bispiralé (20), le dit procédé incluant les étapes suivantes :bobiner un fil (19) de filament ayant un diamètre d, autour d'un mandrin primaire (30) présentant un diamètre M1 pour obtenir une bobine primaire (20A) présentant un diamètre D1, de manière à satisfaire les équations:et bobiner la dite bobine primaire (20A) autour d'un mandrin secondaire ayant un diamètre M2, pour réaliser un filament bispiralé (20) présentant un diamètre de bobinage secondaire D2, de manière à satisfaire les équations :une pluralité de supports intermédiaires (22, 26) étant fixée pour former supports au dit filament (20) ayant une longueur de corps BL,caractérisé en ce que la distance SL entre chacune des extrémités de montage du filament (20) et un support voisin (22, 26) et entre tout deux supports voisins (22, 26) satisfait les équations :
- Procédé selon la revendication 12, comprenant, en outre, l'étape d'enlèvement de substantiellement toute l'âme du dit filament bispiralé (20), sauf à ses jambes (21).
- Procédé selon la revendication 12 ou 13, comprenant, en outre, l'étape d'introduction d'un espace de saut pour déterminer un espace pour le support (22, 26).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94233986A | 1986-12-16 | 1986-12-16 | |
US942339 | 1986-12-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0271857A2 EP0271857A2 (fr) | 1988-06-22 |
EP0271857A3 EP0271857A3 (fr) | 1990-05-16 |
EP0271857B1 true EP0271857B1 (fr) | 1997-04-02 |
Family
ID=25477952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19870118489 Expired - Lifetime EP0271857B1 (fr) | 1986-12-16 | 1987-12-14 | Filament incandescent bispiralé compact muni de supports |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0271857B1 (fr) |
DE (1) | DE3752039T2 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959585A (en) * | 1988-09-06 | 1990-09-25 | General Electric Company | Electric incandescent lamp and method of manufacture therefor |
US4918356A (en) * | 1988-10-17 | 1990-04-17 | General Electric Company | Electric incandescent lamp and method of manufacture therefor |
EP0584071B1 (fr) * | 1991-04-03 | 1999-01-07 | Flowil International Lighting (Holding) B.V. | Ensemble lampe et reflecteur |
US5272408A (en) * | 1991-05-09 | 1993-12-21 | Gte Products Corporation | Lamp and reflector assembly |
AT407961B (de) * | 1998-12-03 | 2001-07-25 | Alfred Dr Schneider | Bestrahlungsleuchte |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB441207A (en) * | 1934-07-18 | 1936-01-15 | Gen Electric Co Ltd | Improvements in the manufacture of coiled coil filaments for electric incandescent lamps |
US2359302A (en) * | 1942-06-11 | 1944-10-03 | Tung Sol Lamp Works Inc | Incandescent lamp and method of manufacture |
US3210587A (en) * | 1962-10-16 | 1965-10-05 | Westinghouse Electric Corp | Lamp mount and component therefor |
GB1062819A (en) * | 1963-08-12 | 1967-03-22 | Sylvania Electric Prod | Incandescent lamps using coiled-coil filaments |
US3383539A (en) * | 1967-02-06 | 1968-05-14 | Sylvania Electric Prod | Projection lamp |
GB1147140A (en) * | 1967-03-10 | 1969-04-02 | Sylvania Electric Prod | Incandescent lamp |
US3486065A (en) * | 1968-01-12 | 1969-12-23 | Westinghouse Electric Corp | Means for centralizing an incandescible coil about the longitudinal lamp axis |
US3634722A (en) * | 1970-03-30 | 1972-01-11 | Sylvania Electric Prod | Tungsten halogen lamp having improved filament support |
JPS53110275A (en) * | 1977-03-08 | 1978-09-26 | Toshiba Corp | Incandescent light bulb |
US4208606A (en) * | 1979-01-10 | 1980-06-17 | Westinghouse Electric Corp. | Filament-support means for a tubular incandescent lamp |
US4316116A (en) * | 1979-12-19 | 1982-02-16 | General Electric Company | Triple-coil incandescent filament |
US4499401A (en) * | 1983-03-03 | 1985-02-12 | General Electric Company | Triple coil incandescent filament |
US4547704A (en) * | 1983-08-01 | 1985-10-15 | General Electric Company | Higher efficiency incandescent lighting units |
US4686412A (en) * | 1986-04-14 | 1987-08-11 | Gte Products Corporation | Reflector-type lamp having reduced focus loss |
-
1987
- 1987-12-14 EP EP19870118489 patent/EP0271857B1/fr not_active Expired - Lifetime
- 1987-12-14 DE DE19873752039 patent/DE3752039T2/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0271857A3 (fr) | 1990-05-16 |
EP0271857A2 (fr) | 1988-06-22 |
DE3752039T2 (de) | 1997-10-30 |
DE3752039D1 (de) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0241911B1 (fr) | Lampe du type à réflecteur avec perte focale réduite | |
EP0168015B1 (fr) | Lampe à tungstène-halogène à filament double de faible puissance | |
US7468576B2 (en) | Multi-segment filament high output halogen lamp | |
JPH0367456A (ja) | 白熱ランプ用のフィラメント心合わせ支持体 | |
US4918354A (en) | Compact coiled coil incandescent filament with supports and pitch control | |
US4517491A (en) | Incandescent lamp source utilizing an integral cylindrical transparent heat mirror | |
US3445713A (en) | Halogen cycle incandescent lamp | |
EP0271857B1 (fr) | Filament incandescent bispiralé compact muni de supports | |
EP0364831B1 (fr) | Lampe électrique à incandescence et méthode de fabrication de cette lampe | |
US4683397A (en) | Compact incandescent coiled coil filament | |
CA2178307A1 (fr) | Lampe a incandescence aux halogenures avec positionnement de filament | |
US6639364B1 (en) | Halogen incandescent capsule having filament leg clamped in press seal | |
EP0429256B1 (fr) | Structure de montage améliorée pour lampe à double terminaison | |
US4835443A (en) | High voltage hard glass halogen capsule | |
US6225731B1 (en) | Glass halogen lamp with internal ellipsoidal shroud | |
EP0271859B1 (fr) | Filament incandescent bispiralé compact utilisant le pas pour contrÔler l'affaissement | |
US6936967B2 (en) | Fluorescent lamp and method of manufacturing same | |
EP0271858B1 (fr) | Ampoule à halogène en verre dur pour haute tension | |
US20070108901A1 (en) | Electric incandescent lamp and method for fabrication thereof | |
JPS60253139A (ja) | 建築物照明に特に適したメタルハライド・ランプおよび照明システム | |
JPS63174263A (ja) | コイル構造を改良した白熱ランプ | |
CA1218691A (fr) | Lampe a incandescence utilisant un reflecteur de chaleur transparent cylindrique integre | |
JPS63292561A (ja) | 無電極放電灯装置 | |
Lamps et al. | 9.1. 1 PHYSICAL CONSIDERATIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880112 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19921223 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3752039 Country of ref document: DE Date of ref document: 19970507 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060621 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060622 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060623 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060627 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060629 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070703 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20061214 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20070701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061214 |
|
BERE | Be: lapsed |
Owner name: *GTE PRODUCTS CORP. Effective date: 20061231 |