EP0264749A2 - Sliding vane vacuum pump - Google Patents

Sliding vane vacuum pump Download PDF

Info

Publication number
EP0264749A2
EP0264749A2 EP87114808A EP87114808A EP0264749A2 EP 0264749 A2 EP0264749 A2 EP 0264749A2 EP 87114808 A EP87114808 A EP 87114808A EP 87114808 A EP87114808 A EP 87114808A EP 0264749 A2 EP0264749 A2 EP 0264749A2
Authority
EP
European Patent Office
Prior art keywords
rotor
wing
housing
bearing
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87114808A
Other languages
German (de)
French (fr)
Other versions
EP0264749B1 (en
EP0264749A3 (en
Inventor
Siegfried Hertell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6311978&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0264749(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP0264749A2 publication Critical patent/EP0264749A2/en
Publication of EP0264749A3 publication Critical patent/EP0264749A3/en
Application granted granted Critical
Publication of EP0264749B1 publication Critical patent/EP0264749B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation

Definitions

  • the invention relates to a vane vacuum pump according to the preamble of claim 1.
  • Vane pumps of this type are used to generate a negative pressure for the brake booster in diesel motor vehicles and motor vehicles with fuel injection.
  • the vane vacuum pump according to the invention is characterized in that its rotor, which serves to guide the vane, is overhung and is made in one piece with the bearing attachment attached on one side.
  • the object of the invention is to avoid this disadvantage.
  • the bearing shoulder and rotor having the same outside diameter. This creates a sealing problem only at the free end of the rotor.
  • the seal is formed by the bearing shoulder and the bearing located there, preferably designed as a plain bearing.
  • a vane pump is known from DE-A 35 10 681, in which the rotor is sealed on both sides on its circumference by sealing rings and is additionally mounted on both sides in ball bearings.
  • the bearings mean a static over-determination of the seal, so that the function of the seal can only be obtained at the price of a very strong compression of the seal and high wear.
  • an automatic, axial alignment of the rotor occurs in the housing.
  • the rotor is preferably produced as a tube, preferably as a tube with an internal diameter that remains the same from front to back.
  • the invention makes it possible to use materials with different coefficients of thermal expansion, such as aluminum for the housing and steel for the rotors, without the gaps being too large due to the differences in thermal expansion.
  • the gap in the area of the plain bearing is independent of the differences in the temperature behavior of the paired materials with regard to its tightness insofar as this gap is sufficiently long so that a sufficiently good seal is provided even with a relatively large gap width.
  • the axial fixing of the rotor which must at the same time result in a sealing contact of the rotor on the housing cover facing away from the bearing side, can be done by guides which are arranged outside the housing. This holding force can e.g. be exercised by the drive shaft.
  • the vane pump also serves as a spare part that can be replaced without the engine having to be dismantled.
  • a mechanical guide for axially fixing the rotor also results in corresponding wear of the guide.
  • the rotor be axially movably mounted and coupled axially movably to the drive shaft, the bearing-side rotor end, however, being at atmospheric pressure with its drive end face and e.g. protrudes from the pump housing. This ensures that the rotor is pressed by the external pressure with its free end face against the housing cover. The pressure is stronger, the stronger the vacuum generated.
  • the vane pump 1 shown in Figures 1 to 3 is flanged to the crankcase 2 of a motor vehicle engine by flange 13 and sealed with seal 14.
  • the circular cylindrical rotor 5 is rotatably mounted in the pump housing 4.
  • the pump housing the cross-sectional shape of which will be explained later, has an eccentric projection, which forms the bearing housing 37.
  • the bearing housing 37 projects into the crankcase and is centered therein.
  • the rotor is mounted so that it is in circumferential contact with the housing at one point, the so-called bottom dead center. It should be mentioned that the bearing housing 37 forms a sliding bearing for the free end of the rotor 5. An axial groove is therefore indicated, which serves to lubricate this plain bearing.
  • the rotor 5 is a tube that has the same outer diameter between its two ends.
  • An inner bore 21 extends over the entire length of the tube.
  • the tube In the area of the housing, the tube has a single guide slot 6, which lies in an axial plane, which penetrates the inner bore and whose axial length corresponds exactly to the axial length of the pump housing 4.
  • a single wing 7 is slidably guided in the guide slot 6.
  • the width of the wing corresponds to the axial length of the pump housing.
  • the wing 4 can be made in one piece. However, it can also have sealing strips at its ends, which are guided in grooves 9 of the wing 7 in a radial but sliding manner in the radial direction.
  • the wing may be so long, including the sealing strip, that it - thanks to the cross-sectional shape of the housing to be described later - in each Rotating position sealingly abuts the circumference of the housing 4.
  • the wing ends are rounded with a radius r in each case. This radius is chosen to be as large as possible and is in any case greater than half the thickness of the wing 7.
  • the wing is provided with sealing strips, these have a head outside the guide grooves, which is considerably wider than the guide grooves 9, but somewhat narrower than the wing 7.
  • the peripheral wall of the pump housing 4 is determined so that it represents an equidistant cross-section to a Pascal spiral with the radius of curvature of the wing tips r as a distance, provided the wing tips are circularly curved. If the wing ends are not circularly curved in cross section, the distance between the housing cross section and the Pascal spiral is equal to the distance of the contact edge from the center plane of the wing with the respective surface lines of the housing, this distance being measured on the normal in the contact edge.
  • the peripheral wall of the pump housing can be determined so that it is a self-contained curve that meets the geometric requirement that all secants through the rotor center have the same length, this length being substantially equal to the length of the wing L.
  • This requirement applies if the wing is designed with pointed ends. If, however, as shown in FIG. 2, the wing has a large radius of curvature, then describes it the circumferential wall of the pump housing in cross section an equidistant to a self-contained curve, which meets the geometric requirement that all secants through the rotor center have the same length and are as long as the wing length L - 2r.
  • the equidistant has a distance from this curve which is substantially equal to the radius of curvature r of the wing heads. If the wing ends are not curved in a circle, the peripheral wall of the pump housing is found by the distance from the previously determined curve, which the current contact edges have on their normal to the wing center plane.
  • the vane length and the outer diameter of the rotor 5 are first determined.
  • the difference between the length of the wing and the outside diameter determines the delivery volume of the pump. The difference is limited by strength and other considerations. Since the rotor is mounted in the housing so that it is in circumferential contact with the housing in its place, the so-called bottom dead center, the wing 7 is completely immersed in the bottom dead center - as shown in FIG. 2 - in the guide slot 6 of the Rotor 5 a.
  • the pump housing 4 has the suction inlet 11 with a check valve 31 arranged therein and an outlet 12 with a check valve 24 arranged therein.
  • the inlet 11 is offset by approximately 90 ° from the dead center position and the inlet 12 is in the region before bottom dead center - seen in direction of rotation 35.
  • the inlet valve 31 is designed as a mushroom valve. It is a mushroom-shaped rubber body, which is inserted with its style into a perforated valve plate and which rests with the edges of its head on the valve plate, sealingly enclosing the holes in the valve plate.
  • the head turns over in the suction direction in such a way that the suction opening is opened. The head locks in the opposite direction.
  • the outlet initially has a groove 36 in the end face of the pump housing, which extends over a larger outlet area. From this groove, the outlet channel 12 penetrates the housing cover. The outlet channel 12 opens into an outlet chamber 25.
  • the valve 24 is designed as a spring leaf valve which is clamped on one side and covers the outlet opening in the outlet chamber 25.
  • the outlet chamber is designed so that it encloses the valve 24 and that it adjoins the bearing housing 37 of the pump housing.
  • the outlet chamber 25 is closed by a cover 32.
  • the bearing housing 37 has a radial tap bore 27 which starts from the outlet comb 25 and opens into an annular groove 26.
  • the annular groove 26 lies in the inner circumference of the bearing housing 37 and is delimited by the outer circumference of the rotor.
  • the annular groove 26 can also be formed on the outer circumference of the rotor and delimited by the inner circumference of the bearing housing 37.
  • the rotor has a radial bore 28 which lies in the same normal plane as the annular groove 26 and which therefore connects the inner bore 21 of the rotor with the annular groove.
  • the radial bore 28 rotates and is located only by chance in the plane of the drawing in FIG. 1.
  • the rotor At its end of the bearing, which protrudes into the crankcase 2, the rotor has a somewhat enlarged turn, into which a drive shaft of the motor projects with its clutch disc 15.
  • the drive shaft 3 can e.g. are the drive shaft for the injection pump.
  • the clutch disc 15 is fastened with screw 18 on the drive shaft.
  • the clutch disc 15 has at one point on its circumference a clutch tab 16 which engages in an incision 17 (see FIG. 3) of the rotor 5 without preventing the axial mobility of the rotor.
  • the drive shaft 3 and the screw 18 have a central oil feed bore 19. In the screw, this axial bore bifurcates into two or more oil injection bores 20, the oil injection bores 20 being directed into the inner bore 21 of the rotor 5 in such a way that they do not hit the wing 7 .
  • the rotor has in its inner bore 21 a circumferential collar 22 which is attached between the radial channel 28 and the rotor end. It should be noted that the rotor is open at its free end; This means that the inner circumference of the collar 22 forms with the head of the screw 18 and the clutch disc 15 forms an annular gap with the recess 23, which connects the inner bore 21 of the rotor with the clutch housing.
  • the rotor 5 is driven by the drive shaft 3 with the direction of rotation 35.
  • the vane 7 executes a relative movement in the guide slot 6 and lies with its two ends in a sealing and sliding manner on the housing periphery of the pump housing 4.
  • the large radius of curvature of the wing ends has the advantage that the surface pressure of the wing on the housing periphery is low, but that on the other hand a relatively wide gap is created between each wing head and the housing periphery.
  • An oil cushion can form in this gap on the one hand is dynamically stable and on the other hand has a good sealing effect. Due to the large radius of curvature, the contact line of the wing head on the circumference of the housing changes constantly. On the one hand, this results in good cooling, so that there is no local overheating of the wing as a result of the friction. On the other hand, this also reduces wear and, moreover, causes an even distribution of wear, so that a long service life of the wing can be expected.
  • the invention allows the use of a wing with large head radii and still ensures a snug fit of the wing heads on the housing circumference in any rotational position, namely in that the pump housing is designed in cross section as an equidistant to a Pascal spiral, which is the center of the curvature circle of the wing heads is constructed.
  • the sealing strips can serve to compensate for tolerances and to compensate for wear on the pump housing and the vanes.
  • the sealing strips it is of particular importance that the sealing strips outside the guide groove 9 are significantly widened to approximately the wing width. This enables the sealing strips to be manufactured with a large radius of curvature, so that the contact lines of the heads of the sealing strips 8 change over a wide range during a rotor revolution. If the head ends of the sealing strips are approximately as thick as the wing, this has the advantage that in the bottom dead center position, as shown in FIG. 2, only a small amount of oil is enclosed in the guide slot 6 of the rotor and is carried along. On the other hand, the fact that the head end of the sealing strip is somewhat narrower than the wing prevents the Sealing strips get stuck in the rotor slot on the longitudinal edges of the rotor slot when the wing is inserted with the sealing strip.
  • the rotor is a tube which has the same outer diameter over its entire length. Compared to the usual design, in which the rotor shaft has a smaller diameter than the rotor, the rotor gains stability. Because of this improved stability, it is possible to make the rotor thin-walled and therefore low-mass.
  • the wall thickness is limited in that the rotor wall in the guide slot 6 has a good, i.e. good sealing and low surface pressure causing guide for the wing must represent.
  • a relatively small outer diameter of the rotor is also made possible, it being necessary to know that the difference between the wing lengths and the outer diameter of the rotor - apart from the wing thickness - essentially determines the delivery volume of the pump.
  • the design of the rotor also has other advantages: As can be seen from FIG. 1, the bearing area in the bearing housing 37 is in the immediate vicinity of the vane chambers formed in the pump housing. As a result of this direct connection between the vane chambers and the slide bearing, the slide bearing area is subject to constantly changing pressure gradients. This results in a good distribution of the lubricating oil in the bearing area.
  • a rotor of this type can be sealed particularly well in the housing.
  • the critical sealing points of the rotor of vane pumps are Usually the gaps that are formed between the end faces of the rotor on the one hand and the pump housing on the other. If, in the known vane pumps, the rotor of which has a larger diameter than the rotor shaft, an end face of the rotor is pressed close to the end face of the pump housing, a gap that is all the greater is created on the other side. This is not the case here, where the rotor shaft and rotor have the same outside diameter.
  • the gap 33 is sealed between the rotor end face and the adjacent housing wall in that the vacuum prevailing in the pump housing continues in the gap 33.
  • a central pressure gradient field is thus formed in this gap.
  • the rotor face is exposed to atmospheric pressure. There is therefore a resulting compressive force which presses the rotor with its end face facing away from the bearing in a sealing manner against the corresponding end face of the pump housing.
  • the negative pressure in the pump housing 4 is reduced only over a relatively large radial length of the gap, so that the annular area which is subjected to negative pressure is large and thus also the difference in the compressive forces which act on the two opposite end faces of the rotor is large .
  • This large difference works in the sense of a reduction in the gap and thus a better seal. It therefore automatically adjusts the contact pressure to a value that represents an optimal compromise between sealing on the one hand and wear on the other.
  • the air outlet is initially returned with its entire cross section to the inside of the rotor and opens into the crankcase of the engine via the inside of the rotor.
  • This measure is used to create an oil circuit.
  • the lubricating oil is supplied to the pump through oil supply bore 19 and oil injection bores 20.
  • the oil first gets into the inner bore of the rotor 5, specifically in the region of the guide slot 6.
  • the oil is distributed as a film or jacket on the inner circumference of the rotor. This jacket also surrounds the gaps which the guide slot 6 forms with the wing 7.
  • the entire pump housing 4 is under negative pressure outside the rotor, not only on the suction side, but - initially after a short period of operation - also on the so-called outlet side in the area of the outlet 12. that the pump housing can only flow through the check valves 31 and 24 in the suction direction.
  • the oil which lies on the inner circumference of the rotor 5 is now in the sealing gap of the guide slot 6 and in the sealing gap 33 which the end face of the rotor forms with the end face of the pump housing 4. drawn in and conveyed into the wing cells.
  • the lubricating oil In the wing cells, the lubricating oil is entrained by the surrounding wing and forms a lubricating and sealing film in the lubricating gaps between the wing heads and the housing circumference. At the same time, however, the lubricating oil is also conveyed back into the outlet chamber 25 through the outlet groove 36 and the outlet channel 12 with the outlet air. From there, the lubricating oil passes through the tap hole 27 into the annular groove 26. This Ring groove 26 is under atmospheric pressure. Therefore, the lubricating oil can spread from here into the bearing gaps and the lubrication groove of the bearing. It is partly sucked back through the bearing gaps into the pump chamber of the pump housing 4; another part seeps into the crankcase.
  • the amount of oil in the circuit determines not only the lubricating, but also the sealing effect in the areas of the gaps.
  • the outlet 12 can also be arranged on the other end of the pump housing.
  • a valve chamber with a check valve is also provided on the outside of this other end face. This valve chamber is led back through a radially inward channel and an axially parallel branch channel back into the space formed by the inner bore 21.
  • the collar 22 is in any case provided somewhere between the opening of the outlet in the inner bore 21 of the rotor and the free rotor end.
  • the collar is preferably located between the free end of the rotor and the beginning of the wing slot, so that the returned and accumulated amounts of lubricating oil are available especially for lubrication and sealing of the gaps between the guide slot 6 and wing.

Abstract

1. Vane pump in which the rotor for guiding the vanes is mounted overhung at one end, said rotor and the bearing arrangement placed at one end being made of a single piece so that the rotor and the bearing arrangement have the same external diameter, characterised in that the rotor is axially freely supported and is axially flexibly coupled with a drive shaft (3) and is at atmospheric pressure at the driving end.

Description

Die Erfindung betrifft eine Flügelzellen-Vakuumpumpe nach dem Oberbegriff des Anspruchs 1.The invention relates to a vane vacuum pump according to the preamble of claim 1.

Derartige Flügelzellenpumpen finden Verwendung zur Erzeugung eines Unterdrucks für die Bremskraftverstärkung in Diesel-­Kraftfahrzeugen und Kraftfahrzeugen mit Kraftstoffein­spritzung.Vane pumps of this type are used to generate a negative pressure for the brake booster in diesel motor vehicles and motor vehicles with fuel injection.

Die Flügelzellen-Vakuumpumpe nach der Erfindung zeichnet sich dadurch aus, daß ihr Rotor, der zur Flügelführung dient, fliegend gelagert und mit dem einseitig angesetzten Lageransatz aus einem Stück hergestellt ist.The vane vacuum pump according to the invention is characterized in that its rotor, which serves to guide the vane, is overhung and is made in one piece with the bearing attachment attached on one side.

Bei derartigen Flügelzellenpumpen, die bekannt sind, ist der Durchmesser des Rotors größer als der Durchmesser des Lager­ansatzes. Daher muß der Rotor genau zwischen die Deckel des Lageransatzes eingepaßt werden.In vane pumps of this type, which are known, the diameter of the rotor is larger than the diameter of the bearing projection. Therefore, the rotor must be fitted exactly between the covers of the bearing attachment.

Zum einen ist das Spiel des Rotors zwischen den Gehäuse­deckeln gering zu halten. Dies bedingt einen entsprechenden Fertigungsaufwand. Zum anderen hat diese Konstruktion den Nachteil, daß die enge Anlage des Rotors an der einen Seite ein entsprechend vergrößertes Spiel auf der anderen Seite und damit eine Undichtigkeit auf dieser anderen Seite zur Folge hat.Firstly, the play of the rotor between the housing covers is to be kept low. This requires a corresponding manufacturing effort. On the other hand, this construction has the disadvantage that the tight contact of the rotor on one side results in a correspondingly increased play on the other side and thus a leak on this other side.

Die Aufgabe der Erfindung besteht darin, diesen Nachteil zu vermeiden.The object of the invention is to avoid this disadvantage.

Die Lösung geschieht dadurch, daß Lageransatz und Rotor denselben Außendurchmesser haben. Hierdurch entsteht ein Dichtproblem nur noch am freien Ende des Rotors. Am lager­seitigen Ende des Rotors erfolgt die Dichtung durch den Lageransatz und das dort befindliche, vorzugsweise als Gleitlager ausgeführte Lager.The solution is achieved by the bearing shoulder and rotor having the same outside diameter. This creates a sealing problem only at the free end of the rotor. At the end of the rotor on the bearing side, the seal is formed by the bearing shoulder and the bearing located there, preferably designed as a plain bearing.

Zwar ist durch DE-A 35 10 681 eine Flügelzellenpumpe be­kannt, in der der Rotor beidseits auf seinem Umfang durch Dichtringe abgedichtet ist und zusätzlich beidseitig in Kugellagern gelagert ist. Bei dieser Ausführung bedeuten die Lager ein statische Überbestimmung der Dichtung, so daß die Funktion der Dichtung nur um den Preis einer sehr starken Zusammenpressung der Dichtung und hohen Verschleißes zu erhalten ist. Überdies besteht auf der dem Innenraum zuge­wandten Seite der Dichtung ein Kurzschluß zwischen den einzelnen Flügelzellen in Umfangsrichtung, so daß die Pumpe nicht als Vakuumpumpe brauchbar ist. Ferner tritt eine selbsttätige, axiale Ausrichtung des Rotors im Gehäuse ein.A vane pump is known from DE-A 35 10 681, in which the rotor is sealed on both sides on its circumference by sealing rings and is additionally mounted on both sides in ball bearings. In this version, the bearings mean a static over-determination of the seal, so that the function of the seal can only be obtained at the price of a very strong compression of the seal and high wear. In addition, there is a short circuit between the individual vane cells in the circumferential direction on the side of the seal facing the interior, so that the pump cannot be used as a vacuum pump. Furthermore, an automatic, axial alignment of the rotor occurs in the housing.

Zur Verkleinerung der Masse, aber auch zur Schmierölzufuhr wird der Rotor vorzugsweise als Rohr, und zwar vorzugsweise als Rohr mit von vorne bis hinten gleichbleibendem Innen­durchmesser hergestellt.To reduce the mass, but also to supply lubricating oil, the rotor is preferably produced as a tube, preferably as a tube with an internal diameter that remains the same from front to back.

Durch die Erfindung wird es möglich, Werkstoffe mit unter­schiedlichen Wärmeausdehnungskoeffizienten, wie z.B. Alumi­nium für das Gehäuse und Stahl für die Rotoren zu verwenden, ohne daß durch die Unterschiede der Wärmeausdehnung zu große Spalte entstehen. Der Spalt im Bereich des Gleitlagers ist hinsichtlich seiner Dichtigkeit von den Unterschieden im Temperaturverhalten der gepaarten Werkstoffe insofern unab­hängig, als dieser Spalt ausreichend lang ist, so daß auch bei verhältnismäßig großer Spaltweite eine ausreichend gute Dichtung gegeben ist.The invention makes it possible to use materials with different coefficients of thermal expansion, such as aluminum for the housing and steel for the rotors, without the gaps being too large due to the differences in thermal expansion. The gap in the area of the plain bearing is independent of the differences in the temperature behavior of the paired materials with regard to its tightness insofar as this gap is sufficiently long so that a sufficiently good seal is provided even with a relatively large gap width.

Die axiale Festlegung des Rotors, die gleichzeitig eine dichtende Anlage des Rotors an dem von der Lagerseite abge­wandten Gehäusedeckel zur Folge haben muß, kann durch Führungen geschehen, die außerhalb des Gehäuses angeordnet sind. So kann diese Haltekraft z.B. durch die Antriebswelle ausgeübt werden.The axial fixing of the rotor, which must at the same time result in a sealing contact of the rotor on the housing cover facing away from the bearing side, can be done by guides which are arranged outside the housing. This holding force can e.g. be exercised by the drive shaft.

Dies bedingt eine besondere Art der Kupplung mit der Antriebswelle. Derartige Kupplungen sind im Automobilbau zuweilen unerwünscht, da die Flügelzellenpumpe auch als Ersatzteil dient, das ausgetauscht werden kann, ohne daß der Motor dabei demontiert werden muß. Außerdem hat eine mecha­nische Führung zur axialen Festlegung des Rotors auch einen entsprechenden Verschleiß der Führung zur Folge. Um diese Nachteile zu vermeiden, wird weiterhin vorgeschlagen, daß der Rotor axial beweglich gelagert und mit der Antriebswelle axial beweglich gekuppelt ist, wobei das lagerseitige Rotor­ende mit seiner Antriebsstirnseite aber Atmosphärendruck steht und z.B. aus dem Pumpengehäuse herausragt. Hierdurch wird erreicht, daß der Rotor durch den Außendruck mit seiner freien Stirnseite gegen den Gehäusedeckel gedrückt wird. Die Andrückung ist um so stärker, je stärker das erzeugte Vakuum ist.This requires a special type of coupling with the drive shaft. Couplings of this type are sometimes undesirable in automobile construction, since the vane pump also serves as a spare part that can be replaced without the engine having to be dismantled. In addition, a mechanical guide for axially fixing the rotor also results in corresponding wear of the guide. In order to avoid these disadvantages, it is further proposed that the rotor be axially movably mounted and coupled axially movably to the drive shaft, the bearing-side rotor end, however, being at atmospheric pressure with its drive end face and e.g. protrudes from the pump housing. This ensures that the rotor is pressed by the external pressure with its free end face against the housing cover. The pressure is stronger, the stronger the vacuum generated.

Diese Maßnahmen schließen nicht aus, daß trotzdem eine Führung vorgesehen wird, die zwar einerseits die axiale Beweglichkeit des Rotors gewährleistet, die aber anderer­seits verhindert, daß der Rotor im ausgebauten Zustand der Pumpe aus dem Gehäuse unbeabsichtigt herausfallen kann. Diese Führung kann jedoch mit großem axialen Spiel und dementsprechend verschleißfrei ausgeführt werden.These measures do not preclude the provision of a guide which, on the one hand, ensures the axial mobility of the rotor, but on the other hand prevents the rotor from accidentally falling out of the housing when the pump is removed. However, this guidance can be carried out with a large axial play and accordingly without wear.

Im folgenden wird die Erfindung anhand eines Ausführungs­beispiels beschrieben.The invention is described below using an exemplary embodiment.

Es zeigen

  • Fig. 1 einen Längsschnitt durch das Gehäuse;
  • Fig. 2 einen Normalschnitt durch das Gehäuse;
  • Fig. 3 eine axiale Ansicht des Gehäusedeckels.
Show it
  • 1 shows a longitudinal section through the housing.
  • 2 shows a normal section through the housing;
  • Fig. 3 is an axial view of the housing cover.

Die in den Figuren 1 bis 3 dargestellte Flügelzellenpumpe 1 ist an das Kurbelgehäuse 2 eines Kraftfahrzeugmotors durch Flansch 13 angeflanscht und mit Dichtung 14 abgedichtet. In dem Pumpengehäuse 4 ist der kreiszylindrische Rotor 5 dreh­bar gelagert. Hierzu weist das Pumpengehäuse, dessen Quer­schnittsform später erläutert wird, einen exzentrischen Ansatz auf, der das Lagergehäuse 37 bildet. Das Lagergehäuse 37 ragt in das Kurbelgehäuse und ist darin zentriert. Der Rotor ist so gelagert, daß er an einer Stelle, dem sog. unteren Totpunkt, in Umfangskontakt mit dem Gehäuse steht. Es sei erwähnt, daß das Lagergehäuse 37 eine Gleitlagerung für das freie Ende des Rotors 5 bildet. Es ist daher eine Axialnut angedeutet, die zur Schmierung dieses Gleitlagers dient.The vane pump 1 shown in Figures 1 to 3 is flanged to the crankcase 2 of a motor vehicle engine by flange 13 and sealed with seal 14. The circular cylindrical rotor 5 is rotatably mounted in the pump housing 4. For this purpose, the pump housing, the cross-sectional shape of which will be explained later, has an eccentric projection, which forms the bearing housing 37. The bearing housing 37 projects into the crankcase and is centered therein. The rotor is mounted so that it is in circumferential contact with the housing at one point, the so-called bottom dead center. It should be mentioned that the bearing housing 37 forms a sliding bearing for the free end of the rotor 5. An axial groove is therefore indicated, which serves to lubricate this plain bearing.

Der Rotor 5 ist ein Rohr, das zwischen seinen beiden Enden gleichen Außendurchmesser hat. Eine Innenbohrung 21 er­streckt sich über die gesamte Länge des Rohres. Im Bereich des Gehäuses besitzt das Rohr einen einzigen Führungsschlitz 6, der in einer Axialebene liegt, der die Innenbohrung durchdringt und dessen axiale Länge genau der axialen Länge des Pumpengehäuses 4 entspricht. Im dem Führungsschlitz 6 ist ein einziger Flügel 7 gleitend geführt. Die Breite des Flügels entspricht der axialen Länge des Pumpengehäuses. Der Flügel 4 kann aus einem Stück gefertigt sein. Er kann aber auch an seinen Enden Dichtleisten aufweisen, die in Nuten 9 des Flügels 7 - in radialer Richtung - gleitend, jedoch dichtend geführt sind. Entlüftungsbohrungen 10, die den Grund der Nuten 9 mit der - in Drehrichtung gesehen - Vorderseite des Flügels verbinden, gewährleisten, daß in den Nuten 9 stets der höchste in der Pumpe herrschende Druck vorhanden ist, so daß die Dichtleisten 8 nach außen gedrückt werden. In jedem Fall, d.h. auch wenn der Flügel 9 - wie in Fig. 3 einskizziert - nur aus einem Stück besteht, ist der Flügel ggf. einschließlich der Dichtleiste so lang, daß er - dank der später noch zu beschreibenden Querschnittsform des Gehäuses - in jeder Drehstellung dichtend am Umfang des Gehäuses 4 anliegt. Ferner sind die Flügelenden in jedem Falle mit einem Radius r abgerundet. Dieser Radius wird möglichst groß gewählt und ist jedenfalls größer als die halbe Dicke des Flügels 7.The rotor 5 is a tube that has the same outer diameter between its two ends. An inner bore 21 extends over the entire length of the tube. In the area of the housing, the tube has a single guide slot 6, which lies in an axial plane, which penetrates the inner bore and whose axial length corresponds exactly to the axial length of the pump housing 4. A single wing 7 is slidably guided in the guide slot 6. The width of the wing corresponds to the axial length of the pump housing. The wing 4 can be made in one piece. However, it can also have sealing strips at its ends, which are guided in grooves 9 of the wing 7 in a radial but sliding manner in the radial direction. Vent holes 10, which connect the bottom of the grooves 9 to the front of the wing, as seen in the direction of rotation, ensure that the highest pressure prevailing in the pump is always in the grooves 9 is present so that the sealing strips 8 are pressed outwards. In any case, ie even if the wing 9 - as sketched in Fig. 3 - consists of only one piece, the wing may be so long, including the sealing strip, that it - thanks to the cross-sectional shape of the housing to be described later - in each Rotating position sealingly abuts the circumference of the housing 4. Furthermore, the wing ends are rounded with a radius r in each case. This radius is chosen to be as large as possible and is in any case greater than half the thickness of the wing 7.

Wenn der Flügel mit Dichtleisten versehen wird, so weisen diese außerhalb der Führungsnuten einen Kopf auf, der wesentlich breiter als die Führungsnuten 9, jedoch etwas schmaler als der Flügel 7 ist.If the wing is provided with sealing strips, these have a head outside the guide grooves, which is considerably wider than the guide grooves 9, but somewhat narrower than the wing 7.

Die Umfangswand des Pumpengehäuses 4 ist so bestimmt, daß sie im Querschnitt eine Äquidistante zu einer Pascalschen Spirale mit dem Krümmungsradius der Flügelenden r als Abstand darstellt, sofern die Flügelenden kreisförmig gekrümmt sind. Sofern die Flügelenden im Querschnitt nicht kreisförmig gekrümmt sind, ist der Abstand zwischen dem Gehäusequerschnitt und der Pascalschen Spirale gleich dem Abstand der Berührkante von der Mittelebene des Flügels mit den jeweiligen Mantellinien des Gehäuses, wobei dieser Abstand auf der Normalen in der Berührkante gemessen wird.The peripheral wall of the pump housing 4 is determined so that it represents an equidistant cross-section to a Pascal spiral with the radius of curvature of the wing tips r as a distance, provided the wing tips are circularly curved. If the wing ends are not circularly curved in cross section, the distance between the housing cross section and the Pascal spiral is equal to the distance of the contact edge from the center plane of the wing with the respective surface lines of the housing, this distance being measured on the normal in the contact edge.

Alternativ kann die Umfangswand des Pumpengehäuses so bestimmt sein, daß sie eine in sich geschlossene Kurve ist, die der geometrischen Anforderung genügt, daß alle Sekanten durch den Rotormittelpunkt die gleiche Länge haben, wobei diese Länge im wesentlichen gleich der Flügellänge L ist. Diese Forderung gilt, wenn der Flügel mit spitzen Enden aus­geführt ist. Wenn der Flügel jedoch - wie in Fig. 2 gezeigt ist - einen großen Krümmungsradius besitzt, so umschreibt die Umfangswand des Pumpengehäuses im Querschnitt eine Äqui­distante zu einer in sich geschlossenen Kurve, die der geometrischen Forderung genügt, daß alle Sekanten durch den Rotormittelpunkt die gleiche Länge haben und so lang sind wie die Flügellänge L - 2r. Die Äquidistante hat von dieser Kurve einen Abstand, der im wesentlichen gleich dem Krüm­mungsradius r der Flügelköpfe ist.
Sofern die Flügelenden nicht kreisförmig gekrümmt sind, wird die Umfangswand des Pumpengehäuses durch den Abstand von der zuvor ermittelten Kurve gefunden, den die momentanen Berühr­kanten auf ihrer Normalen zu der Flügelmittelebene haben.
Alternatively, the peripheral wall of the pump housing can be determined so that it is a self-contained curve that meets the geometric requirement that all secants through the rotor center have the same length, this length being substantially equal to the length of the wing L. This requirement applies if the wing is designed with pointed ends. If, however, as shown in FIG. 2, the wing has a large radius of curvature, then describes it the circumferential wall of the pump housing in cross section an equidistant to a self-contained curve, which meets the geometric requirement that all secants through the rotor center have the same length and are as long as the wing length L - 2r. The equidistant has a distance from this curve which is substantially equal to the radius of curvature r of the wing heads.
If the wing ends are not curved in a circle, the peripheral wall of the pump housing is found by the distance from the previously determined curve, which the current contact edges have on their normal to the wing center plane.

Zur Konstruktion des Querschnitts der Flügelzellenpumpe wird also zunächst die Flügellänge sowie der Außendurchmesser des Rotors 5 festgelegt. Die Differenz zwischen der Flügellänge und dem Außendurchmesser bestimmt sehr wesentlich das Fördervolumen der Pumpe. Die Differenz ist begrenzt durch Festigkeits- und sonstige Überlegungen. Da der Rotor im Gehäuse so gelagert ist, daß er an seiner Stelle, dem sog. unteren Totpunkt, im Umfangskontakt mit dem Gehäuse steht, taucht der Flügel 7 in dem unteren Totpunkt - wie in Fig. 2 dargestellt - vollständig in den Führungsschlitz 6 des Rotors 5 ein. Es wird nunmehr für die Krümmungsmittelpunkte K der Flügelenden die Pascalsche Spirale oder eine sonstige geschlossene Kurve um den Mittelpunkt M des Rotors 5 kon­struiert, die der Forderung genügt, daß alle Sekanten durch den Rotormittelpunkt M die gleiche Länge haben, wobei diese Länge gleich der Flügellänge zwischen den beiden Krümmungs­mitttelpunkten K ist. Die Umfangswand des Pumpengehäuses 4 ergibt sich sodann als die Äquidistante mit dem Abstand r. Die Krümmungsmittelpunkte K der Flügelenden bewegen sich also auf einer Pascalschen Spirale um den Mittelpunkt des Rotors. Dadurch ist gewährleistet, daß der Flügel stets mit seinen Flügelenden dichtend am Umfang des Pumpengehäuses 4 anliegt.For the construction of the cross section of the vane pump, the vane length and the outer diameter of the rotor 5 are first determined. The difference between the length of the wing and the outside diameter determines the delivery volume of the pump. The difference is limited by strength and other considerations. Since the rotor is mounted in the housing so that it is in circumferential contact with the housing in its place, the so-called bottom dead center, the wing 7 is completely immersed in the bottom dead center - as shown in FIG. 2 - in the guide slot 6 of the Rotor 5 a. It is now constructed for the center of curvature K of the wing ends, the Pascal spiral or another closed curve around the center M of the rotor 5, which meets the requirement that all secants through the rotor center M have the same length, this length being equal to the length of the wing between the two centers of curvature K is. The peripheral wall of the pump housing 4 then results as the equidistant with the distance r. The centers of curvature K of the wing tips thus move on a Pascal spiral around the center of the rotor. This ensures that the wing always rests with its wing ends sealingly on the circumference of the pump housing 4.

Wie Fig. 2 schematisch darstellt, besitzt das Pumpengehäuse 4 den Saugeinlaß 11 mit einem darin angeordneten Rückschlag­ventil 31 sowie einen Auslaß 12 mit einem darin angeordneten Rückschlagventil 24. Der Einlaß 11 ist etwa um 90° gegenüber der Totpunktlage versetzt und der Einlaß 12 liegt im Bereich vor dem unteren Totpunkt - in Drehrichtung 35 gesehen.As shown schematically in FIG. 2, the pump housing 4 has the suction inlet 11 with a check valve 31 arranged therein and an outlet 12 with a check valve 24 arranged therein. The inlet 11 is offset by approximately 90 ° from the dead center position and the inlet 12 is in the region before bottom dead center - seen in direction of rotation 35.

Wie Fig. 1 zeigt, ist das Einlaßventil 31 als Pilzventil ausgebildet. Es handelt sich um einen pilzförmigen Gummi­körper, der mit seinem Stil in eine gelochte Ventilplatte eingesetzt ist und der mit den Rändern seines Kopfes dich­tend auf der Ventilplatte aufliegt und dabei die Löcher der Ventilplatte umschließt. Bei eintretender Luft stülpt sich der Kopf derart in Saugrichtung um, das die Saugöffnung freigegeben wird. In der Gegenrichtung sperrt der Kopf.1 shows, the inlet valve 31 is designed as a mushroom valve. It is a mushroom-shaped rubber body, which is inserted with its style into a perforated valve plate and which rests with the edges of its head on the valve plate, sealingly enclosing the holes in the valve plate. When air enters, the head turns over in the suction direction in such a way that the suction opening is opened. The head locks in the opposite direction.

Wie Fig. 1 und Fig. 3 zeigen, weist der Auslaß zunächst eine Nut 36 in der Stirnseite des Pumpengehäuses auf, die sich über einen größeren Auslaßbereich erstreckt. Von dieser Nut aus durchdringt der Auslaßkanal 12 den Gehäusedeckel. Der Auslaßkanal 12 mündet in einer Auslaßkammer 25. Das Ventil 24 ist als Federblattventil ausgebildet, das einseitig ein­gespannt ist und die Auslaßöffnung in der Auslaßkammer 25 überdeckt. Die Auslaßkammer ist so ausgebildet, daß sie das Ventil 24 einschließt und daß sie sich an das Lagergehäuse 37 des Pumpengehäuses anschließt. Die Auslaßkammer 25 wird durch einen Deckel 32 verschlossen. Das Lagergehäuse 37 besitzt eine radiale Stichbohrung 27, die von der Auslaß­kamme 25 ausgeht und in eine Ringnut 26 mündet. Die Ringnut 26 liegt im Innenumfang des Lagergehäuses 37 und wird durch den Außenumfang des Rotors begrenzt. Die Ringnut 26 kann auch auf dem Außenumfang des Rotors gebildet und durch den Innenumfang des Lagergehäuses 37 begrenzt werden. Der Rotor besitzt eine Radialbohrung 28, die in derselben Normalebene wie die Ringnut 26 liegt und die daher die Innenbohrung 21 des Rotors mit der Ringnut verbindet. Die Radialbohrung 28 läuft um und ist in Fig. 1 nur zufällig in der Zeichnungs­ebene gelegen.As FIG. 1 and FIG. 3 show, the outlet initially has a groove 36 in the end face of the pump housing, which extends over a larger outlet area. From this groove, the outlet channel 12 penetrates the housing cover. The outlet channel 12 opens into an outlet chamber 25. The valve 24 is designed as a spring leaf valve which is clamped on one side and covers the outlet opening in the outlet chamber 25. The outlet chamber is designed so that it encloses the valve 24 and that it adjoins the bearing housing 37 of the pump housing. The outlet chamber 25 is closed by a cover 32. The bearing housing 37 has a radial tap bore 27 which starts from the outlet comb 25 and opens into an annular groove 26. The annular groove 26 lies in the inner circumference of the bearing housing 37 and is delimited by the outer circumference of the rotor. The annular groove 26 can also be formed on the outer circumference of the rotor and delimited by the inner circumference of the bearing housing 37. The rotor has a radial bore 28 which lies in the same normal plane as the annular groove 26 and which therefore connects the inner bore 21 of the rotor with the annular groove. The radial bore 28 rotates and is located only by chance in the plane of the drawing in FIG. 1.

Der Rotor weist an seinem Lagerende, das in das Kurbelge­häuse 2 ragt, eine etwas vergrößerte Ausdrehung auf, in die eine Antriebswelle des Motors mit ihrer Kupplungsscheibe 15 hineinragt. Bei der Antriebswelle 3 kann es sich z.B. um die Antriebswelle für die Einspritzpumpe handeln. Die Kupplungs­scheibe 15 wird mit Schraube 18 auf der Antriebswelle befe­stigt. Die Kupplungsscheibe 15 besitzt an einer Stelle ihres Umfangs einen Kupplungslappen 16, der in einen Einschnitt 17 (vgl. Fig. 3) des Rotors 5 eingreift, ohne die axiale Beweg­lichkeit des Rotors zu hindern. Die Antriebswelle 3 und die Schraube 18 besitzen eine zentrische Ölzufuhrbohrung 19. In der Schraube gabelt sich diese axiale Bohrung in zwei oder mehr Öleinspritzbohrungen 20, wobei die Öleinspritzbohrungen 20 in die Innenbohrung 21 des Rotors 5 derart gerichtet sind, daß sie den Flügel 7 nicht treffen.At its end of the bearing, which protrudes into the crankcase 2, the rotor has a somewhat enlarged turn, into which a drive shaft of the motor projects with its clutch disc 15. The drive shaft 3 can e.g. are the drive shaft for the injection pump. The clutch disc 15 is fastened with screw 18 on the drive shaft. The clutch disc 15 has at one point on its circumference a clutch tab 16 which engages in an incision 17 (see FIG. 3) of the rotor 5 without preventing the axial mobility of the rotor. The drive shaft 3 and the screw 18 have a central oil feed bore 19. In the screw, this axial bore bifurcates into two or more oil injection bores 20, the oil injection bores 20 being directed into the inner bore 21 of the rotor 5 in such a way that they do not hit the wing 7 .

Der Rotor besitzt in seiner Innenbohrung 21 einen umlaufen­den Bund 22, der zwischen dem Radialkanal 28 und dem Rotor­ende angebracht ist. Es sei bemerkt, daß der Rotor an seinem freien Ende offen ist; das heißt: Der Innenumfang des Bundes 22 bildet mit dem Kopf der Schraube 18 und die Kupplungs­scheibe 15 bildet mit der Ausdrehung 23 einen Ringspalt, der die Innenbohrung 21 des Rotors mit dem Kupplungsgehäuse verbindet.The rotor has in its inner bore 21 a circumferential collar 22 which is attached between the radial channel 28 and the rotor end. It should be noted that the rotor is open at its free end; This means that the inner circumference of the collar 22 forms with the head of the screw 18 and the clutch disc 15 forms an annular gap with the recess 23, which connects the inner bore 21 of the rotor with the clutch housing.

Der Rotor 5 wird durch Antriebswelle 3 mit Drehrichtung 35 angetrieben. Dabei führt der Flügel 7 in dem Führungsschlitz 6 eine Relativbewegung aus und liegt mit seinen beiden Enden dichtend und gleitend am Gehäuseumfang des Pumpengehäuses 4 an.The rotor 5 is driven by the drive shaft 3 with the direction of rotation 35. The vane 7 executes a relative movement in the guide slot 6 and lies with its two ends in a sealing and sliding manner on the housing periphery of the pump housing 4.

Der große Krümmungsradius der Flügelenden hat den Vorteil, daß die Flächenpressung des Flügels am Gehäuseumfang gering ist, daß andererseits aber zwischen jedem Flügelkopf und dem Gehäuseumfang ein verhältnismäßig breiter Spalt entsteht. In diesem Spalt kann sich ein Ölpolster ausbilden, das einer­ seits dynamisch tragfähig ist und andererseits eine gute Dichtwirkung hat. Infolge des großen Krümmungsradius wechselt die Anlagelinie des Flügelkopfes am Gehäuseumfang ständig. Dies hat einerseits eine gute Kühlung zur Folge, so daß es nicht zu örtlichen Überhitzungen des Flügels infolge der Reibung kommt. Zum anderen wird hierdurch auch der Verschleiß gemindert und im übrigen eine gleichmäßige Ver­teilung des Verschleißes bewirkt, so daß mit einer langen Standzeit des Flügels zu rechnen ist.The large radius of curvature of the wing ends has the advantage that the surface pressure of the wing on the housing periphery is low, but that on the other hand a relatively wide gap is created between each wing head and the housing periphery. An oil cushion can form in this gap on the one hand is dynamically stable and on the other hand has a good sealing effect. Due to the large radius of curvature, the contact line of the wing head on the circumference of the housing changes constantly. On the one hand, this results in good cooling, so that there is no local overheating of the wing as a result of the friction. On the other hand, this also reduces wear and, moreover, causes an even distribution of wear, so that a long service life of the wing can be expected.

Die Erfindung gestattet die Verwendung eines Flügels mit großen Kopfradien und gewährleistet trotzdem eine satte Anlage der Flügelköpfe am Gehäuseumfang in jeder Drehlage, und zwar dadurch, daß das Pumpengehäuse im Querschnitt als Äquidistante ausgebildet wird zu einer Pascalschen Spirale, die für den Mittelpunkt des Krümmungskreises der Flügelköpfe konstruiert ist.The invention allows the use of a wing with large head radii and still ensures a snug fit of the wing heads on the housing circumference in any rotational position, namely in that the pump housing is designed in cross section as an equidistant to a Pascal spiral, which is the center of the curvature circle of the wing heads is constructed.

Dabei ist die Verwendung eines Flügels mit Dichtleisten 8 an den Flügelköpfen nicht unbedingt erforderlich. Die Dicht­leisten können jedoch zum Ausgleich von Toleranzen und zum Ausgleich eines Verschleißes des Pumpengehäuses und der Flügel dienen. Bei Verwendung der Dichtleisten ist von besonderer Wichtigkeit, daß die Dichtleisten außerhalb der Führungsnut 9 wesentlich, und zwar bis auf annähernd die Flügelbreite verbreitert sind. Hierdurch wird ermöglicht, daß auch die Dichtleisten mit einem großen Krümmungsradius hergestellt werden können, so daß sich die Anlagelinien der Köpfe der Dichtleisten 8 bein einer Rotorumdrehung in einem weitern Bereich ändert. Wenn die Kopfenden der Dichtleisten annähernd so dick wie der Flügel ausgebildet sind, so hat dies den Vorteil, daß in der unteren Totlage - wie Fig. 2 zeigt - nur eine geringe Ölmenge in dem Führungsschlitz 6 des Rotors eingeschlossen ist und mitgeschleppt wird. Ande­rerseits wird dadurch, daß das Kopfende der Dichtleiste etwas schmaler als der Flügel ist, verhindert, daß die Dichtleisten beim Einfahren des Flügels mit der Dichtleiste in den Rotorschlitz an den Längskanten des Rotorschlitzes hängenbleiben.The use of a wing with sealing strips 8 on the wing heads is not absolutely necessary. However, the sealing strips can serve to compensate for tolerances and to compensate for wear on the pump housing and the vanes. When using the sealing strips, it is of particular importance that the sealing strips outside the guide groove 9 are significantly widened to approximately the wing width. This enables the sealing strips to be manufactured with a large radius of curvature, so that the contact lines of the heads of the sealing strips 8 change over a wide range during a rotor revolution. If the head ends of the sealing strips are approximately as thick as the wing, this has the advantage that in the bottom dead center position, as shown in FIG. 2, only a small amount of oil is enclosed in the guide slot 6 of the rotor and is carried along. On the other hand, the fact that the head end of the sealing strip is somewhat narrower than the wing prevents the Sealing strips get stuck in the rotor slot on the longitudinal edges of the rotor slot when the wing is inserted with the sealing strip.

Wie sich insbesondere aus Fig. 1 ergibt, ist der Rotor ein Rohr, das über seine gesamte Länge gleichen Außendurchmesser hat. Gegenüber der üblichen Ausführung, bei der die Rotor­welle einen kleineren Durchmesser als der Rotor hat, gewinnt der Rotor an Stabilität. Wegen dieser verbesserten Stabili­tät ist es möglich, den Rotor dünnwandig und damit massearm auszuführen. Die Wandstärke ist bei dieser Ausgestaltung des Rotors dadurch begrenzt, daß die Rotorwandung im Führungs­schlitz 6 eine gute, d.h. gut dichtende und geringe Flächen­pressung verursachende Führung für den Flügel darstellen muß.1, the rotor is a tube which has the same outer diameter over its entire length. Compared to the usual design, in which the rotor shaft has a smaller diameter than the rotor, the rotor gains stability. Because of this improved stability, it is possible to make the rotor thin-walled and therefore low-mass. In this embodiment of the rotor, the wall thickness is limited in that the rotor wall in the guide slot 6 has a good, i.e. good sealing and low surface pressure causing guide for the wing must represent.

Bei dieser Ausgestaltung des Rotors wird ferner ein verhält­nismäßig kleiner Außendurchmesser des Rotors ermöglicht, wobei man wissen muß, daß die Differenz zwischen Flügel­längen und Außendurchmesser des Rotors - abgesehen von der Flügeldicke - im wesentlichen das Fördervolumen der Pumpe bestimmt.In this embodiment of the rotor, a relatively small outer diameter of the rotor is also made possible, it being necessary to know that the difference between the wing lengths and the outer diameter of the rotor - apart from the wing thickness - essentially determines the delivery volume of the pump.

Die Ausbildung des Rotors hat aber auch weitere Vorteile: Wie aus Fig. 1 ersichtlich, befindet sich der Lagerbereich im Lagergehäuse 37 in unmittelbarer Nachbarschaft zu den im Pumpengehäuse gebildeten Flügelkammern. Infolge dieser unmittelbaren Verbindung zwischen den Flügelkammern und dem Gleitlager ist der Gleitlagerbereich ständig wechselnden Druckgradienten unterworfen. Hierdurch wird eine gute Ver­teilung des Schmieröls im Lagerbereich bewirkt.The design of the rotor also has other advantages: As can be seen from FIG. 1, the bearing area in the bearing housing 37 is in the immediate vicinity of the vane chambers formed in the pump housing. As a result of this direct connection between the vane chambers and the slide bearing, the slide bearing area is subject to constantly changing pressure gradients. This results in a good distribution of the lubricating oil in the bearing area.

Ganz entscheidend ist aber, daß ein Rotor dieser Art sich besonders gut im Gehäuse abdichten läßt. Die kritischen Dichtstellen des Rotors von Flügelzellenpumpen sind üblicherweise die Spalte, die zwischen den Stirnflächen des Rotors einerseits und des Pumpengehäuses andererseits gebil­det werden. Wenn bei den bekannten Flügelzellenpumpen, deren Rotor einen größeren Durchmesser als die Rotorwelle hat, eine Stirnfläche des Rotors dicht an die Stirnfläche des Pumpengehäuses gedrückt wird, so entsteht auf der anderen Seite ein um so größerer Spalt. Dies ist hier, wo Rotorwelle und Rotor gleichen Außendurchmesser haben, nicht der Fall. Die Dichtung des Spalts 33 zwischen der Rotorstirnfläche und der anliegenden Gehäusewand erfolgt dadurch, daß sich in dem Spalt 33 der im Pumpengehäuse herrschende Unterdruck fort­setzt. Es bildet sich also in diesem Spalt ein zentrales Druckgradientenfeld aus. Auf der Lagerseite ist die Rotor­stirnfläche dem Atmosphärendruck ausgesetzt. Es herrscht also eine resultierende Druckkraft, die den Rotor mit seiner vom Lager abgewandten Stirnfläche gegen die entsprechende Stirnfläche des Pumpengehäuses dichtend drück. Dabei entsteht ein Selbstregeleffekt. Bei großem Spalt 33 baut sich der Unterdruck im Pumpengehäuse 4 nur auf einer ver­hältnismäßig großen radialen Länge des Spaltes ab, so daß die mit Unterdruck beaufschlagte Ringfläche groß und damit auch die Differenz der Druckkräfte, die auf die beiden ent­gegengesetzten Stirnflächen des Rotors einwirken, groß ist. Diese große Differenz wirkt im Sinne einer Verkleinerung des Spalts und damit einer besseren Abdichtung. Er erfolgt damit ein automatisches Einpendeln der Anpreßkraft auf einen Wert, der einen optimalen Kompromiß zwischen Abdichtung einerseits und Verschleiß andererseits darstellt.However, it is crucial that a rotor of this type can be sealed particularly well in the housing. The critical sealing points of the rotor of vane pumps are Usually the gaps that are formed between the end faces of the rotor on the one hand and the pump housing on the other. If, in the known vane pumps, the rotor of which has a larger diameter than the rotor shaft, an end face of the rotor is pressed close to the end face of the pump housing, a gap that is all the greater is created on the other side. This is not the case here, where the rotor shaft and rotor have the same outside diameter. The gap 33 is sealed between the rotor end face and the adjacent housing wall in that the vacuum prevailing in the pump housing continues in the gap 33. A central pressure gradient field is thus formed in this gap. On the bearing side, the rotor face is exposed to atmospheric pressure. There is therefore a resulting compressive force which presses the rotor with its end face facing away from the bearing in a sealing manner against the corresponding end face of the pump housing. This creates a self-regulating effect. In the case of a large gap 33, the negative pressure in the pump housing 4 is reduced only over a relatively large radial length of the gap, so that the annular area which is subjected to negative pressure is large and thus also the difference in the compressive forces which act on the two opposite end faces of the rotor is large . This large difference works in the sense of a reduction in the gap and thus a better seal. It therefore automatically adjusts the contact pressure to a value that represents an optimal compromise between sealing on the one hand and wear on the other.

Bei dieser Ausführung des Rotors ist es nicht erforderlich, Rotor und Pumpengehäuse aus Materialien mit gleichem Wärme­ausdehnungskoeffizienten herzustellen. Denn es ist aus Fig. 1 ersichtlich, daß die gute Abdichtung des Rotors auf der einen Seite keine Umdichtigkeit auf der Gegenseite bewirkt, da sich die Verhältnisse im Gleitlager 37 bei Axialverschie­bung des Rotors nicht ändern. Das Gleitlager andererseits ist dichtungsmäßig auch unproblematisch, da es beliebig lang ausgeführt werden kann, so daß Spaltänderungen des Lager­spaltes z.B. infolge Temperaturänderungen ohne nachteilige Auswirkungen bleiben.With this version of the rotor, it is not necessary to manufacture the rotor and pump housing from materials with the same coefficient of thermal expansion. Because it can be seen from FIG. 1 that the good sealing of the rotor on one side does not cause any leaks on the opposite side, since the conditions in the slide bearing 37 do not change when the rotor is axially displaced. The plain bearing, on the other hand is also unproblematic in terms of seal, since it can be of any length, so that gap changes in the bearing gap, for example as a result of temperature changes, have no adverse effects.

Eine weitere Besonderheit der Pumpe besteht darin, daß der Luftauslaß zunächst mit seinem ganzen Querschnitt in das Rotorinnere zurückgeführt ist und über das Rotorinnere in das Kurbelgehäuse des Motors mündet. Diese Maßnahme dient der Herstellung eines Ölkreislaufs. Das Schmieröl wird der Pumpe durch Ölzufuhrbohrung 19 und Öleinspritzbohrungen 20 zugeführt. Dabei gelangt das Öl zunächst in die Innenbohrung des Rotors 5, und zwar in den Bereich des Führungsschlitzes 6. Infolge der Zentrifugalkraft wird das Öl als Film oder Mantel auf dem Innenumfang des Rotors verteilt. Dieser Mantel umgibt auch die Spalte, die der Führungsschlitz 6 mit dem Flügel 7 bildet. Es ist weiter zu berücksichtigen, daß das gesamte Pumpengehäuse 4 außerhalb des Rotors unter Unterdruck steht, und zwar nicht nur auf der Saugseite, sondern - zunachst nach kurzem Betrieb - auch auf der sog. Auslaßseite im Bereich des Auslasses 12. Dies wird dadurch bewirkt, daß das Pumpengehäuse durch die Rückschlagventile 31 und 24 nur in Saugrichtung durchströmt werden kann. Infolge des Unterdrucks im Pumpengehäuse 4 und infolge der Zentrifugalkräfte wird nun das Öl, das sich auf den Innenum­fang des Rotors 5 legt, in die Dichtspalte des Führungs­schlitzes 6 sowie in den Dichtspalt 33, den die Stirnseite des Rotors mit der Stirnseite des Pumpengehäuses 4 bildet, hineingezogen und in die Flügelzellen gefördert. In den Flügelzellen wird das Schmieröl durch den umlaufenden Flügel mitgerissen und bildet in den Schmierspalten zwischen den Flügelköpfen und dem Gehäuseumfang einen Schmier- und Dicht­film. Gleichzeitig wird aber auch das Schmieröl durch die Auslaßnut 36 und den Auslaßkanal 12 mit der Auslaßluft zurück in die Auslaßkammer 25 gefördert. Von dort gelangt das Schmieröl durch Stichbohrung 27 in die Ringnut 26. Diese Ringnut 26 steht unter atmosphärischem Druck. Daher kann sich das Schmieröl von hier in die Lagerspalte und die Schmiernut des Lagers verteilen. Es wird zum Teil durch die Lagerspalte zurück in den Pumpenraum des Pumpengehäuses 4 gesaugt; ein anderer Teil sickert in das Kurbelgehäuse. Die Hauptmenge des in der Abluft enthaltenen Schmieröls wird jedoch zurück in die Innenbohrung 21 des Rotors gefördert. Von dort können überschüssige Schmierölmengen durch die Ringspalte, die zwischen der Antriebswelle 3 bzw. Kupplungs­welle 15 und Schraube 18 zum Rotor hin gebildet werden, in das Kurbelgehäuse zurücklaufen. Insbesondere kann, wenn das Ölangebot durch Ölzufuhrbohrung 19 gering ist, kann dieser Rücklauf jedoch auch durch Anbringung der Wulst bzw. des Bundes 22 verhindert werden. Die radiale Höhe des Bundes 22 bestimmt, eine wie große Menge des bereitgestellten Öls im Kreislauf der Flügelzellenpumpe bleiben soll. Infolge der Zentrifugalkraft bildet sich zusammen mit dem durch Ölzu­fuhrbohrung 19 zugeführten Öl ein Mantel auf dem Innenumfang der Innenbohrung 21, der die Schichtdicke des Bundes 22 hat. Die Ölzufuhr von außen kann mithin auf die geringen Mengen begrenzt werden, die im Gleitlager 37 verlorengehen, d.h. direkt wieder in das Kurbelgehäuse abgeführt werden.Another special feature of the pump is that the air outlet is initially returned with its entire cross section to the inside of the rotor and opens into the crankcase of the engine via the inside of the rotor. This measure is used to create an oil circuit. The lubricating oil is supplied to the pump through oil supply bore 19 and oil injection bores 20. The oil first gets into the inner bore of the rotor 5, specifically in the region of the guide slot 6. As a result of the centrifugal force, the oil is distributed as a film or jacket on the inner circumference of the rotor. This jacket also surrounds the gaps which the guide slot 6 forms with the wing 7. It must also be taken into account that the entire pump housing 4 is under negative pressure outside the rotor, not only on the suction side, but - initially after a short period of operation - also on the so-called outlet side in the area of the outlet 12. that the pump housing can only flow through the check valves 31 and 24 in the suction direction. As a result of the negative pressure in the pump housing 4 and due to the centrifugal forces, the oil which lies on the inner circumference of the rotor 5 is now in the sealing gap of the guide slot 6 and in the sealing gap 33 which the end face of the rotor forms with the end face of the pump housing 4. drawn in and conveyed into the wing cells. In the wing cells, the lubricating oil is entrained by the surrounding wing and forms a lubricating and sealing film in the lubricating gaps between the wing heads and the housing circumference. At the same time, however, the lubricating oil is also conveyed back into the outlet chamber 25 through the outlet groove 36 and the outlet channel 12 with the outlet air. From there, the lubricating oil passes through the tap hole 27 into the annular groove 26. This Ring groove 26 is under atmospheric pressure. Therefore, the lubricating oil can spread from here into the bearing gaps and the lubrication groove of the bearing. It is partly sucked back through the bearing gaps into the pump chamber of the pump housing 4; another part seeps into the crankcase. However, the majority of the lubricating oil contained in the exhaust air is conveyed back into the inner bore 21 of the rotor. From there, excess amounts of lubricating oil can run back into the crankcase through the annular gaps formed between the drive shaft 3 or coupling shaft 15 and screw 18 towards the rotor. In particular, if the oil supply through oil supply bore 19 is small, this return can also be prevented by attaching the bead or collar 22. The radial height of the collar 22 determines how large an amount of the oil provided should remain in the vane pump circuit. As a result of the centrifugal force, a jacket is formed on the inner circumference of the inner bore 21 together with the oil supplied through the oil feed bore 19 and has the layer thickness of the collar 22. The oil supply from the outside can therefore be limited to the small amounts that are lost in the plain bearing 37, that is to say are discharged directly back into the crankcase.

Die Ölmenge, die sich im Kreislauf befindet, bestimmt dabei nicht nur die Schmier-, sondern auch die Dichtwirkung in den Bereichen der Spalte.The amount of oil in the circuit determines not only the lubricating, but also the sealing effect in the areas of the gaps.

Es sei bemerkt, daß alternativ der Auslaß 12 auch auf der anderen Stirnseite des Pumpengehäuses angeordnet werden kann. In diesem Fall wird auf der Außenseite dieser anderen Stirnseite ebenfalls eine Ventilkammer mit Rückschlagventil vorgesehen. Diese Ventilkammer wird durch einen radial nach innen führenden Kanal und einen achsparallelen Stichkanal zurück in den durch die Innenbohrung 21 gebildeten Raum geführt.It should be noted that, alternatively, the outlet 12 can also be arranged on the other end of the pump housing. In this case, a valve chamber with a check valve is also provided on the outside of this other end face. This valve chamber is led back through a radially inward channel and an axially parallel branch channel back into the space formed by the inner bore 21.

Ferner ist es möglich, Auslaßkanäle im Pumpenbereich des Rotors vorzusehen, wobei sodann jeweils ein radialer Auslaß­kanal mit Rückschlagventil jeder Flügelzelle zugeordnet ist. Auch hierdurch wird gewährleistet, daß die Abluft und die darin enthaltenen Schmierölmengen in das Motorinnere zurückgeführt und die Schmierölmengen wieder zur Schmierung bereitstehen. Der Bund 22 ist in jedem Falls irgendwo zwischen der Einmündung des Auslasses in die Innenbohrung 21 des Rotors und dem freien Rotorende vorgesehen. Dabei liegt der Bund vorzugsweise zwischen dem freien Rotorende und dem Beginn des Flügelschlitzes, so daß die rückgeführten und gestauten Schmierölmengen vor allem auch zur Schmierung und Dichtung der Spalte zwischen Führungsschlitz 6 und Flügel bereitstehen.It is also possible to provide outlet channels in the pump area of the rotor, in which case a radial outlet channel with a check valve is then assigned to each vane cell. This also ensures that the exhaust air and the amounts of lubricating oil contained therein are returned to the interior of the engine and the amounts of lubricating oil are available again for lubrication. The collar 22 is in any case provided somewhere between the opening of the outlet in the inner bore 21 of the rotor and the free rotor end. The collar is preferably located between the free end of the rotor and the beginning of the wing slot, so that the returned and accumulated amounts of lubricating oil are available especially for lubrication and sealing of the gaps between the guide slot 6 and wing.

BEZUGSZEICHENAUFSTELLUNGREFERENCE SIGN LISTING

  • 1 Flügelzellenpumpe1 vane pump
  • 2 Motorgehäuse, Kurbelgehäuse2 engine housing, crankcase
  • 3 Antriebswelle, Motorwelle, Nockenwelle3 drive shaft, motor shaft, camshaft
  • 4 Pumpengehäuse4 pump housings
  • 5 Pumpenrotor5 pump rotor
  • 6 Rotorschlitz, Führungsschlitz6 rotor slot, guide slot
  • 7 Flügel7 wings
  • 8 Dichtleiste8 sealing strip
  • 9 Nut9 groove
  • 10 Entlüftungsbohrung10 vent hole
  • 11 Einlaß, Sauganschluß11 inlet, suction connection
  • 12 Auslaß12 outlet
  • 13 Flansch13 flange
  • 14 Dichtung14 seal
  • 15 Kupplungsscheibe15 clutch disc
  • 16 Kupplungslappen16 clutch tabs
  • 17 Einschnitt17 incision
  • 18 Schraube18 screw
  • 19 Ölzufuhrbohrung19 oil supply hole
  • 20 Öleinspritzbohrung20 oil injection hole
  • 21 Innenbohrung des Rotors21 inner bore of the rotor
  • 22 Bund22 fret
  • 23 Ringspalt, Ausdrehung23 Annular gap, turning out
  • 24 Rückschlagventil, Auslaßventil24 check valve, outlet valve
  • 25 Auslaßkammer25 outlet chamber
  • 26 Ringnut26 ring groove
  • 27 Stichbohrung27 tap hole
  • 28 Rotorbohrung, Radialbohrung28 rotor bore, radial bore
  • 29 Äquidistante29 equidistant
  • 30 Drehrichtung30 direction of rotation
  • 31 Einlaßventil31 inlet valve
  • 32 Deckel32 lids
  • 33 Ringspalt33 annular gap
  • 34 Axialnut34 axial groove
  • 35 Drehrichtung35 Direction of rotation
  • 36 Nut36 groove
  • 37 Lagergehäuse37 bearing housing

Claims (4)

1. Flügelzellen-Vakuumpumpe,
deren Rotor zur Flügelführung fliegend einseitig gela­gert und mit dem einseitig angesetzten Lageransatz aus einem Stück hergestellt ist,
dadurch gekennzeichnet, daß
der Rotor und der Lageransatz denselben Außendurchmesser haben.
1. vane vacuum pump,
whose rotor for the wing guidance is overhung on one side and made from one piece with the bearing attachment attached on one side,
characterized in that
the rotor and the bearing boss have the same outside diameter.
2. Flügelzellen-Vakuumpumpe nach Anspruch 1,
dadurch gekennzeichnet, daß
Rotor und Lageransatz auch denselben Innendurchmesser haben.
2. vane vacuum pump according to claim 1,
characterized in that
The rotor and bearing boss also have the same inside diameter.
3. Flügelzellen-Vakuumpumpe nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
der Rotor axial beweglich gelagert und mit einer Antriebswelle (3) axial beweglich gekuppelt ist
und an der Antriebsseite unter atmosphärischem Druck steht.
3. vane vacuum pump according to claim 1 or 2,
characterized in that
the rotor is mounted so that it can move axially and is axially movably coupled to a drive shaft (3)
and is under atmospheric pressure on the drive side.
4. Flügelzellen-Vakuumpumpe nach einem der vorangegangenen Ansprüche,
gekennzeichnet durch
eine Gleitlagerung des Rotors.
4. vane vacuum pump according to one of the preceding claims,
marked by
a slide bearing of the rotor.
EP87114808A 1986-10-18 1987-10-10 Sliding vane vacuum pump Expired - Lifetime EP0264749B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3635493 1986-10-18
DE3635493 1986-10-18

Publications (3)

Publication Number Publication Date
EP0264749A2 true EP0264749A2 (en) 1988-04-27
EP0264749A3 EP0264749A3 (en) 1988-11-17
EP0264749B1 EP0264749B1 (en) 1990-05-09

Family

ID=6311978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87114808A Expired - Lifetime EP0264749B1 (en) 1986-10-18 1987-10-10 Sliding vane vacuum pump

Country Status (2)

Country Link
EP (1) EP0264749B1 (en)
DE (1) DE3762651D1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640699A1 (en) * 1988-12-21 1990-06-22 Bar Ag Ag Vane-type vacuum pump
DE4107720A1 (en) * 1990-03-10 1991-10-10 Barmag Luk Automobiltech Single rotary vane pump - has valve connected to shaft via sliding bar linkage
FR2815384A1 (en) * 2000-10-18 2002-04-19 Luk Automobiltech Gmbh & Co Kg Outlet, from pump, is constructed as tubular plug in element, which fits into tubular receptacle in pump body and locates a non-return valve; plug in element is held in place by retainer.
US6743004B2 (en) 1998-09-30 2004-06-01 Luk. Automobiltechnik Gmbh & Co. Kg. Vacuum pump
FR2869958A1 (en) * 2004-05-07 2005-11-11 Peugeot Citroen Automobiles Sa Vacuum pump for e.g. diesel engine, has rotor with part, that is situated inside hollow body, having same cylindrical section as that of part situated outside the body, where section corresponds to nominal diameter of rotor
ES2307417A1 (en) * 2000-10-18 2008-11-16 LUK AUTOMOBILTECHNIK GMBH & CO .KG Bomb (Machine-translation by Google Translate, not legally binding)
WO2010031504A2 (en) * 2008-09-16 2010-03-25 Ixetic Hückeswagen Gmbh Vacuum pump
ITMI20101984A1 (en) * 2010-10-26 2012-04-27 O M P Officine Mazzocco Pagnoni S R L MONOPAL PUMP
US10696280B2 (en) 2015-03-25 2020-06-30 Pierburg Pump Technology Gmbh Vacuum pump with rotor shaft supported by friction bearings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1948804A1 (en) * 1968-11-29 1970-07-02 Prec Scient Company Vacuum pump
DE2354039A1 (en) * 1973-10-29 1975-05-07 Leybold Heraeus Gmbh & Co Kg ROTARY VALVE PUMP
US4231727A (en) * 1976-07-10 1980-11-04 Volkswagenwerk Aktiengesellschaft Vacuum producing rotary vane pump with shaft lubrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1948804A1 (en) * 1968-11-29 1970-07-02 Prec Scient Company Vacuum pump
DE2354039A1 (en) * 1973-10-29 1975-05-07 Leybold Heraeus Gmbh & Co Kg ROTARY VALVE PUMP
US4231727A (en) * 1976-07-10 1980-11-04 Volkswagenwerk Aktiengesellschaft Vacuum producing rotary vane pump with shaft lubrication

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640699A1 (en) * 1988-12-21 1990-06-22 Bar Ag Ag Vane-type vacuum pump
DE4107720A1 (en) * 1990-03-10 1991-10-10 Barmag Luk Automobiltech Single rotary vane pump - has valve connected to shaft via sliding bar linkage
DE4107720C2 (en) * 1990-03-10 2002-10-24 Luk Automobiltech Gmbh & Co Kg Vane pump
DE19964598B4 (en) * 1998-09-30 2013-12-12 Ixetic Hückeswagen Gmbh vacuum pump
US6743004B2 (en) 1998-09-30 2004-06-01 Luk. Automobiltechnik Gmbh & Co. Kg. Vacuum pump
US6923628B1 (en) * 1998-09-30 2005-08-02 Luk, Automobitechnik Gmbh Vacuum pump
DE19981942B4 (en) * 1998-09-30 2009-07-23 Ixetic Hückeswagen Gmbh vacuum pump
FR2815384A1 (en) * 2000-10-18 2002-04-19 Luk Automobiltech Gmbh & Co Kg Outlet, from pump, is constructed as tubular plug in element, which fits into tubular receptacle in pump body and locates a non-return valve; plug in element is held in place by retainer.
WO2002033263A2 (en) * 2000-10-18 2002-04-25 Luk Automobiltechnik Gmbh & Co.Kg Pump
WO2002033263A3 (en) * 2000-10-18 2002-11-28 Luk Automobiltech Gmbh & Co Kg Pump
ES2264306A1 (en) * 2000-10-18 2006-12-16 LUK AUTOMOBILTECHNIK GMBH & CO.KG. Pump
ES2307417A1 (en) * 2000-10-18 2008-11-16 LUK AUTOMOBILTECHNIK GMBH & CO .KG Bomb (Machine-translation by Google Translate, not legally binding)
FR2869958A1 (en) * 2004-05-07 2005-11-11 Peugeot Citroen Automobiles Sa Vacuum pump for e.g. diesel engine, has rotor with part, that is situated inside hollow body, having same cylindrical section as that of part situated outside the body, where section corresponds to nominal diameter of rotor
WO2010031504A3 (en) * 2008-09-16 2010-09-02 Ixetic Hückeswagen Gmbh Vacuum pump
WO2010031504A2 (en) * 2008-09-16 2010-03-25 Ixetic Hückeswagen Gmbh Vacuum pump
ITMI20101984A1 (en) * 2010-10-26 2012-04-27 O M P Officine Mazzocco Pagnoni S R L MONOPAL PUMP
US10696280B2 (en) 2015-03-25 2020-06-30 Pierburg Pump Technology Gmbh Vacuum pump with rotor shaft supported by friction bearings

Also Published As

Publication number Publication date
EP0264749B1 (en) 1990-05-09
EP0264749A3 (en) 1988-11-17
DE3762651D1 (en) 1990-06-13

Similar Documents

Publication Publication Date Title
DE3928029C2 (en)
DE2905867C2 (en) Sealing device
DE102013219405A1 (en) VALVE TIMING CONTROL DEVICE
EP0264778B1 (en) Vane pump
DE3734573C2 (en) Vane vacuum pump
EP0264749B1 (en) Sliding vane vacuum pump
DE1294205B (en) Rotating positive displacement pump
WO1999017030A1 (en) Radial oscillating motor
EP0839283B1 (en) Oil-sealed vane-type rotary vacuum pump with oil feed
EP0713973A1 (en) Lubricant pump
DE2262569A1 (en) CONVEYOR UNIT FOR LIQUIDS
DE3303247C2 (en) Vane compressors
DE19513822C2 (en) Device for delivering fuel from a storage tank to an internal combustion engine of a motor vehicle
DE3813132A1 (en) Vane-cell pump
DE3417038C3 (en) Canned motor pump for pumping especially gas-laden liquids
DE3906823A1 (en) Vane vacuum pump
DE3841329C2 (en) Vane vacuum pump
WO1993024753A1 (en) Double pump
DE212017000110U1 (en) pump device
EP0320795B1 (en) Vane-type vacuum pump
DE3740365C2 (en)
DE112015005940T5 (en) Pump device for use in automatic transmission or pump device
DE19916370A1 (en) Centrifugal pump
DE19742882C1 (en) Radial engine for motor vehicle
DE3623392A1 (en) Pump combination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890502

17Q First examination report despatched

Effective date: 19891011

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3762651

Country of ref document: DE

Date of ref document: 19900613

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LEYBOLD AKTIENGESELLSCHAFT

Effective date: 19910207

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931001

Year of fee payment: 7

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19931214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941010

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011018

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011116

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051010