EP0268000B1 - Sintering plant - Google Patents

Sintering plant Download PDF

Info

Publication number
EP0268000B1
EP0268000B1 EP86890326A EP86890326A EP0268000B1 EP 0268000 B1 EP0268000 B1 EP 0268000B1 EP 86890326 A EP86890326 A EP 86890326A EP 86890326 A EP86890326 A EP 86890326A EP 0268000 B1 EP0268000 B1 EP 0268000B1
Authority
EP
European Patent Office
Prior art keywords
sintering furnace
grate
cooler
annular
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86890326A
Other languages
German (de)
French (fr)
Other versions
EP0268000A1 (en
Inventor
Oskar Ing. Pammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Voest Alpine Industrienlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voest Alpine Industrienlagenbau GmbH filed Critical Voest Alpine Industrienlagenbau GmbH
Priority to AT86890326T priority Critical patent/ATE41996T1/en
Priority to EP86890326A priority patent/EP0268000B1/en
Priority to DE8686890326T priority patent/DE3662725D1/en
Publication of EP0268000A1 publication Critical patent/EP0268000A1/en
Application granted granted Critical
Publication of EP0268000B1 publication Critical patent/EP0268000B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/02Sintering grates or tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0273Cooling with means to convey the charge on a rotary hearth

Definitions

  • the invention relates to a sintering plant with a sintering furnace having an annular traveling grate, the housing of which forms a feed hood for combustion air adjoining the traveling grate and wind boxes on the grate side opposite the feed hood, which are connected to at least one exhaust gas manifold via connecting lines and one to the Good outlet of the sintering furnace connected cooler for the sintered goods, which consists of an annular grate arranged above an annular chamber for the supply of cooling air, for receiving the sintered good and an extractor hood for the heated cooling air above the annular grate.
  • the ground ores mixed with fuel are continuously applied to a traveling grate of a sintering furnace, in which the fuel is ignited in the region of the surface of the sintered good with the aid of an ignition device and burns through the sintered good layer during the furnace pass, so that the sintered good can be passed on to a cooler via a good outlet at the end of the furnace run before it is processed further.
  • the combustion air required for the burning process is sucked through the material bed on the moving grate, with the help of wind boxes, through which the exhaust gases are passed on to an exhaust manifold, which are connected to the wind boxes by connecting lines. If an annular traveling grate is used (DE-B 2 604 798), this results in particularly favorable construction conditions because the connecting lines can be arranged in a star shape between the wind boxes and the central exhaust gas manifold.
  • the sensible waste heat of the cooling air heated in the cooler during the cooling of the sintered material can advantageously be used for preheating the combustion air for the sintering furnace.
  • the heated cooling air is collected in a fume hood above the grate of the cooler receiving the sintered material and fed to the sintering furnace, the housing of which has a supply hood for the combustion air on the grate side opposite the wind boxes.
  • a disadvantage of such known sintering systems is that the cooler to be connected to the sintering furnace not only considerably increases the space required for the sintering system, even if the cooler is also equipped with a ring grate, but also requires complex wiring between the sintering furnace and the cooler, so that the sensible waste heat of the heated cooling air for preheating the combustion air is often not used.
  • a desired temperature profile should be maintained over the path of the sintered material through the sintering furnace, which requires different preheating of the combustion air over the path of the sintered material and cannot be achieved with the known cooling air duct.
  • the invention is therefore based on the object to avoid these deficiencies and to improve a sintering plant of the type described in such a way that the space requirement is minimized and advantageous preheating of the combustion air can be ensured by utilizing the sensible waste heat of the heated cooling air from the cooler, specifically with a simple cable routing between the sintering furnace and the cooler.
  • the invention solves this problem in that the sintering furnace and the cooler for the sintered material are arranged coaxially one above the other, that the ring grate of the cooler and the traveling grate of the sintering furnace have the same direction of rotation and that the extractor hood of the cooler is connected to the feed hood by means of overflow channels distributed over the circumference of the sintering furnace is connected.
  • the required base area for the sintering plant remains limited to the space required by the sintering furnace, especially since there is usually sufficient space at height.
  • the overflow channels between the sintering furnace and the cooler can be formed with a very short length, so that the construction effort is kept comparatively low.
  • the ignition device of the sintering furnace is in relation to the direction of rotation of the traveling grate before the good task for the sintering furnace and this in turn in front of the material outlet, so that the hot sintered material coming from the material outlet of the sintering furnace onto the ring grate of the cooler is conveyed with the ring grate of the cooler in the direction of the ignition device and the cooling air, which is initially still uncooled, reaches the sintering furnace as combustion air via the overflow channels provided in this area. With increasing cooling of the sintered product, the cooling air also becomes cooler, which leads to a desired temperature gradient of the combustion air over the passage path of the sintered product through the sintering furnace.
  • the temperature distribution of the combustion air supplied to the sintered material in the sintering furnace essentially coincides with the temperature distribution of the cooling air over the circumferential length of the cooler.
  • sintering furnace is arranged above the sinter cooler.
  • wind boxes of the sintering furnace which are combined in at least two peripheral groups, are each connected in groups to a separate manifold, different pollutant loads in different peripheral areas of the sintering furnace can be taken into account when cleaning the sintering system.
  • the substantial sulfur pollution in the exhaust gases arises from a circumferential region of the sintering furnace which is arranged at a distance from the ignition device, so that a desulfurization system only has to be provided for these exhaust gas quantities. It is therefore only necessary to connect the wind boxes belonging to this peripheral region of the sintering furnace to a separate exhaust gas manifold connected to a desulfurization system, while the exhaust gases can be blown off from the other wind boxes immediately after dedusting.
  • the sintering system shown in FIGS. 1 to 3 essentially consists of an annular sintering furnace 1, which is arranged coaxially above a likewise annular cooler 2 for the fired sintered material and is connected to this cooler 2 by overflow channels 3 distributed over the circumference.
  • the fixed housing of the sintering furnace 1 forms a feed hood 5 for combustion air on the top of an annular traveling grate 4 and wind boxes 6 on the grate side opposite the feed hood 5, which are connected via connecting lines 7 to a central exhaust gas collecting line 8.
  • the arrangement is such that the connecting lines 7 run along a cone with its tip pointing downward, so that between the connecting lines 7 and the vertically rising exhaust gas collecting line 8 there is an advantageous deflection of the exhaust gas flow from the sintering furnace 1 for dust separation.
  • the proportion of dust resulting from this coarse separation can be removed via a separator 9.
  • the exhaust gases pre-cleaned in this way from the sintering furnace 1 are sucked in by a suction fan 10 through a separator 11 for fine particles and fed to a downstream desulfurization device 12 before they are blown off in an appropriately cleaned manner.
  • the annular traveling grate 4 is supported on rollers 14 by rollers 13 and can be driven by a friction wheel 15 which rolls on an annular flange 16 (FIG. 2) of the traveling grate 4.
  • the traveling grate itself is charged with the sintered good mixed with ore and fuel by means of a good task 17 indicated by dash-dotted lines in FIG. 2, which is ignited with the aid of an ignition device 18 following the good task 17 in the direction of rotation of the moving grate 4, for example consisting of several burners, the Fuel burns through the layer thickness of the sintered material on the passage path of the sintered material from the material feed 15 to a material outlet 19, the ore agglomerating.
  • the sintered sintered goods are thrown into the cooler 2 located below the sintering furnace 1 by the individual, tiltably mounted grate sectors 20 being tilted in the area of the good outlet, so that the sintered goods located on the respective sector 20 are fed onto the ring grate via a chute 21 of the cooler 2 can fall off.
  • This ring grate 21 is in turn composed of individual tiltable sectors 22 which are supported by rollers 23, wherein the axis of these rollers 23 can form the tilt axis.
  • a friction wheel 25 cooperating with an annular flange 24 can be provided in an analogous manner to drive this annular grate 21.
  • the cooling air is fed to the cooler 2 via a blower 26 which opens into an annular chamber 27, above which the annular grate 21 is arranged.
  • the cooling air which is blown out of the annular chamber 27 through the sintered material layer on the annular grate 21 and thereby heated reaches an extractor hood 28 provided above the annular grate 21, from which the overflow channels 3 distributed over the circumference originate.
  • the ring grate 21 of the cooler 2 is driven in the same direction of rotation as the traveling grate 4 of the sintering furnace 1 and the material outlet 19 of the sintering furnace via the chute, not shown in more detail is directly connected to the cooler task 29, the hottest cooling air from the cooler 2 passes via the overflow channels 3 to that peripheral region of the sintering furnace 1 which directly adjoins the ignition device 18.
  • the combustion air for the sintering furnace 1 formed by the heated cooling air is therefore also the hottest in this circumferential area and decreases as the angular distance progresses from the ignition device 18 to the product outlet 19, which ensures an advantageous combustion process.
  • the sintered product is discharged from the cooler 2 via a product outlet 30 by the individual grate sectors 22 being tilted in the region of the product outlet 30.
  • the sintering system according to FIGS. 4 to 6 differs from the sintering system according to FIGS. 1 to 3 only in that the wind boxes 6 of the sintering furnace 1 are combined in two circumferential groups and are connected in groups to a separate exhaust gas manifold 8a and 8b. Since the exhaust gas manifold 8b is guided via a fine material separator 31 and a blower 32 to a desulfurization system 33, the exhaust gases from the wind boxes connected to this exhaust gas manifold 8b are dedusted and desulfurized, but not the exhaust gases from the other wind boxes, because the 8 exhaust gas pipe assigned to these wind boxes is only connected to a blower 32 via a fine material separator 31. Desulphurization of the exhaust gases from this peripheral area of the sintering furnace 1 is also not necessary because the main sulfur content in the area of the exhaust gases results from the wind boxes 6 connected to the exhaust gas manifold 8b.
  • the two exhaust gas collecting lines 8a, 8b can be formed by an intermediate wall 34 within a common conduit 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)
  • Inert Electrodes (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

1. A sintering plant comprising a sintering furnace (1), which has an annular travelling grate (4) and a housing, which constitutes a supply hood (5) which adjoins the travelling grate (4) and serves to supply combustion air, and also constitutes wind boxes (6) which are disposed on that side of the grate which is opposite to the supply hood (5) and communicate via communicating lines (7) with at least one exhaust gas manifold (8), also comprising a cooler (2), which is connected to the material outlet (19) of the sintering furnace (1) and serves to cool the sintered material and consists of a revolving annular grate (21), which is disposed above an annular chamber (27) for supplying cooling air and serves to receive the sintered material, and an exhaust hood (28) for exhausting the heated cooling air above the annular grate (21) characterized in that the sintering furnace (1) and the cooler (3) for the sintered material are coaxially superimposed, the annular grate (21) of the cooler (2) and the travelling grate (4) of the sintering furnace (1) rotate in the same sense, and the exhaust hood (28) of the cooler (2) is connected to the supply hood (5) of the sintering furnace (1) via overflow passages (3), which are distributed around the periphery.

Description

Die Erfindung bezieht sich auf eine Sinteranlage mit einem einen ringförmigen Wanderrost aufweisenden Sinterofen, dessen Gehäuse eine an den Wanderrost anschließende Zuführhaube für Verbrennungsluft und auf der der Zuführhaube gegenüberliegenden Rostseite Windkästen bildet, die über Anschlußleitungen mit wenigstens einer Abgassammelleitung verbunden sind, und mit einem an den Gutauslaß des Sinterofens angeschlossenen Kühler für das Sintergut, der aus einem oberhalb einer Ringkammer für die Kühlluftzufuhr angeordneten, umlaufenden Ringrost zur Aufnahme des Sintergutes und aus einer Abzugshaube für die erwärmte Kühlluft oberhalb des Ringrostes besteht.The invention relates to a sintering plant with a sintering furnace having an annular traveling grate, the housing of which forms a feed hood for combustion air adjoining the traveling grate and wind boxes on the grate side opposite the feed hood, which are connected to at least one exhaust gas manifold via connecting lines and one to the Good outlet of the sintering furnace connected cooler for the sintered goods, which consists of an annular grate arranged above an annular chamber for the supply of cooling air, for receiving the sintered good and an extractor hood for the heated cooling air above the annular grate.

Um Erze durch einen Sintervorgang zu agglomerieren, werden die gemahlenen Erze mit Brennstoff gemischt auf einen Wanderrost eines Sinterofens kontinuierlich aufgebracht, in dem der Brennstoff mit Hilfe einer Zündeinrichtung im Bereich der Oberfläche des Sintergutes gezündet wird und während des Ofendurchlaufes durch die Sintergutschicht hindurchbrennt, so daß das gesinterte Gut am Ende des Ofendurchlaufes über einen Gutauslaß an einen Kühler weitergegeben werden kann, bevor es weiter verarbeitet wird. Die für den Brennvorgang erforderliche Verbrennungsluft wird dabei durch das Gutbett auf dem Wanderrost hindurchgesaugt, und zwar mit Hilfe von Windkästen, über die die Abgase zu einer Abgassammelleitung weitergeleitet werden, die mit den Windkästen durch Anschlußleitungen verbunden sind. Wird dabei ein ringförmiger Wanderrost eingesetzt (DE-B 2 604 798), so ergeben sich hiefür besonders günstige Konstruktionsverhältnisse, weil die Anschlußleitungen sternförmig zwischen den Windkästen und der zentralen Abgassammelleitung angeordnet werden können.In order to agglomerate ores through a sintering process, the ground ores mixed with fuel are continuously applied to a traveling grate of a sintering furnace, in which the fuel is ignited in the region of the surface of the sintered good with the aid of an ignition device and burns through the sintered good layer during the furnace pass, so that the sintered good can be passed on to a cooler via a good outlet at the end of the furnace run before it is processed further. The combustion air required for the burning process is sucked through the material bed on the moving grate, with the help of wind boxes, through which the exhaust gases are passed on to an exhaust manifold, which are connected to the wind boxes by connecting lines. If an annular traveling grate is used (DE-B 2 604 798), this results in particularly favorable construction conditions because the connecting lines can be arranged in a star shape between the wind boxes and the central exhaust gas manifold.

Die fühlbare Abwärme der beim Kühlen des Sintergutes im Kühler erwärmten Kühlluft kann vorteilhaft zur Vorwärmung der Verbrennungsluft für den Sinterofen eingesetzt werden. Zu diesem Zweck wird die erwärmte Kühlluft in einer Abzugshaube oberhalb des das Sintergut aufnehmenden Rostes des Kühlers gesammelt und dem Sinterofen zugeführt, dessen Gehäuse auf der den Windkästen gegenüberliegenden Rostseite eine Zuführhaube für die Verbrennungsluft aufweist. Nachteilig bei solchen bekannten Sinteranlagen ist zunächst, daß der an den Sinterofen anzuschließende Kühler nicht nur den Platzbedarf für die Sinteranlage erheblich vergrößert, selbst wenn der Kühler ebenfalls mit einem Ringrost ausgestattet ist, sondern auch eine aufwendige Leitungsführung zwischen dem Sinterofen und dem Kühler bedingt, so daß häufig auf die Ausnützung der fühlbaren Abwärme der erwärmten Kühlluft zur Vorwärmung der Verbrennungsluft verzichtet wird. Dazu kommt noch, daß über den Durchlaufweg des Sintergutes durch den Sinterofen ein gewünschter Temperaturverlauf eingehalten werden soll, was eine unterschiedliche Vorwärmung der Verbrennungsluft über den Durchlaufweg des Sintergutes erfordert und mit Hilfe der bekannten Kühlluftführung nicht erreicht werden kann.The sensible waste heat of the cooling air heated in the cooler during the cooling of the sintered material can advantageously be used for preheating the combustion air for the sintering furnace. For this purpose, the heated cooling air is collected in a fume hood above the grate of the cooler receiving the sintered material and fed to the sintering furnace, the housing of which has a supply hood for the combustion air on the grate side opposite the wind boxes. A disadvantage of such known sintering systems is that the cooler to be connected to the sintering furnace not only considerably increases the space required for the sintering system, even if the cooler is also equipped with a ring grate, but also requires complex wiring between the sintering furnace and the cooler, so that the sensible waste heat of the heated cooling air for preheating the combustion air is often not used. In addition, a desired temperature profile should be maintained over the path of the sintered material through the sintering furnace, which requires different preheating of the combustion air over the path of the sintered material and cannot be achieved with the known cooling air duct.

Der Erfindung liegt somit die Aufgabe zugrunde, diese Mängel zu vermeiden und eine Sinteranlage der eingangs geschilderten Art so zu verbessern, daß der Platzbedarf minimiert und eine vorteilhafte Vorwärmung der Verbrennungsluft unter Ausnützung der fühlbaren Abwärme der erwärmten Kühlluft aus dem Kühler sichergestellt werden kann, und zwar mit einer einfachen Leitungsführung zwischen dem Sinterofen und dem Kühler.The invention is therefore based on the object to avoid these deficiencies and to improve a sintering plant of the type described in such a way that the space requirement is minimized and advantageous preheating of the combustion air can be ensured by utilizing the sensible waste heat of the heated cooling air from the cooler, specifically with a simple cable routing between the sintering furnace and the cooler.

Die Erfindung löst die gestellte Aufgabe dadurch, daß der Sinterofen und der Kühler für das Sintergut koaxial übereinander angeordnet sind, daß der Ringrost des Kühlers und der Wanderrost des Sinterofens gleichen Drehsinn aufweisen und daß die Abzugshaube des Kühlers durch über den Umfang verteilte Überströmkanäle an die Zuführhaube des Sinterofens angeschlossen ist.The invention solves this problem in that the sintering furnace and the cooler for the sintered material are arranged coaxially one above the other, that the ring grate of the cooler and the traveling grate of the sintering furnace have the same direction of rotation and that the extractor hood of the cooler is connected to the feed hood by means of overflow channels distributed over the circumference of the sintering furnace is connected.

Durch die Anordnung des Sinterofens und des Kühlers koaxial übereinander bleibt die benötigte Grundfläche für die Sinteranlage auf den Platzbedarf des Sinterofens alleine beschränkt, zumal in der Höhe üblicherweise ausreichend Raum vorhanden ist. Darüber hinaus können die Überströmkanäle zwischen dem Sinterofen und dem Kühler mit einer sehr geringen Länge ausgebildet werden, so daß der Konstruktionsaufwand vergleichsweise gering gehalten wird. Mit einer solchen Anordnung werden aber nicht nur besondere Vorteile hinsichtlich des Konstruktionsaufwandes, sondern auch bezüglich der Führung des Sintervorganges erzielt, weil aufgrund der übereinstimmenden Drehrichtung des Ringrostes des Kühlers und des Wanderrostes des Sinterofens die heißeste Kühlluft aus dem Kühler in einem Umfangsbereich anfällt, in dem die größte Vorwärmung der Verbrennungsluft für den Sinterofen benötigt wird, nämlich in dem der Zündeinrichtung für den Brennstoff nachfolgenden Umfangsbereich. Die Zündeinrichtung des Sinterofens liegt hinsichtlich der Drehrichtung des Wanderrostes vor der Gutaufgabe für den Sinterofen und diese wiederum vor dem Gutauslaß, so daß das vom Gutauslaß des Sinterofens auf den Ringrost des Kühlers gelangende heiße Sintergut mit dem Ringrost des Kühlers in Richtung der Zündeinrichtung gefördert wird und die von diesem zunächst noch ungekühlten Sintergut erwärmte Kühlluft über die in diesem Bereich vorgesehenen Überströmkanäle als Verbrennungsluft in den Sinterofen gelangt. Mit zunehmender Kühlung des Sintergutes wird auch die Kühlluft kühler, was zu einem erwünschten Temperaturgefälle der Verbrennungsluft über den Durchlaufweg des Sintergutes durch den Sinterofen führt. Da die Kühlluft durch über den Umfang des Kühlers bzw. des Sinterofens verteilte Überströmkanäle in den Sinterofen geleitet wird, stimmt die Temperaturverteilung der dem Sintergut im Sinterofen zugeführten Verbrennungsluft im wesentlichen mit der Temperaturverteilung der Kühlluft über die Umfangslänge des Kühlers überein.By arranging the sintering furnace and the cooler coaxially one above the other, the required base area for the sintering plant remains limited to the space required by the sintering furnace, especially since there is usually sufficient space at height. In addition, the overflow channels between the sintering furnace and the cooler can be formed with a very short length, so that the construction effort is kept comparatively low. With such an arrangement, however, not only special advantages are achieved with regard to the design effort, but also with regard to the guidance of the sintering process, because due to the coincident direction of rotation of the ring grate of the cooler and the traveling grate of the sintering furnace, the hottest cooling air from the cooler occurs in a peripheral area in which the greatest preheating of the combustion air is required for the sintering furnace, namely in the peripheral area following the ignition device for the fuel. The ignition device of the sintering furnace is in relation to the direction of rotation of the traveling grate before the good task for the sintering furnace and this in turn in front of the material outlet, so that the hot sintered material coming from the material outlet of the sintering furnace onto the ring grate of the cooler is conveyed with the ring grate of the cooler in the direction of the ignition device and the cooling air, which is initially still uncooled, reaches the sintering furnace as combustion air via the overflow channels provided in this area. With increasing cooling of the sintered product, the cooling air also becomes cooler, which leads to a desired temperature gradient of the combustion air over the passage path of the sintered product through the sintering furnace. Since the cooling air is conducted into the sintering furnace through overflow channels distributed over the circumference of the cooler or the sintering furnace, the temperature distribution of the combustion air supplied to the sintered material in the sintering furnace essentially coincides with the temperature distribution of the cooling air over the circumferential length of the cooler.

Mit den kurzen Überströmkanälen zwischen der Abzugshaube des Kühlers und der Zuführhaube des Sinterofens kann auch eine sonst erforderliche Staubabscheidung zwischen dem Kühler und dem Sinterofen entfallen. Es genügt, fur eine entsprechende Staubabscheidung im Anschluß an den Sinterofen zu sorgen, wobei eine Grobabscheidung bereits beim Übergang der Verbrennungsgase von den Anschlußleitungen der Windkästen zur Abgassammelleitung durchgeführt werden kann, wenn aufgrund einer Abwärtsneigung der Anschlußleitungen gegenüber der vertikal aufwärtsführenden Abgassammelleitung eine entsprechende Umlenkung der Verbrennungsgase erzwungen wird.With the short overflow channels between the extractor hood of the cooler and the feed hood of the sintering furnace, an otherwise necessary dust separation between the cooler and the sintering furnace can also be eliminated. It is sufficient to provide an appropriate dust separation after the sintering furnace, whereby a coarse separation be can already be carried out at the transition of the combustion gases from the connecting lines of the wind boxes to the exhaust manifold if a corresponding deflection of the combustion gases is forced due to a downward inclination of the connecting lines with respect to the vertically upward leading exhaust manifold.

Besonders günstige Konstruktionsbedingungen werden in weiterer Ausbildung der Erfindung dadurch erhalten, daß der Sinterofen oberhalb des Sinterkühlers angeordnet ist. Damit werden nicht nur für die Führung der Kühlluft, sondern auch für die Übergabe des Sintergutes vom Sinterofen an den Kühler einfache Förderwege geschaffen, weil einerseits die erwärmte Kühlluft aus dem Kühler in den Sinterofen aufsteigen und anderseits das Sintergut aus dem Sinterofen in den Kühler abfallen kann, beispielsweise über kippbare Sektoren des Wanderrostes.Particularly favorable design conditions are obtained in a further embodiment of the invention in that the sintering furnace is arranged above the sinter cooler. This creates simple conveying paths not only for guiding the cooling air, but also for transferring the sintered goods from the sintering furnace to the cooler because, on the one hand, the heated cooling air can rise from the cooler into the sintering furnace and, on the other hand, the sintered material can drop from the sintering furnace into the cooler , for example over tiltable sectors of the traveling grate.

Sind die in wenigstens zwei Umfangsgruppen zusammengefaßten Windkästen des Sinterofens gruppenweise an je eine gesonderte Sammelleitung angeschlossen, so kann bei der Abgasreinigung der Sinteranlage einer unterschiedlichen Schadstoffbelastung in verschiedenen Umfangsbereichen des Sinterofens Rechnung getragen werden. So ist es zum Beispiel bekannt, daß die wesentliche Schwefelbelastung in den Abgasen aus einem der Zündeinrichtung mit Abstand nachgeordneten Umfangsbereich des Sinterofens anfällt, so daß lediglich für diese Abgasmengen eine Entschwefelungsanlage bereitgestellt werden muß. Es brauchen daher nur die diesem Umfangsbereich des Sinterofens zugehörigen Windkästen mit einer gesonderten, an eine Entschwefelungsanlage angeschlossene Abgassammelleitung verbunden zu werden, während die Abgase aus den anderen Windkästen nach einer Entstaubung unmittelbar abgeblasen werden können.If the wind boxes of the sintering furnace, which are combined in at least two peripheral groups, are each connected in groups to a separate manifold, different pollutant loads in different peripheral areas of the sintering furnace can be taken into account when cleaning the sintering system. For example, it is known that the substantial sulfur pollution in the exhaust gases arises from a circumferential region of the sintering furnace which is arranged at a distance from the ignition device, so that a desulfurization system only has to be provided for these exhaust gas quantities. It is therefore only necessary to connect the wind boxes belonging to this peripheral region of the sintering furnace to a separate exhaust gas manifold connected to a desulfurization system, while the exhaust gases can be blown off from the other wind boxes immediately after dedusting.

Obwohl für jede Abgassammelleitung eine gesonderte Rohrleitung vorgesehen werden kann, ist es vorteilhafter, die gesonderten Abgassammelleitungen durch wenigstens eine Zwischenwand innerhalb eines gemeinsamen Abgasrohres zu bilden, um für die Leitungsführungen symmetrische Verhältnisse zu wahren.Although a separate pipeline can be provided for each exhaust manifold, it is more advantageous to form the separate exhaust manifolds by at least one partition within a common exhaust pipe in order to maintain symmetrical relationships for the piping.

In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen

  • Fig. 1 eine erfindungsgemäße Sinteranlage in einem vereinfachten, schematischen Axialschnitt,
  • Fig. 2 diese Sinteranlage in einem Schnitt nach der Linie 11-11 der Fig. 1,
  • Fig. 3 einen Schnitt nach der Linie 111-111 der Fig. 1,
  • Fig. 4 eine der Fig. 1 entsprechende Darstellung einer Konstruktionsvariante,
  • Fig. 5 einen Schnitt nach der Linie V-V der Fig. 4 und
  • Fig. 6 einen Schnitt nach der Linie VI-VI der Fig. 4.
The subject matter of the invention is shown in the drawing, for example. Show it
  • 1 shows a sintering plant according to the invention in a simplified, schematic axial section,
  • 2 shows this sintering plant in a section along the line 11-11 of FIG. 1,
  • 3 shows a section along the line 111-111 of FIG. 1,
  • 4 shows a representation of a construction variant corresponding to FIG. 1,
  • Fig. 5 is a section along the line VV of Fig. 4 and
  • 6 shows a section along the line VI-VI of FIG. 4th

Die dargestellte Sinteranlage nach den Fig. 1 bis 3 besteht im wesentlichen aus einem ringförmigen Sinterofen 1, der koaxial oberhalb eines ebenfalls ringförmigen Kühlers 2 für das gebrannte Sintergut angeordnet und mit diesem Kühler 2 durch über den Umfang verteilte Überströmkanäle 3 verbunden ist. Das feststehende Gehäuse des Sinterofens 1 bildet auf der Oberseite eines ringförmigen Wanderrostes 4 eine Zuführhaube 5 für Verbrennungsluft und auf der der Zuführhaube 5 gegenüberliegenden Rostseite Windkästen 6, die über Anschlußleitungen 7 mit einer zentralen Abgassammelleitung 8 verbunden sind. Die Anordnung ist dabei so getroffen, daß die Anschlußleitungen 7 entlang eines mit seiner Spitze nach unten weisenden Kegels verlaufen, so daß sich zwischen den Anschlußleitungen 7 und der vertikal aufsteigenden Abgassammelleitung 8 eine für eine Staubabscheidung vorteilhafte Umlenkung der Abgasströmung aus dem Sinterofen 1 ergibt. Der aufgrund dieser Grobabscheidung anfallende Staubanteil kann über einen Abscheider 9 entnommen werden. Die in dieser Weise vorgereinigten Abgase aus dem Sinterofen 1 werden von einem Sauggebläse 10 durch einen Abscheider 11 für Feinteilchen angesaugt und einer nachgeschalteten Entschwefelungseinrichtung 12 zugeführt, bevor sie entsprechend gereinigt abgeblasen werden.The sintering system shown in FIGS. 1 to 3 essentially consists of an annular sintering furnace 1, which is arranged coaxially above a likewise annular cooler 2 for the fired sintered material and is connected to this cooler 2 by overflow channels 3 distributed over the circumference. The fixed housing of the sintering furnace 1 forms a feed hood 5 for combustion air on the top of an annular traveling grate 4 and wind boxes 6 on the grate side opposite the feed hood 5, which are connected via connecting lines 7 to a central exhaust gas collecting line 8. The arrangement is such that the connecting lines 7 run along a cone with its tip pointing downward, so that between the connecting lines 7 and the vertically rising exhaust gas collecting line 8 there is an advantageous deflection of the exhaust gas flow from the sintering furnace 1 for dust separation. The proportion of dust resulting from this coarse separation can be removed via a separator 9. The exhaust gases pre-cleaned in this way from the sintering furnace 1 are sucked in by a suction fan 10 through a separator 11 for fine particles and fed to a downstream desulfurization device 12 before they are blown off in an appropriately cleaned manner.

Der ringförmige Wanderrost 4 ist über Laufrollen 13 auf Schienen 14 abgestützt und kann über ein Reibrad 15 angetrieben werden, das auf einem Ringflansch 16 (Fig. 2) des Wanderrostes 4 abrollt. Der Wanderrost selbst wird über eine in Fig. 2 strichpunktiert angedeutete Gutaufgabe 17 mit dem aus Erz und Brennstoff gemischten Sintergut beschickt, das mit Hilfe einer der Gutaufgabe 17 in Drehrichtung des Wanderrostes 4 nachfolgenden, beispielsweise aus mehreren Brennern bestehenden Zündeinrichtung 18 gezündet wird, wobei der Brennstoff auf dem Durchlaufweg des Sintergutes von der Gutaufgabe 15 bis zu einem Gutauslaß 19 durch die Schichtdicke des Sintergutes hindurchbrennt, wobei das Erz agglomeriert. Im Bereich des Gutauslasses wird das gesinterte Sintergut in den unterhalb des Sinterofens 1 liegenden Kühler 2 abgeworfen, indem die einzelnen, kippbar gelagerten Rostsektoren 20 im Bereich des Gutauslasses gekippt werden, so daß das auf dem jeweiligen Sektor 20 befindliche Sintergut über eine Schurre auf den Ringrost 21 des Kühlers 2 abfallen kann. Dieser Ringrost 21 ist wiederum aus einzelnen kippbar gelagerten Sektoren 22 zusammengesetzt, die über Laufrollen 23 abgestützt werden, wobei die Achse dieser Laufrollen 23 die Kippachse bilden können. Zum Antrieb dieses Ringrostes 21 kann in analoger Weise ein mit einem Ringflansch 24 zusammenwirkendes Reibrad 25 vorgesehen sein.The annular traveling grate 4 is supported on rollers 14 by rollers 13 and can be driven by a friction wheel 15 which rolls on an annular flange 16 (FIG. 2) of the traveling grate 4. The traveling grate itself is charged with the sintered good mixed with ore and fuel by means of a good task 17 indicated by dash-dotted lines in FIG. 2, which is ignited with the aid of an ignition device 18 following the good task 17 in the direction of rotation of the moving grate 4, for example consisting of several burners, the Fuel burns through the layer thickness of the sintered material on the passage path of the sintered material from the material feed 15 to a material outlet 19, the ore agglomerating. In the area of the good outlet, the sintered sintered goods are thrown into the cooler 2 located below the sintering furnace 1 by the individual, tiltably mounted grate sectors 20 being tilted in the area of the good outlet, so that the sintered goods located on the respective sector 20 are fed onto the ring grate via a chute 21 of the cooler 2 can fall off. This ring grate 21 is in turn composed of individual tiltable sectors 22 which are supported by rollers 23, wherein the axis of these rollers 23 can form the tilt axis. A friction wheel 25 cooperating with an annular flange 24 can be provided in an analogous manner to drive this annular grate 21.

Die Kühlluft wird dem Kühler 2 über ein Gebläse 26 zugeführt, das in einer Ringkammer 27 mündet, über der der Ringrost 21 angeordnet ist. Die aus der Ringkammer 27 durch die Sintergutschicht auf dem Ringrost 21 durchgeblasene und dabei erwärmte Kühlluft gelangt in eine oberhalb des Ringrostes 21 vorgesehene Abzugshaube 28, von der die über den Umfang verteilten Überströmkanäle 3 ausgehen. Da der Ringrost 21 des Kühlers 2 im selben Drehsinn wie der Wanderrost 4 des Sinterofens 1 angetrieben wird und der Gutauslaß 19 des Sinterofens über die nicht näher dargestellte Schurre umittelbar mit der Gutaufgabe 29 des Kühlers in Verbindung steht, gelangt die heißeste Kühlluft aus dem Kühler 2 über die Uberströmkanäle 3 in jenen Umfangsbereich des Sinterofens 1, der sich unmittelbar an die Zündeinrichtung 18 anschließt. Die durch die erwärmte Kühlluft gebildete Verbrennungsluft für den Sinterofen 1 ist demnach auch in diesem Umfangsbereich am heißesten und nimmt mit fortschreitendem Winkelabstand von der Zündeinrichtung 18 bis zum Gutauslaß 19 hin ab, was einen vorteilhaften Brennverlauf sicherstellt. Nach seiner Abkühlung wird das Sintergut über einen Gutauslaß 30 aus dem Kühler 2 ausgetragen, indem die einzelnen Rostsektoren 22 im Bereich des Gutauslasses 30 gekippt werden.The cooling air is fed to the cooler 2 via a blower 26 which opens into an annular chamber 27, above which the annular grate 21 is arranged. The cooling air which is blown out of the annular chamber 27 through the sintered material layer on the annular grate 21 and thereby heated reaches an extractor hood 28 provided above the annular grate 21, from which the overflow channels 3 distributed over the circumference originate. Since the ring grate 21 of the cooler 2 is driven in the same direction of rotation as the traveling grate 4 of the sintering furnace 1 and the material outlet 19 of the sintering furnace via the chute, not shown in more detail is directly connected to the cooler task 29, the hottest cooling air from the cooler 2 passes via the overflow channels 3 to that peripheral region of the sintering furnace 1 which directly adjoins the ignition device 18. The combustion air for the sintering furnace 1 formed by the heated cooling air is therefore also the hottest in this circumferential area and decreases as the angular distance progresses from the ignition device 18 to the product outlet 19, which ensures an advantageous combustion process. After it has cooled, the sintered product is discharged from the cooler 2 via a product outlet 30 by the individual grate sectors 22 being tilted in the region of the product outlet 30.

Die Sinteranlage nach den Fig. 4 bis 6 unterscheidet sich von der Sinteranlage nach den Fig. 1 bis 3 lediglich dadurch, daß die Windkästen 6 des Sinterofens 1 in zwei Umfangsgruppen zusammengefaßt und gruppenweise an je eine gesonderte Abgassammelleitung 8a und 8b angeschlossen sind. Da die Abgassammelleitung 8b über einen Feingutabscheider 31 und ein Gebläse 32 zu einer Entschwefelungsanlage 33 geführt wird, werden die Abgase aus den an diese Abgassammelleitung 8b angeschlossenen Windkästen entstaubt und entschwefelt, nicht aber die Abgase aus den übrigen Windkästen, weil die diesen Windkästen zugeordnete Abgassammelleitung 8a lediglich über einen Feingutabscheider 31 an ein Gebläse 32 angeschlossen ist. Eine Entschwefelung der Abgase aus diesem Umfangsbereich des Sinterofens 1 ist auch nicht notwendig, weil der hauptsächliche Schwefelgehalt im Bereich der Abgase aus den an die Abgassammelleitung 8b angeschlossenen Windkästen 6 anfällt.The sintering system according to FIGS. 4 to 6 differs from the sintering system according to FIGS. 1 to 3 only in that the wind boxes 6 of the sintering furnace 1 are combined in two circumferential groups and are connected in groups to a separate exhaust gas manifold 8a and 8b. Since the exhaust gas manifold 8b is guided via a fine material separator 31 and a blower 32 to a desulfurization system 33, the exhaust gases from the wind boxes connected to this exhaust gas manifold 8b are dedusted and desulfurized, but not the exhaust gases from the other wind boxes, because the 8 exhaust gas pipe assigned to these wind boxes is only connected to a blower 32 via a fine material separator 31. Desulphurization of the exhaust gases from this peripheral area of the sintering furnace 1 is also not necessary because the main sulfur content in the area of the exhaust gases results from the wind boxes 6 connected to the exhaust gas manifold 8b.

Um für die Anschlußleitungen 7 symmetrische Verhältnisse zu schaffen, können die beiden Abgassammelleitungen 8a, 8b durch eine Zwischenwand 34 innerhalb eines gemeinsamen Leitungsrohres 35 gebildet werden.In order to create symmetrical relationships for the connecting lines 7, the two exhaust gas collecting lines 8a, 8b can be formed by an intermediate wall 34 within a common conduit 35.

Claims (4)

1. A sintering plant comprising a sintering furnace (1), which has an annular travelling grate (4) and a housing, which constitutes a supply hood (5) which adjoins the travelling grate (4) and serves to supply combustion air, and also constitutes wind boxes (6) which are disposed on that side of the grate which is opposite to the supply hood (5) and communicate via communicating lines (7) with at least one exhaust gas manifold (8), also comprising a cooler (2), which is connected to the material outlet (19) of the sintering furnace (1) and serves to cool the sintered material and consists of a revolving annular grate (21), which is disposed above an annular chamber (27) for supplying cooling air and serves to receive the sintered material, and an exhaust hood (28) for exhausting the heated cooling air above the annular grate (21) characterized in that the sintering furnace (1) and the cooler (3) for the sintered material are coaxially superimposed, the annular grate (21) of the cooler (2) and the travelling grate (4) of the sintering furnace (1) rotate in the same sense, and the exhaust hood (28) of the cooler (2) is connected to the supply hood (5) of the sintering furnace (1) via overflow passages (3), which are distributed around the periphery.
2. A sintering plant according to claim 1, characterized in that the sintering furnace (1) is disposed above the cooler (2).
3. A sintering plant according to claim 1 or 2, characterized in that the wind boxes (6) of the sintering furnace (1) are combined in at least two peripheral groups, which are connected to respective separate exhaust gas manifolds (8a, 8b).
4. A sintering plant according to claim (3), characterized in that the separate exhaust gas manifolds (8a, 8b) are constituted by at least one partition (34) in a common exhaust gas pipe (35).
EP86890326A 1986-11-20 1986-11-20 Sintering plant Expired EP0268000B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT86890326T ATE41996T1 (en) 1986-11-20 1986-11-20 SINTER PLANT.
EP86890326A EP0268000B1 (en) 1986-11-20 1986-11-20 Sintering plant
DE8686890326T DE3662725D1 (en) 1986-11-20 1986-11-20 Sintering plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86890326A EP0268000B1 (en) 1986-11-20 1986-11-20 Sintering plant

Publications (2)

Publication Number Publication Date
EP0268000A1 EP0268000A1 (en) 1988-05-25
EP0268000B1 true EP0268000B1 (en) 1989-04-05

Family

ID=8196590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86890326A Expired EP0268000B1 (en) 1986-11-20 1986-11-20 Sintering plant

Country Status (3)

Country Link
EP (1) EP0268000B1 (en)
AT (1) ATE41996T1 (en)
DE (1) DE3662725D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853679A (en) * 2012-05-18 2013-01-02 中冶华天工程技术有限公司 Water sealing ring cooling machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ302541B6 (en) * 2004-05-10 2011-07-07 Štepánek@Robert Modular agglomerating grate of carousel-type
CN117647104A (en) * 2024-01-29 2024-03-05 达州市方正源环保建材有限公司 Hierarchical distributed sintering kiln for high-strength light insulating bricks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1006330B (en) * 1952-10-06 1957-04-11 Metallgesellschaft Ag Device for cooling hot, lumpy goods
DE2604798C3 (en) * 1976-02-07 1980-05-22 Yahagi Seitetsu K.K., Nagoya, Aichi (Japan) Sinter ring furnace with level rotating grate
DD132034A1 (en) * 1977-07-01 1978-08-16 Gerhard Teichler METHOD AND DEVICE FOR PRODUCING SINTER PRODUCTS
DE3201416A1 (en) * 1982-01-19 1983-09-08 Metallgesellschaft Ag, 6000 Frankfurt ROUND COOLER OR HEATER FOR PIECE MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853679A (en) * 2012-05-18 2013-01-02 中冶华天工程技术有限公司 Water sealing ring cooling machine

Also Published As

Publication number Publication date
EP0268000A1 (en) 1988-05-25
ATE41996T1 (en) 1989-04-15
DE3662725D1 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
DE2929056A1 (en) COMBUSTION METHOD AND FLUID BED SUITABLE FOR THIS
DE3441361A1 (en) METHOD AND DEVICE FOR COOLING PIECE OF MATERIAL
DE2745425A1 (en) METHOD AND DEVICE FOR PRODUCING CARBON DUST
DE2642947A1 (en) PROCESS FOR RECOVERING THE HEAT OF COMBUSTION GASES LEAKING FROM A TUBE STOVE
EP0268000B1 (en) Sintering plant
EP0296188B1 (en) Process and device for introducing additives into a cupola or shaft furnace
DE2451197A1 (en) METHOD AND DEVICE FOR CALCINATING POWDER MATERIAL
DE3335539C1 (en) Plant for the stripping of metallic and ceramic objects
DE2140508A1 (en) Air flow method
EP0036409B1 (en) Method of cooling hot bulk material
EP0001814A2 (en) Process and apparatus for calcining materials with very diverse grain sizes, more in particular limestone
DE2644763C2 (en) Furnace system
DE202007019169U1 (en) shaft furnace
EP0082886B1 (en) Process for calcining limestone, dolomite or similar material, and ringshaft furnace for carrying out the process
DE1928902A1 (en) Method and device for controlling the emission of dust and smoke
DE2950259A1 (en) METHOD AND SYSTEM FOR THE USE OF THE GAS SUCTIONED IN AN ORE INTERLAY SYSTEM
EP1477734B1 (en) Heating device
EP0327717B1 (en) Process and installation for the heat treatment of fines
DE2905089A1 (en) Energy recovery during glass melting - where waste combustion gas flows through recuperator to heat air used to burn fuel, and then directly preheats pelletised glass batch
DE60125209T2 (en) ARRANGEMENT AND METHOD FOR HEATING GAS IN A GAS PIP IN CONNECTION WITH CONTINUOUS OPERATION
DE2514356A1 (en) PYROSCRUBBER
DE2816282C2 (en) Incinerator with a fluidized bed
DE19500962B4 (en) Method and device for high-temperature treatment of fine-grained solids in a melting cyclone
BE1028193B1 (en) Method and device for the production of cement clinker
DE3148774A1 (en) Sintering machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT

17P Request for examination filed

Effective date: 19880425

17Q First examination report despatched

Effective date: 19880919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT M.B.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 41996

Country of ref document: AT

Date of ref document: 19890415

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3662725

Country of ref document: DE

Date of ref document: 19890511

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011024

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011102

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011105

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011106

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021120

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051120