EP1525371B1 - Teleskopführungsleitung für offshore-bohren - Google Patents

Teleskopführungsleitung für offshore-bohren Download PDF

Info

Publication number
EP1525371B1
EP1525371B1 EP03760741A EP03760741A EP1525371B1 EP 1525371 B1 EP1525371 B1 EP 1525371B1 EP 03760741 A EP03760741 A EP 03760741A EP 03760741 A EP03760741 A EP 03760741A EP 1525371 B1 EP1525371 B1 EP 1525371B1
Authority
EP
European Patent Office
Prior art keywords
telescopic
guide pipe
pipe
drilling
guide device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03760741A
Other languages
English (en)
French (fr)
Other versions
EP1525371A1 (de
Inventor
Stéphane ANRES
Hans P. Hopper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem SA filed Critical Saipem SA
Publication of EP1525371A1 publication Critical patent/EP1525371A1/de
Application granted granted Critical
Publication of EP1525371B1 publication Critical patent/EP1525371B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/101Setting of casings, screens, liners or the like in wells for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/043Directional drilling for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/20Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes

Definitions

  • the present invention relates to the known field of drilling at sea from a floating support anchored to the surface and more particularly to guidance devices for the trains of drill pipes installed at the seabed.
  • It relates more particularly to drilling deviated into deep water, so as to reach points distant from the vertical axis of the surface drill rig.
  • This floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves.
  • it also generally comprises means for handling the drill string, as well as guidance equipment associated with safety systems installed at the seabed.
  • Drilling is usually done vertically from the drill rig and then penetrates the ground vertically to heights of several hundred meters. Then, said drilling is continued to the oil slick called "reservoir", either vertically or with a gradual angular deflection, so as to reach points of said reservoir, more or less distant.
  • the start phase of the well is generally carried out by descending from the surface a drilling base resting on the seabed provided with guide lines to the surface, then down a length of pipe, called “casing” or casing, strong diameter, generally 0.914 m (36 ”) and measuring 50 to 60 m in length, based on unit lengths of pipe approximately 12 m long assembled by screwing on the drilling platform, the level of the floor of the derrick.
  • casing or casing, strong diameter, generally 0.914 m (36 ") and measuring 50 to 60 m in length, based on unit lengths of pipe approximately 12 m long assembled by screwing on the drilling platform, the level of the floor of the derrick.
  • each unit length of casing has at each end a zone reinforced over a length of 0.5m to 1m, consisting of an extra thickness corresponding to about 0.5 to 2 times the current thickness of the wall of said casing, the thickness in which said threading is machined.
  • This first casing is used to consolidate the walls of the well in the area near the seabed, and therefore serves as a guide device for a second casing, of smaller diameter and, in general, a total length of 150 to 200m, said second casing being also made by pipe assembly of 12m unit length comprising reinforced zones at the ends, has an outer diameter, including reinforced threading areas, much lower than the internal diameter of the outer casing, so that it can slide freely during installation and for the flow of cement grout can be done in the best conditions.
  • Said second casing is then either vibrofoncured or drilled if the terrain requires it, and then cements from the surface the gap between said casings and the ground, as well as between the two said casings.
  • open holes are used and there is a risk of being exposed to ground instabilities, or to untimely arrival of water at shallow depths below the seabed ( "Shallow water flow"), seriously disturbing the start-up phase of the well.
  • the multiple casings have important spaces between each said casing and the following and, furthermore, because each of said casings extends from the level of the sea floor to its lowest end, this implies that sea level and over the entire height of the first and subsequent casings, radially two, three or even four or more successive thicknesses of casing are observed, which will in fact be useless in the pursuit of operations, because in the main phase of drilling and well exploitation, a single casing thickness is required for ensure the support of downhole equipment and the tightness of the whole.
  • These multiple casings, redundant in the zone near the seabed, are made necessary because of the manner of proceeding to start a well drilling according to the prior art, redundancy which represents a considerable amount of steel, and therefore a very important cost.
  • the patent is known GB-2,338,009 which describes a mode of installation of multiple elements of independent casings successively installed in each other with a reduced game. Said casings being installed in sequence, one after the other, this makes it possible, because of said reduced clearance, to minimize the maximum diameter of the hole to be drilled, both for external casing and intermediate casings, which reduces accordingly the amount of rubble to be evacuated and the power requirements of the drill rig and thereby are hourly cost.
  • US 5307886 which describes a system and or installation mode for performing multiple casings with reduced clearance, and minimizing the space between said casing and the wall of the hole drilled in the ground.
  • a first problem underlying the invention is to provide a guide device for guiding the drill string and the drilling tool as deep as possible in the basement at the bottom of the sea, so as to avoid these incidents of untimely arrival of water occurring at shallow depth during the installation of the casings.
  • Another problem is to reduce the handling and assembly phases on board the drilling platform, the unit lines used to make said casings in order to reduce the difficulty, the duration and therefore the cost of installing the casings, particularly in the case of an installation in Ultra Large Funds ie for depths of 2000 to 3000 meters or more.
  • these manipulations being carried out in successive and independent sequences, if the actual time of setting up, ie the depression in the ground, the first casing, the second casing or the following remains acceptable, the manipulations intermediaries consisting in bringing the gripping tools back to the surface and then going down again the next casing, then represent a time considerable, therefore an immobilization cost of the extremely high drilling rig, when the water height reaches 2000, 3000 or even 4000 to 5000m or more.
  • the cementing phases of the gap between two risers require a very important time which increases the cost of the operation by the same amount.
  • Another problem is to drastically reduce the quantity of steel necessary for the realization of these casings by minimizing the redundancies as well as the games between said successive casings.
  • DTU Dry Tree Units
  • ie units with dry well heads because in this case the wellheads are collected on the surface, out of water.
  • the operation is thus greatly facilitated, since it is possible to have access to any of the wells from the DTU, to carry out all the control and maintenance operations on the wells, and this throughout the life of the facilities that reaches 20 to 25 years and even more.
  • Patents are known EP 0952300 and EP 0952301 describing methods and devices for deviated drilling by taking advantage of the water body to deviate as far as possible from the vertical of the drill rig and to rest in the seabed substantially tangentially to the horizontal.
  • the guidance devices installed at the bottom of the sea penetrate into the ground and allow to ensure the priming of the wellbore in the seabed at an inclination of a given angle relative to the vertical.
  • the guiding device is connected to the drilling machine by a pipe called "drill riser" which guides the drill string that passes through them and ensures the recovery of sludge and drilling debris.
  • This guide element installed at the bottom of the sea must allow to respect large radii of curvature of 500 to 1000 m and therefore must be large, while remaining very resistant to absorb the considerable efforts generated by the rod train. drilling which will also be forced to marry the same radius of curvature, which induces very high friction and risk of destabilization of the whole during drilling.
  • this guide element of considerable size and mass must be preinstalled in the ultra deep sea, that is to say in water depths of 1000 to 2500 m or more.
  • the guide device comprises a conductor element called "conductor” which is actually the guide tube of the wellbore deployed from the floating support through the drill riser to a structure called “skid” resting on the bottom
  • This structure - skid maintains and guides the conductive tube horizontally above the seabed at a certain height. Then this conductor adopts a curvature towards the bottom of the sea under the effect of its own gravity.
  • the driver during its deployment cooperates with drilling tools so that it sinks partially into the seabed.
  • the establishment of such a guiding device including the driver from the floating support represents an operational constraint important.
  • this guiding device does not allow any control of the curvature of the conductor.
  • to respect a large radius of curvature especially greater than 500 m, it is necessary for the driver to deploy tangentially horizontally for several tens of meters beyond the fulcrum which ensures its guidance on the road. skid structure.
  • the driver will reach the ground only 50 m further, which means a portion of conductor of 50 m, cantilevered , free and not maintained, which is unacceptable because the driver may break or bend due to excessive local curvature, because uncontrolled.
  • the cantilever thus created may be detrimental to proper operation during drilling operations as well as throughout the lifetime that may exceed 25 years.
  • Another problem according to the present invention is therefore to provide a guiding device in a deviated drilling application in the height of the water slice, which can be set up in a large radius of curvature reliably, it is to say being able to control the curvature with a large radius of curvature especially greater than 500 m and whose implementation and implementation are easy to achieve.
  • the present invention provides a device for guiding an offshore drilling rig comprising at least one drill riser. extending from a floating support to said guide device at the bottom of the sea, said drilling being made from said floating support through said drill riser using a drill string equipped with its end of drilling tools passing through said drilling riser and said guiding device, said guiding device being characterized in that it comprises a telescopic guide pipe comprising coaxial telescopic pipe elements (XX ') and diameters decreasing, preassembled to each other, so that said telescopic pipe members are slidable in the axial direction (XX ') has
  • the inner diameter telescopic pipe member being equipped at its end with a soil decohesion means capable of creating a gradual depression in the soil of said telescopic guide pipe by sliding outwardly. said telescopic pipe members to thereby allow deeper guidance in the ground of a drill bit at the end of said
  • the progressive depression in the soil of the guide pipe is made from a retracted initial position in which the smaller diameter inner telescopic pipe element is retracted into the telescopic pipe elements of the pipe. larger diameter.
  • all telescopic pipe members are positioned within an outer telescopic pipe member of larger diameter.
  • the gradual insertion of said decohesion means occurs by progressive sliding outwards of the smaller diameter elements in those of larger diameter, and therefore first of the smaller diameter inner telescopic inner pipe member then progressively telescopic pipe elements of increasing diameter, and until full deployment of all the telescopic pipe elements extending outwards.
  • said smaller diameter inner pipe member has a diameter substantially the same as that of said drilling riser.
  • said soil decohesion means are constituted by a multiperforated seal allowing a jetting of water or sludge by injection under high pressure.
  • said telescopic guide pipe comprises at least 3 coaxial telescopic pipe elements.
  • each of said coaxial-telescopic pipe elements has a length of 50 to 300 meters, preferably 100 to 200 meters and said deployed guide pipe has a length of 150 to 600 meters, preferably 200 to 300 meters.
  • the guiding device according to the invention is initially prefabricated on the ground, then put in retracted configuration by introducing the pipes into each other so as to reduce the total length to a minimum, then put into the water and equipped with flotation elements, then towed on site to the axis of the drill rig, and finally cabane so that the upper part of said telescopic pipe can be grasped by the handling tool installed at the end of the drill string handled by the derrick, the whole then being lowered in one go, in vertical configuration towards the guide base resting on the bottom of the sea.
  • each of said telescopic pipe elements will be made by assembling successive lengths of pipe, said pipes being simply butt-welded in a conventional manner as in the case of the manufacture of pipelines. It is thus not necessary to reinforce the ends of each unit length of 12m, because no thread is machined, and the assembly then has an optimum diameter and significantly reduced compared to the prior art.
  • retract telescopic guide pipe means that the various pre-assembled telescopic pipe elements are such that those of small diameters are returned inside those of larger diameters.
  • the curvature of the telescopic guide pipe is thus formed by the controlled depression of the guide pipe. Due to long length of said guide pipe in the retracted position, each of the retracted section will take the same curvature, without generating significant efforts within the assembly.
  • the means for driving the retracted telescopic guide pipe make it possible to obtain, by driving the pipe, a curvature of the pipe with a large radius of curvature at a desired and controlled value, the radius of curvature being in fact dependent on the characteristics and the arrangement of said driving means.
  • said inclined linear portion is in the tangential extension of said curved portion and it is the inclination of this linear portion which determines said angle ⁇ of priming of the wellbore.
  • said guide duct has a length of 100 to 600 m, preferably 250 to 450 m with a said given inclination ⁇ of the guide duct of about 10 to 60 °, preferably 25 to 45 °.
  • the desired curvature of the guide duct then corresponds to an inclination increase of approximately 1 ° per portion of guide pipe length of 10 m, ie a radius of curvature of approximately 560 m.
  • said front end of the retracted telescopic guide pipe is embedded in a base comprising a load resting on a front flange so that said base maintains said front end of said guide pipe substantially horizontally on the bottom of the base. the sea when it is towed. Said base prevents the depression of the front end of said retracted telescopic guide pipe, as well as its rotation about a substantially horizontal axis perpendicular to the axis of traction.
  • the present invention also relates to an offshore drilling installation comprising a drilling riser extending from a floating support to a guide device according to the invention to which said drilling riser is connected.
  • said drilling riser progressively deviates from a substantially vertical position at said floating support to a position substantially horizontal or tangential to the horizontal at the bottom of the sea , the drilling being possible from said floating support through said drill riser and said guide device so that the well of drilling starts in the seabed according to a given inclination ⁇ with respect to the vertical, preferably from 10 to 80 °.
  • the subject of the present invention is a method of drilling using a drilling rig according to the invention, characterized in that drilling operations are carried out and a borehole is constructed in deploying rod trains cooperating with drilling tools and columns of tubes or casings, through a said riser and a said telescopic guide device according to the invention driven into the seabed.
  • the drill string firstly makes it possible to deploy the drilling tools, and then to deploy the elements of tubes, called “columns of tubes or casings" which constitute the wellbore as the drilling progresses. and setting them up in the bottom of the sea.
  • FIG. 1 there is shown a guide device consisting of 3 telescopic pipe elements 3a, 3b, 3c in a straight position, implemented in the context of a conventional vertical drilling.
  • Said guiding device 3 consisting of three telescopic pipe elements 3a, 3b and 3c, is suspended from a drill riser 2 handled by the surface derrick, and down to a drilling base 45 resting on the bottom of the sea 4
  • a first guiding means 47 has been previously lowered along the guide cables 48, to be centered on guide posts 46, and finally rest directly on the base.
  • the guiding device 3 has been shown in a position slightly above said base 45, just before being deposited on the latter.
  • This first guide means 47 has a funnel shape with a diameter slightly greater than the outside diameter of the portion 3a of the guiding device 3 and which, collaborating with the latter, thus makes it possible to guide it as it descends towards the base 45.
  • the guide device 3 is secured to a second guide means 49 embedded in the latter at the plane DD and itself guided along the guide lines 48.
  • the guiding device 3 was prefabricated on the ground, then the various elements were retracted into each other, so that the length of the assembly thus retracted is as low as possible, then the guiding device is launched and equipped with floats 50. It is then towed on site and, near the drilling platform 1, said guide device is cabane by removing the floats before, then transferred to the vertical axis of the derrick where it is taken by the rod train 2 equipped at its end with a gripper tool.
  • the drilling platform 1 is replaced by a simple surface vessel, preferably dynamically positioned, the guide device 3 once cabane is then resumed in suspension by a cable connected to a winch installed on board of ship.
  • the guide device is then lowered to the cable as a simple pendulum, preferably without guide lines, and then inserted into the drilling base.
  • the beginning of penetration is carried out by launching, the hydraulic power being provided by the surface vessel and transmitted to the bottom, for example by a flexible pipe.
  • the surface vessel suspends its operation, the installation will then be completed by the drilling platform upon arrival on site, vertical to said well to be drilled.
  • the cost of the casing installation operation is drastically reduced, as the daily cost of the required surface ship is a small fraction of the cost of a drilling rig capable of drilling into depths. 3000m water, 4000m or more.
  • the drill rig required will be of lower power, and therefore of a lower cost, because it will not have to manipulate the telescopic guide device according to the invention, nor even the single elements of a casing. conventional according to the prior art.
  • the figure 2 represents the telescopic guiding device 3 in the retracted or folded position with an orifice 31 allowing the sludge and the drilling debris to be evacuated at the level of the sea floor.
  • the telescopic pipe elements of said telescopic guide duct 3 are tubular and of diameter decreasing in size so as to slide into each other.
  • the telescopic intermediate pipe element 3b of the telescopic guide device 3 is provided on its front part with a sealed sliding ring 32b providing the reduced-friction guiding of the terminal telescopic inner pipe element 3c of the telescopic guide device 3. and on its rear part, a non-sealing sliding ring 33b providing reduced frictional guiding of the outer telescopic pipe element 3a of said telescopic guide device 3.
  • the portion 3a of said guiding device is equipped on the front with a sealed sliding ring 32a ensuring the reduced-friction guiding of the portion 3b and is integral with the rear of the drill riser in chain configuration 2.
  • the portion 3c of said guide device is equipped on the front with a lid 35 pierced with multiple orifices, or equipped with a series of jets, allowing, by simple injection of water or mud under very high pressure, destroying the cohesion of the soil and thus allow the start of the well by simply launching, and on the back, a non-sealed sliding ring 33c.
  • Complementary sliding rings 34 are advantageously installed, at regular intervals or not, respectively between the portions 3a-3b and 3b-3c so as to avoid that, when the guiding device portions are strongly curved, as indicated on FIG. figure 1 the outer wall of the inner guide, for example 3b, does not rub directly on the inner wall of the portion 3a.
  • these sliding rings 34 are secured to said telescopic portion 3b so as to have a high friction with respect to this portion 3b, that is to say they have the possibility of sliding when they are subjected to a major force applying parallel to the longitudinal axis of said portion 3b.
  • each of the sliding rings 34 is advantageously provided in its external part of a member 34 1 with reduced friction, so as to minimize the longitudinal contact forces between the walls of the various portions of the guide device 3, when the latter has a significant curvature.
  • the figure 4 represents the start phase of the drilling, the guide device being installed at the bottom of the sea, the portions 3a, 3b and 3c being in the retracted position.
  • the drilling tool 36 is integral with the lower end of the drill string 38 actuated from the surface-mounted derrick on the floating support.
  • Said drilling tool 36 consists of a turbine 36 1 actuated by a fluid under pressure, generally a drilling mud brought by the rod train 38, actuating a tool holder 36 2 on the front face of which are secured the tools of section 36 3 and on the shaft of which are installed retractable cutting tools 36 4 , shown in the retracted position on the figure 3 and in working position on the figure 4 .
  • a piston 40, shown on the figure 5 is secured to the drill string 38 and slides inside the riser 2 so as to provide a seal between the upstream and downstream of said piston 40.
  • the drill bit 36 that is integral with the end of the drill string 38 is lowered from the surface, so as to reach the position described on FIG. figure 3 .
  • the orifice 31 is closed by a valve that is not shown and a fluid under high pressure is sent through the drill string 38.
  • the turbine 36 1 rotates in the vacuum and the fluid can come out only through the seal 35 pierced with a multitude of small holes.
  • the jetting thus created at the front of the portion 3c of the guiding device, ensures the loosening of the soil and the piston effect due to the internal overpressure, pushes the portion 3c forward, possibly causing the portion 3b of said device guidance.
  • a centering collar 37a secured to the turbine 36 1 slides freely inside the portion 3c of the guide device 3; said collar freely passes the sludge and the drilling debris, in both directions, from downstream to upstream.
  • the collar 37a abuts with a ring 37b integral with the portion 3c of guiding device, inside the latter.
  • the collar 37a and ring 37b have corresponding threaded portions, not shown, which, by simple rotation of the rod train from the surface, mechanically secures the body of the turbine 36 1 to the portion 3c of the telescopic guide device, as shown on the figure 4 .
  • the opening cap 35 In advance of the drill string 38, one continues to inject fluid under pressure, which allows to destroy using the rotary drilling tool, the opening cap 35, but we have taken care to reopen the orifice 31, so that sludge and drilling residues stand out at the bottom of the sea.
  • said riser and said guide portion have a substantially identical inner section and the centralizers 38a are advantageously installed. secured to the rod train and sliding freely in said riser.
  • Such centralizers being known to those skilled in the field of drilling, will not be developed in more detail here.
  • the drilling has begun and the extensible arms of the drilling tool 36 4 are deployed and enlarge the borehole to a diameter corresponding at least to the diameter of the portion 3b of the guiding device 3.
  • Advantageously control the advancement of the tool by adjusting from the surface, by means of the derrick, the length of the shank.
  • it is advantageously pressurized from the surface annular between the drill riser and the rod train 38.
  • the pressure P created upstream of the sealed piston 40 creates a thrust F which, by intermediate of the drill string 38, pushes the tool forward, thereby driving the portions 3c and 3b of the telescopic guide device until complete deployment as shown in the figure 1 .
  • the drill string is operated from the rotating surface in the unscrewing direction, so as to release the body of the turbine 36 1 from the ring 37 b , thus of the portion 3c of the telescopic guiding device 3.
  • the drilling is then carried out in a conventional manner, after taking care to close the orifice 31 by means of a not shown valve, so as to recover the surface drilling muds for recycling in the drilling process.
  • said portions 3a, 3b and 3c may be advantageously square or hexagonal tubular shapes.
  • indexing will advantageously be integrated at sliding bearings 33.
  • the telescopic guide pipe 3a, 3b, 3c has been described above in an application related to vertical drilling, but it also applies in deviated drilling in accordance with the Figure 6A .
  • the equipment and operations remain substantially the same, it being understood however that the telescopic guide pipe 3 has a curvature due to its inclined position, in accordance with the representation of the Figure 6B , the guide device 3 being secured to the drill base at the plane AA.
  • a curved guide device 3 consisting of three telescopic pipe elements 3a, 3b and 3c.
  • the telescopic pipe element 3a is embedded at the plane AA in a stiff outer upper structure 20 described later in connection with the figure 17 .
  • the telescopic guide pipe 3 is shown in the context of a deflected bore, that is to say in an inclined and curved position on the one hand, and on the other hand in a retracted position, ie with the different elements telescopic driving 3a, 3b, 3c, the smallest inside the largest.
  • a telescopic guide pipe in the retracted position that is to say the telescopic driving elements of smaller all diameters being slid inside the outer telescopic pipe element.
  • elements cooperating with said telescopic guide pipe it is the element cooperating with the outer telescopic pipe element 3a, Figures 1 to 5 .
  • the Figure 6A is a side view of a surface support 1 of the DTU type equipped with a drilling rig and processing equipment.
  • a drill riser 2 in a chain configuration is connected to a guide pipe 3 by means of an underwater automatic connector 2 1 .
  • Structure 3 4 schematizes the controlled driving means.
  • a subsea well control assembly 2 2 is associated with this inlet of the well and allows to close the well in case of eruption.
  • the drilling is carried out conventionally from the surface through the drill riser 2 and through the guiding device 3-3 4 , until reaching the reservoir.
  • the figure 7 illustrates this first version of the guide device according to the invention, wherein, the guide device is towed on site by means of a cable 10 connected to the front of the guide device via a head traction 11, the rear of said guiding device being connected by a second cable 12 to a very high performance anchor 13 of Stevpriss® or Stevmanta® type VryHOFF Company (Holland).
  • the front part 3 1 of the guide device is secured to a sole 5 1 large surface and resting on the seabed so as to limit penetration into the ground.
  • soles 5 2 , 5 3 of smaller dimensions are distributed along the retracted telescopic guide pipe, their bearing surface decreasing as one approaches the rear 3 3 of said conduct guidance.
  • the front 3 1 is further stabilized by a base comprising a load 6 integral with the sole 5 1 thus creating a recess of the guide device in said base 6, as shown in FIG. figure 8 .
  • a method for producing one of such guide device consists in carrying out a traction of the front end 3 1 of said pipe retracted telescopic guide 3 until said intermediate sole 5 2, 5 3 are found embedded in the ground deeper and deeper as they are closer to the rear end 3 3 of guide pipe to obtain the desired curvature R, preferably a radius of curvature greater than 500 m, preferably between 500 and 1000 m.
  • Said controlled burying means comprise at least one deflector 7 1 '7 2' 7 3 secured to the outer telescopic pipe element of said telescopic guide pipe in said intermediate portion 3 3 2 or said rear portion 3 3 the telescopic outer guide pipe member comprising planar surfaces, preferably symmetrical with respect to the vertical axial plane XX ', YY' of said guide pipe in the longitudinal direction when it is in a straight horizontal position, and said planar surfaces of the baffles being inclined with respect to a horizontal axial plane XX ', ZZ' of said guide duct when the latter is in a horizontal position on the bottom of the sea, said deflector 7 1 , 7 2 , 7 3 being inclined an angle ⁇ 1 , ⁇ 2 , ⁇ 3 so as to create a depression of said guide duct when the latter is pulled from said substantially horizontal initial position A1 to a said depressed position A2 in the seabed .
  • deflectors 7 1 , 7 2 , 7 3 make it possible to control the curvature of the retracted telescopic guide pipe driven into the seabed because, once said deflectors are in a horizontal position, as shown in FIG. figure 12 they prevent further driving of the pipe and stabilize it in the desired position A2. It is understood that it is the spacing and the inclination of the baffles which determine the curvature and more generally the shape of the retracted telescopic guide pipe in the depressed position A2.
  • the guiding device comprises a plurality of deflectors 7 1 ' , 7 2' , 7 3 distributed along the outer pipe element of said telescopic guide pipe, inclined at angles ⁇ 1 , ⁇ 2 , ⁇ 3 , decreasing as said deflector 7 1 -7 3 is closer to said front end 3 1 .
  • the guide duct is therefore equipped with several deflectors 7 1 -7 3 secured to the guide duct and oriented ⁇ 1 - ⁇ 3 with respect to the axis XX 'of the latter.
  • the deflector 7 1 -7 3 is for example a simple flat sheet, preferably reinforced, preferably symmetrical along the vertical axial planes XX ', YY' and horizontal XX ', ZZ' of the guide pipe, welded to the pipe of guiding device as shown in the illustration figure 12 .
  • This angle is adjusted beforehand during the manufacture of the guiding device, so as to act as the anchor 13 described in the Figures 7, 8 that is to say to create a depression of the retracted telescopic guide pipe, this depression being limited because of the angle ⁇ .
  • the deflectors 7 1 -7 3 sink, driving 24 locally the guide pipe, until the deflector is substantially parallel to the force of the tow.
  • traction on the cable 10 that is to say substantially parallel to the seabed 4, or substantially horizontal position in which it will then no longer exert vertical force downwards, tending to bring down the whole.
  • a plurality of deflectors 7 1 -7 3 will be advantageously disposed along the guide device, each of them having an angle ⁇ 1 - ⁇ 3 decreasing as one moves closer to the front end 3 1 , as illustrated on the figure 11 .
  • the desired curvature is obtained, as shown in FIG. figure 12 .
  • a method of making a guide device is to achieve the end T of front wheel 3 1 of said retracted telescopic guide pipe 3 until said deflectors 7 1, 7 2, 7 3 are buried in the ground in a horizontal position to obtain a said curvature sought preferably at a radius of curvature greater than 500 m, preferably between 500 and 1000 m.
  • said secondary lines 8 are connected by their ends 8 1 , 8 2 to the front and rear ends 3 1 , 3 3 of said outer pipe member of said telescopic guide pipe and communicate with said front ends 3 1 and rear 3 3 so that he is possible to feed them by the same supply pipe 19 from said front end 3 1 of said telescopic guide pipe 3.
  • the secondary pipe 8 is connected at their two ends to the guide pipe 3 by non-return valves 8 1 , 8 2 .
  • Said guide pipe 3 is itself hermetically closed at its two ends, on the one hand by the traction head 11 and on the other hand by a plug 14.
  • An orifice is connected by a water supply pipe 19, the surface vessel 1 having the necessary pumping means.
  • the current portion of the guide pipe is free to move vertically through the central opening 22 of the structure 20, as shown in FIG. figure 18 detailing the section according to the plane CC, structure elements 23 limiting the lateral displacements.
  • These flexible links 17 1 , 17 2 , 17 3 are, for example, cables or chains connected on the one hand to the outer structure 20 in 26 and to the guide duct in 27. Said attachment points 26-27 are represented on the figure 17 .
  • These flexible links 17 1 -17 3 are spaced along the guide pipe, uniform or not, and have a variable length, decreasing when it approaches the front 3 1 of the telescopic pipe element external guide pipe. Their position and their length are determined, so that at the end of penetration in the ground, when they are all in tension, the sought-after curve is obtained as illustrated on the figure 17 .
  • a multitude of lateral flanges 21 is installed on the underside, so as to create a sufficient base.
  • a method for producing one of such guide device essentially consists in carrying one end of T FWD 3 1 of the outer pipe element of said telescopic guide pipe 3 of said external rigid structure 20 integral with said guide duct until the one or more links 17 1 -17 3 prevent additional depression of at least said rear portion 3 3 of said retracted telescopic guide duct to obtain the desired curvature R preferably a higher radius of curvature at 500 m, more preferably between 500 and 1000 m.
  • the outer structure 20 is preferably continuous along the guide pipe and represents an additional mass of 25 to 75 tons. Jetting is carried out with pressurized water from the surface at pressures of 20 to 100 bar in secondary lines 8.
  • the portions 3a-3b-3c have a respective diameter of 0.55 m (21 "), 0.45 m (18") and 0.40 m ( 16 ") and a length of 100 to 150m each.
  • the telescopic pipe elements are five in number, 30 ", 24", 21 “1/2, 18", 3/4 and 16 "in diameter, each of the telescopic pipe elements measuring approximately 200m, which represents a
  • the total length of the casings according to the prior art would have a same internal diameter of 16 "and the respective decreasing diameters would then be 36", 30 ", 24", 20 “and 16". also about 1000m, but since each casing element extends downwards from the sea floor level, the whole represents a cumulative length of about 3000m of pipe, which then represents a weight of steel approximately 2 to 2.5 times greater than the weight of steel required to make the telescopic casing according to the invention.

Claims (24)

  1. Führungsvorrichtung (3) einer Bohranlage im Meer mit wenigstens einem Drilling-Riser (2), der sich von einem schwimmenden Träger (1) bis zu der Führungsvorrichtung (3) am Meeresboden (4) erstreckt, wobei die Bohrung von dem schwimmenden Träger aus mit Hilfe eines Bohrgestänges (38) durchgeführt werden kann, das an seinem Ende mit Bohrwerkzeugen (36) ausgestattet ist, die durch den Drilling-Riser (2) und die Führungsvorrichtung (3) verlaufen, wobei die Führungsvorrichtung (3) dadurch gekennzeichnet ist, daß sie eine Teleskopführungsleitung (3) mit koaxialen (XX') Teleskopleitungselementen (3a, 3b, 3c) mit abnehmenden Durchmessern umfaßt, die derart vorher miteinander verbunden werden, daß die Teleskopleitungselemente in der Lage sind, in axialer Richtung (XX') ineinander zu gleiten, wobei das innere Teleskopleitungselement (3c) mit dem kleinsten Durchmesser an seinem Ende mit einem Mittel zur Entfestigung (35) des Bodens ausgestattet ist, welches geeignet ist, dadurch, daß die Teleskopleitungselemente (3a, 3b, 3c) nach außen gleiten, ein progressives Eintreiben der Teleskopführungsleitung (3) in den Boden zu erzeugen, um auf diese Weise zu ermöglichen, ein Bohrwerkzeug (36) am Ende des Bohrgestänges (38) tiefer im Boden zu führen.
  2. Führungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das innere Leitungselement (3c) mit dem kleinsten Durchmesser einen Durchmesser aufweist, der mit dem des Drilling-Riser (2) im wesentlichen identisch ist.
  3. Führungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mittel zur Entfestigung des Bodens (35) von einer mehrfach perforierten Kappe gebildet sind, die das Ausstoßen von Wasser oder Schlamm durch Einspritzen unter sehr hohem Druck ermöglicht.
  4. Führungsvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie wenigstens 3 koaxiale Teleskopleitungselemente (3a, 3b, 3c) umfaßt.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein jedes der koaxialen Teleskopleitungselemente (3a, 3b, 3c) eine Länge zwischen 50 und 300 Metern, vorzugsweise zwischen 100 und 200 Metern und die ausgefahrene Führungsleitung eine Länge zwischen 150 und 600 Metern, vorzugsweise zwischen 200 und 300 Metern aufweist.
  6. Führungsvorrichtung (3) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie eine Teleskopführungsleitung (3) umfaßt, die in einer Bohranlage im Meer von Nutzen ist, bei der wenigstens ein Drilling-Riser (2) sich von einem schwimmenden Träger (1) bis zu der Führungsvorrichtung (3) am Meeresboden (4) erstreckt, wobei sich der Drilling-Riser (2) von einer im wesentlichen vertikalen Position (2a) im Bereich des schwimmenden Trägers (1) bis zu einer im wesentlichen horizontalen oder zur Horizontalen tangentialen Position (2b) am Meeresboden (4) progressive verlagert, wobei die Bohrung von dem schwimmenden Träger aus durch den Drilling-Riser (2) und die Führungsvorrichtung (3) derart vollzogen werden kann, daß das Bohrloch im Meeresboden in einer vorgegebenen Neigung (α) gegenüber der Horizontalen von vorzugsweise 5 bis 60°, weiterhin vorzugsweise 25 bis 45° angebohrt wird, wobei die Führungsvorrichtung (3) dadurch gekennzeichnet ist, daß sie eine Teleskopführungsleitung (3) in einer versenkten Position (A2) aufweist, in der die Teleskopführungsleitung in eingezogener Position (3) oder das äußere Teleskopleitungselement (3a) wenn die Teleskopleitung (3) ausgefahren ist, nacheinander folgendes umfassen:
    - ein vorderes Ende (31), das im wesentlichen horizontal auf dem Meeresboden aufliegt,
    - einen gekrümmten Zwischenabschnitt (32), der mit einem großen Krümmungsradius (R), vorzugsweise einem Krümmungsradius von über 500 m in den Untergrund des Meeresbodens eingelassen ist,
    - einen hinteren, im wesentlichen linearen Abschnitt (33), der in einer vorgegebenen Neigung (α) in den Untergrund des Meeresbodens eingelassen ist, wobei die Teleskopführungsleitung (3) oder das äußere Teleskopelement (3a) mit Mitteln zum kontrollierten Eintreiben (34, 51-53, 71-73, 8-9, 13) zusammenwirkt, die das Eintreiben der eingezogenen Teleskopführungsleitung (3) in den Meeresboden ermöglichen, wenn die eingezogene Teleskopführungsleitung (3) am Meeresboden an ihrem vorderen Ende (31) von einer Ausgangsposition (A1), in der die eingezogene Teleskopführungsleitung (3) vollständig auf dem Meeresboden in einer im wesentlichen horizontale Position aufliegt, bis in eine Position (A2), in der sie in den Untergrund des Meeresbodens versenkt ist, gezogen wird (T).
  7. Führungsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die eingezogene Teleskopführungsleitung (3) eine Länge zwischen 100 und 600 m, vorzugsweise zwischen 250 und 450 m mit der vorgegebenen Neigung (α) der Führungsleitung von etwa 10 bis 60°, vorzugsweise zwischen 25 und 45° aufweist.
  8. Führungsvorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das vordere Ende (31) in einen Sockel (6) eingelassen ist, der eine auf einer vorderen Sohle (51) aufliegende Last aufweist, so daß der Sockel (6) das vordere Ende (31) im wesentlichen horizontal auf dem Meeresboden hält, wenn dieses gezogen wird (T).
  9. Führungsvorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Mittel zum kontrollierten Eintreiben folgendes umfassen:
    - eine auf den Meeresboden aufgesetzte vordere Sohle (51), die das vordere Ende (31) trägt und mit diesem fest verbunden ist,
    - wenigstens eine Zwischensohle (52, 53), die den gekrümmten Zwischenabschnitt (32) und/oder den hinteren Abschnitt (33) trägt und mit diesem fest verbunden ist und deren Oberfläche kleiner ist als die der vorderen Sohle (51), vorzugsweise mehrere entlang des Zwischenabschnittes (32) und des hinteren Abschnittes (33) verteilte Zwischensohlen (52, 53), deren Oberfläche gegenüber der vorderen Sohle mit zunehmender Annäherung an das hintere Ende (33) immer kleiner ist, und
    - einen Anker (13), der mit dem hinteren Abschnitt (33) verbunden ist (12) und der geeignet ist, unter der Wirkung des Ziehens des vorderen Endes (31) in den Boden einzusinken.
  10. Führungsvorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Mittel zum kontrollierten Eintreiben wenigstens eine Ablenkeinrichtung (71, 72, 73) umfassen, die mit dem äußeren Teleskopleitungselement (3a) der Teleskopführungsleitung (3) in dem Zwischenabschnitt (32) oder dem hinteren Abschnitt (33) der eingezogenen Teleskopführungsleitung fest verbunden ist und die ebene Flächen aufweist, welche zur vertikalen Axialebene (XX', YY') der Führungsleitung in der Längsrichtung - wenn sich diese in der geradlinigen horizontalen Position befindet - vorzugsweise symmetrisch sind, und wobei die ebenen Flächen der Ablenkeinrichtungen gegenüber einer horizontalen Axialebene (XX', ZZ') der Führungsleitung, wenn sich diese in der horizontalen Position auf dem Meeresboden befindet, geneigt sind, wobei die Ablenkeinrichtung (71, 72, 73) um einen Winkel (α1 , α2, α3) geneigt ist, so daß ein Eintreiben der eingezogenen Teleskopführungsleitung (3) erzeugt wird, wenn diese von der im wesentlichen horizontalen Ausgangsposition (A1) bis in eine Position (A2), in der sie in den Meeresboden versenkt ist, gezogen wird.
  11. Führungsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß sie eine Vielzahl von Ablenkeinrichtungen (71, 72, 73) umfaßt, die entlang des äußeren Teleskopleitungselements (3a) der Teleskopführungsleitung verteilt sind, wobei die Ablenkeinrichtungen unter Winkeln (α1 , α2, α3) geneigt sind, die mit zunehmender Annäherung der Ablenkeinrichtung (71, 72, 73) an das vordere Ende (31) abnehmen.
  12. Führungsvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Mittel zum kontrollierten Eintreiben folgendes umfassen:
    - Sekundärleitungen (8) zum Ausstoßen von Fluid (18), die mit der Teleskopführungsleitung (3) fest verbunden sind und die sich an deren Unterseite parallel zu ihr erstrecken, und
    - wobei die Sekundärleitungen (8) einen im Vergleich zum Durchmesser der Teleskopführungsleitung (3) kleineren Durchmesser aufweisen und an der Unterseite Perforierungen (9) aufweisen, die ermöglichen, ein Fluid (18) in Richtung des Meeresbodens auszustoßen, wenn die Sekundärleitungen (8) mit einem unter Druck stehenden Fluid (18) beaufschlagt werden.
  13. Führungsvorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Sekundärleitungen (8) über ihre Enden (81, 82) mit dem vorderen und dem hinteren Ende (31, 33) der eingezogenen Teleskopführungsleitung (3) verbunden sind und mit dem vorderen Ende (31) und dem hinteren Ende (33) in Verbindung sind, so daß es möglich ist, sie über eine gleiche Versorgungsleitung (19) von dem vorderen Ende (31) der Führungsleitung (3) aus zu versorgen.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Führungsvorrichtung folgendes umfaßt:
    - eine starre obere Außenstruktur (20), welche die eingezogene Teleskopführungsleitung (3) bedeckt und geradlinig hält, wenn diese im wesentlichen horizontal ist und auf dem Meeresboden aufliegt,
    - wobei die Außenstruktur (20) an der Unterseite eine mittlere Längsöffnung aufweist, die es der eingezogenen Teleskopführungsleitung (3) ermöglicht, in den Boden einzusinken, wenn sie gezogen wird (T), und
    - wenigstens ein Verbindungsteil (171, 172, 173), das wenigstens den hinteren Teil (33) des äußeren Teleskopleitungselements (3a) der Teleskopführungsleitung (3) mit der Außenstruktur (20) verbindet, so daß ein Eintreiben derer jenseits einer vorgegebenen Tiefe verhindert wird, um die Krümmung (R) des gekrümmten Abschnitts zu begrenzen, und
    - wobei die obere Außenstruktur (20) auf dem Grund des Meeresbodens (4) vorzugsweise über auf beiden Seiten der mittleren Längsöffnung (22) befindliche seitliche Sohlen (21) aufliegt, wobei die seitlichen Sohlen (21) das Einsinken der starren Außenstruktur (20) verhindern, und
    - wobei die Außenstruktur (20) mit dem Sockel (6), in den der vordere Abschnitt (31) der Führungsleitung (3) eingelassen ist, fest verbunden ist.
  15. Führungsvorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß sie eine Vielzahl flexibler Verbindungsteile (171, 172, 173) aufweist, die entlang des äußeren Teleskopleitungselements (3a) der Teleskopführungsleitung (3) verteilt sind und eine mit zunehmender Annäherung an das hintere Ende (33) der Führungsleitung (3) wachsende Länge aufweisen und deren Länge derart ist, daß die Führungsleitung einen gekrümmten Abschnitt mit der gewollten Krümmung (R) sowie einen linearen hinteren Abschnitt (33) aufweist.
  16. Verfahren zur Herstellung einer Führungsvorrichtung nach den Ansprüchen 6 bis 15, dadurch gekennzeichnet, daß Schritte vollzogen werden, in denen:
    - eine Teleskopführungsleitung in eingezogener Position (3) in einer Ausgangsposition (A1) plaziert wird, in der sie im wesentlichen horizontal und geradlinig auf dem Meeresboden aufliegt, wobei die Teleskopführungsleitung (3) mit Mitteln zum kontrollierten Eintreiben (34, 51-53, 71-73, 8-9, 13) zusammenwirkt, und
    - am Meeresboden ein Ziehen des vorderen Endes (31) der Teleskopführungsleitung in eingezogener Position (3), vorzugsweise in axialer Längsrichtung XX' der Führungsleitung, von der Ausgangsposition (A1) bis in eine versenkte Position (A2) vollzogen wird.
  17. Verfahren zur Herstellung einer Führungsvorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß Führungsvorrichtungen nach Anspruch 8 oder 9 verwendet werden und ein Ziehen (T) des vorderen Endes (31) der eingezogenen Teleskopführungsleitung (3) solange vollzogen wird, bis die Zwischensohlen (52, 53) mit zunehmender Annäherung an das hintere Ende (33) der Führungsleitung immer tiefer in den Boden versenkt werden, um die gewünschte Krümmung (R), vorzugsweise einen Krümmungsradius von über 500 m, weiterhin vorzugsweise zwischen 500 und 1000 m zu erhalten.
  18. Verfahren zur Herstellung einer Führungsvorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß eine Führungsvorrichtung nach Anspruch 10 oder 11 verwendet wird und daß ein Ziehen (T) des vorderen Endes (31) der eingezogenen Teleskopführungsleitung (3) solange vollzogen wird, bis die genannten Ablenkeinrichtungen (71, 72, 73) in einer horizontalen Position in den Boden versenkt sind, um eine gewünschte Krümmung vorzugsweise mit einem Krümmungsradius von über 500 m, weiterhin vorzugsweise zwischen 500 und 1000 m zu erhalten.
  19. Verfahren zur Herstellung einer Führungsvorrichtung nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß eine Führungsvorrichtung nach einem der Ansprüche 12 oder 13 verwendet wird und
    - ein unter Druck stehendes Gas in die Sekundärleitungen (8) eingespritzt wird, wenn die Führungsleitung (3) auf dem Meeresboden gezogen werden soll, und
    - eine unter Druck stehende Flüssigkeit, vorzugsweise Wasser in die Sekundärleitungen (8) und vorzugsweise in die Teleskopführungsleitung (3), die an ihren Enden (31, 32) verschlossen ist und mit den Enden (81, 82) der Sekundärleitungen (8) zusammenwirkt, eingespritzt wird, wenn man die Führungsleitung (3) versenken möchte.
  20. Verfahren zur Herstellung einer Führungsvorrichtung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß eine Führungsvorrichtung nach einem der Ansprüche 14 oder 15 verwendet wird und daß ein Ziehen (T) des vorderen Endes (31) der eingezogenen Teleskopführungsleitung (3) aus der mit der Führungsleitung fest verbundenen starren Außenstruktur (20) solange vollzogen wird, bis das oder die Verbindungsteil(e) (171-173) ein zusätzliches Versenken wenigstens des hinteren Teils (33) der eingezogenen Teleskopführungsleitung (3) verhindern, um die gewünschte Krümmung (R), vorzugsweise einen Krümmungsradius von mehr als 500 m, weiterhin vorzugsweise zwischen 500 und 1000 m zu erhalten.
  21. Bohranlage im Meer mit einem Drilling-Riser (2), der sich von einem schwimmenden Träger bis zu einer Führungsvorrichtung (3) nach einem der Ansprüche 1 bis 15 erstreckt, an die der Drilling-Riser (2) angeschlossen ist.
  22. Bohranlage im Meer nach Anspruch 21, mit einem Drilling-Riser (2), der sich von einem schwimmenden Träger (1) bis zu einer Führungsvorrichtung (3) nach einem der Ansprüche 6 bis 15 erstreckt, an die der Drilling-Riser angeschlossen ist, wobei sich der Drilling-Riser (2) von einer im wesentlichen vertikalen Position (2a) im Bereich des schwimmenden Trägers (1) bis zu einer im wesentlichen horizontalen oder zur Horizontalen tangentialen Position (2b) am Meeresboden (4) progressive verlagert, wobei die Bohrung von dem schwimmenden Träger (1) aus durch den Drilling-Riser (2) und die Führungsvorrichtung (3) derart vollzogen werden kann, daß das Bohrloch im Meeresboden in einer vorgegebenen Neigung (α) gegenüber der Horizontalen von vorzugsweise 10 bis 80° entsteht.
  23. Verfahren zur Herstellung einer Bohranlage nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß Schritte durchgeführt werden, in denen:
    - eine Führungsvorrichtung nach einem Verfahren gemäß einem der Ansprüche 16 bis 20 hergestellt wird, und
    - die Verbindung wenigstens des Drilling-Riser (2) mit dem vorderen Ende (31) der auf dem Meeresboden (4) aufliegenden Führungsleitung hergestellt wird.
  24. Verfahren zum Bohren mit Hilfe einer Bohranlage nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß Bohrarbeiten durchgeführt werden und ein Bohrloch durch Ausfahren von Bohrgestängen, die mit Bohrwerkzeugen und Rohrfahrten oder Verrohrungen zusammenwirken, durch einen Drilling-Riser (2) und eine in den Meeresboden (4) eingelassene Führungsvorrichtung (3) hergestellt wird.
EP03760741A 2002-06-19 2003-06-18 Teleskopführungsleitung für offshore-bohren Expired - Lifetime EP1525371B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0207537 2002-06-19
FR0207537A FR2841293B1 (fr) 2002-06-19 2002-06-19 Conduite de guidage telescopique de forage en mer
PCT/FR2003/001867 WO2004001180A1 (fr) 2002-06-19 2003-06-18 Conduite de guidage telescopique de forage en mer

Publications (2)

Publication Number Publication Date
EP1525371A1 EP1525371A1 (de) 2005-04-27
EP1525371B1 true EP1525371B1 (de) 2008-03-19

Family

ID=29719854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03760741A Expired - Lifetime EP1525371B1 (de) 2002-06-19 2003-06-18 Teleskopführungsleitung für offshore-bohren

Country Status (9)

Country Link
US (1) US20050152749A1 (de)
EP (1) EP1525371B1 (de)
AT (1) ATE389777T1 (de)
AU (1) AU2003260605A1 (de)
BR (1) BR0311923A (de)
DE (1) DE60319833D1 (de)
FR (1) FR2841293B1 (de)
NO (1) NO20045161L (de)
WO (1) WO2004001180A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536520B1 (en) 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
US7311148B2 (en) 1999-02-25 2007-12-25 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
GB0008988D0 (en) 2000-04-13 2000-05-31 Bbl Downhole Tools Ltd Drill bit nozzle
US7334650B2 (en) 2000-04-13 2008-02-26 Weatherford/Lamb, Inc. Apparatus and methods for drilling a wellbore using casing
GB2409223B (en) * 2002-08-21 2005-12-21 Oddgeir Hoeiland A method and device by a displacement tool
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
EP2278114A3 (de) * 2003-01-31 2017-12-13 Weatherford Technology Holdings, LLC Vorrichtung und Verfahren zum Bohren eines Bohrlochs mit einem Futterrohr
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7395882B2 (en) * 2004-02-19 2008-07-08 Baker Hughes Incorporated Casing and liner drilling bits
US7757784B2 (en) 2003-11-17 2010-07-20 Baker Hughes Incorporated Drilling methods utilizing independently deployable multiple tubular strings
US7954570B2 (en) * 2004-02-19 2011-06-07 Baker Hughes Incorporated Cutting elements configured for casing component drillout and earth boring drill bits including same
US7624818B2 (en) 2004-02-19 2009-12-01 Baker Hughes Incorporated Earth boring drill bits with casing component drill out capability and methods of use
US7478686B2 (en) * 2004-06-17 2009-01-20 Baker Hughes Incorporated One trip well drilling to total depth
BRPI0512626B1 (pt) * 2004-06-24 2015-12-08 Baker Hughes Inc sistemas de perfuração e métodos utilizando múltiplas colunas tubulares empregáveis independentemente
GB0510670D0 (en) 2005-05-25 2005-06-29 Bp Exploration Operating Apparatus and method for driving casing or conductor pipe
WO2007134255A2 (en) 2006-05-12 2007-11-22 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US7621351B2 (en) 2006-05-15 2009-11-24 Baker Hughes Incorporated Reaming tool suitable for running on casing or liner
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US7954571B2 (en) 2007-10-02 2011-06-07 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
US8245797B2 (en) 2007-10-02 2012-08-21 Baker Hughes Incorporated Cutting structures for casing component drillout and earth-boring drill bits including same
GB0814341D0 (en) * 2008-08-06 2008-09-10 Aws Ocean Energy Ltd Pile system
NO2366055T3 (de) * 2008-11-17 2018-01-20
GB2485935B (en) * 2009-09-14 2015-03-04 Blade Offshore Services Ltd Method, apparatus and system for attaching an anchor member to a floor of a body of water
CA2798391C (en) * 2010-05-11 2017-07-18 John Michael Ward Subsea noise mitigation systems and methods
FR2962715B1 (fr) * 2010-07-13 2013-06-14 Airbus Operations Sas Systeme d'aeration pour aeronef.
WO2013062736A1 (en) 2011-10-05 2013-05-02 Seahorse Equipment Corp Method and apparatus for drilling multiple subsea wells from an offshore platform at a single site
NO332464B1 (no) * 2011-11-08 2012-09-24 Agr Subsea As Fremgangsmåte og anordning for stigerørløs borevæskegjenvinning
AU2013222197B2 (en) 2012-02-22 2017-12-21 Weatherford Technology Holdings, Llc Subsea casing drilling system
US9539948B1 (en) 2016-03-22 2017-01-10 Jac Products, Inc. Telescoping step assist system and method
US10723272B2 (en) 2017-12-04 2020-07-28 Jac Products, Inc. Step rail system for vehicle
CN117569730B (zh) * 2024-01-16 2024-04-02 浙江省水电建筑安装有限公司 抛石层钻孔灌注桩成孔装置及施工方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3405533A (en) * 1964-10-26 1968-10-15 Lubbock Mfg Company Cable layer
US3333432A (en) * 1964-12-29 1967-08-01 Bell Telephone Labor Inc Adjustable depth submarine cable burier
FR2027067B1 (de) * 1968-12-24 1975-12-12 Balt Corp
US3685479A (en) * 1968-12-24 1972-08-22 Peter Bruce Anchor-cable systems
FR2122709A5 (de) * 1971-01-20 1972-09-01 Minet Albert
US3824798A (en) * 1971-11-15 1974-07-23 Furukawa Co Ltd Submarine cable-burying devices
US3916632A (en) * 1974-05-06 1975-11-04 Interseas Associates Telescopic caisson with intermediately positioned wellhead
US4216835A (en) * 1977-09-07 1980-08-12 Nelson Norman A System for connecting an underwater platform to an underwater floor
US4223737A (en) * 1979-03-26 1980-09-23 Reilly Dale O Method for well operations
US4812079A (en) * 1986-08-29 1989-03-14 Casper Colosimo & Son, Inc. Embedding cablelike members
GB9109543D0 (en) * 1991-05-02 1991-06-26 Bp Exploration Operating Drilling system
US5184686A (en) * 1991-05-03 1993-02-09 Shell Offshore Inc. Method for offshore drilling utilizing a two-riser system
EP0952301B1 (de) 1998-03-27 2006-05-17 Cooper Cameron Corporation Verfahren und Vorrichtung zum Bohren eines Unterwasserbohrlochs
EP0952300B1 (de) 1998-03-27 2006-10-25 Cooper Cameron Corporation Verfahren und Vorrichtung zum Bohren von mehreren Unterwasserbohrlöchern
CA2273568C (en) * 1998-06-04 2007-08-14 Philip Head A method of installing a casing in a well and apparatus therefor
GB2338009B (en) * 1998-06-04 2000-06-21 Philip Head A method of installing the casing in a well and apparatus therefor

Also Published As

Publication number Publication date
US20050152749A1 (en) 2005-07-14
AU2003260605A1 (en) 2004-01-06
DE60319833D1 (de) 2008-04-30
WO2004001180A1 (fr) 2003-12-31
FR2841293A1 (fr) 2003-12-26
BR0311923A (pt) 2005-03-29
FR2841293B1 (fr) 2006-03-03
EP1525371A1 (de) 2005-04-27
NO20045161L (no) 2005-03-15
ATE389777T1 (de) 2008-04-15

Similar Documents

Publication Publication Date Title
EP1525371B1 (de) Teleskopführungsleitung für offshore-bohren
EP0265344B1 (de) Verfahren zum Herstellen eines Pfahls im Boden, sowie Bohrmaschine und Vorrichtung zur Ausführung dieses Verfahrens
EP1362161B1 (de) Vorrichtung zur bildung einer verbindung zwischen meeresgrund und oberfläche, einer in grosser tiefe installierten unterwasserleitung
FR2782341A1 (fr) Installation d'exploitation d'un gisement en mer et procede d'implantation d'une colonne montante
EP2288789A1 (de) Verfahren zum extrahieren eines sich auf dem grund einer wasserfläche befindenden materials, extraktionsanlage und zugehöriges verfahren
FR2890098A1 (fr) Installation comprenant au moins deux liaisons fond-surface d'au moins deux conduites sous-marines reposant au fond de la mer
FR2957649A1 (fr) Procede de depose d'une ligne sous-marine au fond de la mer
EP2156907A1 (de) Einrichtung zur Bodensanierung
EP1259792B1 (de) Verfahren und vorrichtung zur einbringung eines rohrförmigem werkzeuges in den seeboden zwecks probenentnahme oder messung der eigenschaften dieses bodens, insbesondere in grosser tiefe
WO2016110617A1 (fr) Dispositifs de lestage et/ou de protection pour lignes subaquatiques
CA2641395C (fr) Systeme de forage autonome d'un trou de drainage
EP0633965B1 (de) Dichtungsvorrichtung für Abdichtung von Dehnungsfugen in Betonstaudämmen und Einrichtungsverfahren derselben
EP0979921B1 (de) Verfahren zum Installieren einer Ölproduktionseinrichtung
FR2831204A1 (fr) Dispositif de guidage dans une installation de forage en mer et procede de realisation
EP0353152B1 (de) Vorrichtung zum Abführen von Erdreich für die Herstellung von Tiefgräben
EP0165154A1 (de) Verfahren und Vorrichtung, um mit Hilfe von Spezialwerkzeugen Operationen wie Messungen in stark gegen die Vertikale geneigten oder horizontalen Bohrlochteilen vorzunehmen
EP3414399A1 (de) Verfahren zur herstellung einer verankerungszugstange und verankerungszugstange
WO2021048496A1 (fr) Procédé et dispositif de forage grand diamètre ou de creusement de puits suivant plusieurs inclinaisons
FR2888259A1 (fr) Installation et procede de decoupage de structures sous-marines enfoncees dans le fond de la mer
FR2788557A1 (fr) Procede et installation de forage mecanique a tirant precontraint
FR2660728A1 (fr) Procede et dispositif d'elimination d'un tubage dispose dans un puits d'acces a une cavite saline de stockage de gaz.
FR3047510A1 (fr) Dispositif de forage de roche en tranchee "forage revolver"
WO2013144529A2 (fr) Dispositif de colmatage de puits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60319833

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

BERE Be: lapsed

Owner name: SAIPEM S.A.

Effective date: 20080630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20081222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080619

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080618

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170628

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630