EP0264778B1 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
EP0264778B1
EP0264778B1 EP87114934A EP87114934A EP0264778B1 EP 0264778 B1 EP0264778 B1 EP 0264778B1 EP 87114934 A EP87114934 A EP 87114934A EP 87114934 A EP87114934 A EP 87114934A EP 0264778 B1 EP0264778 B1 EP 0264778B1
Authority
EP
European Patent Office
Prior art keywords
vane
rotor
housing
wing
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87114934A
Other languages
German (de)
French (fr)
Other versions
EP0264778A3 (en
EP0264778A2 (en
Inventor
Siegfried Hertell
Dieter Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG filed Critical Barmag AG
Publication of EP0264778A2 publication Critical patent/EP0264778A2/en
Publication of EP0264778A3 publication Critical patent/EP0264778A3/en
Application granted granted Critical
Publication of EP0264778B1 publication Critical patent/EP0264778B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0881Construction of vanes or vane holders the vanes consisting of two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation

Definitions

  • the invention relates to a vane pump, the rotor for vane guidance has only one guide slot.
  • a vane pump is known from DE-A 25 21 190.
  • the guide slot lies in an axial plane of the rotor and a single vane is guided in a radially sliding manner in this guide slot.
  • the housing is designed as a Pascal spiral.
  • the wing itself has a pointed edge at its ends, which mesh with the housing.
  • vane pump When using the vane pump as a vacuum pump, which is used in particular to generate a vacuum for the brake booster in diesel motor vehicles, other motor vehicles with an injection motor and to operate other servo consumers in motor vehicles, such a vane pump has the disadvantage that the sharp-edged wing ends wear out very quickly and besides, an absolutely dimensionally accurate manufacture of the housing and the wing is required if the theoretical efficiency of the pump is to be achieved.
  • the known vane pump leaks very quickly due to wear on the one hand, but also due to temperature influences, so that it is no longer usable as a vacuum pump.
  • a rotary vane compressor in which the single wing has two elongate sealing strips which extend in the axial direction, are in sealing contact with the cylinder housing and in grooves, each in the end of the slide are introduced.
  • Vane pumps are known from CH-A 540 434 and 634 385, in which the vane edges are curved with a large radius. Furthermore, the housing peripheral wall is formed in the normal section of the housing as an equidistant to a Pascal spiral, which is described by the center of the rounded edge. The equidistant distance is equal to the radius of curvature of the wing head.
  • This configuration ensures that the wing ends always rest with the largest possible sealing surface on the housing circumference and that the wing is nevertheless guided in the housing essentially without play.
  • the invention solves the problem of designing a vane pump with only a single vane in such a way that the vane pump is suitable as a vacuum pump and has a high delivery volume and high efficiency and a long service life.
  • the wing ends are provided with radially movable strips.
  • the radial play of these wings is very small due to the proposed design of the housing and need not be more than 0.5 to 1 mm.
  • a rotary vane compressor in which the single wing has two elongated sealing strips which extend in the axial direction, are in sealing contact with the cylinder housing and in grooves, each in the front end of the slide are introduced, are guided.
  • a vane pump is described with only one vane in the vane slot lying in an axial plane of the cylindrical rotor.
  • the cylindrical inner surface of the housing has a section corresponding to a Pascal curve in the plane normal to the cylinder.
  • the ends of the wing tapers and touch the inside surface of the housing in a line.
  • the head of the sealing strips is essentially as wide as the wing thickness.
  • the guide strips are preferably slightly narrower than the wing width so that the sealing strips do not jam when the wing is moved into the slot.
  • a further increase in the delivery volume is achieved in that the edge radius of the wing edges is not greater than half the wing thickness.
  • less sealing effects are accepted.
  • geometrical dimensions are made possible, which mean an increase in the delivery volume.
  • the lower limit of the edge radius is given by the desired and desirable sealing effect. It must be taken into account that the vane pump is oil-lubricated, so that the seal is also based on the formation of the annular oil film on the circumferential wall of the housing. The minimum value of the radius must therefore also ensure, in particular, that the wing floats on the oil film as wear-free as possible at the occurring rotational speeds and the centrifugal accelerations caused thereby.
  • the lower value of the edge radius should therefore be a quarter of the wing thickness and is intended for practice at 1/3 of the wing thickness.
  • the vane pump 1 shown in Figures 1 to 3 is flanged to the crankcase 2 of a motor vehicle by flange 13 and sealed with seal 14.
  • the circular cylindrical rotor 5 is rotatably mounted.
  • the pump housing the cross-sectional shape of which will be explained later, has an eccentric projection, which forms the bearing housing 37.
  • the bearing housing 37 projects into the crankcase and is centered therein.
  • the rotor is mounted so that it is in circumferential contact with the housing at one point, the so-called bottom dead center. It should be mentioned that the bearing housing 37 forms a sliding bearing for the free end of the rotor 5. An axial groove is therefore indicated, which serves to lubricate this plain bearing.
  • the rotor 5 is a tube that has the same outer diameter between its two ends.
  • An inner bore 21 extends over the entire length of the tube.
  • the tube In the area of the housing, the tube has a single guide slot 6, which lies in an axial plane, which penetrates the inner bore and whose axial length corresponds exactly to the axial length of the pump housing 4.
  • a single wing 7 is slidably guided in the guide slot 6.
  • the width of the wing corresponds to the axial length of the pump housing.
  • the wing 4 can be made in one piece. However, it can also have sealing strips at its ends, which are guided in grooves 9 of the wing 7 in a radial but sliding manner in the radial direction.
  • Vent holes 10 which connect the bottom of the grooves 9 to the front of the wing, as seen in the direction of rotation, ensure that the highest pressure prevailing in the pump is always present in the grooves 9, so that the sealing strips 8 are pressed outwards.
  • the wing may be so long, including the sealing strip, that it - thanks to the cross-sectional shape of the housing to be described later - in each Rotating position sealingly abuts the circumference of the housing 4.
  • the wing tips are in each Trap rounded with an edge radius KR. This radius is not chosen to be greater than half the thickness S of the wing 7.
  • the wing is provided with sealing strips, these have a head outside the guide grooves, which is considerably wider than the guide grooves 9, but somewhat narrower than the wing 7.
  • the peripheral wall of the pump housing 4 is determined such that it represents an equidistant cross-section to a Pascal spiral with the edge radius (radius of curvature of the wing ends) KR as a distance.
  • the vane length, the edge radius KR and the outer diameter RR of the rotor 5 are therefore first determined.
  • the difference between the wing length and the outer diameter of the rotor RR very much determines the delivery volume of the pump. The difference is limited by strength and other considerations.
  • the wing length is defined as the length of the housing edge through the center M of the rotor. According to the definition of the circumference of the housing as a Pascal spiral or equidistant to a Pascal spiral, this secant has the same length in all rotational positions of the rotor.
  • the housing radius GR is then half the secant length and this results in a theoretical housing center point GM.
  • the distance between the center of the housing GM and the center of the rotor M is referred to as eccentricity E.
  • the pump housing can be constructed with an optimally large delivery volume.
  • the delivery volume is essentially determined by the difference between the cross-sectional area of the housing and the cross-sectional area of the rotor.
  • the cross-sectional area of the rotor is kept small in that the rotor radius RR is not chosen to be larger than the sum of the eccentricity E and the edge radius KR.
  • the edge radius KR should therefore be as small as possible.
  • the ratio (GR - KR) / E must have certain limits. The optimum was found to be 2. If the specified ratio is greater than 2.25, the advantages in terms of the delivery volume are far outweighed by other disadvantages, in particular strength disadvantages. If the ratio mentioned is less than 1.75, then a discontinuous wing movement occurs, with the result that the wing must be designed very strongly and is subject to considerable wear.
  • the pump housing 4 has the suction inlet 11 with a check valve 31 arranged therein and an outlet 12 with one arranged therein Check valve 24.
  • the inlet 11 is offset by approximately 90 ° relative to the dead center position and the inlet 12 is in the region before bottom dead center - viewed in the direction of rotation 35.
  • the inlet valve 31 is designed as a mushroom valve. It is a mushroom-shaped rubber body, which is inserted with its style into a perforated valve plate and which rests with the edges of its head on the valve plate, sealingly enclosing the holes in the valve plate.
  • the head turns over in the suction direction in such a way that the suction opening is released. The head locks in the opposite direction.
  • the outlet initially has a groove 36 in the end face of the pump housing, which extends over a larger outlet area. From this groove, the outlet channel 12 penetrates the housing cover. The outlet channel 12 opens into an outlet chamber 25.
  • the valve 24 is designed as a spring leaf valve which is clamped on one side and covers the outlet opening in the outlet chamber 25.
  • the outlet chamber is designed so that it encloses the valve 24 and that it adjoins the bearing housing 37 of the pump housing.
  • the outlet chamber 25 is closed by a cover 32.
  • the bearing housing 37 has a radial tap hole 27 which starts from the outlet chamber 25 and opens into an annular groove 26.
  • the annular groove 26 lies in the inner circumference of the bearing housing 37 and is delimited by the outer circumference of the rotor.
  • the annular groove 26 can also be formed on the outer circumference of the rotor and delimited by the inner circumference of the bearing housing 37.
  • the rotor has a radial bore 28 which lies in the same normal plane as the annular groove 26 and which therefore connects the inner bore 21 of the rotor with the annular groove.
  • the radial bore 28 rotates and is located only by chance in the plane of the drawing in FIG. 1.
  • the rotor At its end of the bearing, which protrudes into the crankcase 2, the rotor has a somewhat enlarged turn, into which a drive shaft of the motor projects with its clutch disc 15.
  • the drive shaft 3 can e.g. are the drive shaft for the injection pump.
  • the clutch disc 15 is fastened with screw 18 on the drive shaft.
  • the clutch disc 15 has at one point on its circumference a clutch tab 16 which engages in an incision 17 (see FIG. 3) of the rotor 5 without preventing the axial mobility of the rotor.
  • the drive shaft 3 and the screw 18 have a central oil supply bore 19. In the screw this axial bore bifurcates into two or more oil injection bores 20, the oil injection bores 20 being directed into the inner bore 21 of the rotor 5 in such a way that they do not hit the wing 7 .
  • the rotor has in its inner bore 21 a circumferential collar 22 which is attached between the radial channel 28 and the rotor end. It should be noted that the rotor is open at its free end; This means that the inner circumference of the collar 22 forms with the head of the screw 18 and the clutch disc 15 forms an annular gap with the recess 23, which connects the inner bore 21 of the rotor with the clutch housing.
  • the rotor 5 is driven by the drive shaft 3 with the direction of rotation 35.
  • the vane 7 executes a relative movement in the guide slot 6 and lies with its two ends in a sealing and sliding manner on the housing periphery of the pump housing 4.
  • the large radius of curvature of the wing ends has the result that the surface pressure of the wing on the housing periphery is low, but that on the other hand a relatively wide gap is created between each wing head and the housing periphery.
  • This gap should be so wide that it is in this gap can form an oil cushion that is dynamically stable on the one hand and has a good sealing effect on the other.
  • Due to the radius of curvature the contact line of the wing head on the housing circumference changes constantly. On the one hand, this results in good cooling, so that there is no local overheating of the wing as a result of the friction. On the other hand, this also reduces wear and, moreover, causes an even distribution of wear, so that a long service life of the wing can be expected.
  • a wing with sealing strips 8 on the wing heads is not absolutely necessary.
  • the sealing strips can serve to compensate for tolerances and to compensate for wear on the pump housing and the vanes.
  • the fact that the head end of the sealing strip is somewhat narrower than the wing prevents the sealing strips from getting caught in the rotor slot on the longitudinal edges of the rotor slot when the wing is moved into the rotor slot.
  • the rotor is a tube which has the same outer diameter over its entire length. Compared to the usual design, in which the rotor shaft has a smaller diameter than the rotor, the rotor gains stability. Because of this improved stability, it is possible to make the rotor thin-walled and therefore low-mass.
  • the wall thickness is in this embodiment of the Rotor limited by the fact that the rotor wall in the guide slot 6 must represent a good, ie good sealing and low surface pressure causing guide for the wing.
  • a rotor of this type can be sealed particularly well in the housing.
  • the gap 33 is sealed between the rotor end face and the adjacent housing wall in that the vacuum prevailing in the pump housing continues in the gap 33.
  • a central pressure gradient field is thus formed in this gap.
  • the rotor face is exposed to atmospheric pressure. This creates a self-regulating effect: with a large gap 33, the negative pressure in the pump housing 4 is only reduced over a relatively large radial length of the gap, so that the annular area acted upon by negative pressure is large and thus also the difference in the compressive forces acting on the two opposite end faces of the Rotors act, is great. There is thus an automatic leveling of the contact pressure to a value that represents an optimal compromise between sealing on the one hand and wear on the other.
  • the air outlet is initially returned with its entire cross section to the inside of the rotor and opens into the crankcase of the engine via the inside of the rotor.
  • This measure is used to create an oil circuit.
  • the lubricating oil is supplied to the pump through oil supply bore 19 and oil injection bores 20.
  • the oil first gets into the inner bore of the rotor 5, specifically in the region of the guide slot 6.
  • the oil is distributed as a film or jacket on the inner circumference of the rotor. This jacket also surrounds the gaps which the guide slot 6 forms with the wing 7.
  • the entire pump housing 4 is under vacuum outside the rotor, not only on the suction side, but - at least after a short operation - also on the so-called outlet side in the area of the outlet 12. This is achieved by that the pump housing can only flow through the check valves 31 and 24 in the suction direction.
  • the oil which lies on the inner circumference of the rotor 5 is now in the sealing gap of the guide slot 6 and in the sealing gap 33 which the end face of the rotor forms with the end face of the pump housing 4. drawn in and conveyed into the wing cells.
  • the lubricating oil is entrained by the circumferential wing and forms a lubricating and sealing film in the lubricating gaps between the wing heads and the circumference of the housing.
  • the lubricating oil is also conveyed back into the outlet chamber 25 through the outlet groove 36 and the outlet channel 12 with the outlet air. From there, the lubricating oil passes through the tap hole 27 into the annular groove 26. This annular groove 26 is under atmospheric pressure. Therefore the lubricating oil is distributed from here into the bearing gap and the lubrication groove of the bearing. It is partly sucked back through the bearing gaps into the pump chamber of the pump housing 4; another part seeps into the crankcase.
  • the amount of oil in the circuit determines not only the lubricating, but also the sealing effect in the areas of the gaps.
  • the outlet 12 can also be arranged on the other end of the pump housing.
  • a valve chamber with a check valve is also provided on the outside of this other end face. This valve chamber is led back through a radially inward channel and an axially parallel branch channel back into the space formed by the inner bore 21.
  • the collar 22 is in any case provided somewhere between the opening of the outlet in the inner bore 21 of the rotor and the free end of the rotor.
  • the collar is preferably between the free end of the rotor and the beginning of the wing slot, so that the returned and accumulated amounts of lubricating oil are especially available for lubrication and sealing of the gaps between the guide slot 6 and wing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Die Erfindung betrifft eine Flügelzellenpumpe, deren Rotor zur Flügelführung lediglich einen Führungsschlitz besitzt. Eine solche Flügelzellenpumpe ist durch die DE-A 25 21 190 bekannt.The invention relates to a vane pump, the rotor for vane guidance has only one guide slot. Such a vane pump is known from DE-A 25 21 190.

Dabei liegt der Führungsschlitz in einer Axialebene des Rotors und in diesen Führungsschlitz ist ein einziger Flügel radial gleitend geführt. Das Gehäuse ist als Pascalsche Spirale ausgeführt. Der Flügel selbst besitzt an seinen Enden, die mit dem Gehäuse kämmen, eine spitze Kante. Durch Ausgestaltung des Gehäusequerschnitts als Pascalsche Spirale und durch die spitze Ausgestaltung der Flügelenden wird die Konstruktion einer Flügelzellenpumpe mit nur einem Flügel geometrisch möglich.The guide slot lies in an axial plane of the rotor and a single vane is guided in a radially sliding manner in this guide slot. The housing is designed as a Pascal spiral. The wing itself has a pointed edge at its ends, which mesh with the housing. By designing the housing cross-section as a Pascal spiral and by the pointed design of the wing ends, the construction of a vane pump with only one vane is geometrically possible.

Bei Verwendung der Flügelzellenpumpe als Vakuumpumpe, die insbesondere zur Erzeugung eines Vakuums für die Bremskraft­verstärkung in Diesel-Kraftfahrzeugen, sonstigen Kraftfahr­zeugen mit Einspritzmotor und zum Betrieb sonstiger Servo­verbraucher in Kraftfahrzeugen dient, hat eine derartige Flügelzellenpumpe jedoch den Nachteil, daß die scharfkan­tigen Flügelenden sehr schnell verschleißen und im übrigen eine absolut maßhaltige Fertigung des Gehäuses und der Flügel erforderlich ist, wenn der theoretische Wirkungsgrad der Pumpe erreicht werden soll. Durch Verschleiß einerseits, aber auch durch Temperatureinflüsse wird die bekannte Flügelzellenpumpe sehr schnell undicht, so daß sie als Vakuumpumpe nicht mehr brauchbar ist.When using the vane pump as a vacuum pump, which is used in particular to generate a vacuum for the brake booster in diesel motor vehicles, other motor vehicles with an injection motor and to operate other servo consumers in motor vehicles, such a vane pump has the disadvantage that the sharp-edged wing ends wear out very quickly and besides, an absolutely dimensionally accurate manufacture of the housing and the wing is required if the theoretical efficiency of the pump is to be achieved. The known vane pump leaks very quickly due to wear on the one hand, but also due to temperature influences, so that it is no longer usable as a vacuum pump.

Durch die DE-B 24 07 293 ist ein Drehschieber-Kompressor bekannt, bei dem der einzige Flügel zwei längliche Dicht­leisten aufweist, die sich in axialer Richtung erstrecken, mit dem Zylindergehäuse in abdichtender Berührung stehen und die in Nuten, die jeweils in das stirnseitige Ende des Schiebers eingebracht sind, geführt werden.From DE-B 24 07 293 a rotary vane compressor is known, in which the single wing has two elongate sealing strips which extend in the axial direction, are in sealing contact with the cylinder housing and in grooves, each in the end of the slide are introduced.

Durch CH-A 540 434 und 634 385 sind Flügelzellenpumpen bekannt, bei denen die Flügelkanten mit einem großen Radius gekrümmt sind. Ferner ist die Gehäuseumfangswand im Normal­schnitt des Gehäuses als Äquidistante zu einer Pascalschen Spirale ausgebildet, die durch den Mittelpunkt der abgerun­deten Kante beschrieben wird. Dabei ist der Abstand der Äquidistanten gleich dem Krümmungsradius des Flügelkopfes.Vane pumps are known from CH-A 540 434 and 634 385, in which the vane edges are curved with a large radius. Furthermore, the housing peripheral wall is formed in the normal section of the housing as an equidistant to a Pascal spiral, which is described by the center of the rounded edge. The equidistant distance is equal to the radius of curvature of the wing head.

Durch diese Ausgestaltung wird erreicht, daß die Flügelenden stets mit einer möglichst großen Dichtfläche am Gehäuse­umfang anliegen und daß trotzdem der Flügel im wesentlichen ohne Spiel im Gehäuse geführt ist.This configuration ensures that the wing ends always rest with the largest possible sealing surface on the housing circumference and that the wing is nevertheless guided in the housing essentially without play.

Durch die Erfindung wird die Aufgabe gelöst, eine Flügelzel­lenpumpe mit nur einem einzigen Flügel so auszubilden, daß die Flügelzellenpumpe als Vakuumpumpe geeignet ist und ein hohes Fördervolumen sowie einen hohen Wirkungsgrad hat und eine lange Lebensdauer erhält.The invention solves the problem of designing a vane pump with only a single vane in such a way that the vane pump is suitable as a vacuum pump and has a high delivery volume and high efficiency and a long service life.

Dies wird nach dem Kennzeichen von Anspruch 1 erreicht.This is achieved according to the characterizing part of claim 1.

Um auch größere Toleranzen anwenden zu können, wird weiter­hin vorgeschlagen, daß die Flügelenden mit radial beweg­lichen Leisten versehen sind. Das Radialspiel dieser Flügel ist infolge der vorgeschlagenen Ausbildung des Gehäuses allerdings sehr gering und braucht nicht mehr als 0,5 bis 1 mm zu betragen.In order to be able to use larger tolerances, it is also proposed that the wing ends are provided with radially movable strips. The radial play of these wings is very small due to the proposed design of the housing and need not be more than 0.5 to 1 mm.

Durch die DE-B-24 07 293 ist ein Drehschieber-Kompressor be­kannt, bei dem der einzige Flügel zwei längliche Dichtleisten aufweist, die sich in axialer Richtung erstrecken, mit dem Zylindergehäuse in in abdichtender Berührung stehen und die in Nuten, die jeweils in das stirnseitige Ende des Schiebers einge­bracht sind, geführt werden.From DE-B-24 07 293 a rotary vane compressor is known, in which the single wing has two elongated sealing strips which extend in the axial direction, are in sealing contact with the cylinder housing and in grooves, each in the front end of the slide are introduced, are guided.

In der CH-A-431 283 wird eine Flügelzellenpumpe mit nur einem in dem in einer Axialebene des zylindrischen Rotors liegenden Flügelschlitz geführten Flügel beschrieben. Die zylindrische Ge­häuseinnenfläche weist in der zur Zylindererzeugenden normalen Ebene einen Schnitt entsprechend einer Pascalschen Kurve auf. Die Enden des Flügels laufen spitz zu und berühren die Gehäu­seinnenfläche linienförmig.In CH-A-431 283 a vane pump is described with only one vane in the vane slot lying in an axial plane of the cylindrical rotor. The cylindrical inner surface of the housing has a section corresponding to a Pascal curve in the plane normal to the cylinder. The ends of the wing tapers and touch the inside surface of the housing in a line.

Um die Abdichtung der Dichtleisten gegenüber dem Gehäuse­umfang zu gewährleisten, wird weiterhin vorgeschlagen, daß der Kopf der Dichtleisten, soweit er aus der Führungsnut herausschaut, im wesentlichen so breit wie die Flügeldicke ist. Bevorzugt sind die Führungsleisten geringfügig schmaler als die Flügelbreite, damit beim Einfahren des Flügels in den Schlitz kein Verklemmen der Dichtleisten eintritt.In order to ensure the sealing of the sealing strips from the housing circumference, it is further proposed that the head of the sealing strips, as far as it looks out of the guide groove, is essentially as wide as the wing thickness. The guide strips are preferably slightly narrower than the wing width so that the sealing strips do not jam when the wing is moved into the slot.

Eine weitere Vergrößerung des Fördervolumens wird dadurch erreicht, daß der Kantenradius der Flügelkanten nicht größer als die halbe Flügeldicke ist. Hierdurch werden zwar gerin­gere Dichtwirkungen in Kauf genommen. Es werden jedoch geo­metrische Abmessungen ermöglicht, die eine Vergrößerung des Fördervolumens bedeuten. Die untere Grenze des Kantenradius ist durch die erzielte und wünschenswerte Dichtwirkung gegeben. Dabei ist zu berücksichtigen, daß die Flügelzellen­pumpe ölgeschmiert ist, so daß die Dichtung auch auf der Bildung des ringförmigen Ölfilmes auf der Gehäuseumfangswand beruht. Der Mindestwert des Radius muß daher insbesondere auch gewährleisten, daß der Flügel bei den vorkommenden Drehgeschwindigkeiten und dadurch hervorgerufenen Zentri­fugalbeschleunigungen möglichst verschleißfrei auf dem Öl­film schwimmt. Der untere Wert des Kantenradius dürfte daher bei einem Viertel der Flügeldicke liegen und wird für die Praxis bei 1/3 der Flügeldicke vorgesehen.A further increase in the delivery volume is achieved in that the edge radius of the wing edges is not greater than half the wing thickness. As a result, less sealing effects are accepted. However, geometrical dimensions are made possible, which mean an increase in the delivery volume. The lower limit of the edge radius is given by the desired and desirable sealing effect. It must be taken into account that the vane pump is oil-lubricated, so that the seal is also based on the formation of the annular oil film on the circumferential wall of the housing. The minimum value of the radius must therefore also ensure, in particular, that the wing floats on the oil film as wear-free as possible at the occurring rotational speeds and the centrifugal accelerations caused thereby. The lower value of the edge radius should therefore be a quarter of the wing thickness and is intended for practice at 1/3 of the wing thickness.

Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung beschrieben.
Es zeigen

  • Fig. 1 einen Längsschnitt durch das Gehäuse;
  • Fig. 2 einen Normalschnitt durch das Gehäuse;
  • Fig. 3 eine axiale Ansicht des Gehäusedeckels.
An exemplary embodiment of the invention is described below with reference to the drawing.
Show it
  • 1 shows a longitudinal section through the housing.
  • 2 shows a normal section through the housing;
  • Fig. 3 is an axial view of the housing cover.

Die in den Figuren 1 bis 3 dargestellte Flügelzellenpumpe 1 ist an das Kurbelgehäuse 2 eines Kraftfahrzeugs durch Flansch 13 angeflanscht und mit Dichtung 14 abgedichtet. In dem Pumpengehäuse 4 ist der kreiszylindrische Rotor 5 dreh­bar gelagert. Hierzu weist das Pumpengehäuse, dessen Quer­schnittsform später erläutert wird, einen exzentrischen Ansatz auf, der das Lagergehäuse 37 bildet. Das Lagergehäuse 37 ragt in das Kurbelgehäuse und ist darin zentriert. Der Rotor ist so gelagert, daß er an einer Stelle, dem sog. unteren Totpunkt, in Umfangskontakt mit dem Gehäuse steht. Es sei erwähnt, daß das Lagergehäuse 37 eine Gleitlagerung für das freie Ende des Rotors 5 bildet. Es ist daher eine Axialnut angedeutet, die zur Schmierung dieses Gleitlagers dient.The vane pump 1 shown in Figures 1 to 3 is flanged to the crankcase 2 of a motor vehicle by flange 13 and sealed with seal 14. In the pump housing 4, the circular cylindrical rotor 5 is rotatably mounted. For this purpose, the pump housing, the cross-sectional shape of which will be explained later, has an eccentric projection, which forms the bearing housing 37. The bearing housing 37 projects into the crankcase and is centered therein. The rotor is mounted so that it is in circumferential contact with the housing at one point, the so-called bottom dead center. It should be mentioned that the bearing housing 37 forms a sliding bearing for the free end of the rotor 5. An axial groove is therefore indicated, which serves to lubricate this plain bearing.

Der Rotor 5 ist ein Rohr, das zwischen seinen beiden Enden gleichen Außendurchmesser hat. Eine Innenbohrung 21 er­streckt sich über die gesamte Länge des Rohres. Im Bereich des Gehäuses besitzt das Rohr einen einzigen Führungsschlitz 6, der in einer Axialebene liegt, der die Innenbohrung durchdringt und dessen axiale Länge genau der axialen Länge des Pumpengehäuses 4 entspricht. In dem Führungsschlitz 6 ist ein einziger Flügel 7 gleitend geführt. Die Breite des Flügels entspricht der axialen Länge des Pumpengehäuses. Der Flügel 4 kann aus einem Stück gefertigt sein. Er kann aber auch an seinen Enden Dichtleisten aufweisen, die in Nuten 9 des Flügels 7 - in radialer Richtung - gleitend, jedoch dichtend geführt sind. Entlüftungsbohrungen 10, die den Grund der Nuten 9 mit der - in Drehrichtung gesehen -­Vorderseite des Flügels verbinden, gewährleisten, daß in den Nuten 9 stets der höchste in der Pumpe herrschende Druck vorhanden ist, so daß die Dichtleisten 8 nach außen gedrückt werden. In jedem Fall, d.h. auch wenn der Flügel 9 - wie in Fig. 3 einskizziert - nur aus einem Stück besteht, ist der Flügel ggf. einschließlich der Dichtleiste so lang, daß er -­dank der später noch zu beschreibenden Querschnittsform des Gehäuses - in jeder Drehstellung dichtend am Umfang des Gehäuses 4 anliegt. Ferner sind die Flügelenden in jedem Falle mit einem Kantenradius KR abgerundet. Dieser Radius wird nicht größer als die halbe Dicke S des Flügels 7 gewählt.The rotor 5 is a tube that has the same outer diameter between its two ends. An inner bore 21 extends over the entire length of the tube. In the area of the housing, the tube has a single guide slot 6, which lies in an axial plane, which penetrates the inner bore and whose axial length corresponds exactly to the axial length of the pump housing 4. A single wing 7 is slidably guided in the guide slot 6. The width of the wing corresponds to the axial length of the pump housing. The wing 4 can be made in one piece. However, it can also have sealing strips at its ends, which are guided in grooves 9 of the wing 7 in a radial but sliding manner in the radial direction. Vent holes 10, which connect the bottom of the grooves 9 to the front of the wing, as seen in the direction of rotation, ensure that the highest pressure prevailing in the pump is always present in the grooves 9, so that the sealing strips 8 are pressed outwards. In any case, ie even if the wing 9 - as sketched in Fig. 3 - consists of only one piece, the wing may be so long, including the sealing strip, that it - thanks to the cross-sectional shape of the housing to be described later - in each Rotating position sealingly abuts the circumference of the housing 4. Furthermore, the wing tips are in each Trap rounded with an edge radius KR. This radius is not chosen to be greater than half the thickness S of the wing 7.

Wenn der Flügel mit Dichtleisten versehen wird, so weisen diese außerhalb der Führungsnuten einen Kopf auf, der wesentlich breiter als die Führungsnuten 9, jedoch etwas schmaler als der Flügel 7 ist.If the wing is provided with sealing strips, these have a head outside the guide grooves, which is considerably wider than the guide grooves 9, but somewhat narrower than the wing 7.

Die Umfangswand des Pumpengehäuses 4 ist so bestimmt, daß sie im Querschnitt eine Äquidistante zu einer Pascalschen Spirale mit dem Kantenradius (Krümmungsradius der Flügel­enden) KR als Abstand darstellt.The peripheral wall of the pump housing 4 is determined such that it represents an equidistant cross-section to a Pascal spiral with the edge radius (radius of curvature of the wing ends) KR as a distance.

Zur Konstruktion des Querschnitts der Flügelzellenpumpe wird also zunächst die Flügellänge, der Kantenradius KR sowie der Außendurchmesser RR des Rotors 5 festgelegt. Die Differenz zwischen der Flügellänge und dem Außendurchmesser des Rotors RR bestimmt sehr wesentlich das Fördervolumen der Pumpe. Die Differenz ist begrenzt durch Festigkeits- und sonstige Über­legungen.For the construction of the cross section of the vane pump, the vane length, the edge radius KR and the outer diameter RR of the rotor 5 are therefore first determined. The difference between the wing length and the outer diameter of the rotor RR very much determines the delivery volume of the pump. The difference is limited by strength and other considerations.

Die Flügellänge ist definiert als die Länge der Gehäuse­sekante durch den Mittelpunkt M des Rotors. Nach der Defini­tion des Gehäuseumfanges als Pascalsche Spirale bzw. Äqui­distante zu einer Pascalschen Spirale ist diese Sekante in allen Drehlagen des Rotors gleich lang. Der Gehäuseradius GR ist sodann die halbe Sekantenlänge und es ergibt sich hieraus ein theoretischer Gehäusemittelpunkt GM. Der Abstand zwischen dem Gehäusemittelpunkt GM und dem Rotormittelpunkt M wird als Exzentrizität E bezeichnet.The wing length is defined as the length of the housing edge through the center M of the rotor. According to the definition of the circumference of the housing as a Pascal spiral or equidistant to a Pascal spiral, this secant has the same length in all rotational positions of the rotor. The housing radius GR is then half the secant length and this results in a theoretical housing center point GM. The distance between the center of the housing GM and the center of the rotor M is referred to as eccentricity E.

Da der Rotor im Gehäuse so gelagert ist, daß er an einer Stelle, dem sog. unteren Totpunkt, in Umfangskontakt mit dem Gehäuse steht, taucht der Flügel 7 in dem unteren Totpunkt -­wie in Fig. 2 dargestellt - vollständig in den Führungs­ schlitz 6 des Rotors 5 ein. Es wird nunmehr für die Krüm­mungsmittelpunkte K der Flügelenden die Pascalsche Spirale um den Mittelpunkt M des Rotors 5 konstruiert. Die Umfangs­wand des Pumpengehäuses 4 ergibt sich sodann als die Äqui­distante mit dem Abstand KR. Die Krümmungsmittelpunkte K der Flügelenden bewegen sich also auf einer Pascalschen Spirale um den Mittelpunkt des Rotors. Dadurch ist gewährleistet, daß der Flügel stets mit seinen Flügelenden dichtend am Umfang des Pumpengehäuses 4 anliegt.Since the rotor is mounted in the housing in such a way that it is in circumferential contact with the housing at one point, the so-called bottom dead center, the wing 7 is completely immersed in the guide at bottom dead center, as shown in FIG. 2 slot 6 of the rotor 5. The Pascal spiral around the center M of the rotor 5 is now constructed for the centers of curvature K of the wing ends. The peripheral wall of the pump housing 4 then results as the equidistant with the distance KR. The centers of curvature K of the wing tips thus move on a Pascal spiral around the center of the rotor. This ensures that the wing always rests with its wing ends sealingly on the circumference of the pump housing 4.

Wenn nun - wie oben näher dargelegt - der Kantenradius KR möglichst klein, jedenfalls aber kleiner als die halbe Flügeldicke gewählt wird, so läßt sich das Pumpengehäuse mit optimal großem Fördervolumen konstruieren. Das Fördervolumen wird wesentlich bestimmt durch die Differenz zwischen der Querschnittsfläche des Gehäuses und der Querschnittsfläche des Rotors. Die Querschnittsfläche des Rotors wird dadurch klein gehalten, daß der Rotorradius RR nicht größer gewählt wird als die Summe von Exzentrizität E und Kantenradius KR. Es wird also der Kantenradius KR möglichst klein zu wählen sein.If - as explained in more detail above - the edge radius KR is chosen to be as small as possible, but in any case less than half the wing thickness, the pump housing can be constructed with an optimally large delivery volume. The delivery volume is essentially determined by the difference between the cross-sectional area of the housing and the cross-sectional area of the rotor. The cross-sectional area of the rotor is kept small in that the rotor radius RR is not chosen to be larger than the sum of the eccentricity E and the edge radius KR. The edge radius KR should therefore be as small as possible.

Darüber hinaus ergibt sich aus dieser Beziehung, daß das Verhältnis (GR - KR) / E bestimmte Grenzen haben muß. Es wurde festgestellt, daß das Optimum bei 2 liegt. Wird das angegebene Verhältnis größer als 2,25, so werden die Vortei­le bezüglich des Fördervolumens bei weitem überwogen durch andere Nachteile, insbesondere Festigkeitsnachteile. Wird das genannte Verhältnis kleiner als 1,75, so entsteht eine unstetige Flügelbewegung mit der Folge, daß der Flügel sehr stark ausgelegt werden muß und erheblichem Verschleiß unter­worfen ist.It also follows from this relationship that the ratio (GR - KR) / E must have certain limits. The optimum was found to be 2. If the specified ratio is greater than 2.25, the advantages in terms of the delivery volume are far outweighed by other disadvantages, in particular strength disadvantages. If the ratio mentioned is less than 1.75, then a discontinuous wing movement occurs, with the result that the wing must be designed very strongly and is subject to considerable wear.

Wie Fig. 2 schematisch darstellt, besitzt das Pumpengehäuse 4 den Saugeinlaß 11 mit einem darin angeordneten Rückschlag­ventil 31 sowie einen Auslaß 12 mit einem darin angeordneten Rückschlagventil 24. Der Einlaß 11 ist etwa um 90° gegenüber der Totpunktlage versetzt und der Einlaß 12 liegt im Bereich vor dem unteren Totpunkt - in Drehrichtung 35 gesehen.2 schematically shows, the pump housing 4 has the suction inlet 11 with a check valve 31 arranged therein and an outlet 12 with one arranged therein Check valve 24. The inlet 11 is offset by approximately 90 ° relative to the dead center position and the inlet 12 is in the region before bottom dead center - viewed in the direction of rotation 35.

Wie Fig. 1 zeigt, ist das Einlaßventil 31 als Pilzventil ausgebildet. Es handelt sich um einen pilzförmigen Gummi­körper, der mit seinem Stil in eine gelochte Ventilplatte eingesetzt ist und der mit den Rändern seines Kopfes dich­tend auf der Ventilplatte aufliegt und dabei die Löcher der Ventilplatte umschließt. Bei eintretender Luft stülpt sich der Kopf derart in Saugrichtung um, daß die Saugöffnung freigegeben wird. In der Gegenrichtung sperrt der Kopf.1 shows, the inlet valve 31 is designed as a mushroom valve. It is a mushroom-shaped rubber body, which is inserted with its style into a perforated valve plate and which rests with the edges of its head on the valve plate, sealingly enclosing the holes in the valve plate. When air enters, the head turns over in the suction direction in such a way that the suction opening is released. The head locks in the opposite direction.

Wie Fig. 1 und Fig. 3 zeigen, weist der Auslaß zunächst eine Nut 36 in der Stirnseite des Pumpengehäuses auf, die sich über einen größeren Auslaßbereich erstreckt. Von dieser Nut aus durchdringt der Auslaßkanal 12 den Gehäusedeckel. Der Auslaßkanal 12 mündet in einer Auslaßkammer 25. Das Ventil 24 ist als Federblattventil ausgebildet, das einseitig ein­gespannt ist und die Auslaßöffnung in der Auslaßkammer 25 überdeckt. Die Auslaßkammer ist so ausgebildet, daß sie das Ventil 24 einschließt und daß sie sich an das Lagergehäuse 37 des Pumpengehäuses anschließt. Die Auslaßkammer 25 wird durch einen Deckel 32 verschlossen. Das Lagergehäuse 37 besitzt eine radiale Stichbohrung 27, die von der Auslaß­kammer 25 ausgeht und in eine Ringnut 26 mündet. Die Ringnut 26 liegt im Innenumfang des Lagergehäuses 37 und wird durch den Außenumfang des Rotors begrenzt. Die Ringnut 26 kann auch auf dem Außenumfang des Rotors gebildet und durch den Innenumfang des Lagergehäuses 37 begrenzt werden. Der Rotor besitzt eine Radialbohrung 28, die in derselben Normalebene wie die Ringnut 26 liegt und die daher die Innenbohrung 21 des Rotors mit der Ringnut verbindet. Die Radialbohrung 28 läuft um und ist in Fig. 1 nur zufällig in der Zeichnungs­ebene gelegen.As FIG. 1 and FIG. 3 show, the outlet initially has a groove 36 in the end face of the pump housing, which extends over a larger outlet area. From this groove, the outlet channel 12 penetrates the housing cover. The outlet channel 12 opens into an outlet chamber 25. The valve 24 is designed as a spring leaf valve which is clamped on one side and covers the outlet opening in the outlet chamber 25. The outlet chamber is designed so that it encloses the valve 24 and that it adjoins the bearing housing 37 of the pump housing. The outlet chamber 25 is closed by a cover 32. The bearing housing 37 has a radial tap hole 27 which starts from the outlet chamber 25 and opens into an annular groove 26. The annular groove 26 lies in the inner circumference of the bearing housing 37 and is delimited by the outer circumference of the rotor. The annular groove 26 can also be formed on the outer circumference of the rotor and delimited by the inner circumference of the bearing housing 37. The rotor has a radial bore 28 which lies in the same normal plane as the annular groove 26 and which therefore connects the inner bore 21 of the rotor with the annular groove. The radial bore 28 rotates and is located only by chance in the plane of the drawing in FIG. 1.

Der Rotor weist an seinem Lagerende, das in das Kurbelge­häuse 2 ragt, eine etwas vergrößerte Ausdrehung auf, in die eine Antriebswelle des Motors mit ihrer Kupplungsscheibe 15 hineinragt. Bei der Antriebswelle 3 kann es sich z.B. um die Antriebswelle für die Einspritzpumpe handeln. Die Kupplungs­scheibe 15 wird mit Schraube 18 auf der Antriebswelle befe­stigt. Die Kupplungsscheibe 15 besitzt an einer Stelle ihres Umfangs einen Kupplungslappen 16, der in einen Einschnitt 17 (vgl. Fig. 3) des Rotors 5 eingreift, ohne die axiale Beweg­lichkeit des Rotors zu hindern. Die Antriebswelle 3 und die Schraube 18 besitzen eine zentrische Ölzufuhrbohrung 19. In der Schraube gabelt sich diese axiale Bohrung in zwei oder mehr Öleinspritzbohrungen 20, wobei die Öleinspritzbohrungen 20 in die Innenbohrung 21 des Rotors 5 derart gerichtet sind, daß sie den Flügel 7 nicht treffen.At its end of the bearing, which protrudes into the crankcase 2, the rotor has a somewhat enlarged turn, into which a drive shaft of the motor projects with its clutch disc 15. The drive shaft 3 can e.g. are the drive shaft for the injection pump. The clutch disc 15 is fastened with screw 18 on the drive shaft. The clutch disc 15 has at one point on its circumference a clutch tab 16 which engages in an incision 17 (see FIG. 3) of the rotor 5 without preventing the axial mobility of the rotor. The drive shaft 3 and the screw 18 have a central oil supply bore 19. In the screw this axial bore bifurcates into two or more oil injection bores 20, the oil injection bores 20 being directed into the inner bore 21 of the rotor 5 in such a way that they do not hit the wing 7 .

Der Rotor besitzt in seiner Innenbohrung 21 einen umlaufen­den Bund 22, der zwischen dem Radialkanal 28 und dem Rotor­ende angebracht ist. Es sei bemerkt, daß der Rotor an seinem freien Ende offen ist; das heißt: Der Innenumfang des Bundes 22 bildet mit dem Kopf der Schraube 18 und die Kupplungs­scheibe 15 bildet mit der Ausdrehung 23 einen Ringspalt, der die Innenbohrung 21 des Rotors mit dem Kupplungsgehäuse verbindet.The rotor has in its inner bore 21 a circumferential collar 22 which is attached between the radial channel 28 and the rotor end. It should be noted that the rotor is open at its free end; This means that the inner circumference of the collar 22 forms with the head of the screw 18 and the clutch disc 15 forms an annular gap with the recess 23, which connects the inner bore 21 of the rotor with the clutch housing.

Der Rotor 5 wird durch Antriebswelle 3 mit Drehrichtung 35 angetrieben. Dabei führt der Flügel 7 in dem Führungsschlitz 6 eine Relativbewegung aus und liegt mit seinen beiden Enden dichtend und gleitend am Gehäuseumfang des Pumpengehäuses 4 an.The rotor 5 is driven by the drive shaft 3 with the direction of rotation 35. The vane 7 executes a relative movement in the guide slot 6 and lies with its two ends in a sealing and sliding manner on the housing periphery of the pump housing 4.

Der große Krimmungsradius der Flügelenden hat zur Folge, daß die Flächenpressung des Flügels am Gehäuseumfang gering ist, daß andererseits aber zwischen jedem Flügelkopf und dem Gehäuseumfang ein verhältnismäßig breiter Spalt entsteht. Dieser Spalt soll so breit sein, daß sich in diesem Spalt ein Ölpolster ausbilden kann, das einerseits dynamisch trag­fähig ist und andererseits eine gute Dichtwirkung hat. Infolge des Krümmungsradius wechselt die Anlagelinie des Flügelkopfes am Gehäuseumfang ständig. Dies hat einerseits eine gute Kühlung zur Folge, so daß es nicht zu örtlichen Überhitzungen des Flügels infolge der Reibung kommt. Zum anderen wird hierdurch auch der Verschleiß gemindert und im übrigen eine gleichmäßige Verteilung des Verschleißes bewirkt, so daß mit einer langen Standzeit des Flügels zu rechnen ist. Durch diese Erwägungen ist die untere Grenze des Kantenradius vorgegeben.The large radius of curvature of the wing ends has the result that the surface pressure of the wing on the housing periphery is low, but that on the other hand a relatively wide gap is created between each wing head and the housing periphery. This gap should be so wide that it is in this gap can form an oil cushion that is dynamically stable on the one hand and has a good sealing effect on the other. Due to the radius of curvature, the contact line of the wing head on the housing circumference changes constantly. On the one hand, this results in good cooling, so that there is no local overheating of the wing as a result of the friction. On the other hand, this also reduces wear and, moreover, causes an even distribution of wear, so that a long service life of the wing can be expected. These considerations dictate the lower limit of the edge radius.

Dabei ist die Verwendung eines Flügels mit Dichtleisten 8 an den Flügelköpfen nicht unbedingt erforderlich. Die Dichtlei­sten können jedoch zum Ausgleich von Toleranzen und zum Ausgleich eines Verschleißes des Pumpengehäuses und der Flügel dienen. Bei Verwendung der Dichtleisten ist von besonderer Wichtigkeit, daß die Dichtleisten außerhalb der Führungsnut 9 wesentlich, jedoch nicht bis auf die vollstän­dige Flügelbreite verbreitert sind. Hierdurch wird ermög­licht, daß auch die Dichtleisten mit einem Krümmungsradius KR hergestellt werden können, der keinesfalls größer ist, vorzugsweise kleiner ist als die halbe Flügeldicke. Weiter­hin wird dadurch, daß das Kopfende der Dichtleiste etwas schmaler als der Flügel ist, verhindert, daß die Dichtlei­sten beim Einfahren des Flügels mit der Dichtleiste in den Rotorschlitz an den Längskanten des Rotorschlitzes hängen­bleiben.The use of a wing with sealing strips 8 on the wing heads is not absolutely necessary. However, the sealing strips can serve to compensate for tolerances and to compensate for wear on the pump housing and the vanes. When using the sealing strips, it is particularly important that the sealing strips outside the guide groove 9 are substantially widened, but not to the full leaf width. This enables the sealing strips to be produced with a radius of curvature KR which is in no way larger, preferably smaller than half the wing thickness. Furthermore, the fact that the head end of the sealing strip is somewhat narrower than the wing prevents the sealing strips from getting caught in the rotor slot on the longitudinal edges of the rotor slot when the wing is moved into the rotor slot.

Wie sich insbesondere aus Fig. 1 ergibt, ist der Rotor ein Rohr, das über seine gesamte Länge gleichen Außendurchmesser hat. Gegenüber der üblichen Ausführung, bei der die Rotor­welle einen kleineren Durchmesser als der Rotor hat, gewinnt der Rotor an Stabilität. Wegen dieser verbesserten Stabili­tät ist es möglich, den Rotor dünnwandig und damit massearm auszuführen. Die Wandstärke ist bei dieser Ausgestaltung des Rotors dadurch begrenzt, daß die Rotorwandung im Führungs­schlitz 6 eine gute, d.h. gut dichtende und geringe Flächen­pressung verursachende Führung für den Flügel darstellen muß.1, the rotor is a tube which has the same outer diameter over its entire length. Compared to the usual design, in which the rotor shaft has a smaller diameter than the rotor, the rotor gains stability. Because of this improved stability, it is possible to make the rotor thin-walled and therefore low-mass. The wall thickness is in this embodiment of the Rotor limited by the fact that the rotor wall in the guide slot 6 must represent a good, ie good sealing and low surface pressure causing guide for the wing.

Bei dieser Ausgestaltung des Rotors wird ferner ein verhält­nismäßig kleiner Außendurchmesser des Rotors ermöglicht, wobei man wissen muß, daß die Differenz zwischen Flügel­längen und Außendurchmesser des Rotors - abgesehen von der Flügeldicke - im wesentlichen das Fördervolumen der Pumpe bestimmt. Daher trägt auch diese Ausbildung des Rotors zur weiteren Ausbildung des Erfindungsgegenstandes bei.In this embodiment of the rotor, a relatively small outer diameter of the rotor is also made possible, it being necessary to know that the difference between the wing lengths and the outer diameter of the rotor - apart from the wing thickness - essentially determines the delivery volume of the pump. Therefore, this design of the rotor also contributes to the further development of the subject matter of the invention.

Ganz entscheidend ist aber, daß ein Rotor dieser Art sich besonders gut im Gehäuse abdichten läßt. Die Dichtung des Spalts 33 zwischen der Rotorstirnfläche und der anliegenden Gehäusewand erfolgt dadurch, daß sich in dem Spalt 33 der im Pumpengehäuse herrschende Unterdruck fortsetzt. Es bildet sich also in diesem Spalt ein zentrales Druckgradientenfeld aus. Auf der Lagerseite ist die Rotorstirnfläche dem Atmos­phärendruck ausgesetzt. Dabei entsteht ein Selbstregel­effekt: Bei großem Spalt 33 baut sich der Unterdruck im Pumpengehäuse 4 nur auf einer verhältnismäßig großen radia­len Länge des Spaltes ab, so daß die mit Unterdruck beauf­schlagte Ringfläche groß und damit auch die Differenz der Druckkräfte, die auf die beiden entgegengesetzten Stirn­flächen des Rotors einwirken, groß ist. Es erfolgt damit ein automatisches Einpendeln der Anpreßkraft auf einen Wert, der einen optimalen Kompromiß zwischen Abdichtung einerseits und Verschleiß andererseits darstellt.However, it is crucial that a rotor of this type can be sealed particularly well in the housing. The gap 33 is sealed between the rotor end face and the adjacent housing wall in that the vacuum prevailing in the pump housing continues in the gap 33. A central pressure gradient field is thus formed in this gap. On the bearing side, the rotor face is exposed to atmospheric pressure. This creates a self-regulating effect: with a large gap 33, the negative pressure in the pump housing 4 is only reduced over a relatively large radial length of the gap, so that the annular area acted upon by negative pressure is large and thus also the difference in the compressive forces acting on the two opposite end faces of the Rotors act, is great. There is thus an automatic leveling of the contact pressure to a value that represents an optimal compromise between sealing on the one hand and wear on the other.

Es ist aus Fig. 1 ersichtlich, daß die gute Abdichtung des Rotors auf der einen Seite keine Undichtigkeit auf der Gegenseite bewirkt, da sich die Verhältnisse im Gleitlager 37 bei Axialverschiebung des Rotors nicht ändern. Das Gleit­lager andererseits ist dichtungsmäßig auch unproblematisch, da es beliebig lang ausgeführt werden kann, so daß Spalt­änderungen des Lagerspaltes z.B. infolge Temperaturände­rungen ohne nachteilige Auswirkungen bleiben.It can be seen from FIG. 1 that the good sealing of the rotor on one side does not cause any leakage on the opposite side, since the conditions in the slide bearing 37 do not change when the rotor is axially displaced. The plain bearing, on the other hand, is also unproblematic in terms of seal, since it can be of any length, so that changes in the gap of the bearing gap, for example as a result of temperature changes, have no adverse effects.

Eine weitere Besonderheit der Pumpe besteht darin, daß der Luftauslaß zunächst mit seinem ganzen Querschnitt in das Rotorinnere zurückgeführt ist und über das Rotorinnere in das Kurbelgehäuse des Motors mündet. Diese Maßnahme dient der Herstellung eines Ölkreislaufs. Das Schmieröl wird der Pumpe durch Ölzufuhrbohrung 19 und Öleinspritzbohrungen 20 zugeführt. Dabei gelangt das Öl zunächst in die Innenbohrung des Rotors 5, und zwar in den Bereich des Führungsschlitzes 6. Infolge der Zentrifugalkraft wird das Öl als Film oder Mantel auf dem Innenumfang des Rotors verteilt. Dieser Mantel umgibt auch die Spalte, die der Führungsschlitz 6 mit dem Flügel 7 bildet. Es ist weiter zu berücksichtigen, daß das gesamte Pumpengehäuse 4 außerhalb des Rotors unter Unterdruck steht, und zwar nicht nur auf der Saugseite, sondern - zumindest nach kurzem Betrieb - auch auf der sog. Auslaßseite im Bereich des Auslasses 12. Dies wird dadurch bewirkt, daß das Pumpengehäuse durch die Rückschlagventile 31 und 24 nur in Saugrichtung durchströmt werden kann. Infolge des Unterdrucks im Pumpengehäuse 4 und infolge der Zentrifugalkräfte wird nun das Öl, das sich auf den Innen­umfang des Rotors 5 legt, in die Dichtspalte des Führungs­schlitzes 6 sowie in den Dichtspalt 33, den die Stirnseite des Rotors mit der Stirnseite des Pumpengehäuses 4 bildet, hineingezogen und in die Flügelzellen gefördert. In den Flügelzellen wird das Schmieröl durch den umlaufenden Flügel mitgerissen und bildet in den Schmierspalten zwischen den Flügelköpfen und dem Gehäuseumfang einen Schmier- und Dicht­film. Gleichzeitig wird aber auch das Schmieröl durch die Auslaßnut 36 und den Auslaßkanal 12 mit der Auslaßluft zurück in die Auslaßkammer 25 gefördert. Von dort gelangt das Schmieröl durch Stichbohrung 27 in die Ringnut 26. Diese Ringnut 26 steht unter atmosphärischem Druck. Daher kann sich das Schmieröl von hier in die Lagerspalte und die Schmiernut des Lagers verteilen. Es wird zum Teil durch die Lagerspalte zurück in den Pumpenraum des Pumpengehäuses 4 gesaugt; ein anderer Teil sickert in das Kurbelgehäuse. Die Hauptmenge des in der Abluft enthaltenen Schmieröls wird jedoch zurück in die Innenbohrung 21 des Rotors gefördert. Von dort können überschüssige Schmierölmengen durch die Ringspalte, die zwischen der Antriebswelle 3 bzw. Kupplungs­welle 15 und Schraube 18 zum Rotor hin gebildet werden, in das Kurbelgehäuse zurücklaufen. Insbesondere dann, wenn das Ölangebot durch Ölzufuhrbohrung 19 gering ist, kann dieser Rücklauf jedoch auch durch Anbringung der Wulst bzw. des Bundes 22 verhindert werden. Die radiale Höhe des Bundes 22 bestimmt, eine wie große Menge des bereitgestellten Öls im Kreislauf der Flügelzellenpumpe bleiben soll. Infolge der Zentrifugalkraft bildet sich zusammen mit dem durch Ölzu­fuhrbohrung 19 zugeführten Öl ein Mantel auf dem Innenumfang der Innenbohrung 21, der die Schichtdicke des Bundes 22 hat. Die Ölzufuhr von außen kann mithin auf die geringen Mengen begrenzt werden, die im Gleitlager 37 verlorengehen, d.h. direkt wieder in das Kurbelgehäuse abgeführt werden.Another special feature of the pump is that the air outlet is initially returned with its entire cross section to the inside of the rotor and opens into the crankcase of the engine via the inside of the rotor. This measure is used to create an oil circuit. The lubricating oil is supplied to the pump through oil supply bore 19 and oil injection bores 20. The oil first gets into the inner bore of the rotor 5, specifically in the region of the guide slot 6. As a result of the centrifugal force, the oil is distributed as a film or jacket on the inner circumference of the rotor. This jacket also surrounds the gaps which the guide slot 6 forms with the wing 7. It must also be taken into account that the entire pump housing 4 is under vacuum outside the rotor, not only on the suction side, but - at least after a short operation - also on the so-called outlet side in the area of the outlet 12. This is achieved by that the pump housing can only flow through the check valves 31 and 24 in the suction direction. As a result of the negative pressure in the pump housing 4 and as a result of the centrifugal forces, the oil which lies on the inner circumference of the rotor 5 is now in the sealing gap of the guide slot 6 and in the sealing gap 33 which the end face of the rotor forms with the end face of the pump housing 4. drawn in and conveyed into the wing cells. In the vane cells, the lubricating oil is entrained by the circumferential wing and forms a lubricating and sealing film in the lubricating gaps between the wing heads and the circumference of the housing. At the same time, however, the lubricating oil is also conveyed back into the outlet chamber 25 through the outlet groove 36 and the outlet channel 12 with the outlet air. From there, the lubricating oil passes through the tap hole 27 into the annular groove 26. This annular groove 26 is under atmospheric pressure. Therefore the lubricating oil is distributed from here into the bearing gap and the lubrication groove of the bearing. It is partly sucked back through the bearing gaps into the pump chamber of the pump housing 4; another part seeps into the crankcase. However, the majority of the lubricating oil contained in the exhaust air is conveyed back into the inner bore 21 of the rotor. From there, excess amounts of lubricating oil can run back into the crankcase through the annular gaps formed between the drive shaft 3 or coupling shaft 15 and screw 18 towards the rotor. In particular, if the oil supply through oil supply bore 19 is small, this return can also be prevented by attaching the bead or collar 22. The radial height of the collar 22 determines how large an amount of the oil provided should remain in the vane pump circuit. As a result of the centrifugal force, a jacket is formed on the inner circumference of the inner bore 21 together with the oil supplied through the oil feed bore 19 and has the layer thickness of the collar 22. The oil supply from the outside can therefore be limited to the small amounts that are lost in the plain bearing 37, that is to say are discharged directly back into the crankcase.

Die Ölmenge, die sich im Kreislauf befindet, bestimmt dabei nicht nur die Schmier-, sondern auch die Dichtwirkung in den Bereichen der Spalte.The amount of oil in the circuit determines not only the lubricating, but also the sealing effect in the areas of the gaps.

Es sei bemerkt, daß alternativ der Auslaß 12 auch auf der anderen Stirnseite des Pumpengehäuses angeordnet werden kann. In diesem Fall wird auf der Außenseite dieser anderen Stirnseite ebenfalls eine Ventilkammer mit Rückschlagventil vorgesehen. Diese Ventilkammer wird durch einen radial nach innen führenden Kanal und einen achsparallelen Stichkanal zurück in den durch die Innenbohrung 21 gebildeten Raum geführt.It should be noted that, alternatively, the outlet 12 can also be arranged on the other end of the pump housing. In this case, a valve chamber with a check valve is also provided on the outside of this other end face. This valve chamber is led back through a radially inward channel and an axially parallel branch channel back into the space formed by the inner bore 21.

Ferner ist es möglich, Auslaßkanäle im Pumpenbereich des Rotors vorzusehen, wobei sodann jeweils ein radialer Auslaß­kanal mit Rückschlagventil jeder Flügelzelle zugeordnet ist. Auch hierdurch wird gewährleistet, daß die Abluft und die darin enthaltenen Schmierölmengen in das Motorinnere zurückgeführt und die Schmierölmengen wieder zur Schmierung bereitstehen. Der Bund 22 ist in jedem Falle irgendwo zwischen der Einmündung des Auslasses in die Innenbohrung 21 des Rotors und dem freien Rotorende vorgesehen. Dabei liegt der Bund vorzugsweise zwischen dem freien Rotorende und dem Beginn des Flügelschlitzes, so daß die rückgeführten und gestauten Schmierölmengen vor allem auch zur Schmierung und Dichtung der Spalte zwischen Führungsschlitz 6 und Flügel bereitstehen.It is also possible to provide outlet channels in the pump area of the rotor, in which case a radial outlet channel with a check valve is then assigned to each vane cell. This also ensures that the exhaust air and the amounts of lubricating oil contained therein are returned to the interior of the engine and the amounts of lubricating oil are available again for lubrication. The collar 22 is in any case provided somewhere between the opening of the outlet in the inner bore 21 of the rotor and the free end of the rotor. The collar is preferably between the free end of the rotor and the beginning of the wing slot, so that the returned and accumulated amounts of lubricating oil are especially available for lubrication and sealing of the gaps between the guide slot 6 and wing.

BEZUGSZEICHENAUFSTELLUNGREFERENCE SIGN LISTING

  • 1 Flügelzellenpumpe1 vane pump
  • 2 Motorgehäuse, Kurbelgehäuse2 engine housing, crankcase
  • 3 Antriebswelle, Motorwelle, Nockenwelle3 drive shaft, motor shaft, camshaft
  • 4 Pumpengehäuse4 pump housings
  • 5 Pumpenrotor5 pump rotor
  • 6 Rotorschlitz, Führungsschlitz6 rotor slot, guide slot
  • 7 Flügel7 wings
  • 8 Dichtleiste8 sealing strip
  • 9 Nut9 groove
  • 10 Entlüftungsbohrung10 vent hole
  • 11 Einlaß, Sauganschluß11 inlet, suction connection
  • 12 Auslaß12 outlet
  • 13 Flansch13 flange
  • 14 Dichtung14 seal
  • 15 Kupplungsscheibe15 clutch disc
  • 16 Kupplungslappen16 clutch tabs
  • 17 Einschnitt17 incision
  • 18 Schraube18 screw
  • 19 Ölzufuhrbohrung19 oil supply hole
  • 20 Öleinspritzbohrung20 oil injection hole
  • 21 Innenbohrung des Rotors21 inner bore of the rotor
  • 22 Bund22 fret
  • 23 Ringspalt, Ausdrehung23 Annular gap, turning out
  • 24 Rückschlagventil, Auslaßventil24 check valve, outlet valve
  • 25 Auslaßkammer25 outlet chamber
  • 26 Ringnut26 ring groove
  • 27 Stichbohrung27 tap hole
  • 28 Rotorbohrung, Radialbohrung28 rotor bore, radial bore
  • 29 Äquidistante29 equidistant
  • 30 Drehrichtung30 direction of rotation
  • 31 Einlaßventil31 inlet valve
  • 32 Deckel32 lids
  • 33 Ringspalt33 annular gap
  • 34 Axialnut34 axial groove
  • 35 Drehrichtung35 Direction of rotation
  • 36 Nut36 groove
  • 37 Lagergehäuse37 bearing housing

Claims (8)

1. Vane-cell pump, whose cylindrical rotor (5) for vane guidance has only one guide slot (6) located in an axial plane of the rotor (5) and is in contact with the housing peripheral wall (29) along a generating line, with the vane edges which lie adjacent to the housing peripheral wall (29) being curved over at least 2/3 of the vane thickness S with an edge radius KR and the housing peripheral wall, in the normal section of the housing (4) being the equidistant (29) having the radius GR and the clearance of the edge radius KR to a Pascal's spiral (29A) which is described through the centre K of the rounded-off edge and has the eccentricity E, with the distance of the equidistant (29) from the Pascal's spiral (29A) being equal to the radius of curvature KR of the vane head, characterised in that
the equidistant (29) to the Pascal's spiral (29A) is described by the relation
Figure imgb0002
2. Vane-cell pump according to claim 1,
characteristic feature:
only one vane (5) is guided in the rotor slot (6); the vane (5) has at each of its radial ends a guide strip (8) which is guided with radial play movably and sealingly in a groove (9) of the vane (5).
3. Vane-cell pump according to claim 2,
characterised in that
at their portion projecting from the groove (9), the guide strips (8) are wider than the portion guided movably in the groove (9) and are approximately as wide as the vane thickness S, preferably somewhat narrower than the vane thickness S.
4. Vane-cell pump according to one of the-preceding claims,
characterised in that
the edge radius KR is not greater than half the vane thickness S.
5. Vane-cell vacuum pump according to one of the preceding claims,
characterised in that
the rotor (5) is over-mounted at one end and is manufactured, with the bearing shoulder added at one end, from one piece, and in that the rotor (5) and the bearing shoulder have the same external diameter.
6. Vane-cell vacuum pump according to claim 5,
characterised in that
the rotor (5) is supported so as to be axially,movable and is axially movably coupled to a drive shaft (3) and is exposed at the drive side to atmospheric pressure.
7. Vane-cell vacuum pump according to claim 5 or 6,
characterised by
a sliding bearing system of the rotor (5).
Legend of Fig.1: shown turned
EP87114934A 1986-10-18 1987-10-13 Vane pump Expired - Lifetime EP0264778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3635494 1986-10-18
DE3635494 1986-10-18

Publications (3)

Publication Number Publication Date
EP0264778A2 EP0264778A2 (en) 1988-04-27
EP0264778A3 EP0264778A3 (en) 1989-01-04
EP0264778B1 true EP0264778B1 (en) 1991-01-02

Family

ID=6311979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114934A Expired - Lifetime EP0264778B1 (en) 1986-10-18 1987-10-13 Vane pump

Country Status (3)

Country Link
EP (1) EP0264778B1 (en)
JP (2) JPS63109294A (en)
DE (1) DE3766931D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813132A1 (en) * 1987-05-19 1988-12-15 Barmag Barmer Maschf Vane-cell pump
DE3832042A1 (en) * 1987-10-05 1989-04-13 Barmag Barmer Maschf Vane-cell pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359139A3 (en) * 1988-09-10 1990-06-06 Barmag Ag Vane pump
EP0510009B1 (en) * 1990-01-12 1994-06-15 ECKHARDT, Georg Willi Rotary valve machine
GB0130717D0 (en) * 2001-12-21 2002-02-06 Wabco Automotive Uk Ltd Vacuum pump
US20040191104A1 (en) * 2003-03-25 2004-09-30 Wen-Shao Hsu Rotary compressor having a rotor with a sliding vane
FR2869958B1 (en) * 2004-05-07 2008-08-08 Peugeot Citroen Automobiles Sa VACUUM PUMP WITH PERFECTED PALLET (S)
DE102004034922B4 (en) * 2004-07-09 2006-05-11 Joma-Hydromechanic Gmbh A single-blade
EP2299055B1 (en) * 2009-09-14 2014-11-12 Pierburg Pump Technology GmbH Automotive vacuum vane pump
IT1402417B1 (en) * 2010-10-26 2013-09-04 O M P Officine Mazzocco Pagnoni S R L MONOPAL PUMP
CN102536832A (en) * 2012-03-21 2012-07-04 重庆云海机械制造有限公司 Vacuum pump
CN107091231B (en) * 2016-05-11 2018-05-22 常州康普瑞汽车空调有限公司 A kind of air conditioning for automobiles Spiralism type motor compressor
RU2686558C1 (en) * 2018-07-24 2019-04-29 Гарри Роленович Иоаннесян Ioannesyan drilling pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH431283A (en) * 1964-01-29 1967-02-28 Reynaud Denis Antoine Luc Maur Rotary piston machine with continuous abutment slide on the piston
JPS508512B1 (en) * 1970-09-01 1975-04-04
GB1426126A (en) * 1973-02-16 1976-02-25 Komiya S Movable vane type compressor
AU8101575A (en) * 1974-05-17 1976-11-11 Reynaud D A L M Vane type pump
JPS5332402A (en) * 1976-09-06 1978-03-27 Masao Moriyama Rotaryytype liquid pumps
CH634385A5 (en) * 1978-07-21 1983-01-31 Hans Ryffel Sliding-vane machine
JPS5696195A (en) * 1979-12-28 1981-08-04 Nippon Soken Inc Rotary vane compressor
JPS57122190A (en) * 1981-01-22 1982-07-29 Nippon Soken Inc Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813132A1 (en) * 1987-05-19 1988-12-15 Barmag Barmer Maschf Vane-cell pump
DE3832042A1 (en) * 1987-10-05 1989-04-13 Barmag Barmer Maschf Vane-cell pump

Also Published As

Publication number Publication date
DE3766931D1 (en) 1991-02-07
JPS63109294A (en) 1988-05-13
EP0264778A3 (en) 1989-01-04
EP0264778A2 (en) 1988-04-27
JPS63109293A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
EP0264778B1 (en) Vane pump
DE102008036273B4 (en) Rotary piston pump with pockets for lubricant
DE3800324A1 (en) WING CELL COMPRESSORS
DE3734573C2 (en) Vane vacuum pump
EP0839283B1 (en) Oil-sealed vane-type rotary vacuum pump with oil feed
DE1503507B2 (en) Vane compressors
EP0264749B1 (en) Sliding vane vacuum pump
DE3813132A1 (en) Vane-cell pump
DE19802461C2 (en) Coolant compressor
DE3841329C2 (en) Vane vacuum pump
DE3906823A1 (en) Vane vacuum pump
DE2850371C2 (en)
DE3910659C2 (en)
DE4008522C2 (en)
DE19626211C2 (en) Vane pump
WO1993024753A1 (en) Double pump
EP0320795B1 (en) Vane-type vacuum pump
EP0198936B1 (en) Multistage vacuum pump
DE4116747A1 (en) Vane cell compressor - has two outlet channels in one of two side parts and several grooves in rotor outer peripheral surface to support outflow
DE3118297A1 (en) GEAR PUMP
DE3906826C2 (en) Variable flow compressor
EP0255920A2 (en) Vane vacuum pump
DE102016122903A1 (en) Gas pump with oil return
DE19500542B4 (en) Rotary pump
DE10037468A1 (en) Control disc especially for a vane pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890111

17Q First examination report despatched

Effective date: 19890622

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3766931

Country of ref document: DE

Date of ref document: 19910207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061107

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20071012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061013

Year of fee payment: 20