EP0265344A1 - Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens - Google Patents

Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens Download PDF

Info

Publication number
EP0265344A1
EP0265344A1 EP87402368A EP87402368A EP0265344A1 EP 0265344 A1 EP0265344 A1 EP 0265344A1 EP 87402368 A EP87402368 A EP 87402368A EP 87402368 A EP87402368 A EP 87402368A EP 0265344 A1 EP0265344 A1 EP 0265344A1
Authority
EP
European Patent Office
Prior art keywords
tube
cutters
drilling
drilling machine
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87402368A
Other languages
English (en)
French (fr)
Other versions
EP0265344B1 (de
Inventor
Yves Legendre
Hervé Barthelemy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche SA
Original Assignee
Soletanche SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche SA filed Critical Soletanche SA
Publication of EP0265344A1 publication Critical patent/EP0265344A1/de
Application granted granted Critical
Publication of EP0265344B1 publication Critical patent/EP0265344B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • E21B10/34Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools of roller-cutter type
    • E21B10/345Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools of roller-cutter type cutter shifted by fluid pressure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/13Foundation slots or slits; Implements for making these slots or slits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/20Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels with tools that only loosen the material, i.e. mill-type wheels
    • E02F3/205Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels with tools that only loosen the material, i.e. mill-type wheels with a pair of digging wheels, e.g. slotting machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
    • E21B7/208Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes using down-hole drives

Definitions

  • the present invention firstly relates to a method for producing a stake in the ground, and in particular in the underwater ground.
  • the foundations of structures are generally made by inclined or vertical piles of large diameter (84 ", or 2.10 m) beaten with Diesel hammers from the surface, or underwater hydraulic hammers.
  • the present invention aims in particular to provide a process allowing the production of large diameter cemented bored piles, more particularly on an underwater bottom.
  • tubing a tube having a smaller diameter of 80 "(2 m) for a thickness of 2" (5 cm) or an outside diameter of 84 “(2.10 m). will then be able to drill from top to bottom in 78 "(1.95 m) with the cutters in their retracted position and the over-drilling from bottom to top in 90" (2.25 m) with the cutters in their deployed position.
  • predetermined depth over which each section of drilling is carried out may for example be 3 meters.
  • the pitch of the descent of the tube can be either lower or equal to the depth over which each section of the drilling is carried out.
  • a drilling machine is used of the type comprising a head and a body on which the cutters are mounted, the head and the body being connected by a jack, said head is suspended from the upper end of the tube at a fixed distance from this end, and the aforementioned drilling and over-drilling operations are carried out by extension and retraction of said jack respectively.
  • the invention also relates to a drilling machine for implementing the method described above, comprising at least one pair of cutters rotated in opposite directions, characterized in that each of said cutters is mounted on a support oscillating, means being provided for moving said supports between two positions where the cutters are respectively in their said first and second positions.
  • a drilling machine comprising two pairs of superimposed cutters, the set of four cutters having a substantially circular horizontal projection.
  • drilling machines of this type comprising pairs of cutters rotated in opposite directions, sometimes have the drawback of leaving a step between the cutters intact which, depending on the nature of the terrain, can oppose the progression of the cutter.
  • the present invention also relates to a device for holding and lowering the tube step by step, for implementing the method as described above, characterized in that it comprises a first clamping collar mounted fixed by relative to the ground, and a second clamp coaxial with the first collar, means being provided for spreading and bringing the second collar closer to the first collar.
  • the device according to the invention will firstly be described in general, with more particular reference to FIGS. 1 and 6b.
  • the drilling machine used 1 is of the type comprising a body 2 and a head 3 connected by a feed cylinder 4. At its lower part, the body 2 receives, by means of a support 5 mounted pivoting about a vertical axis, a pair of upper cutters 6 and a pair of lower cutters 7.
  • the cutters 6 and 7 are mounted for rotation about substantially horizontal axes, the axes of the cutters 7 being perpendicular to the axes of the cutters 6.
  • the two cutters 6 rotate in opposite directions, as do the two cutters 7, so as to bring back the cuttings towards the vertical axis of the machine, where they are sucked by a cuttings pump 8 via a suction duct 9 ( Figure 2a).
  • the cutters 6 and 7 have a shape such that their horizontal projection is substantially circular, as can be seen in Figures 3a and 3b, so that the drilling they perform has a circular section.
  • Such an arrangement of cutters is described in French patent application No. 84 19053.
  • the drive motors of the pump 8 and of the cutters 6 and 7 are supplied, for example, by a hydraulic unit 9 itself driven by a seawater turbine 10.
  • This turbine receives seawater under pressure from a surface maritime support, for example a dynamically positioned vessel, via a two-way pipe 11 and a rod train 12.
  • the pipe 11 is connected at its lower end to the head 3 of the machine drilling 1, while its upper end is connected to the lower end of the rod train 12 via a distribution box 13.
  • One of the lines of the pipe 11 allows the supply of the turbine and the another way allows the evacuation of delays.
  • a flexible pipe 14 is connected to the distribution box 13 for the evacuation of drill cuttings.
  • Figures 1 and 6b also show the drilling machine 1 arranged inside a tube 15 intended to form the casing of the drilling carried out using the machine.
  • the drilling machine 1 is supported by the tube 15 itself via its head 3 and the two-way pipe 11, the upper end of which is mounted integral with the upper end of the tube 15 via a support member 16.
  • the machine 1 is therefore suspended inside the tube 15 by means of the member 16, the head 3 being at a fixed distance from the upper end of the tube 15 equal to the length of the pipe 11.
  • the assembly according to the invention also includes a device 17 for holding and advancing the tube 15 step by step.
  • This device 17 firstly comprises a guide and support cone 18 capable of cooperating with the flared upper end 19 a reservation 20 formed in a structure 21 which it is desired to fix to the sea floor 22 by a pile produced in accordance with the invention.
  • a lower clamp 23 for the tube 15 is mounted integral with the cone 18, while an upper clamp 24 is mounted axially movable relative to the collar 23 by means of actuating cylinders 25.
  • Cylinders 26 allow the tube 15 to be clamped by the collar 23 and cylinders 27 allow the tube 15 to be clamped by the collar 24.
  • Guide cables 28 connected to the surface maritime support in constant tension, on their lower end fixed to the clamp 23 and pass through guides 29 and 30 secured respectively to the upper clamp 24 and the upper end of the tube 15, to ensure guiding the latter during its descent.
  • the descent of the tube 15 relative to its holding device, and therefore relative to the structure 21, is carried out with the lower collar 23 loosened and the upper collar 24 tightened, by retraction of the jacks 25.
  • This descent can be carried out step by step. In this case, once the cylinders 25 are fully retracted, the collar 23 is tightened and the collar 24 loosened, then the cylinders 25 deployed so as to raise the collar 24. The neck collar 24 is then tightened and the collar 23 loosened and the operation is restarted.
  • the cutters 6 and 7 can take either a spread position shown in Figures 2a and 3a, or a constricted position shown in Figures 2b and 3b.
  • each milling cutter 6 is mounted on a support 31 oscillating around a horizontal axis 32.
  • Cylinders 33 bearing on the conduit 9 make it possible to spread the milling cutters, as shown in FIG. 2a.
  • the horizontal projection of the strawberries has a larger diameter than the outside diameter of the tube 15, as shown in FIG. 3a.
  • jacks 34 bearing on a peripheral skirt 35 make it possible to tighten the cutters, as shown in FIG. 2b.
  • the horizontal projection of the cutters has a smaller diameter than the inside diameter of the tube 15, which allows the machine 1, including its cutters 6 and 7, to penetrate inside the tube 15.
  • oscillating supports and jacks similar to those of the cutters 6 are used to operate the cutters 7.
  • jacks 36 make it possible to rotate the support 5 of the cutters relative to the body 2 of the drilling machine 1. It is thus possible to make swing these strawberries, for example a few degrees, around a vertical axis, as shown schematically by the arrows 37, and thus break the steps which are formed between the two strawberries 6 and, respectively, between the two strawberries 7 .
  • This oscillation causes a reaction torque which is taken up by inflatable shoes 38 bearing on the inner surface of the tube 15, and capable of sliding in grooves 39 of the body 2 of the machine 1.
  • An inflation device 40 is provided in the machine body for skids 38.
  • the assembly according to the invention finally comprises supply and control cables 41 for the device 17, as well as supply and control cables 42 for the drilling machine 1.
  • FIG. 6a represents the assembly constituted by the drilling machine 1, the tube 15 and the holding and advancing device 17 in the process of approaching the reservation 20 provided for in the structure 21.
  • This approach is carried out by maintaining the assembly suspended by the rod train 12 from a surface sea support not shown. It can be seen that during this approach, the machine 1 is entirely disposed inside the tube 15, the cutters being in their retracted position in FIGS. 2b and 3b.
  • the guide and support cone 18 has penetrated into the flaring 19 of the reservation 20, thus positioning the assembly relative to the structure 21.
  • the cylindrical part of the reservation 20 is provided with a diameter inside slightly greater than the outside diameter of the tube 15, in order to allow the latter to descend to the ground through the reservation 20.
  • the device 17 could be placed directly on the seabed, in the event that one wishes to make an anchoring stake prior to the installation of the structure that it is intended to anchor.
  • a first drilling from top to bottom is then carried out, as shown in FIG. 6d, by deployment of the advance cylinder 4, the cutters always being in their tightened position in FIGS. 2b and 3b.
  • a borehole 50 is thus produced, the diameter of which is less than the inside diameter of the tube 15.
  • the hole 51 thus produced therefore has a diameter slightly greater than the outside diameter of the tube 15.
  • the strawberries are then discarded and an over-drilling 53 is carried out from bottom to top to a diameter greater than the outside diameter of the tube 15 (FIG. 6h).
  • this tube can again be lowered to the bottom of the corresponding hole, as shown in FIG. 6j.
  • the device 17 and the drilling machine 1 are reassembled using the rod train 12, as shown in FIG. 6k, leaving the tube 15 in place in the reservation 20 of the structure 21, and sunk into the ground 22.
  • annular space 54 formed between the outer surface of tube 15 and the walls of the hole in which the tube is pressed is then held together by any suitable means, as shown in Figure 6 l 55.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
EP87402368A 1986-10-22 1987-10-21 Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens Expired - Lifetime EP0265344B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8614657 1986-10-22
FR8614657A FR2605657A1 (fr) 1986-10-22 1986-10-22 Procede pour la realisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procede

Publications (2)

Publication Number Publication Date
EP0265344A1 true EP0265344A1 (de) 1988-04-27
EP0265344B1 EP0265344B1 (de) 1991-04-03

Family

ID=9340065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402368A Expired - Lifetime EP0265344B1 (de) 1986-10-22 1987-10-21 Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens

Country Status (12)

Country Link
US (1) US4904119A (de)
EP (1) EP0265344B1 (de)
JP (1) JPS63217016A (de)
AU (1) AU592678B2 (de)
BR (1) BR8705631A (de)
CA (1) CA1277975C (de)
DE (2) DE3769074D1 (de)
ES (1) ES2002707B3 (de)
FR (1) FR2605657A1 (de)
IN (1) IN171369B (de)
NO (1) NO874393L (de)
ZA (1) ZA877914B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768446A1 (de) * 1995-10-09 1997-04-16 Baker Hughes Incorporated Verfahren und Bohrgerät zum Abteufen von Bohrungen in unterirdische Formationen
US6196336B1 (en) 1995-10-09 2001-03-06 Baker Hughes Incorporated Method and apparatus for drilling boreholes in earth formations (drilling liner systems)
WO2007020445A1 (en) * 2005-08-18 2007-02-22 Fugro Seacore Limited Methods and apparatus for the installation of foundation piles
EP2299006A1 (de) * 2009-09-14 2011-03-23 Blade Offshore Services Ltd. Verfahren zur Gründung einer versenkten Struktur auf einem Gewässergrund
EP2319990A3 (de) * 2002-04-04 2014-09-03 Gebr. Van Leeuwen Boringen B.V. Verfahren und System zum Herstellen von mindestens einem Gründungselement im Boden
US8998540B2 (en) 2009-09-14 2015-04-07 Blade Offshore Services Ltd.. Method, apparatus and system for attaching an anchor member to a floor of a body of water

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228901B2 (en) * 1994-10-14 2007-06-12 Weatherford/Lamb, Inc. Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7040420B2 (en) * 1994-10-14 2006-05-09 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US6868906B1 (en) * 1994-10-14 2005-03-22 Weatherford/Lamb, Inc. Closed-loop conveyance systems for well servicing
US7108084B2 (en) * 1994-10-14 2006-09-19 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7147068B2 (en) * 1994-10-14 2006-12-12 Weatherford / Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US7013997B2 (en) * 1994-10-14 2006-03-21 Weatherford/Lamb, Inc. Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells
US6536520B1 (en) * 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
US7140445B2 (en) * 1997-09-02 2006-11-28 Weatherford/Lamb, Inc. Method and apparatus for drilling with casing
US7509722B2 (en) * 1997-09-02 2009-03-31 Weatherford/Lamb, Inc. Positioning and spinning device
US6742596B2 (en) * 2001-05-17 2004-06-01 Weatherford/Lamb, Inc. Apparatus and methods for tubular makeup interlock
GB2364728B (en) 1998-05-16 2002-12-04 Duncan Cuthill Method of and apparatus for installing a pile underwater to create a mooring anchorage
GB9815809D0 (en) * 1998-07-22 1998-09-16 Appleton Robert P Casing running tool
GB2340857A (en) * 1998-08-24 2000-03-01 Weatherford Lamb An apparatus for facilitating the connection of tubulars and alignment with a top drive
CA2356194C (en) * 1998-12-22 2007-02-27 Weatherford/Lamb, Inc. Procedures and equipment for profiling and jointing of pipes
US7188687B2 (en) * 1998-12-22 2007-03-13 Weatherford/Lamb, Inc. Downhole filter
GB2347441B (en) * 1998-12-24 2003-03-05 Weatherford Lamb Apparatus and method for facilitating the connection of tubulars using a top drive
GB2345074A (en) * 1998-12-24 2000-06-28 Weatherford Lamb Floating joint to facilitate the connection of tubulars using a top drive
US6857487B2 (en) * 2002-12-30 2005-02-22 Weatherford/Lamb, Inc. Drilling with concentric strings of casing
US6896075B2 (en) * 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7311148B2 (en) * 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
EP1242711B1 (de) * 1999-12-22 2006-08-16 Weatherford/Lamb, Inc. Bohrmeissel zum gleichzeitigen bohren und verrohren
US20060124306A1 (en) * 2000-01-19 2006-06-15 Vail William B Iii Installation of one-way valve after removal of retrievable drill bit to complete oil and gas wells
US7325610B2 (en) * 2000-04-17 2008-02-05 Weatherford/Lamb, Inc. Methods and apparatus for handling and drilling with tubulars or casing
GB0010378D0 (en) * 2000-04-28 2000-06-14 Bbl Downhole Tools Ltd Expandable apparatus for drift and reaming a borehole
US7475742B2 (en) 2000-06-09 2009-01-13 Tesco Corporation Method for drilling with casing
CA2311158A1 (en) * 2000-06-09 2001-12-09 Tesco Corporation A method for drilling with casing
GB2364079B (en) * 2000-06-28 2004-11-17 Renovus Ltd Drill bits
GB2365888B (en) * 2000-08-11 2002-07-24 Renovus Ltd Drilling apparatus
GB0206227D0 (en) * 2002-03-16 2002-05-01 Weatherford Lamb Bore-lining and drilling
US6994176B2 (en) * 2002-07-29 2006-02-07 Weatherford/Lamb, Inc. Adjustable rotating guides for spider or elevator
US6899186B2 (en) * 2002-12-13 2005-05-31 Weatherford/Lamb, Inc. Apparatus and method of drilling with casing
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7303022B2 (en) * 2002-10-11 2007-12-04 Weatherford/Lamb, Inc. Wired casing
US7938201B2 (en) * 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
US6953096B2 (en) * 2002-12-31 2005-10-11 Weatherford/Lamb, Inc. Expandable bit with secondary release device
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
WO2004076804A1 (en) * 2003-02-27 2004-09-10 Weatherford/Lamb Inc. Drill shoe
US7503397B2 (en) * 2004-07-30 2009-03-17 Weatherford/Lamb, Inc. Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
WO2004079151A2 (en) * 2003-03-05 2004-09-16 Weatherford/Lamb, Inc. Drilling with casing latch
US7413020B2 (en) * 2003-03-05 2008-08-19 Weatherford/Lamb, Inc. Full bore lined wellbores
GB2415722B (en) * 2003-03-05 2007-12-05 Weatherford Lamb Casing running and drilling system
WO2004090279A1 (en) * 2003-04-04 2004-10-21 Weatherford/Lamb, Inc. Method and apparatus for handling wellbore tubulars
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7264067B2 (en) * 2003-10-03 2007-09-04 Weatherford/Lamb, Inc. Method of drilling and completing multiple wellbores inside a single caisson
US7284617B2 (en) * 2004-05-20 2007-10-23 Weatherford/Lamb, Inc. Casing running head
EP1626127B1 (de) * 2004-08-10 2007-10-17 BAUER Maschinen GmbH Fräsvorrichtung und Verfahren zum Erstellen eines Fräslochs
WO2007042830A1 (en) * 2005-10-14 2007-04-19 Tidal Generation Limited Installation of underwater anchorages
GB0520891D0 (en) * 2005-10-14 2005-11-23 Tidal Generation Ltd Foundation structure for water current energy system
US7857052B2 (en) * 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) * 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
GB0624285D0 (en) * 2006-12-05 2007-01-10 Seacore Ltd Methods and apparatus for the installation colums/piles
GB2448358B (en) * 2007-04-12 2009-07-08 Tidal Generation Ltd Installation of underwater ground anchorages
GB0814341D0 (en) * 2008-08-06 2008-09-10 Aws Ocean Energy Ltd Pile system
DE102009023466B4 (de) * 2009-06-02 2012-09-13 Herrenknecht Ag Verfahren und Vorrichtung zum Erstellen eines Unterwasserfundaments eines Bauwerks
ATE554234T1 (de) * 2009-11-17 2012-05-15 Bauer Maschinen Gmbh Unterwasserbohranordnung und verfahren zum einbringen eines rohrförmigen gründungselements in den gewässergrund
NL2005081C2 (nl) * 2010-07-14 2012-01-17 Damen Dredging Equipment B V Snijkop.
NO333844B1 (no) * 2010-11-09 2013-09-30 Agr Subsea As Fremgangsmåte for å etablere et borehull i en sjøbunn og et lederør og en sugemodul for utøvelse av fremgangsmåten
EP2532790B1 (de) * 2011-06-10 2013-08-21 Bauer Spezialtiefbau GmbH Verfahren zum Herstellen eines Unterwasser-Gründungselementes, Justierkopf für ein Unterwasser-Gründungselement und Unterwasser-Arbeitsanordnung
EP2562348B1 (de) * 2011-08-23 2017-10-04 BAUER Maschinen GmbH Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung
EP2562310B1 (de) * 2011-08-23 2016-07-20 BAUER Maschinen GmbH Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung in einem Gewässergrund
DK2574698T3 (da) 2011-09-30 2014-05-05 Siemens Ag Fremgangsmåde og indretning til at drive en flerhed af pæle i havbunden
NO20111534A1 (no) * 2011-11-08 2012-09-24 Agr Subsea As Fremgangsmåte og anordning for stigerørløs borevæskegjenvinning
NL2008279C2 (en) * 2012-02-13 2013-08-14 Ihc Holland Ie Bv A template for and method of installing a plurality of foundation elements in an underwater ground formation.
EP2703564B1 (de) * 2012-08-30 2016-04-27 BAUER Maschinen GmbH Führungsrahmen zum Führen einer Fräsvorrichtung
JP6235372B2 (ja) * 2014-02-25 2017-11-22 鹿島建設株式会社 削孔装置、及び、削孔方法
KR101652352B1 (ko) * 2014-09-24 2016-09-01 삼성중공업 주식회사 굴삭 펌프 장치
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
CA2966154A1 (en) * 2014-12-30 2016-07-07 Halliburton Energy Services, Inc. Wellbore tool reamer assembly
CN105821835B (zh) * 2016-03-28 2017-12-29 中国一冶集团有限公司 注水式旋挖钻孔灌注桩的施工方法
CN107142929A (zh) * 2017-05-25 2017-09-08 中国电建集团华东勘测设计研究院有限公司 海上非打入型大直径单桩基础结构及其施工方法
NO345784B1 (en) * 2019-02-18 2021-08-09 Vetco Gray Scandinavia As Rigless drilling and wellhead installation
EP3882398B1 (de) * 2020-03-17 2023-08-23 BAUER Maschinen GmbH Bohrstange und verfahren zum nachrüsten einer kellystangen-anordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1786484A (en) * 1927-04-02 1930-12-30 Reed Roller Bit Co Reamer
US2287714A (en) * 1939-11-06 1942-06-23 Clinton L Walker Drill bit
US2375335A (en) * 1941-09-17 1945-05-08 Clinton L Walker Collapsible drilling tool
GB838833A (en) * 1958-08-25 1960-06-22 Archer William Kammerer Expansible rotary drill bit
US3710878A (en) * 1969-12-13 1973-01-16 Takenaka Komuten Co Chain cutter type excavator and ditch excavating method
US4133396A (en) * 1977-11-04 1979-01-09 Smith International, Inc. Drilling and casing landing apparatus and method
US4154552A (en) * 1977-11-21 1979-05-15 Vetco, Inc. Level subsea template installation
GB2010360A (en) * 1977-09-07 1979-06-27 Nelson N System for Connecting an Underwater Platform to an Underwater Floor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR552986A (fr) * 1921-07-30 1923-05-11 Bosch Robert Appareil avertisseur pour véhicules
FR1493985A (fr) * 1966-09-20 1967-09-01 Trox Gmbh Geb Fixation d'une grille d'aération
GB2003211A (en) * 1977-07-08 1979-03-07 Gladstone J Sinking cased boreholes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1786484A (en) * 1927-04-02 1930-12-30 Reed Roller Bit Co Reamer
US2287714A (en) * 1939-11-06 1942-06-23 Clinton L Walker Drill bit
US2375335A (en) * 1941-09-17 1945-05-08 Clinton L Walker Collapsible drilling tool
GB838833A (en) * 1958-08-25 1960-06-22 Archer William Kammerer Expansible rotary drill bit
US3710878A (en) * 1969-12-13 1973-01-16 Takenaka Komuten Co Chain cutter type excavator and ditch excavating method
GB2010360A (en) * 1977-09-07 1979-06-27 Nelson N System for Connecting an Underwater Platform to an Underwater Floor
US4133396A (en) * 1977-11-04 1979-01-09 Smith International, Inc. Drilling and casing landing apparatus and method
US4154552A (en) * 1977-11-21 1979-05-15 Vetco, Inc. Level subsea template installation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768446A1 (de) * 1995-10-09 1997-04-16 Baker Hughes Incorporated Verfahren und Bohrgerät zum Abteufen von Bohrungen in unterirdische Formationen
US5845722A (en) * 1995-10-09 1998-12-08 Baker Hughes Incorporated Method and apparatus for drilling boreholes in earth formations (drills in liner systems)
US6196336B1 (en) 1995-10-09 2001-03-06 Baker Hughes Incorporated Method and apparatus for drilling boreholes in earth formations (drilling liner systems)
EP2319990A3 (de) * 2002-04-04 2014-09-03 Gebr. Van Leeuwen Boringen B.V. Verfahren und System zum Herstellen von mindestens einem Gründungselement im Boden
WO2007020445A1 (en) * 2005-08-18 2007-02-22 Fugro Seacore Limited Methods and apparatus for the installation of foundation piles
EP2299006A1 (de) * 2009-09-14 2011-03-23 Blade Offshore Services Ltd. Verfahren zur Gründung einer versenkten Struktur auf einem Gewässergrund
US8998540B2 (en) 2009-09-14 2015-04-07 Blade Offshore Services Ltd.. Method, apparatus and system for attaching an anchor member to a floor of a body of water

Also Published As

Publication number Publication date
DE265344T1 (de) 1988-11-24
AU7999987A (en) 1988-04-28
DE3769074D1 (de) 1991-05-08
AU592678B2 (en) 1990-01-18
JPS63217016A (ja) 1988-09-09
ES2002707B3 (es) 1991-10-16
IN171369B (de) 1992-09-26
NO874393D0 (no) 1987-10-21
ZA877914B (en) 1988-04-26
ES2002707A4 (es) 1988-10-01
BR8705631A (pt) 1988-05-31
CA1277975C (fr) 1990-12-18
US4904119A (en) 1990-02-27
NO874393L (no) 1988-04-25
EP0265344B1 (de) 1991-04-03
FR2605657A1 (fr) 1988-04-29

Similar Documents

Publication Publication Date Title
EP0265344B1 (de) Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens
EP1525371B1 (de) Teleskopführungsleitung für offshore-bohren
EP3002371B1 (de) Maschine und verfahren zur erstellung von säulen in einem boden
FR2588297A1 (fr) Dispositif pour le forage sous-marin de fondations
FR2563861A1 (fr) Dispositif de nettoyage de tarieres.
EP2156907A1 (de) Einrichtung zur Bodensanierung
EP1259792B1 (de) Verfahren und vorrichtung zur einbringung eines rohrförmigem werkzeuges in den seeboden zwecks probenentnahme oder messung der eigenschaften dieses bodens, insbesondere in grosser tiefe
EP0811724A1 (de) Vorrichtung mit teleskopischem Rahmen zum Graben von Tiefgräben im Boden
FR2680380A1 (fr) Procede pour realiser un corps de fondation universel et dispositif pour mettre en óoeuvre ce procede.
CA2641395C (fr) Systeme de forage autonome d'un trou de drainage
FR2596084A1 (fr) Dispositif de pose de tubes par poussee, en particulier pour tubes de faible diametre
WO2013057442A1 (fr) Dispositif de forage de grand diametre
EP0826835B1 (de) Baggergerät zum Graben von Tiefgräben
CA2064429C (fr) Dispositif d'etancheite pour joints d'expansion coupes dans les barrages
EP0353152B1 (de) Vorrichtung zum Abführen von Erdreich für die Herstellung von Tiefgräben
EP2900875B1 (de) Verfahren zur herstellung einer gründung im boden
EP2925935B1 (de) Verfahren zur herstellung einer offshore gründung aus röhrenelementen
EP0596792B1 (de) Verbesserte Bodenbearbeitungsvorrichtung mit rotierenden Strahlen
FR2831204A1 (fr) Dispositif de guidage dans une installation de forage en mer et procede de realisation
EP1929094A1 (de) Maschine zur herstellung einer durchgehenden wand im boden
FR2832454A1 (fr) Equipement de forage de puits verticaux
FR2764331A1 (fr) Machine de creusement d'un tunnel
EP1514995B1 (de) Bohranlage mit Drehbohrkopf
BE496140A (de)
BE831865A (fr) Perfectionnements aux perforatrices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19880704

ITCL It: translation for ep claims filed

Representative=s name: MODIANO & ASSOCIATI S.R.L.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DET De: translation of patent claims
17Q First examination report despatched

Effective date: 19890907

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 3769074

Country of ref document: DE

Date of ref document: 19910508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19911022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051021