EP0267212B1 - Procede de preparation, a haute concentration dans le fluorure d'hydrogene, d'oligo et polyosides ramifies notamment a partir de l'amidon - Google Patents

Procede de preparation, a haute concentration dans le fluorure d'hydrogene, d'oligo et polyosides ramifies notamment a partir de l'amidon Download PDF

Info

Publication number
EP0267212B1
EP0267212B1 EP87902550A EP87902550A EP0267212B1 EP 0267212 B1 EP0267212 B1 EP 0267212B1 EP 87902550 A EP87902550 A EP 87902550A EP 87902550 A EP87902550 A EP 87902550A EP 0267212 B1 EP0267212 B1 EP 0267212B1
Authority
EP
European Patent Office
Prior art keywords
reaction
hydrogen fluoride
starch
polyaldoside
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87902550A
Other languages
German (de)
English (en)
Other versions
EP0267212A1 (fr
Inventor
Alain Bouchu
Jean Chedin
Jacques Defaye
Emile Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beghin Say SA
Original Assignee
Beghin Say SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beghin Say SA filed Critical Beghin Say SA
Publication of EP0267212A1 publication Critical patent/EP0267212A1/fr
Application granted granted Critical
Publication of EP0267212B1 publication Critical patent/EP0267212B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch

Definitions

  • the invention relates to a process for the preparation of branched water-soluble oligo- or polysaccharides from polyaldosides such as starch or cellulose and relates in particular to the field of water-soluble food products. , likely to have a low caloric value because difficult for the body to assimilate.
  • catalysts are the following mineral acids: sulfuric, phosphoric, hydrochloric, thionyl chloride, or Lewis acids. Organic acids can also be used.
  • patent application EP 0166362 describes the preparation of oligosaccharides with a mass of between 180 and 16,000 (DP 1 to 100).
  • the authors stipulate, in the case of aldoses or polyaldosides, on the need for the addition of a polyol such as sorbitol, as in US Pat. No. 3,766,165.
  • the preparation of the products was carried out with a concentration of aldose or polyaldoside from 10 to 60% by weight of the overall reaction medium, and preferably from 25 to 35% in the presence of 0.01 to 20% of polyol and preferably 0.05 to 10%.
  • the reaction is generally carried out at 25 ° C for about 1 hour and the evaporation of the liquid phase under reduced pressure, at a temperature between 10 and 80 ° C, leads to a syrup.
  • a neutralization step followed by passing over resin is generally necessary to remove hydrogen fluoride.
  • the products obtained have a complex branched structure similar to that described in the Carbohydr article. Res. 110 (1982) 217-227. On the other hand, the authors mention a molecular mass between 180 and 16,000 with a residual glucose level of the order of 3%
  • the subject of the invention is the preparation, with good yields, of water-soluble branched oligo- or polysaccharides from at least one polyaldoside by means of a simple treatment, in hydrogen fluoride used as solvent and reagent.
  • the process is characterized in that the concentration of polyaldoside, counted as dry, relative to the total mixture is at least equal to 60%.
  • the reaction is most often not carried out in an anhydrous medium.
  • the reaction medium comprises pure hydrogen fluoride accompanied by a certain amount of water.
  • the latter can come from the HF used, which is not necessarily anhydrous, and from the water which the polyaldoside used can also contain - depending on its more or less thorough drying.
  • hydrogen fluoride includes cases where, in the reaction medium, it is associated with a certain amount of water.
  • the amount of water present in the reaction medium should not exceed 40% of the amount of hydrogen fluoride used, a limit beyond which the destructuring of the treated polysaccharide is partial.
  • Polyaldosides are oligo- or polymers consisting essentially of units of the aldose type. This group includes starch, amylose, cellulose which contain the anhydroglucose unit as the main constituent, or the xylan constituting hemicelluloses, which contains the xylose unit.
  • the reaction is carried out in a homogeneous liquid or pasty medium, the viscosity of which depends on the concentration of the products. Temperature and pressure are not critical conditions for the reaction; they mainly condition the speed at which it occurs. Thus, an increase in the reaction temperature increases the speed of dissolution as well as the solubility of the oses in this medium. Consequently, we prefer to operate at room temperature, or fairly close to ambient, between 10 ° and 50 ° C, and at atmospheric pressure, because it is ultimately the the easiest solution. It can also be carried out at a higher temperature in the case where this is recognized as desirable, provided that, of course, the appropriate apparatuses are used which are resistant to pressure and to corrosion.
  • the polyaldosides are gradually dissolved in hydrogen fluoride until the desired concentration is obtained.
  • the carbohydrate weight ratio counted as dry / weight of the total mixture can reach a value of between 60% and 80% and preferably between 60 and 70%. This largely depends on the mechanical stirring conditions of the reaction medium during the progressive addition of the carbohydrate.
  • the dissolution time depends on the carbohydrate used and can vary from 15 minutes to 2 hours at room temperature. The solution is then left under stirring on average for 30 minutes.
  • HF is removed.
  • the elimination of hydrogen fluoride can be carried out by sweeping with dry air, or an inert gas, at a suitable temperature, but also by evaporation under reduced pressure, which can then be carried out in approximately 30 minutes at temperatures between 0 ° and 100 ° C, and preferably between 30 ° and 50 ° C. Elimination can be accomplished by any other means.
  • the residual product sometimes obtained in the form of syrup, but more generally as a dry powder, can contain very variable quantities of acid which are not eliminated depending on the technical conditions of evaporation.
  • the product, after evaporation, taken up in water can be neutralized for example by calcium carbonate (precipitation of CaF2).
  • the precipitate can be separated by filtration or centrifugation.
  • the more complete reduction of fluoride ions to an acceptable level for food, can be carried out by passing over a column of mixed ion exchange resin or by electrodialysis or ultrafiltration methods.
  • the products obtained are branched oligosaccharides presenting mainly ⁇ type bonds, but also ⁇ (1 ⁇ 6), and also a small proportion of ⁇ , ⁇ - (1 ⁇ 2), (1 ⁇ 3) and (1 ⁇ 4). These products have a residual glucose level ⁇ 3%, a solubility of 60 to 75% in water, at ambient temperature and a level of non-dialysable of the order of 50 to 75%.
  • the assay of reducing ends by the DNS method gives an average degree of polymerization of the order of 10.
  • a gel exclusion chromatography shows that the product has a set of very polydispersed masses, and a homogeneous elution profile between molecular weights 180 and 10,000 (with reference to Dextran T 10).
  • the reduction ends are assayed by the so-called DNS method (2.5 dinitrosalicylic acid) using the gentiobiose unit as a reference.
  • the residual glucose was measured according to a method marketed by the company BOEHRINGER.
  • Dialysis is carried out under a stream of water for 48 hours in Visking dialysis tubes (marketed by Union-Carbide) with thin walls, retaining molecules with a mass> 6000.
  • Mass spectra F.A.B. reveal compounds of mass 180, 342, 504, 666, etc., corresponding to the series of glucose oligomers having for mass difference an anhydroglucose unit of 162.
  • the peaks at 61.4 p.p.m. correspond to the C-6 carbons carrying the free hydroxyl functions and to 66.3 p.p.m. to the bound C-6.
  • the other carbons (C-2, C-3, C-4 and C-5) are detected in the region between 69 and 80 p.p.m ..
  • the polyaldoside was dissolved in HF in a polyethylene vase, with magnetic stirring.
  • the dissolved mixture, at the end of the reaction, is then transferred to a stainless reactor in which the evaporation under vacuum is carried out of most of the liquid - that is to say HF and a little water - which permeates reaction products.
  • the yields indicated are minimum yields, given that part of the products remains fixed on the walls of the polyethylene vessel where the first phase takes place.
  • This mixture is then left under magnetic stirring for 30 min at room temperature and then transferred to a stainless steel reactor. Evaporation under reduced pressure (0.1 mm Hg) of hydrogen fluoride is carried out in 30 min at 50 ° C.
  • the product obtained is in the form of a thick red paste, with a white powdery product on the walls of the reactor.
  • the mixture is taken up in the minimum amount of water (100 to 150 ml), then neutralized with calcium carbonate and filtered. The filtrate is then concentrated, then demineralized on ion exchange resin before lyophilization. It is obtained in the form of a white powder.
  • the evaporation of hydrogen fluoride is carried out in a stainless steel reactor in 30 min at 60 ° C.
  • the very syrupy product obtained which contains 8 to 10% of residual HF, is taken up in the minimum amount of water, neutralized by calcium carbonate and filtered.
  • the filtrate is then treated according to Example 1 and leads to a white powdery product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Saccharide Compounds (AREA)

Abstract

Le procédé de préparation consiste à fairer réagir un aldose ou un polyaldoside dans le fluorure d'hydrogène, en présence ou non d'eau, et est caractérisé en ce que la concentration de l'aldose ou du polyaldoside mis à réagir, compté en sec, est au moins égale à 60% , de préférence comprise entre 60% et 80%. Application à la préparation de produits alimentaires susceptibles de présenter une faible valeur calorique.

Description

  • L'invention se rapporte à un procédé de préparation d'oligo- ou polyosides ramifiés solubles dans l'eau, à partir de polyaldosides tels que l'amidon ou la cellulose et concerne en particulier le domaine des produits alimentaires, solubles dans l'eau, susceptibles de présenter une faible valeur calorique parce que difficilement assimilables par l'organisme.
  • ETAT DE LA TECHNIQUE
  • Il est connu que l'action de certains catalyseurs acides sur les monosaccharides et les anhydrosucres, dont la fraction anhydride interne implique au moins le carbone anomérique, tels que le lévoglucosane, ou les unités anhydroglycose constitutives des polyosides, conduit à des oligo- ou polyosides de structures très ramifiées, dont les liaisons sont principalement de type (1 → 6) pour les hexoses, leurs dérivés ou les polyaldosides qui les contiennent. (Adv. Carbohydr. Chem. Biochem. 21 (1966) 431-512).
  • Les catalyseurs les plus couramment utilisés sont les acides minéraux suivants : sulfurique, phosphorique, chlorhydrique, le chlorure de thionyle, ou encore des acides de Lewis. Des acides organiques peuvent également être utilisés.
  • Les produits obtenus sont généralement constitués d'unités glycopyranose et peuvent présenter une faible proportion d'unités glycofuranose. Dans la plupart des cas, on observe la présence de sous-produits de type furannique, provenant de la désydratation excessive des hexoses ou des pentoses, tels que le 5-hydroxyméthyl 2-furaldéhyde ou le 2-furaldéhyde (E. Huseman et J. Klar, Methods in Carbohydr. Chem. and Biochem. 5, 1965, 180).
    Des procédés de fabrication d'oligo- ou polyosides ramifiés basés sur ces résultats ont été décrits :
    • Les brevets US 2375564 et 2387275 de la Société CORN PRODUCT REFINING CO décrivent la polymérisation par un traitement à haute température des oses, de préférence à l'état fondu, en présence d'un catalyseur ou d'une combinaison de catalyseurs acides. Dans ce cas, la réaction est conduite à des températures avoisinant 150°C et, sous pression réduite. Les catalyseurs utilisés sont de préférence l'acide chlorhydrique, sulfurique, phosphorique ou borique. Le temps de polymerisation est d'environ 4 à 5 heures. Les produits obtenus sont des mélanges d'oligomères ayant des degrés de polymérisation compris entre 3 et 10.
    • Le brevet US 2719179 porte sur la synthèse de polyosides ramifies à partir de mono- ou oligo-osides en présence d'un catalyseur acide. La méthode est basée sur la déshydratation sous pression réduite (10⁻⁵ à 100 mm Hg) d'une solution aqueuse de mono- ou oligosaccharides en présence de 0,01 à 5 % d'acide (principalement l'acide chlorhydrique). La température d'évaporation varie entre -80°C et 110°C. Le temps de réaction dure au minimum une minute, mais peut atteindre 24 heures. Les produits sont en général isoles après neutralisation, en solution aqueuse, par le bicarbonate de sodium, suivie d'une précipitation dans un alcool. Le poids moléculaire des produits est estimé compris entre 8100 et 250 000.
    • Le brevet US 3766165 de la Société PFIZER INC décrit un procédé de préparation de polyglucosides ou de polymaltosides par polymérisation à l'état fondu de glucose ou de maltose anhydre, en présence d'un acide alimentaire tel que l'acide citrique, comme catalyseur de polymérisation et comme agent de réticulation. La réaction est conduite en présence de 0,1 à 10 % en mole de catalyseur à une température comprise entre 150 et 295°C, sous une pression de 10⁻⁵ à 300 mm Hg. Le temps de réaction dépend de la température du milieu et du taux de réticulation recherché. La réaction est préférentiellement effectuée entre 10 et 180°C en un temps variant de 8 à 24 heures. Par ailleurs, l'addition d'un polyol alimentaire tel que le sorbitol ou le glycérol permet de diminuer la viscosité du mélange réactionnel et d'améliorer la couleur et le goût du produit final. La structure générale des produits est celle d'un polyglucosane lié préférentiellement en 1 → 6, plus ou moins estérifié. Leur masse varie de 1500 à 18000 pour les polyglucoses solubles et de 6000 à 36000 pour les polymères insolubles.
  • En 1929, Helferich et Böttger ont montré que le traitement de la cellulose avec de l'acide fluorhydrique (HF) conduit à un glucane appelé "Cellane" (Ann., 476 (1929) 150). Z.A. Rogovin et col. mentionnent dans deux publications l'utilisation de HF concentré pour l'hydrolyse de la cellulose et la polycondensation du glucose (Z.A. Rogovin et Yu-L. Pogosov : CA, 53, 22912 h,: Nauchn. Dokl. Vys. Shkoly, Khim. Khim. Tekhnol., (1959), N° 2, p. 368-371 ; Yu-L Pogosov et Z.A. Rogovin, Ca, 55, 24200f,: Uzbekskij Khim. Zh., (1960), p. 58-61). En particulier, ils décrivent la polycondensatlon du glucose par des solutions aqueuses de HF variant de 45 à 98 %, à des températures de 10 à 30°C. On note qu'ils travaillent avec des concentrations faibles en glucose (10 à 20 %) et obtiennent de petits oligosaccharides de 3 à 5 unités.
  • Dans la publication parue dans "Industrial and Engineering Chemistry" Vol. 44, N° 5, pages 1127-1135 de mai 1952, on relève que le traitement du D-glucose par le fluorure d'hydrogène, bien qu'à haute concentration de glucose, a conduit à un mélange constitue principalement de produits de départ (taux supérieur à 65 %). Des composes minoritaires (de 25 à 35 %) des "anhydrides du glucose" on pu être détectés, mais leur structure reste relativement mal définie.
  • Des travaux plus récents (J. Defaye, A. Gadelle, C. Pedersen, Carbohydr. Res. 110 (1982) 217-227) ont montré que le traitement par HF de la cellulose, de l'amylose et du glucose conduit au fluorure de glucopyranosyle. Une évaporation du réactif déplace l'équilibre vers des oligosaccharides de faibles degrés de polymérisation (Dp < 5).
  • Travaillant sensiblement dans les mêmes conditions de concentration en glucide par rapport à HF, que la publication précitée, la demande de brevet EP 0166362 décrit la préparation d'oligosaccharides de masse comprise entre 180 et 16000 (DP 1 à 100). Les auteurs insistent, dans le cas d'aldoses ou de polyaldosides, sur la nécessité de l'addition d'un polyol tel que le sorbitol, comme dans le brevet US 3766165. Ainsi, la préparation des produits a été réalisée avec une concentration en aldose ou polyaldoside de 10 à 60 % en poids du milieu réactionnel global, et de préférence de 25 à 35 % en présence de 0,01 à 20 % de polyol et de préférence 0,05 à 10 %. La réaction est en général conduite à 25°C pendant environ 1 heure et l'évaporation de la phase liquide sous pression réduite, à une température comprise entre 10 et 80°C, conduit à un sirop. Une étape de neutralisation suivie d'un passage sur résine est généralement nécessaire afin d'éliminer le fluorure d'hydrogène. Les produits obtenus ont une structure ramifiée complexe analogue à celle décrite dans l'article Carbohydr. Res. 110 (1982) 217-227. En revanche, les auteurs mentionnent une masse moléculaire comprise entre 180 et 16000 avec un taux résiduel en glucose de l'ordre de 3 %
  • Objet de l'invention
  • L'invention a pour objet la préparation, avec de bons rendements, d'oligo- ou polyosides ramifiés hydrosolubles à partir d'au moins un polyaldoside au moyen d'un traitement simple, dans le fluorure d'hydrogène utilisé comme solvant et réactif.
  • Conformément à l'invention, le procédé est caractérisé en ce que la concentration de polyaldoside, compté en sec, par rapport au mélange total est au moins égale à 60 %.
  • La réaction n'est, le plus souvent, pas effectuée en milieu anhydre. Le milieu réactionnel comprend le flurorue d'hydrogène pur accompagné d'une certaine quantité d'eau. Cette dernière peut provenir du HF utilisé, lequel n'est pas nécessairement anhydre, et de l'eau que peut également contenir - en fonction de son séchage plus ou moins poussé - le polyaldoside mis en oeuvre.
  • Il est bien entendu que le terme fluorure d'hydrogène englobe les cas où, dans le milieu réactionnel, il est associé à une certaine quantité d'eau.
  • Toutefois la quantité d'eau présente dans le milieu réactionnel ne devrait pas dépasser 40 % de la quantité de fluorure d'hydrogène utilisée, limite au-delà de laquelle la destructuration du polysaccharide traité est partielle.
  • Les polyaldosides sont des oligo- ou polymères constitues essentiellement de motifs du type aldose. On trouve dans ce groupe l'amidon, l'amylose, la cellulose qui contiennent le motif anhydroglucose comme constituant principal, ou encore le xylane constituant des hemicelluloses, qui contient quant à lui le motif xylose.
  • Comme cela a été mentionné dans l'état de la technique, il est certes connu qu'un aldose ou un polyaldoside, en solution diluée dans le fluorure d'hyrogène (HF), se transforme principalement en fluorure de glycopyranosyle en équilibre avec une faible proportion de composés secondaires d'autocondensation. Il a été montre également que cet équilibre pouvait être déplacé en faveur des oligomères d'auto-condensation par simple évaporation de HF conduisant à un mélange d'oligomères ramifiés, liés principalement α et β (1 → 6) mais également (1 → 2), (1 → 3) et (1 → 4) et de DP < 5 (Carbohydr. Res. 110 (1982) 217-227).
  • Il a été trouvé, conformément à l'invention, qu'une concentration très élevée de polyaldoside en solution homogène par rapport au fluorure d'hydrogène favorisait le déplacement de l'équilibre dans le milieu vers la formation l'oligomères d'autocondensation avant toute évaporation du solvant, ce qui n'est pas le cas dans les conditions de plus forte dilution par HF. Dans ces conditions, le fluorure de glucopyranosyle, intermédiaire réactif issu de la rupture des liaisons interglycosidiques des polyaldosides, a tendance à fortement réagir, en particulier avec les hydroxyles primaires plus nucléophiles que les autres hydroxyles secondaires constitutifs de l'ose. Il a été trouvé que la grande proportion de glucide dans le milieu n'empêchait pas le fluorure d'hydrogène de jouer à la fois un rôle de solvant, de destructurant des macro- molécules, de réactif et de catalyseur de la réaction, ce qui n'était nullement prévisible. En effet, si on considère la publication mentionnée plus haut de "Industrial and Engineering Chemisty", quine traite que le cas du glucose, on ne peut parvenir à aucun enseignement sur les moyens permettant de ramener le taux du glucose résiduel à la valeur inférieure à 5 %. La quantité minimale de HF nécessaire à la réaction dépend en fait essentiellement des conditions de la dispersion des glucides dans le milieu (agitation, broyage, etc...), de telle façon que cette réaction se déroule en milieu homogène. La réaction est effectuée en milieu liquide ou pâteux homogène dont la viscosité dépend de la concentration des produits. La température et la pression ne sont pas des conditions déterminantes pour la réaction ; elles conditionnent principalement la vitesse à laquelle elle se produit. Ainsi, une élévation de la température de réaction augmente la vitesse de dissolution ainsi que la solubilité des oses dans ce milieu. En conséquence, on préfèrera opérer à température ambiante, ou assez voisine de l'ambiante, entre 10° et 50°C, et à pression atmosphérique, car c'est finalement la solution la la plus aisée. Elle peut aussi être conduite à une température supérieure dans le cas où cela est reconnu souhaitable, à condition que l'on utilise, bien entendu, les appareils appropriés résistant à la pression et à la corrosion.
  • Les avantages attendus de cette méthode sont importants au plus industriel. En effet, HF est un produit de manipulation délicate, il est assez coûteux, toxique, très agressif et nécessite un appareillage approprié. On a pu ainsi constater que l'on pouvait obtenir des produits d'autocondensation avec un bon rendement tout en réduisant la quantité de HF nécessaire à la réaction. En conséquence, les problèmes liés à la récupération de l'acide, à son recyclage et aux pertes sont diminués.
  • Par ailleurs, par rapport aux techniques d'obtention en milieu HF, le procédé à très haute concentration en glucide offre également un mélange réactionnel beaucoup moins corrosif vis-à-vis de l'appareillage utilisé. C'est ainsi qu'il a été observé qu'un mélange amidon - HF à 75 % d'amidon n'attaquait plus que très faiblement la pâte de cellulose par exemple.
  • Par rapport aux procédés classiques, l'utilisation du fluorure d'hydrogène offre donc l'avantage de température de réaction nettement plus modérées avec diminution des risques de dégradation des produits. Notamment, ce procédé se traduit par une absence de produits de décomposition furannique résultant de la déshydradation.
  • Pour que la réaction s'effectue dans de bonnes conditions, les polyaldosides sont dissous progressivement dans le fluorure d'hydrogène jusqu'à obtenir la concentration désirée. Le rapport poids de glucide compté en sec / poids du mélange total, peut atteindre une valeur comprise entre 60 % et 80 % et de préférence compris entre 60 et 70 %. Ceci dépend largement des conditions d'agitation mécanique du milieu réactionnel pendant l'ajout progressif du glucide. Le temps de dissolution dépend du glucide utilisé et peut varier de 15 minutes à 2 heures à température ambiante. La solution est alors laissée sous agitation en moyenne pendant 30 minutes.
  • Lorsque la réaction est terminée, on élimine HF. L'élimination du fluorure d'hydrogène peut être effectuée par balayage avec de l'air sec, ou un gaz inerte, à une température convenable, mais aussi par évaporation sous pression réduite, qui peut être alors menée en 30 minutes environ à des températures comprises entre 0° et 100°C, et de préférence comprises entre 30° et 50°C. L'élimination peut être réalisée par tout autre moyen. Le produit résiduel obtenu parfois sous forme de sirop, mais le plus généralement de poudre sèche, peut renfermer des quantités d'acide non éliminées très variables selon les conditions techniques de l'évaporation.
  • Le produit, après évaporation, repris par l'eau peut être neutralisé par exemple par le carbonate de calcium (précipitation de CaF₂). Le précipité peut être séparé par filtration ou centrifugation. La réduction plus complète des ions fluorure jusqu'à un taux acceptable pour l'alimentation, peut être réalisée par passages sur une colonne de résine échangeuse d'ions mixtes ou selon des méthodes d'électrodialyse ou d'ultrafiltration
  • Les produits obtenus sont des oligosaccharides ramifies présentant principalement des liaisons de type α , mais aussi β (1 → 6), et également une faible proportion de liaisons α,β - (1 → 2), (1 → 3) et (1 → 4). Ces produits présentent un taux résiduel de glucose < 3 %, une solubilité de 60 à 75 % dans l'eau, à température ambiante et un taux de non-dialysable de l'ordre de 50 à 75 %.
  • Ces produits sont nouveaux et constituent également un des objets de l'invention. Le dosage d'extrémités réductrices par la méthode au DNS donne un degré de polymérisation moyen de l'ordre de 10. Une chromatographie par exclusion de gel montre que le produit présente un ensemble de masses très polydispersées, et un profil d'élution homogène entre les masses moléculaires 180 et 10 000 (par référence au Dextrane T 10).
  • Les produits obtenus ont été analyses selon des techniques connues ; elles sont rappelées ci-dessous à titre d'exemple.
  • Le dosage des extémités réductrices est réalisé par la méthode dite au DNS (acide 2,5 dinitrosalicylique) en prenant pour référence l'unité gentiobiose. Le glucose résiduel a été dosé selon une méthode commercialisée par la société BOEHRINGER. La dialyse est effectuée sous courant d'eau pendant 48 heures dans des tubes à dialyse Visking (commercialisé par Union-Carbide) à paroi mince, retenant des molécules de masse > 6 000.
  • Pour l'analyse par HPLC on utilise une colonne "Sugar Pak Waters" dans laquelle la phase stationnaire est un gel échangeur d'ions sous forme calcium, cette colonne permet d'évaluer la quantité d'oligomères de haut D.P.. On a utilisé l'analyse par exclusion de gel dont le principe repose sur la rétention sélective des molécules en fonction de leur volume hydrodynamique en solution. Cette technique permet de visualiser la polydispersité et d'apprécier la masse moléculaire moyenne en équivalent dextrine du mélange.
  • Pour l'analyse par spectrométrie de masse on a utilisé le mode d'ionisation par bombardement d'atomes accélérés (F.A.B.) du composé en solution dans une matrice de glycérol. Les spectres de masse F.A.B. font apparaître des composés de masse 180, 342, 504, 666, etc..., correspondant à la série des oligomères du glucose ayant pour écart de masse une unité anhydroglucose de 162.
  • En R.M.N. ¹³C, trois groupes de signaux peuvent être détectés dans la région des carbones anomériques (90 à 105 p.p.m.) :
    • a) Le massif centré sur 103,5 p.p.m. correspond aux C-1 des unités β-glucopyranosyle.
    • b) Le groupe de signaux centré sur 98,5 p.p.m. correspond aux C-1 des unités α-glucopyranosyle. Dans ce massif, les trois signaux principaux à 100,4 p.p.m., 98,6 p.p.m. et 96,7 p.p.m. peuvent être respectivement attribués aux unités glucopyranosyles terminales, liées α (1 → 6) et liées α (1 → 6) α (1 → 2).
  • Enfin, les deux signaux localisés à 92,9 p.p.m. et 96,7 p.p.m. sont attribués aux carbones des extrémités réductrices.
  • Par ailleurs, les pics à 61,4 p.p.m. correspondent aux carbones C-6 portant les fonctions hydroxyles libres et à 66,3 p.p.m. aux C-6 liés. Les autres carbones (C-2, C-3, C-4 et C-5) sont détectés dans la région comprise entre 69 et 80 p.p.m..
  • L'observation des spectres de R.M.N. ¹³C confirme bien la structure extrêmement ramifiée de ces composés.
  • EXEMPLES
  • Dans les exemples qui suivent, la dissolution du polyaldoside dans HF a été effectuée dans un vase en polyéthylène, sous agitation magnétique. Le mélange dissous, en fin de réaction, est ensuite transféré dans un réacteur inoxydable dans lequel est effectuée l'évaporation sous vide de la plus grande part du liquide - c'est-à-dire HF et un peu d'eau - qui imprègne les produits de la réaction.
  • Il est bien évident que ces deux phases du procédé, ainsi que la séparation du HF, peuvent être réduites à une phase unique dans le cas où l'on utilise un réacteur doté de moyens d'agitation, ou de broyage, appropriés.
  • Les rendements indiqués sont des rendements minimaux, étant donné qu'une partie des produits reste fixée sur les parois du vas en polyéthylène où s'effectue la première phase.
  • Exemple 1
    • amidon 75 g (10 % H₂O)
    • HF 30 g
  • Dans un vase en polyéthylène, 75 g d'amidon contenant 10 % en poids d'eau sont dissous dans 30 g de fluorure d'hyrogène avec agitation magnétique. L'augmentation de température due à la dissolution de l'amidon est maintenue à 25-30°C par un refroidissement approprié. On introduit d'abord la moitié de l'amidon à engager, puis le reste en 2 fois. Le temps d'addition et de dissolution est au total de 20 mn. On observe une coloration rouge intense du mélange réactionnel.
  • Ce mélange est ensuite laissé sous agitation magnétique pendant 30 mn à température ambiante puis transféré dans un réacteur en acier inoxydable. L'évaporation sous pression réduite (0,1 mm Hg) du fluorure d'hydrogène est réalisée en 30 mn à 50°C. Le produit obtenu se présente sous la forme d'une pâte épaisse rouge, avec un produit pulvérulent blanc sur les parois du réacteur. Le mélange est repris par le minimum d'eau (100 à 150 ml), puis neutralisé par le carbonate de calcium et filtré. Le filtrat est alors concentré, puis déminéralisé sur résine échangeuse d'ions avant lyophilisation. Il est obtenu sous la forme d'une poudre blanche.
  • Caracteristiques :
    • Produit blanc 57 g (Rdt : 85 %)
    • DP moyen estimé par dosage des extrémités réductrices, 10 (unités gentiobiose)
    • Teneur résiduelle en glucose, 1,9 %
    • Fraction non dialysable, 60 %
    • Solubilité dans l'eau à 20°C, 70 %
    • Pouvoir rotatoire (α) ²⁵D (c = 1, H₂O) + 140
    Exemple 2
    • Amidon 40 g (1 % H₂O)
    • HF 20 g
    40 g d'amidon préalablement séché (teneur résiduelle en eau 1 %) sont dissous à 30-35°C avec agitation magnétique, en suivant le processus établi dans l'exemple 1. La réaction est laissée 45 mn à température ambiante avec agitation,
  • L'évaporation du fluorure d'hydrogène est réalisée dans un réacteur en acier inoxydable en 30 mn à 40°C. Le produit obtenu est un solide très cassant qui peut être facilement réduit en poudre. Le taux d'HF résiduel après évaporation est de l'orde de 5 %. Il peut être réduit selon les techniques suivantes :
    • 1) Le mélange est ensuite repris par le minimum d'eau, neutralisé par le carbonate de calcium et filtré. La solution obtenue est ensuite concentrée et déminéralisée par passage sur une résine mixte. L'évaporation à sec conduit à 33 g d'une poudre blanche (Rdt : 83 %)
    • 2) Un simple dégazage du produit brut à l'air libre ou sous un courant d'air sec ou de gaz inerte permet de ramener le taux de fluor à environ 1 %. Le produit obtenu peut alors être mis en solution dans l'eau, puis directement ultrafiltré. Ce traitement peut être complété par passage sur résine échangeuse d'ions, ou par électrodialyse.
    Caractéristiques
    • DP moyen estimé par dosage des extrémités réductrices, 10 (unités gentiobiose)
    • Teneur résiduelle en glucose, 2 %
    • Fraction non dialysable, 65 %
    • Solubilité dans l'eau à 20°C, 70 %
    • Pouvoir rotatoire (α)²⁵ D (c = 1, H₂O) + 136
    Exemple 3
    • Amidon 60 g (10 % H₂O)
    • HF 20 g
    60 g d'amidon (10 % H₂O) sont dissous dans 20 g de fluorure d'hydrogène anhydre en 30 mn à 40°C. La réaction est ensuite laissée 1 heure à température ambiante avec agitation.
  • L'évaporation de fluorure d'hydrogène est réalisée dans un réacteur en acier inoxydable en 30 mn à 60°C. Le produit obtenu, très sirupeux, qui renferme de 8 à 10 % d'HF résiduel, est repris par le minimum d'eau, neutralisé par le carbonate de calcium et filtré. Le filtrat est ensuite traité selon l'exemple 1 et conduit à un produit pulvérulent blanc.
  • Caractéristiques
    • DP moyen estimé par dosage des extrémités réductrices, 10-12 (unités gentiobiose)
    • Teneur résiduelle en glucose, 3 %
    • Fraction non dialysable, 65 %
    • Solubilité dans l'eau à 20°C, 70 %
    • Pouvoir rotatoire (α)²⁵D (c = 1, H₂O) + 138
    Exemple 4
    • Cellulose 40 g (pâte à dissoudre)
    • HF, 20 g
  • Dans un vase en polyéthylène, 20 g de cellulose sont dissous dans le fluorure d'hydrogène en 15 mn à 25°C. On ajoute ensuite les 20 g restants par portions de 5 g en 45 mn à 40°C.
  • La réaction est ensuite laissée 1 heure avec agitation à 25°C puis évaporée et traitée selon le processus établi dans l'exemple 1. On obtient 34 g d'un produit blanc pulvérulent (Rdt = 85 %).
  • Caractéristiques
    • DP moyen estime par dosage des extrémités réductrices, 10-12 (unités gentiobiose)
    • Teneur résiduelle en glucose, 2,5 %
    • Fraction non dialysable, 75 %
    • Solubilité dans l'eau à 20°C, 65 %
    • Pouvoir rotatoire (α)²⁵D (c = 1, H₂O) + 130

Claims (5)

1. Procédé de préparation d'oligo- et polyosides ramifiés, hydrosolubles, par réaction d'au moins un polyaldoside avec le fluorure d'hydrogène puis élimination de l'acide, caractérisé en ce que la réaction est conduite en milieu homogène et en ce que le rapport de polyaldoside, compté en poids sec, au poids du mélange total est compris entre 60 % et 80 %, la proportion d'eau dans le milieu réactionnel étant comprise entre 0 et 40 % de la quantité de fluorure d'hydrogène.
2. Procédé selon la revendication 1, caractérisé en ce que ledit rapport de polyaldoside, compté en poids sec, au poids du mélange total est compris entre 60 et 70 %.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit polyaldoside est l'amidon, l'amylose, la cellulose, ou le xylane.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que la réaction est conduite à une température comprise entre 10° et 50°C.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'élimination de l'acide est effectuée par évaporation réalisée à une température comprise entre 0° et 100° C.
EP87902550A 1986-04-25 1987-04-21 Procede de preparation, a haute concentration dans le fluorure d'hydrogene, d'oligo et polyosides ramifies notamment a partir de l'amidon Expired - Lifetime EP0267212B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8606003 1986-04-25
FR8606003A FR2597872B1 (fr) 1986-04-25 1986-04-25 Procede de preparation d'oligo- et polyosides ramifies notamment a partir de l'amidon

Publications (2)

Publication Number Publication Date
EP0267212A1 EP0267212A1 (fr) 1988-05-18
EP0267212B1 true EP0267212B1 (fr) 1992-06-10

Family

ID=9334616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87902550A Expired - Lifetime EP0267212B1 (fr) 1986-04-25 1987-04-21 Procede de preparation, a haute concentration dans le fluorure d'hydrogene, d'oligo et polyosides ramifies notamment a partir de l'amidon

Country Status (5)

Country Link
EP (1) EP0267212B1 (fr)
CA (1) CA1300607C (fr)
DE (1) DE3779724T2 (fr)
FR (1) FR2597872B1 (fr)
WO (1) WO1987006592A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716200B1 (fr) * 1994-02-11 1996-04-26 Commissariat Energie Atomique Procédé de préparation de cyclomaltooligosaccharides ramifiés, en particulier de cyclodextrines ramifiées.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166362A2 (fr) * 1984-06-26 1986-01-02 Hoechst Aktiengesellschaft Procédé pour la préparation de polysaccharides hydrosolubles, les saccharides ainsi obtenus et leur utilisation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE560535C (de) * 1927-03-15 1932-10-05 I G Farbenindustrie Akt Ges Verfahren zur Umwandlung von Polysacchariden
DE521340C (de) * 1929-07-14 1931-03-20 Burckhardt Helferich Dr Verfahren zur Darstellung von Polyglucosanen
DE585318C (de) * 1930-06-21 1933-10-02 I G Farbenindustrie Akt Ges Verfahren zur Behandlung fester oder fluessiger Stoffe mit Gasen oder Daempfen
DE587975C (de) * 1931-12-18 1934-01-23 Holzhydrolyse Akt Ges Verfahren zur Herstellung von polymeren Kohlehydraten der Aldosereihe
FR809208A (fr) * 1935-08-13 1937-02-26 Procédé de décomposition de substances cellulosiques en produits solubles dans l'eau, au moyen d'acide fluorhydrique
DE3040850C2 (de) * 1980-10-30 1982-11-18 Hoechst Ag, 6000 Frankfurt Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material
JPS5966900A (ja) * 1982-09-13 1984-04-16 チヤ−ルズ・エフ・ケタリング・フアウンデ−シヨン 無水弗化水素でのグリコシド結合選択的開裂によるオリゴサツカライドの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166362A2 (fr) * 1984-06-26 1986-01-02 Hoechst Aktiengesellschaft Procédé pour la préparation de polysaccharides hydrosolubles, les saccharides ainsi obtenus et leur utilisation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Encyclopedia of Polymer Science (Wiley), vol. 13, page 117, Hemicelluloses *

Also Published As

Publication number Publication date
EP0267212A1 (fr) 1988-05-18
FR2597872B1 (fr) 1988-11-18
FR2597872A1 (fr) 1987-10-30
DE3779724T2 (de) 1992-12-10
CA1300607C (fr) 1992-05-12
WO1987006592A1 (fr) 1987-11-05
DE3779724D1 (de) 1992-07-16

Similar Documents

Publication Publication Date Title
US7923437B2 (en) Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US5478732A (en) Process for the preparation of long-chain inulin with inulinase
EP0124439B1 (fr) Procédé de modification des pectines de betterave, produits obtenus et leurs applications
US8222232B2 (en) Glucosamine and N-acetylglucosamine compositions and methods of making the same fungal biomass
FR2597485A1 (fr) Procede pour la fabrication de cyclodextrines modifiees.
EP0252799B1 (fr) Procédé de préparation à partir du saccharose d&#39;un mélange de sucres à haute teneur en isomaltose par voie enzymatique
KR102591794B1 (ko) 폴리황산펜토산의 제조 방법
EP1226148A2 (fr) Nouveaux oligosaccharides, leur preparation et les compositions pharmaceutiques les contenant
KR20190120216A (ko) 폴리황산펜토산, 의약 조성물 및 항응고제
US4766207A (en) Process for the preparation of water-soluble polysaccharides, the saccharides thus obtainable, and their use
CH634855A5 (fr) Procede de production de nouveaux derives de beta-1,3-glucanes.
JP2019073709A (ja) 酸性キシロオリゴ糖の製造方法及び酸性キシロオリゴ糖
Whistler et al. Introduction of 3, 6-Anhydro Rings into Amylose and Characterization of the Products1
WO1997008206A1 (fr) Procede d&#39;obtention de polysaccharides sulfates
WO2015193601A1 (fr) PROCEDE DE FABRICATION D&#39;UNE SOLUTION AQUEUSE STABLE DE β-AMYLASE, SOLUTION AQUEUSE OBTENUE ET SES UTILISATIONS
EP0267212B1 (fr) Procede de preparation, a haute concentration dans le fluorure d&#39;hydrogene, d&#39;oligo et polyosides ramifies notamment a partir de l&#39;amidon
KR100418175B1 (ko) 유도된 환원 말토-올리고당
JP3530567B2 (ja) 難消化性澱粉の製造方法
EP1456247A1 (fr) Procede de sulfonation de composes comprenant des groupements hydroxyles (oh) libres ou des amines primaires ou secondaires
EP0270585B1 (fr) Procede de preparation a haute concentration dans le fluorure d&#39;hydrogene d&#39;oligo- et poly-osides ramifies, notamment a partir de saccharose
KR100939551B1 (ko) 셀로비오스의 정제 방법 및 제조 방법
WO1986000906A1 (fr) Procede de synthese d&#39;aldosides ou de polyaldosides d&#39;alkyle, de cycloalkyle ou d&#39;alcenyle
FR2680789A1 (fr) Nouveaux dianhydrides glycosyles du fructose et leurs procedes de preparation.
Rodríguez-Ramírez et al. Eco-friendly and efficient modification of native hemicelluloses via click reactions
WO2024110624A1 (fr) Procédé d&#39;extraction du xyloglucane des parois primaires des cellules végétales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19901019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3779724

Country of ref document: DE

Date of ref document: 19920716

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940420

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940430

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940610

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950430

BERE Be: lapsed

Owner name: S.A. BEGHIN-SAY

Effective date: 19950430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050421