EP0258734B1 - Layered building panel and method of manufacturing it - Google Patents

Layered building panel and method of manufacturing it Download PDF

Info

Publication number
EP0258734B1
EP0258734B1 EP87111975A EP87111975A EP0258734B1 EP 0258734 B1 EP0258734 B1 EP 0258734B1 EP 87111975 A EP87111975 A EP 87111975A EP 87111975 A EP87111975 A EP 87111975A EP 0258734 B1 EP0258734 B1 EP 0258734B1
Authority
EP
European Patent Office
Prior art keywords
binder
aggregate
layer
water
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111975A
Other languages
German (de)
French (fr)
Other versions
EP0258734A3 (en
EP0258734A2 (en
Inventor
Gert Kossatz
Wolfgang Heine
Karsten Lempfer
Heinz Sattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to AT87111975T priority Critical patent/ATE70583T1/en
Publication of EP0258734A2 publication Critical patent/EP0258734A2/en
Publication of EP0258734A3 publication Critical patent/EP0258734A3/en
Application granted granted Critical
Publication of EP0258734B1 publication Critical patent/EP0258734B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/525Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing organic fibres, e.g. wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0092Machines or methods for applying the material to surfaces to form a permanent layer thereon to webs, sheets or the like, e.g. of paper, cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/57Processes of forming layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]

Definitions

  • the present invention relates to a building board in a layered structure with good elastomechanical and fire protection properties, preferably for use as a double or multiple floor in the furnishing of computer rooms, and a method for its production.
  • Such a combination is carried out in an already known process in that, in the wet process, glass fibers as mats or fabrics are inserted in amounts of up to 10% by mass in Purgips plates, the poor elastomechanical properties of the Purgips plate being improved by the combination with the glass fibers.
  • Adhesive connections have disadvantages due to the age-related embrittlement and the requirement for the joint fit, which can have an effect especially on load-bearing components.
  • individual prefabricated layers are subsequently screwed together or connected in some other way.
  • mechanical post-assembly is currently preferred.
  • a support layer in a binder suspension which is in the flowable state, is therefore pressed in to the extent that the cured state produces an adhesive strength between the two layers in the hardened state.
  • the particle board surface is roughened with coarse sandpaper or grooved to improve the adhesion between the plaster top layer and the main particle board layer.
  • the bond between the plaster layer and the particle board layer is insufficient, so that the multilayer plate tends to lose its adhesion at the interface between the particle board and the plaster layer.
  • a gypsum-glass fiber layer is used as an intermediate layer between two chipboards, there is a risk that the chipboard layers will no longer adhere to one another due to the low adhesive properties of the gypsum layer when subjected to strong elastomechanical stress.
  • EP 0 019 207 discloses a method for producing gypsum components, in particular gypsum boards, in which a so-called “semi-dry method” is used. It can also be seen from EP 0 019 207 that this "semi-dry process" can be used to produce a layered structure.
  • DE-OS 28 54 228 also describes a gas concrete component and a method for producing it.
  • This gas concrete part has a layered structure made of a glass fiber mat, which is connected to the component via a mortar layer.
  • the building board according to the invention has either an edge layer or an intermediate layer or a combination of edge and intermediate layer or a combination of edge and intermediate layers made of a binder, which are relatively thin compared to one or more main layers consisting of a mixture of binder and aggregate - or reinforcement materials are composed. Reinforcements are introduced in the edge and / or intermediate layers, which are arranged in a preferred embodiment in an area close to the edge and in another preferred embodiment directly in the edge area of the binder edge layer.
  • the basic idea of the invention is that for the best possible connection between the individual layers of the building board in the layer structure Formation of an interface between the individual layers of the building board in the layer structure, the formation of an interface between the individual layers is suppressed in order to form a continuous transition region between the individual boundary, main and intermediate layers.
  • the reinforcement consists of a fiber insert, which in turn can be composed of woven or non-woven glass fiber material.
  • a conventional inorganic binder preferably gypsum, or a mixture of binders can serve as the binder of the boundary, intermediate and main layer and a porous inorganic or organic material is added to the main layer as an additive or reinforcement material, which is used to absorb, store and release the Mixing water, which is required to set the binder, is suitable and can also have a reinforcing effect.
  • Water-soaked particles consisting of wood chips, shredded paper, wood or waste paper fibers, wood fiber granules, bark particles or similar organic materials are particularly suitable for this purpose. Particularly good building material properties are achieved with a main layer made from a wood chip binder mixture.
  • gas concrete, expanded clay or expanded mica particles, preferably vermiculite, foam or rock glass, preferably perlite, or synthetic resin foam flakes, which can also contain the mixing water required for rehydration and shaping, are also possible as additives or reinforcement materials.
  • Dihydrate grains of about 1 to 5 mm grain size can also be added as crystallization nuclei.
  • a binder mixture of sulfatic, lime-donating and pozzolanic materials is used as the binder of the surface, intermediate and / or main layer.
  • This binder mixture consists of 50 to 90% by mass calcium sulfate, 3 to 25% by mass lime-donating substances and 5 to 35% by mass highly active alumosilicate, pozzolanic substances rich in aluminum.
  • the strength properties improved by the choice of the binder are due in particular to the fact that the pozzolan component has substantial proportions of active alumina, as is the case with tuffs, many lignite powders, some slag in a smelter, etc.
  • the formation of the ettringite in the hardening products can lead to a considerable decrease in strength until the structure is destroyed instead of an increase in strength.
  • An increase in strength is achieved precisely when conditions were present in which ettringite can only arise during the solution phase. According to a further preferred embodiment of the solution, this is achieved in that the binder composition is considered to harden in space and is therefore suitable if, after a prismatic test specimen has hardened for 7 days, a maximum permissible change in length of 0.5% is not exceeded. If this technical rule is not observed, a decrease in strength in the building board can be expected.
  • the formation of ettringite through the solution phase is related to both the calcium hydroxide concentration development and the increase in volume.
  • the proportion of the pozzolan component can be increased compared to that of the lime component.
  • teaching according to the invention is not only limited to the use of sulfate binders, but also applies to other inorganic binders, for example cement.
  • the optimal ratio can be determined by the volume change behavior of reference samples according to the preferred embodiment described above.
  • the free-flowing aggregate or reinforcement / binder mixture whereby the majority of the powdery binder particles already adhere to the moist surfaces of the larger aggregate or reinforcement particles and thereby take over water, on a base area sprinkled, the reinforcement placed on this layer and the powdered binder layer dusted.
  • the aggregate or reinforcement material of the main layer contains the mixing water required to set all of the existing binder. Then by shaking, wiping, rolling or applying a low surface pressure ensures that the packing density between the aggregate or reinforcement and the binder particles is increased so that the mixing water required to set the binder from the aggregate or binder through additional contact points between the aggregate or reinforcement and the binder.
  • Reinforcement material emerges is released to the surrounding binder and creates a coherent plaster matrix.
  • the amount of water is sufficient to supply the binder of the adjacent surface or intermediate layer with the hydrate water necessary for hardening.
  • the use of the semi-dry process according to the invention for the production of multilayer boards shown here saves the high costs for sealing the molding systems which occur when using wet technologies in that part of the excess water escapes from the mixture of substances during component manufacture and contaminates the machines.
  • a part of the water used in wet technology is also a waste water contaminated with many gypsum particles.
  • For the drying of the multilayer boards produced in wet technology it is also important that a relatively large amount of free water remaining in the board has to be removed from the gypsum components, and it in turn leads to high costs, since this usually involves thermal drying.
  • the expelled water then leaves a correspondingly large pore space in the hardening product, as a result of which the material density is reduced and the mechanical material properties deteriorate.
  • the use of semi-dry technology takes advantage of the fact that the water retention capacity of porous additives - for example expanded clay, perlite, shredded paper and wood chips - is reduced is the water absorption capacity of the capillary-porous binder of the main, intermediate and peripheral layers. From the exploitation of this phenomenon according to the invention, it can be seen that the use of the semi-dry process with a water excess which is reduced by 50 to 70% compared to the wet process allows the supply of sufficient amount of water for hydration.
  • a new principle has thus been found on which the inventive production of multilayer boards with at least one main layer based, for example, on a wood chip-gypsum mixture is based:
  • the wet wood chips act as water deposits, from which the associated gypsum binder removes the setting water required for hydration.
  • the chip-gypsum mixture which is only earth-moist, is machine-sprinkled and compacted on a base. Since the flexural strength of a gypsum-bonded particle board - apart from the additional reinforcement - correlates with the density, a higher compression is synonymous with a higher flexural strength.
  • the chips also act as reinforcement of the gypsum matrix and combine in a continuous transition area between the main layer and the adjacent boundary or intermediate layers with the gypsum of these boundary or intermediate layers, supported particularly intensively by the water transfer.
  • the corresponding processes can be carried out either batchwise or continuously for the production of the mat-reinforced or fiber-reinforced materials.
  • Suitable methods of depositing the individual layers of the so-called material fleece formation can be both mechanical and pneumatic methods.
  • the formation of the continuous transition region which represents a gradual, continuous transition from the composition of the main layer to the composition of the edge and / or intermediate layer, leads to a kind of interlocking of the aggregate or reinforcement material of the main layer with the binder of the boundary or intermediate layer.
  • aggregates or reinforcement materials penetrate into the binder layer at the interface, which may be supported by the subsequent application of slight surface pressure or by shaking.
  • a washout effect of reinforcement particles in the lower layers of the main layer by released water from the upper layer areas of the main layer can provide support for the formation of the transition layer.
  • the subject matter of the invention advantageously improves the fire protection and elastomechanical properties of inorganically bound materials. Furthermore, through the formation of the surface layer, improvements in the surface quality, such as, for example, minimizing the surface roughness and minimizing the porosity, can be achieved, which lead, for example, to the splash water resistance of the inorganically bound building material panel.
  • the two-layer plate 10 according to the invention shown in FIG. 1 consists of an edge layer 12 and a main layer 14 that are comparatively thin with the total thickness.
  • the edge layer 12 in turn is preferably composed of binder particles 16 in a bonded form, which are shown only occasionally in the present FIG.
  • a surface-sealed glass fiber mat 20 is embedded as reinforcement in the binder layer in such a way that a thin layer consisting only of binder is still present between it and the surface. This location is referred to as a location close to the edge.
  • Reinforcement materials 18, which are again only shown in isolation, is composed.
  • an intermediate layer 24 is formed which, in terms of composition, represents a continuous transition area from the binder / aggregate or reinforcement material mixture to the edge layer consisting only of binder, apart from the surface-sealed glass fiber mat.
  • Figure 2 shows a section through a two-layer building board according to the invention, similar to the example shown in Figure 1.
  • the reinforcing fiber layer is provided in the immediate edge position, which is necessary, for example, when minimizing the thickness of the edge layer.
  • reinforcement 20 In the embodiment shown in FIG. 3, two main layers 14 of the binder / aggregate or reinforcement mixture and an intermediate layer 22 of binder with an inserted glass fiber rug are shown as reinforcement 20.
  • FIG. 4 shows a combination of the exemplary embodiments shown above, in which a multilayer building board is shown in schematic section, which has two edge layers, two intermediate layers and three main layers.
  • the continuous transition region 24 forms at all transitions between the boundary, intermediate and main layers.
  • FIGS. 5 to 15 show embodiments of the reinforcement introduced into the edge or intermediate layer.
  • 5 shows a knotted synthetic fiber fabric, the stitches having a side dimension of approx. 40 mm
  • FIG. 6 shows an interwoven surface-sealed glass fiber rug, in which one side is 8 mm and the other 9 mm long
  • FIG. 7 shows a knotted synthetic fiber fabric in which one side length is approx. 20 mm long
  • FIG. 8 shows a surface-sealed glass fiber rug, in which one side length is approx. 10 and the other 11 mm long
  • FIG. 9 shows a similar glass fiber rug, with a fiber diameter that is comparatively thicker than that in FIG. 8,
  • FIG. 10 shows a synthetic fiber fabric , one side length being approx. 10 mm
  • FIG. 11 a synthetic fiber fabric, in which one side length is approx. 7 mm and the other approx. 6 mm
  • FIG. 12 a similar synthetic fiber fabric, with a thicker fiber diameter compared to that in FIG 11 shown
  • Figure 13 a Glass fiber mat with the side lengths 6 mm x 5 mm
  • FIG. 14 a glass fiber mat with a side length of approx. 2 mm
  • FIG. 15 a glass fiber fleece with randomly arranged glass fibers.
  • other glass fiber products, synthetic fibers, organic fibers and mineral fiber materials are also generally suitable.
  • gypsum chipboard is produced as multi-layer panels in a panel format of 660 mm x 560 mm x 38 mm.
  • the wood chip binder mixture prepared as above is sprinkled into a formwork box by means of a double roller spreading station and a prepared fiberglass mat is placed thereon. Then gypsum binder is dusted onto the mat through a sieve and wood chip binder material is sprinkled in again. Finally, a slight surface pressure is exerted on the plate so that, among other things, the spreading effect of the spreading Water for setting the gypsum gives an intermediate layer with a continuous transition area of the plate component distribution, which even leads to the chips protruding through the reinforcement mat and an additional anchoring of this mat in the intermediate layer between the edge and the main layer. This effect is more pronounced the larger the mesh size of the mesh reinforcement.
  • a wetted glass fiber mat is placed on the bottom of the formwork.
  • a thin layer of gypsum binder is dusted onto this through a sieve and the wood chip binder mixture of the main layer prepared as above is sprinkled in as a loose material fleece by means of a double roller spreading station.
  • the binder layer removes the remaining water from the mat reinforcement, the surface water and the wood chip binder fleece the remaining amount of water required for binding, whereby the desired intermediate layer and the interlocking thus achieved is achieved by the reinforcing wood chips.
  • the deposited nonwoven is inter-compacted, and a reinforcing mat is placed on this inter-compacted nonwoven, on which in turn gypsum binder is dusted. Finally, the plate is finally compacted by applying a surface pressure.
  • a glass fiber mat is placed on the bottom of the formwork, onto which a previously mixed mixture of gypsum binder, water and additive is applied in a flowable consistency and is evenly removed to minimize the amount used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Panels For Use In Building Construction (AREA)
  • Floor Finish (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

Die vorliegende Erfindung betrifft eine Bauplatte im Schichtenaufbau mit guten elastomechanischen und brandschutztechnischen Eigenschaften, vorzugsweise zur Verwendung als Doppel- oder Mehrfachboden bei der Ausstattung von Computerräumen, und ein Verfahren zu ihrer Herstellung.The present invention relates to a building board in a layered structure with good elastomechanical and fire protection properties, preferably for use as a double or multiple floor in the furnishing of computer rooms, and a method for its production.

Dem in der Bauwirtschaft vorhandenen Trend zum Lichtbau folgt eine bessere technische und ökonomische Ausnutzung von Werkstoffen besonders in der Verbundbauweise. Ihr Vorteil liegt vor allem darin, daß verschiedene, sonst nicht miteinander gekoppelte Stoffeigenschaften in einem Bauelement vereinigt werden können. Durch entsprechende Auswahl der einzelnen Bestandteile lassen sich für bestimmte Verwendungsgebiete, die jeweils günstigsten Eigenschaften besonders herausbilden. Wird beispielsweise die Tragkraft und der Feuerwiderstand in Betracht gezogen, so kann durch eine Kombination von an sich bekannten Purgipsplatten mit Glasfasern in Mattenform eine kombinierte günstige Werkstoffeigenschaft erreicht werden. Eine derartige Kombination erfolgt in einem bereits bekannten Verfahren dadurch, daß im Naßverfahren Glasfasern als Matten oder Gewebe in Mengen bis zu 10 Massen-% in Purgipsplatten gleichmäßig verteilt eingelegt sind, wobei die schlechten elastomechanischen Eigenschaften der Purgipsplatte durch die Kombination mit den Glasfasern verbessert werden.The trend towards light construction in the construction industry is being followed by better technical and economic utilization of materials, particularly in composite construction. Their main advantage is that different, otherwise uncoupled material properties can be combined in one component. Appropriate selection of the individual components enables the most favorable properties to be developed for particular areas of use. If, for example, the load-bearing capacity and the fire resistance are taken into account, a combined favorable material property can be achieved by a combination of known purg plasterboards with glass fibers in the form of a mat. Such a combination is carried out in an already known process in that, in the wet process, glass fibers as mats or fabrics are inserted in amounts of up to 10% by mass in Purgips plates, the poor elastomechanical properties of the Purgips plate being improved by the combination with the glass fibers.

Die technische Entwicklung ging darüber hinaus weiter zu mehrschichtigen Platten, bei denen jede Schicht eine Teilaufgabe der von der Platte zu erfüllenden Gesamtfunktion übernimmt. Technologisch ergeben sich drei voneinander abgegrenzte Wege zur Herstellung derartige Platten:

  • Kombinationen, bei denen die Schichten durch Kleber miteinander verbunden werden:
  • Kombinationen, bei denen die Schichten durch konstruktive Verbindungsglieder zusammengehalten werden;
  • Kombinationen, bei denen die Schichten durch baustoffeigene Adhäsionskräfte zusammenhaften.
The technical development also went on to multi-layer panels, in which each layer takes on a part of the overall function to be performed by the panel. Technologically, there are three distinct ways of producing such panels:
  • Combinations in which the layers are connected to each other by glue:
  • Combinations in which the layers are held together by constructive connecting links;
  • Combinations in which the layers stick together through the building material's own adhesive forces.

Klebeverbindungen haben auf Grund der alterungsbedingten Versprödung und der Anforderung an die Fugenpassung Nachteile, die sich vor allem bei tragenden Bauteilen auswirken können. Bei dem zweiten Verfahren werden einzelne vorgefertigte Schichten nachträglich miteinander verschraubt oder anderweitig verbunden. In der Praxis wird der mechanische nachträgliche Verbund zur Zeit bevorzugt.Adhesive connections have disadvantages due to the age-related embrittlement and the requirement for the joint fit, which can have an effect especially on load-bearing components. In the second method, individual prefabricated layers are subsequently screwed together or connected in some other way. In practice, mechanical post-assembly is currently preferred.

Aus der DD-PS 47099 ist bekannt, die im Verlaufe der Hydratation in glasfaserbewehrten Gipsdeckschichten wirkenden Quellkräfte zur Verbindung mit anderen Werkstoffen heranzuziehen. Das Prinzip beruht darauf, daß in schwalbenschwanzförmig abgewinkelte Metallpaßrahmen flüssig bis plastisch eingebrachte Gipsdeckschichten aufgrund ihrer Quellung mit diesen einen festen Verbund eingehen. Metall und glasfaserbewehrte Gipse wirken dann statisch zusammen, wobei der Metallrahmen außerdem noch den Kantenschutz übernimmt. Drückt man in den Bindemittelbrei der Deckschicht noch Stützkerne, wie Waben- oder Gitterkonstruktionen, so tief ein, daß sie in der Berührungszone von Gips umflossen werden können, erhält man auch zwischen diesen beiden eine Verbindung. Allgemein wird also zur Herstellung der Mehrschichtenplatte eine Stützmittellage in eine Bindemittelsuspension, die sich im fließfähigen Zustand befindet, soweit eingedrückt, daß im ausgehärteten Zustand eine Haftfestigkeit zwischen beiden Schichten entsteht. Gemäß diesem Verfahren ist auch bekannt, eine Gipsmilch-Glasfaserschicht auf ein Formungsblech aufzugeben und anschließend eine Spanplatte in die noch fließfähige Gips-Glasfaserschicht einzudrücken. Zur Verbesserung der Haftung zwischen der Gips- und Spanplattenschicht wird die Spanplattenoberfläche mit grobem Sandpapier aufgerauht oder mit Rillen versehen, um die Haftung zwischen der Gipsdeckschicht und der Spanplattenhauptschicht zu verbessern.From DD-PS 47099 it is known to use the swelling forces acting in the course of hydration in glass fiber reinforced gypsum plaster layers for connection to other materials. The principle is based on the fact that in metal fitting frames angled in a dovetail shape, liquid to plastic plaster gypsum layers form a firm bond due to their swelling. Metal and glass fiber reinforced gypsum then interact statically, with the metal frame also taking over the edge protection. If you press support cores, such as honeycomb or lattice structures, so deeply into the binder mixture of the cover layer that plaster can flow around them in the contact zone, a connection is also obtained between these two. In general, a support layer in a binder suspension, which is in the flowable state, is therefore pressed in to the extent that the cured state produces an adhesive strength between the two layers in the hardened state. According to this method, it is also known to apply a layer of gypsum milk and glass fiber to a shaping sheet and then to press a particle board into the still flowable layer of gypsum glass fiber. To improve the adhesion between the plaster and particle board layer, the particle board surface is roughened with coarse sandpaper or grooved to improve the adhesion between the plaster top layer and the main particle board layer.

Trotz dieser Verbesserungsmaßnahme ist die Verbundwirkung zwischen Gipsschicht und Spanplattenschicht nur unzureichend, so daß die Mehrschichtenplatte dazu neigt, an der Grenzfläche zwischen der Spanplatte und der Gipsschicht ihre Haftung zu verlieren. Insbesondere bei einer denkbaren Verwendung einer Gips-Glasfaserschicht als Zwischenschicht zwischen zwei Spanplatten besteht die Gefahr, daß die Spanplattenschichten aufgrund der niedrigen Hafteigenschaft der Gipsschicht bei einer starken elastomechanischen Beanspruchung nicht mehr aneinanderhaften.Despite this improvement measure, the bond between the plaster layer and the particle board layer is insufficient, so that the multilayer plate tends to lose its adhesion at the interface between the particle board and the plaster layer. Particularly when a gypsum-glass fiber layer is used as an intermediate layer between two chipboards, there is a risk that the chipboard layers will no longer adhere to one another due to the low adhesive properties of the gypsum layer when subjected to strong elastomechanical stress.

Aus der EP 0 019 207 ist ein Verfahren zur Herstellung von Gipsbauteilen, insbesondere Gipsplatten bekannt, bei dem ein sogenanntes "Halbtrockenverfahren" angewendet wird. Aus der EP 0 019 207 ist auch zu entnehmen, daß dieses "Halbtrockenverfahren" zur Herstellung eines geschichteten Aufbaus verwendet werden kann.EP 0 019 207 discloses a method for producing gypsum components, in particular gypsum boards, in which a so-called "semi-dry method" is used. It can also be seen from EP 0 019 207 that this "semi-dry process" can be used to produce a layered structure.

Weiter beschreibt die DE-OS 28 54 228 ein Gasbeton-Bauteil sowie ein Verfahren zur Herstellung. Dieses Gasbetonteil besitzt einen geschichteten Aufbau aus einer Glasfasermatte, die über eine Mörtelschicht mit dem Bauteil in Verbindung steht.DE-OS 28 54 228 also describes a gas concrete component and a method for producing it. This gas concrete part has a layered structure made of a glass fiber mat, which is connected to the component via a mortar layer.

Es besteht daher die Aufgabe, die gattungsgemäße Mehrschichtenplatte derart weiterzuentwickeln, daß ein sicherer Verbund zwischen den einzelnen Schichten vorliegt und somit eine Bauplatte verbesserter kombinierter Werkstoffeigenschaften, insbesondere verbesserter elastomechanischer Eigenschaften zur Verfügung gestellt wird.It is therefore the task of further developing the generic multilayer board in such a way that there is a secure bond between the individual layers and a building board with improved combined material properties, in particular improved elastomechanical properties, is thus made available.

Die lösung dieser Aufgabe erfolgt erfindungsgemäß durch den Gegenstand des Hauptanspruchs 1.This object is achieved according to the invention by the subject matter of main claim 1.

Die erfindungsgemäße Bauplatte weist entweder eine Randschicht oder eine Zwischenschicht oder eine Kombination von Rand- und Zwischenschicht oder eine Kombination von Rand- und Zwischenschichten aus einem Bindemittel auf, die verhältnismäßig dünn verglichen zu einer oder mehreren Hauptschichten sind, die aus einem Gemisch von Bindemittel und Zuschlag- bzw. Bewehrungsstoffen zusammengesetzt sind. In den Rand- und/oder Zwischenschichten sind Bewehrungen eingebracht, die in einer bevorzugten Ausführungsform in einem randnahen Bereich und in einer anderen bevorzugten Ausführungsform unmittelbar im Randbereich der Bindemittelrandschicht angeordnet sind. Der grundsätzliche Erfindungsgedanke besteht darin, daß zu einer möglichst guten Verbindung zwischen den einzelnen Schichten der Bauplatte im Schichtenaufbau die Bildung einer Grenzfläche zwischen den einzelnen Schichten der Bauplatte im Schichtenaufbau die Bildung einer Grenzfläche zwischen den einzelnen Schichten unterdrückt wird, um je einen kontinuierlichen Übergangsbereich zwischen den einzelnen Rand-, Haupt- und Zwischenschichten auszubilden.The building board according to the invention has either an edge layer or an intermediate layer or a combination of edge and intermediate layer or a combination of edge and intermediate layers made of a binder, which are relatively thin compared to one or more main layers consisting of a mixture of binder and aggregate - or reinforcement materials are composed. Reinforcements are introduced in the edge and / or intermediate layers, which are arranged in a preferred embodiment in an area close to the edge and in another preferred embodiment directly in the edge area of the binder edge layer. The basic idea of the invention is that for the best possible connection between the individual layers of the building board in the layer structure Formation of an interface between the individual layers of the building board in the layer structure, the formation of an interface between the individual layers is suppressed in order to form a continuous transition region between the individual boundary, main and intermediate layers.

Gemäß einer bevorzugten Ausführungsform besteht die Bewehrung aus einer Fasereinlage, die wiederum aus gewebtem oder vliesförmigem Glasfasermaterial zusammengesetzt sein kann.According to a preferred embodiment, the reinforcement consists of a fiber insert, which in turn can be composed of woven or non-woven glass fiber material.

Als Bindemittel der Rand-, Zwischen- und Hauptschicht kann ein herkömmliches anorganisches Bindemittel, vorzugsweise Gips, oder auch ein Bindemittelgemisch dienen und als Zuschlag- bzw. Bewehrungsstoff der Hauptschicht wird ein poröses anorganisches oder organisches Material zugegeben, das zur Aufnahme, Speicherung und Abgabe des Anmachwassers, das zum Abbinden des Bindemittels benötigt wird, geeignet ist, sowie zusätzlich bewehrend wirken kann. Besonders geeignet hierzu sind wassergetränkte Teilchen bestehend aus Holzspänen, Papierschnitzeln, Holz- oder Altpapierfasern, Holzfasergranulat, Rindenpartikel oder ähnlichen organischen Materialien. Besonders gute Baustoffeigenschaften werden mit einer Hauptschicht aus einem Holzspan-Bindemittel-Gemenge erreicht. Als Zuschlag- bzw. Bewehrungsstoffe sind aber auch weiterhin Gasbeton-, Blähton- oder Blähglimmerpartikel vorzugsweise Vermikulite, Schaum- oder Gesteinsglas vorzugsweise Perlite, oder Kunstharz-Schaumflocken möglich, die ebenfalls das zur Rehydratisierung und Formung erforderliche Anmachwasser enthalten können. Weiterhin können als Kristallisationskeime wirkende Dihydratkörner von etwa 1 bis 5 mm Korngröße zugegeben werden.A conventional inorganic binder, preferably gypsum, or a mixture of binders can serve as the binder of the boundary, intermediate and main layer and a porous inorganic or organic material is added to the main layer as an additive or reinforcement material, which is used to absorb, store and release the Mixing water, which is required to set the binder, is suitable and can also have a reinforcing effect. Water-soaked particles consisting of wood chips, shredded paper, wood or waste paper fibers, wood fiber granules, bark particles or similar organic materials are particularly suitable for this purpose. Particularly good building material properties are achieved with a main layer made from a wood chip binder mixture. However, gas concrete, expanded clay or expanded mica particles, preferably vermiculite, foam or rock glass, preferably perlite, or synthetic resin foam flakes, which can also contain the mixing water required for rehydration and shaping, are also possible as additives or reinforcement materials. Dihydrate grains of about 1 to 5 mm grain size can also be added as crystallization nuclei.

Zur Steigerung der Festigkeitseigenschaften wird gemäß einer bevorzugten Ausführungsform als Bindemittel der Rand-, Zwischen- und/oder Hauptschicht ein Bindemittelgemisch aus sulfatischen, kalkspendenden und puzzolanischen Stoffen, wie es in der DE-OS 3 230 406 näher bezeichnet wird, eingesetzt. Dieses Bindemittelgemisch besteht aus 50 bis 90 Masse-% Calciumsulfat, 3 bis 25 Masse-% kalkspendenden Stoffen und 5 bis 35 Masse-%hochaktiven alumosilikatischen, aluminatreichen puzzolanischen Stoffen. Die durch die Wahl des Bindemittels verbesserten Festigkeitseigenschaften sind insbesondere darin begründet, daß die Puzzolankomponente wesentliche Anteile an aktiver Tonerde aufweist, wie das bei Tuffen, vielen Braunkohleflugstäuben, einigen Hüttenschlacken usw. der Fall ist. Neben dem Calciumsulfat-Dihydrat entsteht ein weiteres Reaktionsprodukt unter Beteiligung von Calciumsulfat-Halbhydrat, nämlich Tricalciumaluminat-Trisulfathydrat (Ettringit), das entscheidend zur Festigkeitssteigerung beiträgt. Der gesamte Erhärtungsablauf des Bindemittelgemisches wird von dieser Reaktion bestimmt. Da der Ettringit sehr viel Hydratwasser (30....32 Mol H₂O je Mol Ettringit) bindet, ist der Reaktionsverlauf grundsätzlich mit einer Volumenzunahme verbunden. Diese Volumenzunahme korreliert mit der Quantität des entstandenen Ettringits in Abhängigkeit von der Zeit. Die Bildung des Ettringits kann aber bei den Erhärtungsprodukten anstatt zu einem Festigkeits- Anstieg zu einem beträchtlichen Festigkeitsabfall bis zur Gefügezerstörung führen. Eine Festigkeitssteigerung wird genau dann erreicht, wenn Bedingungen vorhanden waren, bei denen Ettringit nur über die Lösungsphase entstehen kann. Das wird gemäß weiterer bevorzugter Ausgestaltung der Lösung dadurch erreicht, daß die Bindemittelzusammensetzung dann als raumbeständig erhärtend und somit geeignet angesehen wird, wenn nach einer Erhärtungszeit eines prismatischen Prüfkörpers von 7 Tagen eine maximal zulässige Längenänderung von 0,5% nicht überschritten wird. Bei Nichtbeachtung dieser technischen Regel ist mit einer Festigkeitsabnahme in der Bauplatte zu rechnen. Die Ettringitbildung über die Lösungsphase steht bei ständigem Gipsangebot sowohl mit der Calciumhydroxidkonzentrationsentwicklung als auch mit der Volumenzunahme in Beziehung. Um die Sicherheit zu vergrößeren, daß die Ettringitbildung auf die Lösungsphase beschränkt bleibt, kann der Anteil der Puzzolankomponente gegenüber dem der Kalkkomponente erhöht werden.In order to increase the strength properties, according to a preferred embodiment, a binder mixture of sulfatic, lime-donating and pozzolanic materials, as is described in more detail in DE-OS 3 230 406, is used as the binder of the surface, intermediate and / or main layer. This binder mixture consists of 50 to 90% by mass calcium sulfate, 3 to 25% by mass lime-donating substances and 5 to 35% by mass highly active alumosilicate, pozzolanic substances rich in aluminum. The strength properties improved by the choice of the binder are due in particular to the fact that the pozzolan component has substantial proportions of active alumina, as is the case with tuffs, many lignite powders, some slag in a smelter, etc. In addition to calcium sulfate dihydrate, another is formed Reaction product with the participation of calcium sulfate hemihydrate, namely tricalcium aluminate trisulfate hydrate (ettringite), which contributes significantly to the increase in strength. The entire hardening process of the binder mixture is determined by this reaction. Since the ettringite binds a lot of water of hydration (30 .... 32 moles of H₂O per mole of ettringite), the course of the reaction is generally associated with an increase in volume. This increase in volume correlates with the quantity of the ettringite formed as a function of time. However, the formation of the ettringite in the hardening products can lead to a considerable decrease in strength until the structure is destroyed instead of an increase in strength. An increase in strength is achieved precisely when conditions were present in which ettringite can only arise during the solution phase. According to a further preferred embodiment of the solution, this is achieved in that the binder composition is considered to harden in space and is therefore suitable if, after a prismatic test specimen has hardened for 7 days, a maximum permissible change in length of 0.5% is not exceeded. If this technical rule is not observed, a decrease in strength in the building board can be expected. With constant gypsum supply, the formation of ettringite through the solution phase is related to both the calcium hydroxide concentration development and the increase in volume. In order to increase the certainty that the ettringite formation is restricted to the solution phase, the proportion of the pozzolan component can be increased compared to that of the lime component.

Die erfindungsgemäße Lehre ist aber nicht nur auf die Verwendung sulfatischer Bindemittel beschränkt, sondern gilt auch für andere anorganische Bindemittel, beispielsweise Zement.However, the teaching according to the invention is not only limited to the use of sulfate binders, but also applies to other inorganic binders, for example cement.

Das optimale Verhältnis kann durch das Volumenänderungsverhalten von Referenzproben gemäß der zuvor ausgeführten bevorzugten Ausführungsform bestimmt werden.The optimal ratio can be determined by the volume change behavior of reference samples according to the preferred embodiment described above.

In einem Verfahren zur Herstellung der erfindungsgemäßen Bauplatte im Schichtenaufbau wird das rieselfähige Zuschlag- bzw. Bewehrungsstoff-/ Bindemittelgemenge, wobei bereits der größte Teil der pulvrigen Bindemittelpartikel an den feuchten Oberflächen der größeren Zuschlag- bzw. Bewehrungsstoffpartikel haftet und dabei Wasser übernimmt, auf eine Grundfläche gestreut, die Bewehrung auf diese Schicht aufgelegt und die pulverförmige Bindemittelschicht aufgestäubt. Der Zuschlag- bzw. Bewehrungsstoff der Hauptschicht enthält das zum Abbinden des gesamten vorhandenen Bindemittels benötigte Anmachwasser. Anschließend wird durch Rütteln, Abstreichen, Walzen oder Aufbringen eines geringen Flächendrucks dafür gesorgt, daß die Packungsdichte zwischen Zuschlag- bzw. Bewehrungsstoff und Bindemittelpartikeln so erhöht wird, daß über weitere Kontaktstellen zwischen Zuschlag- bzw. Bewehrungsstoff und Bindemittel durch Kapillarleitung das zum Abbinden des Bindemittels notwendige Anmachwasser aus dem Zuschlag- bzw. Bewehrungsstoff austritt, an das umgebende Bindemittel abgegeben wird und eine zusammenhängende Gipsmatrix entstehen läßt. Dabei reicht die Wassermenge aus, um auch das Bindemittel der angrenzenden Rand- oder Zwischenschicht mit dem zur Erhärtung notwendigen Hydratwasser zu versorgen. Durch die Erhöhung der Packungsdichte wird, unterstützt durch den Wassertransport, der für das Erreichen der gewünschten Verbundeigenschaften wesentliche kontinuierliche Übergangsbereich zwischen den Rand- und/oder Zwischenschichten und der Hauptschicht ausgebildet.In a process for the production of the building board according to the invention in the layer structure, the free-flowing aggregate or reinforcement / binder mixture, whereby the majority of the powdery binder particles already adhere to the moist surfaces of the larger aggregate or reinforcement particles and thereby take over water, on a base area sprinkled, the reinforcement placed on this layer and the powdered binder layer dusted. The aggregate or reinforcement material of the main layer contains the mixing water required to set all of the existing binder. Then by shaking, wiping, rolling or applying a low surface pressure ensures that the packing density between the aggregate or reinforcement and the binder particles is increased so that the mixing water required to set the binder from the aggregate or binder through additional contact points between the aggregate or reinforcement and the binder. Reinforcement material emerges, is released to the surrounding binder and creates a coherent plaster matrix. The amount of water is sufficient to supply the binder of the adjacent surface or intermediate layer with the hydrate water necessary for hardening. By increasing the packing density, supported by the water transport, the continuous transition area between the edge and / or intermediate layers and the main layer, which is essential for achieving the desired composite properties, is formed.

Weitere vorteilhafte Verfahrensvarianten ergeben sich aus den weiteren Unteransprüchen. Allen Verfahren zur Herstellung der erfindungsgemäßen Platte ist zueigen, daß sie in einem Halbtrockenverfahren hergestellt werden.Further advantageous process variants result from the further subclaims. All processes for the production of the plate according to the invention must be carried out using a semi-dry process.

Durch die Anwendung des hier dargestellten erfindungsgemäßen Halbtrockenverfahrens zur Herstellung von Mehrschichtenplatten werden die hohen Aufwendungen für die Abdichtung der Formgebungsanlagen, die bei der Anwendung von Naßtechnologien dadurch auftreten, daß ein Teil des Überschußwassers während der Bauteilherstellung aus dem Stoffgemisch austritt und die Maschinen verschmutzt, eingespart. Ein Teil des bei der Naßtechnologie verwendeten Wassers stellt darüber hinaus ein mit vielen Gipsteilchen belastetes Abwasser dar. Für die Trocknung der in Naßtechnologie hergestellten Mehrschichtenplatten ist ferner von Bedeutung, daß eine relativ große in der Platte zurückbleibende freie Wassermenge aus den Gipsbauteilen zu entfernen ist, und es sich somit wiederum hohe Kosten aufzuwenden, da es sich hier meist um eine thermische Trocknung handelt. Das ausgetriebene Wasser hinterläßt dann im Erhärtungsprodukt einen entsprechend großen Porenraum, wodurch sich die Werkstoffdichte verringert und die mechanischen Werkstoffeigenschaften verschlechtern. In der erfindungsgemäßen Mehrschichtenbauplatte wird bei der Anwendung der Halbtrockentechnologie ausgenutzt, daß das Wasserrückhaltevermögen poröser Zuschlagstoffe-z.B. Blähton, Perlite, Papierschnitzel und Holzspäne - geringer ist als das Wasseranzugsvermögen des kapillarporösen Bindemittels der Haupt-, Zwischen- und Randschichten. Aus der erfindungsgemäßen Ausnützung dieses Phänomens ergibt sich, daß Branntgips durch die Anwendung des Halbtrockenverfahrens bei einem gegenüber dem Naßverfahren um 50 bis 70% verringerten Wasserüberschuß mit der für eine Hydratation ausreichenden Menge an Wasser versorgt werden kann. Damit ist ein neues Prinzip gefunden, auf dem die erfindungsgemäße Herstellung von Mehrschichtenplatten mit zumindest einer Hauptschicht aus beispielsweise einem Holzspan-Gips-Gemenge beruht: Die nassen Holzspäne wirken als Wasserdepots, denen das zugehörige Gipsbindemittel das zur Hydratation benötigte Abbindewasser entzieht. Das nur erdfeuchte Span-Gips-Gemisch wird maschinell auf eine Unterlage gestreut und verdichtet. Da die Biegefestigkeit einer gipsgebundenen Spanplatte - abgesehen von der zusätzlichen Bewehrung - mit der Dichte korreliert, ist eine höhere Verdichtung gleichbedeutend mit einer höheren Biegefestigkeit. In der erhärteten Platte wirken die Späne außerdem als Bewehrung der Gipsmatrix und verbinden sich in einem kontinuierlichen Übergangsbereich zwischen der Hauptschicht und den angrenzenden Rand- bzw. Zwischenschichten mit dem Gips dieser Rand- bzw. Zwischenschichten besonders intensiv unterstützt durch den Wasserübergang.The use of the semi-dry process according to the invention for the production of multilayer boards shown here saves the high costs for sealing the molding systems which occur when using wet technologies in that part of the excess water escapes from the mixture of substances during component manufacture and contaminates the machines. A part of the water used in wet technology is also a waste water contaminated with many gypsum particles. For the drying of the multilayer boards produced in wet technology it is also important that a relatively large amount of free water remaining in the board has to be removed from the gypsum components, and it in turn leads to high costs, since this usually involves thermal drying. The expelled water then leaves a correspondingly large pore space in the hardening product, as a result of which the material density is reduced and the mechanical material properties deteriorate. In the multi-layer building board according to the invention, the use of semi-dry technology takes advantage of the fact that the water retention capacity of porous additives - for example expanded clay, perlite, shredded paper and wood chips - is reduced is the water absorption capacity of the capillary-porous binder of the main, intermediate and peripheral layers. From the exploitation of this phenomenon according to the invention, it can be seen that the use of the semi-dry process with a water excess which is reduced by 50 to 70% compared to the wet process allows the supply of sufficient amount of water for hydration. A new principle has thus been found on which the inventive production of multilayer boards with at least one main layer based, for example, on a wood chip-gypsum mixture is based: The wet wood chips act as water deposits, from which the associated gypsum binder removes the setting water required for hydration. The chip-gypsum mixture, which is only earth-moist, is machine-sprinkled and compacted on a base. Since the flexural strength of a gypsum-bonded particle board - apart from the additional reinforcement - correlates with the density, a higher compression is synonymous with a higher flexural strength. In the hardened slab, the chips also act as reinforcement of the gypsum matrix and combine in a continuous transition area between the main layer and the adjacent boundary or intermediate layers with the gypsum of these boundary or intermediate layers, supported particularly intensively by the water transfer.

Die entsprechenden Verfahren können entweder diskontinuierlich oder kontinuierlich zur Herstellung der matten- bzw. der faserverstärkten Werkstoffe ausgeführt werden. Geeignete Verfahren der Ablage der einzelnen Schichten der sogenannten Materialvliesbildung können sowohl mechanische als auch pneumatische Verfahren sein.The corresponding processes can be carried out either batchwise or continuously for the production of the mat-reinforced or fiber-reinforced materials. Suitable methods of depositing the individual layers of the so-called material fleece formation can be both mechanical and pneumatic methods.

Die Ausbildung des kontinuierlichen Übergangsbereichs die einen allmählichen kontinuierlichen Übergang der Zusammensetzung der Hauptschicht zur Zusammensetzung der RAnd- und/oder Zwischenschicht darstellt, führt zu einer Art Verzahnung des Zuschlag- bzw. Bewehrungsstoffes der Hauptschicht mit dem Bindemittel der Rand- oder Zwischenschicht. Bereits beim Aufstreuen von Schichten auf bereits abgelegte Schichten dringen an der Grenzfläche Zuschlag- bzw. Bewehrungsstoffe in die Bindemittelschicht ein, was durch evtl.. folgende Aufbringung von geringfügigem Flächendruck oder durch Rütteln unterstützt wird. Zusätzlich kann ein Ausschwemmeffekt von Bewehrungsteilchen in den unteren Schichten der Hauptschicht durch freigesetztes Wasser aus den oberen Schichtbereichen der Hauptschicht für die Unterstützung der Ausbildung der Übergangsschicht sorgen.The formation of the continuous transition region, which represents a gradual, continuous transition from the composition of the main layer to the composition of the edge and / or intermediate layer, leads to a kind of interlocking of the aggregate or reinforcement material of the main layer with the binder of the boundary or intermediate layer. As soon as layers are sprinkled onto layers that have already been deposited, aggregates or reinforcement materials penetrate into the binder layer at the interface, which may be supported by the subsequent application of slight surface pressure or by shaking. In addition, a washout effect of reinforcement particles in the lower layers of the main layer by released water from the upper layer areas of the main layer can provide support for the formation of the transition layer.

Dadurch, daß mehrere der in den Unteransprüchen aufgeführte Verfahren miteinander kombinierbar sind, können physikalische Kenngrößen, wie Biegefestigkeit, E-Modul, Rohdichte und dergleichen je nach Anzahl und Schichtdicke der Rand-, Haupt- und Zwischenschichten eingestellt werden.Because several of the methods listed in the subclaims can be combined with one another, physical parameters such as bending strength, modulus of elasticity, bulk density and the like can be set depending on the number and layer thickness of the outer, main and intermediate layers.

Durch den erfindungsgemäßen Gegenstand werden in vorteilhafter Weise Verbesserungen der Brandschutz- wie der elastomechanischen Eigenschaften von anorganisch gebundenen Werkstoffen erreicht. Weiterhin können durch die Ausbildung der Randschicht Verbesserungen der Oberflächengüte, wie zum Beispiel Minimierung der Oberflächenrauhigkeit und Minimierung der Porosität erzielt werden, die beispielsweise zur Verbesserung der Spritzwasserbeständigkeit der anorganisch gebundenen Baustoffplatte führen.The subject matter of the invention advantageously improves the fire protection and elastomechanical properties of inorganically bound materials. Furthermore, through the formation of the surface layer, improvements in the surface quality, such as, for example, minimizing the surface roughness and minimizing the porosity, can be achieved, which lead, for example, to the splash water resistance of the inorganically bound building material panel.

Weitere Einzelheiten, Merkmale und Vorteile ergeben sich aus der folgenden Beschreibung von zeichnerisch dargestellten Ausführungsbeispielen.Further details, features and advantages result from the following description of exemplary embodiments shown in the drawings.

Es zeigen:

Figur 1
einen schematischen Schnitt durch eine erfindungsgemäße zweischichtige Bauplatte, wobei die Bewehrung in einer randnahen Lage liegt,
Figur 2
einen schematischen Schnitt durch eine erfindungsgemäße zweischichtige Bauplatte, wobei die Bewehrung in unmittelbarer Randlage angeordnet ist,
Figur 3
einen schematischen Schnitt durch eine erfindungsgemäße dreischichtige Bauplatte, bei der die Bewehrung in einer Zwischenschicht eingebracht ist,
Figur 4
eine siebenschichtige erfindungsgemäße Bauplatte und die
Figuren 5 bis 15
schematische Darstellungen unterschiedlicher Fasereinlagen, die als Bewehrungen dienen.
Show it:
Figure 1
2 shows a schematic section through a two-layer building board according to the invention, the reinforcement lying in a position close to the edge,
Figure 2
2 shows a schematic section through a two-layer building board according to the invention, the reinforcement being arranged in the immediate edge position,
Figure 3
2 shows a schematic section through a three-layer building board according to the invention, in which the reinforcement is introduced in an intermediate layer,
Figure 4
a seven-layer building board according to the invention and the
Figures 5 to 15
schematic representations of different fiber inserts that serve as reinforcement.

Die in Figur 1 dargestellte zweischichtige erfindungsgemäße Platte 10 besteht aus einer vergleichsweise mit der Gesamtdicke dünnen Randschicht 12 und einer Hauptschicht 14. Die Randschicht 12 wiederum setzt sich vorzugsweise aus Bindemittelpartikeln 16 in abgebundener Form zusammen, die in der vorliegenden Figur 1 nur vereinzelt dargestellt sind. In die Bindemittelschicht ist eine oberflächenversiegelte Glasfasergrobmatte 20 als Bewehrung derart eingebettet, daß zwischen ihr und der Oberfläche noch eine dünne Schicht, die nur aus Bindemittel besteht, vorhanden ist. Diese Lage wird als randnahe Lage bezeichnet. An die Randschicht 12 schließt sich die Hauptschicht 14 an, die aus Bindemittelpartikeln 16 und zuschlag- bzw.The two-layer plate 10 according to the invention shown in FIG. 1 consists of an edge layer 12 and a main layer 14 that are comparatively thin with the total thickness. The edge layer 12 in turn is preferably composed of binder particles 16 in a bonded form, which are shown only occasionally in the present FIG. A surface-sealed glass fiber mat 20 is embedded as reinforcement in the binder layer in such a way that a thin layer consisting only of binder is still present between it and the surface. This location is referred to as a location close to the edge. The main layer 14, which consists of binder particles 16 and aggregate or

Bewehrungsstoffen 18, die wiederum nur vereinzelt dargestellt sind, zusammengesetzt ist. Zwischen der Hauptschicht 14 und der Randschicht 12 ist eine Zwischenschicht 24 ausgebildet, die hinsichtlich der Zusammensetzung einen kontinuierlichen Übergangsbereich von dem Bindemittel-/Zuschlag- bzw. Bewehrungsstoffgemisch zu der, abgesehen von der oberflächenversiegelten Glasfasermatte, nur aus Bindemittel bestehenden Randschicht darstellt.Reinforcement materials 18, which are again only shown in isolation, is composed. Between the main layer 14 and the edge layer 12, an intermediate layer 24 is formed which, in terms of composition, represents a continuous transition area from the binder / aggregate or reinforcement material mixture to the edge layer consisting only of binder, apart from the surface-sealed glass fiber mat.

Figur 2 zeigt einen Schnitt durch eine zweischichtige erfindungsgemäße Bauplatte, ähnlich dem in Figur 1 dargestellten Beispiel. Hier ist lediglich die bewehrende Faserschicht in unmittelbarer Randlage vorgesehen, was beispielsweise bei der Dickenminimierung der Randschicht notwendig ist.Figure 2 shows a section through a two-layer building board according to the invention, similar to the example shown in Figure 1. Here only the reinforcing fiber layer is provided in the immediate edge position, which is necessary, for example, when minimizing the thickness of the edge layer.

In der in Figur 3 dargestellten Ausführungsform sind zwei Hauptschichten 14 aus dem Bindemittel-/Zuschlag bzw. Bewehrungsstoffgemenge und einer Zwischenschicht 22 aus Bindemittel mit eingelegter Glasfasergrobmatte als Bewehrung 20 dargestellt.In the embodiment shown in FIG. 3, two main layers 14 of the binder / aggregate or reinforcement mixture and an intermediate layer 22 of binder with an inserted glass fiber rug are shown as reinforcement 20.

Figur 4 zeigt eine Kombination der zuvor dargestellten Ausführungsbeispiele, in dem eine Mehrschichtenbauplatte in schematischen Schnitt dargestellt ist, die zwei Randschichten, zwei Zwischenschichten und drei Hauptschichten aufweist. Bei sämtlichen Übergängen zwischen den Rand-, Zwischen- und Hauptschichten bildet sich der kontinuierliche Übergangsbereich 24 aus.FIG. 4 shows a combination of the exemplary embodiments shown above, in which a multilayer building board is shown in schematic section, which has two edge layers, two intermediate layers and three main layers. The continuous transition region 24 forms at all transitions between the boundary, intermediate and main layers.

Die Figuren 5 bis 15 zeigen Ausführungsformen der in die Rand- bzw. Zwischenschicht eingebrachten Bewehrung. Dabei zeigen die Figur 5 ein verknotetes Chemiefasergewebe, wobei die Maschen eine Seitenabmessung von ca. 40 mm aufweisen, Figur 6 eine verflochtene oberflächenversiegelte Glasfasergrobmatte, bei der eine Seite 8 mm und die andere 9 mm lang sind, Figur 7 ein verknotetes Chemiefasergrobgewebe, bei dem eine Seitenlänge ca. 20 mm lang ist, Figur 8 eine oberflächenversiegelte Glasfasergrobmatte, bei der eine Seitenlänge ca. 10 und die andere 11 mm lang sind, Figur 9 eine ähnliche Glasfasergrobmatte, mit einem vergleichsweise zu Figur 8 dickeren Faserdurchmesser, Figur 10 ein synthetisches Fasergewebe, wobei eine Seitenlänge ca. 10 mm beträgt, Figur 11 ein synthetisches Fasergewebe, bei dem eine Seitenlänge ca. 7 mm und die andere ca. 6 mm beträgt, Figur 12 ein ähnliches synthetisches Fasergewebe, mit einem dickeren Faserdurchmesser, verglichen zu dem in Figur 11 dargestellten, Figur 13 eine Glasfasermatte mit den Seitenlängen 6 mm x 5 mm, Figur 14 eine Glasfasermatte mit einer Seitenlänge von ca. 2 mm und schließlich Figur 15 ein Glasfaservlies mit regellos angeordneten Glasfasern. Neben diesen beispielhaft aufgeführten Bewehrungsmaterialien sind allgemein auch andere Glasfaserprodukte, synthetische Fasern, organische Fasern wie auch mineralische Faserstoffe geeignet.FIGS. 5 to 15 show embodiments of the reinforcement introduced into the edge or intermediate layer. 5 shows a knotted synthetic fiber fabric, the stitches having a side dimension of approx. 40 mm, FIG. 6 shows an interwoven surface-sealed glass fiber rug, in which one side is 8 mm and the other 9 mm long, FIG. 7 shows a knotted synthetic fiber fabric in which one side length is approx. 20 mm long, FIG. 8 shows a surface-sealed glass fiber rug, in which one side length is approx. 10 and the other 11 mm long, FIG. 9 shows a similar glass fiber rug, with a fiber diameter that is comparatively thicker than that in FIG. 8, FIG. 10 shows a synthetic fiber fabric , one side length being approx. 10 mm, FIG. 11 a synthetic fiber fabric, in which one side length is approx. 7 mm and the other approx. 6 mm, FIG. 12 a similar synthetic fiber fabric, with a thicker fiber diameter compared to that in FIG 11 shown, Figure 13 a Glass fiber mat with the side lengths 6 mm x 5 mm, FIG. 14 a glass fiber mat with a side length of approx. 2 mm and finally FIG. 15 a glass fiber fleece with randomly arranged glass fibers. In addition to these reinforcement materials listed as examples, other glass fiber products, synthetic fibers, organic fibers and mineral fiber materials are also generally suitable.

Anhand einiger Beispiele, in denen als Bindemittel Gips und als Zuschlag- bzw. Bewehrungsstoff Holzspäne dienen, soll die erfindungsgemäße Bauplatte weiter erläutert werden:The construction board according to the invention is to be explained further on the basis of a few examples in which gypsum is used as binder and wood chips as aggregate or reinforcement:

In den folgenden beschriebenen Beispielen werden Gipsspanplatten als Mehrschichtenplatten in einem Plattenformat von 660 mm x 560 mm x 38 mm hergestellt. Das Zuschlagstoff-/Bindemittelverhältnis x beträgt x = 0,25, die Trockendichte des Gipsspanplattenkörpers erreicht einen Wert von ρ₀ = 1200 kg/m³, und das Hydratwasser-/Bindemittelverhältnis beträgt w = 0,16.In the examples described below, gypsum chipboard is produced as multi-layer panels in a panel format of 660 mm x 560 mm x 38 mm. The additive / binder ratio x is x = 0.25, the dry density of the gypsum particle board body reaches a value of ρ₀ = 1200 kg / m³, and the hydrate / binder ratio is w = 0.16.

Von grundsätzlicher Bedeutung für die problemlose Ausführung dieses Halbtrockenverfahrens ist es, ein homogen aufgelockertes Materialvlies aus Zuschlagstoff-/Bindemittelgemenge bereitzustellen, das keine Aglomerate aufweisen darf und gut rieselfähig ist. Dies wird dadurch erreicht, daß der Zuschlagstoff oder der Bewehrungsstoff zunächst mit der ausreichenden Wassermenge versetzt bzw. getränkt wird und anschließend in einer geeigneten Mischapparatur mit dem Bindemittel gemäß dem gewünschten Verhältnis gemischt wird. Bei den vorliegenden Beispielen wurden zufriedenstellende Ergebnisse bei Anwendung eines Lödige Chargenmischers mit Pflugschar und Messerkopf erhalten. Die nächstwichtige Verfahrenskomponente ist die Streutechnik für das Aufrieseln des Zuschlagstoff-/Bindemittelgemenges. Diesbezüglich gute Eigenschaften zeigte eine Doppelwalzenstreustation.It is of fundamental importance for the problem-free execution of this semi-dry process to provide a homogeneously loosened material fleece from a mixture of aggregates and binders, which must not have any agglomerates and is free-flowing. This is achieved by first adding or soaking the additive or the reinforcement with the sufficient amount of water and then mixing it in a suitable mixing apparatus with the binder according to the desired ratio. In the present examples, satisfactory results were obtained using a Lödige batch mixer with a ploughshare and cutter head. The next most important process component is the spreading technique for the sprinkling of the additive / binder mixture. A double roller spreading station showed good properties in this regard.

Beispiel 1example 1

In einem diskontinuierlichen Verfahren wird mittels einer Doppelwalzenstreustation das wie oben vorbereitete Holzspan-Bindemittelgemenge in einen Schalkasten eingestreut und darauf eine vorbereitete Glasfasergewebematte abgelegt. Anschließend wird durch ein Sieb Gipsbindemittel auf die Matte gestäubt und erneut Holzspan-Bindemittelmaterial eingestreut. Schließlich wird ein geringfügiger Flächendruck auf die Platte ausgeübt, so daß sich u. a. durch die Auschwemmwirkung des sich verteilenden Wassers zum Abbinden des Gipses eine Zwischenschicht mit einem kontinuierlichen Übergangsbereich der Plattenkomponentenverteilung ergibt, die sogar dazu führt, daß die Späne durch die Bewehrungsmatte durchragen und zu einer zusätzlichen Verankerung dieser Matte in der Zwischenschicht zwischen der Rand- und der Hauptschicht führen. Dieser Effekt ist umso ausgeprägter, je größer die Maschenweite der Mattenbewehrung ist.In a discontinuous process, the wood chip binder mixture prepared as above is sprinkled into a formwork box by means of a double roller spreading station and a prepared fiberglass mat is placed thereon. Then gypsum binder is dusted onto the mat through a sieve and wood chip binder material is sprinkled in again. Finally, a slight surface pressure is exerted on the plate so that, among other things, the spreading effect of the spreading Water for setting the gypsum gives an intermediate layer with a continuous transition area of the plate component distribution, which even leads to the chips protruding through the reinforcement mat and an additional anchoring of this mat in the intermediate layer between the edge and the main layer. This effect is more pronounced the larger the mesh size of the mesh reinforcement.

Der Zuschlag- bzw. Bewehrungsstoff der Hauptschicht wurde so stark mit Wasser getränkt, daß zusätzlich der Hydratwasserbedarf der Gipsbindemittelschicht gedeckt wurde, wobei sich insgesamt ein Wasser-/Bindemittelverhältnis von w = 0,35 ergab.The aggregate or reinforcement material of the main layer was soaked with water that the hydrated water requirement of the gypsum binder layer was also covered, resulting in an overall water / binder ratio of w = 0.35.

In diesem Beispiel wurde das Gipsbindemittel noch mit Zusätzen in einem Verhältnis von x z = 0,00025 (Zusatz-b bezogen auf Gipsbindemittel), wie sie in der Gipstechnologie gebräuchlich sind, versetzt.In this example, the gypsum binder was mixed with additives in a ratio of x z = 0.00025 (add-b based on gypsum binder), as are common in gypsum technology.

Beispiel 2Example 2

Auf den Boden der Schalung wird eine benetzte Glasfasermatte abgelegt. Auf diese wird eine dünne Gipsbindemittelschicht durch einen Sieb aufgestäubt und das wie oben vorbereitete Holzspan- Bindemittelgemenge der Hauptschicht mittels einer Doppelwalzenstreustation als lockeres Materialvlies eingestreut. In Folge des bestehenden Hydratwasserbedarfs entzieht die Bindemittelschicht der Mattenbewehrung das Oberflächenwasser und dem Holzspan Bindemittelvlies die restliche zur Abbindung erforderliche Wassermenge, wobei bei dem Wasserübertritt wiederum die gewünschte Zwischenschicht und die damit erreichte Verzahnung durch die bewehrenden Holzspäne erreicht wird. Durch Aufbringen eines geringfügigen Flächendruckes wird das abgelegte Vlies zwischenverdichtet, und auf dieses zwischenverdichtete Vlies wird eine Bewehrungsmatte aufgelegt, auf die wiederum Gipsbindemittel gestäubt wird. Schließlich wird die Platte durch Aufbringen eines Flächendruckes endverdichtet. Das Wasser-/Bindemittel-Verhältnis beträgt hier wiederum w = 0,35. Da das Wasser, bezogen auf das zur Hydratation des Bindemittels der Hauptschicht notwendige Wasser, in einem geringen Überschuß zugegeben wird, was aus verfahrenstechnischen Gesichtspunkten eine notwendige Maßnahme gegen die Staubentwicklung während des maschinellen Streuens des Zuschlagstoff-/Bindemittelgemisches darstellt, kann der Nachteil der mit diesem verfahrenstechnischen Vorteil einhergeht,
daß nämlich in dem Holzspan-Bindemittelgemenge ein Wasserüberschuß vorhanden ist, dadurch kompensiert werden, daß das überschüssige Wasser zum Abbinden des Bindemittels der Randschicht dient.
A wetted glass fiber mat is placed on the bottom of the formwork. A thin layer of gypsum binder is dusted onto this through a sieve and the wood chip binder mixture of the main layer prepared as above is sprinkled in as a loose material fleece by means of a double roller spreading station. As a result of the existing need for hydrated water, the binder layer removes the remaining water from the mat reinforcement, the surface water and the wood chip binder fleece the remaining amount of water required for binding, whereby the desired intermediate layer and the interlocking thus achieved is achieved by the reinforcing wood chips. By applying a slight surface pressure, the deposited nonwoven is inter-compacted, and a reinforcing mat is placed on this inter-compacted nonwoven, on which in turn gypsum binder is dusted. Finally, the plate is finally compacted by applying a surface pressure. The water / binder ratio is again w = 0.35. Since the water, based on the water necessary for the hydration of the binder in the main layer, is added in a slight excess, which is a necessary measure against the development of dust during mechanical scattering of the additive / binder mixture from a process point of view, the disadvantage of this with procedural advantage goes hand in hand,
that an excess of water is present in the wood chip binder mixture, can be compensated for in that the excess water serves to set the binder of the surface layer.

Beispiel 3Example 3

Auf den Boden der Schalung wir eine Glasfasermatte abgelegt, auf die ein zuvor angerührtes Gemisch aus Gipsbindemittel, Wasser und Zusatzstoff in fließfähiger Konsistenz flächig aufgebracht wird und zur Minimierung der Einsatzmenge gleichmäßig abgezogen wird. Für diese Schlempe wird ein Wasser-Bindemittel-Verhältnis von w = 0,7 eingehalten und ein Verhältnis von Zusätzen von x z = 0,00025 gewählt. Auf diese Schicht wird das Holzspan-Bindemittelgemenge locker aufgestreut, wobei dieses ein Wasser-/Bindemittelverhältnis von w = 0,2 enthält und somit kaum Überschußwasser in dem Holzspan-Bindemittelvlies eingemischt wird. Dadurch wird das Entstehen von Porenraum während der Trocknung, durch die eine Schwächung der Gipsmatrix erfolgen könnte, vermieden. Bei diesem Verfahren stehen in den Außenschichten Wasserreserven bereit, die in die Hauptschicht abgegeben werden, wobei bei diesem Wasserübertritt wiederum die gewünschte Zwischenschicht gebildet wird.A glass fiber mat is placed on the bottom of the formwork, onto which a previously mixed mixture of gypsum binder, water and additive is applied in a flowable consistency and is evenly removed to minimize the amount used. A water-binder ratio of w = 0.7 is maintained for this stillage and a ratio of additives of x z = 0.00025 is selected. The wood chip binder mixture is sprinkled loosely on this layer, which contains a water / binder ratio of w = 0.2 and thus hardly any excess water is mixed into the wood chip binder fleece. This avoids the formation of pore space during drying, which could weaken the gypsum matrix. With this method, water reserves are available in the outer layers, which are released into the main layer, the desired intermediate layer being formed again with this water transfer.

Steigert man in den vorangehenden Beispielen den Endverdichtungsdruck, so können problemlos Platten höherer Dichte hergestellt werden. Die Steigerung des Endverdichtungsabdruckes ist dabei nicht in Zusammenhang mit dem Übergang von dem in den Bewehrungsstoffen vorhandenen Wasser an das Bindemittel zu sehen, sondern ausschließlich auf eine Verringerung des freien Porenraumes ausgerichtet, die zu einer Festigkeitserhöhung führt. So weist beispielsweise eine gemäß Beispiel 1 angefertigte Platte mit einer Trockendichte von 1550 kg/m³ eine Biegefestigkeit von 18 N/mm² auf.If the final compression pressure is increased in the preceding examples, then plates of higher density can be produced without problems. The increase in the final compression mark is not to be seen in connection with the transition from the water present in the reinforcement materials to the binder, but is aimed exclusively at a reduction in the free pore space, which leads to an increase in strength. For example, a plate made according to Example 1 with a dry density of 1550 kg / m³ has a bending strength of 18 N / mm².

Claims (14)

  1. Building panel with multilayer structure, including at least one surface and/or intermediate layer consisting of a hydrated cementing agent and a reinforcement placed into said surface and/or intermediate layer, and at least one main layer preferably composed of a hydrated mixture of a binder and an aggregate or reinforcing material,
    characterized in
    that a boundary layer zone (24) is formed between said surface (12) and/or intermediate (22) layers, which are thinner than said main layers (14) and which are constituted by a mixture of binders (16) changing into the solid state and by a reinforcement material (20), and said main layers (14) which consist of said mixture of binders (16) and aggregate or reinforcing materials (18), with the total of the mixing water required for setting of said surface (12) and/or intermediate layers (22) and said main layers (14) having been contained in said mixture of aggregate or reinforcing materials (18) in the form of water-impregnated particles, wherein said boundary layer zone (24) constitutes, in terms of composition of the layers, a zone of continuous transition between said surface (12) and/or intermediate layers (22) and said main layers (14).
  2. Building panel with multilayer structure according to Claim 1,
    characterized in
    that said reinforcement (20) is disposed in a zone close to the surface in said binder surface layer (12).
  3. Building panel with multilayer structure according to Claim 1,
    characterized in
    that said reinforcement (20) is disposed directly in the surface zone of said binder surface layer.
  4. Building panel with multilayer structure according to any of Claims 1 to 3,
    characterized in
    that said reinforcement (20) consists of a fibrous reinforcement core, preferably of a woven or nonwoven fleece-type glass fiber material.
  5. Building panel with multilayer structure according to any of Claims 1 to 4,
    characterized in
    that said binder (16) in said surface, intermediate and main layers is an inorganic cementing agent, preferably gypsum, and that said aggregate or reinforcing material (18) of said main layer consists of a porous inorganic or organic material, preferably of wood chips, bits of paper, wood fibers, wood fiber pellets or particulate bark material, which is adapted to absorb, retain and liberate water and which displays a reinforcing function.
  6. Building panel with multilayer structure according to Claim 5,
    characterized in
    that said binder (16) in said surface, intermediate and main layers is a mixture of cementing agents based on sulfatic, lime-transferring and pozzuolanic materials, consisting of 50 to 90 % by mass of calcium sulfate, 3 to 25 % by mass of lime-transferring materials, and 5 to 35 % by mass of active aluminosilicate pozzuolanic materials rich in aluminate.
  7. Building panel with multilayer structure according to Claim 6,
    characterized in
    that the mixing ratio of calcium sulfate, lime-transferring materials, and active aluminosilicate pozzuolanic materials rich in aluminate is so adjusted that the formation of ettringite will be restricted to the solution phase, with these substances being deemed to set at volume stability for an estimate of the suitable binder mixtures whenever, after a 7-days setting period a variation in length of a prismatic test specimen by 0.5 % admissible at maximum will not be exceeded and will be followed by a converging graph of the length variation/time diagram.
  8. Method of manufacturing a building panel with multilayer structure according to Claims 1, 2, 4, 5, 6 and/or 7,
    characterized in
    that said mixture of aggregate or reinforcing materials (18) and cementing agents (16), preferably at a ratio x = 0.05 to 0.5, is intermittently or continuously applied onto a board or conveyor belt by spreading the crumbled material, with said aggregate or reinforcing material being so impregnated with water that a water/binder ratio w = 0.16 to 0.6 is achieved, that said reinforcement (20) is topped onto this mixture layer, that the pulverulent binder layer (16) is sprayed on top, and that in a subsequent vibrating, levelling, rolling step or by application of a surface pressure not exceeding 1.5 N/mm², approximately, the packing density of said aggregate or reinforcing material (18) relative to said binder particles (16) is increased such that through the points of contact between the aggregate or reinforcing material and the cementing agent, preferably by capillary transfer action, the effect is produced that the water passes from said aggregate or reinforcing material (18) to said binder (16) in said main layer (14) and said binder (16) of said surface layer (12), and that this effect produces said zone of continuous transition and gives rise to a coherent gypsum matrix by hydration of said cementing agent.
  9. Method of manufacturing a building panel with multilayer structure according to Claims 1, 3, 4, 5, 6 and/or 7,
    characterized in
    that said binder (16) is intermittently or continuously applied onto a board or a conveyor belt by spreading the crumbled material, that said reinforcement (20) is placed into the dry binder whereupon said crumbled mixture of a binder (16) and said aggregate or reinforcing material (18) is spread on top, with said aggregate or reinforcing material (18) containing the quantity of water required for the setting of said binder of said main layer and said surface layer, preferably in a water/binder ratio of 0.3 = w = 0.6, whereupon in a vibrating, levelling or rolling step or by application of a slight surface pressure not exceeding 1.5 N/mm² approximately the packing density of said aggregate or reinforcing material (18) relative to said binder particles (16) is increased such that through the points of contact between the aggregate or reinforcing material and the cementing agent, preferably by capillary transfer action, the effect is produced that the water passes from said aggregate or reinforcing material (18) to said binder (16) in said main layer (14) and said binder (16) of said surface layer (12), thereby producing said zone of continuous transition.
  10. Method of manufacturing a building panel with multilayer structure, in accordance with Claim 9,
    characterized in
    that the quantity of water supplied by said aggregate or reinforcing material (18) is smaller than the quantity of water required for setting of said binder (16) in said main layer (14) and in said surface layer (12), and that the quantity of water required in particular for the setting of said binder (16) in said surface layer (12) is introduced by wetting the reinforcement placed into said dry binder (16) with at least that quantity of water which, in cooperation with the water quantity contained in said aggregate or reinforcing substance (18), is sufficient to cause the existing cementing agent (16) to set.
  11. Method of manufacturing a building panel with multilayer structure according to Claims 1, 3, 5, 6 and/or 7,
    characterized in
    that a binder/water suspension of a liquid to pasty consistency is deposited on a board or a conveyor belt, that a reinforcement (20) is placed onto and pressed into said binder suspension, that said mixture of binder (16) and aggregate or reinforcing substance (18) is sprayed on top in crumbled form, with said aggregate or reinforcing substance (18) retaining, in a form combined therein, the water for binder (16) setting in a quantity reduced by the same percentage by which the latter is present as excess water in said binder suspension and is caused to exit from said aggregate or reinforcing materials (18) and said binder suspension and to enter into said binder by vibrating, levelling or rolling action or by application of a surface pressure not exceeding 1.5 N/mm², thereby forming said zone of continuous transition.
  12. Method of manufacturing a building panel with multilayer structure, in accordance with Claim 11,
    characterized in
    that initially said reinforcement (20) is deposited on said board or said conveyor belt, and that subsequently said liquid to pasty binder suspension is applied and homogeneously distributed thereon.
  13. Method of manufacturing a building panel with multilayer structure, in accordance with any or several of Claims 8 to 12,
    characterized in
    that two or more of these methods may be combined for manufacturing panels (10) having more than two layers.
  14. Method of manufacturing a building panel with multilayer structure, in accordance with any or several of Claims 8 to 13,
    characterized in
    that set-controlling agents such as retarders or accelerators are admixed to the water, with their ratio relative to the main component (10) of said cementing agent being dimensioned within the range from 0.01 to 1.0 %.
EP87111975A 1986-08-28 1987-08-18 Layered building panel and method of manufacturing it Expired - Lifetime EP0258734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87111975T ATE70583T1 (en) 1986-08-28 1987-08-18 CONSTRUCTION PLATE IN LAYER STRUCTURE AND PROCESS FOR ITS MANUFACTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863629223 DE3629223A1 (en) 1986-08-28 1986-08-28 BUILDING PLATE IN THE LAYER STRUCTURE AND METHOD FOR THEIR PRODUCTION
DE3629223 1986-08-28

Publications (3)

Publication Number Publication Date
EP0258734A2 EP0258734A2 (en) 1988-03-09
EP0258734A3 EP0258734A3 (en) 1988-07-13
EP0258734B1 true EP0258734B1 (en) 1991-12-18

Family

ID=6308347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111975A Expired - Lifetime EP0258734B1 (en) 1986-08-28 1987-08-18 Layered building panel and method of manufacturing it

Country Status (12)

Country Link
US (2) US4923664A (en)
EP (1) EP0258734B1 (en)
AR (1) AR241947A1 (en)
AT (1) ATE70583T1 (en)
AU (1) AU601207B2 (en)
BR (1) BR8704417A (en)
DE (2) DE3629223A1 (en)
FI (1) FI86454C (en)
MX (1) MX169302B (en)
NO (1) NO175161C (en)
NZ (1) NZ221599A (en)
ZA (1) ZA875740B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68929291T2 (en) * 1988-12-06 2001-10-31 Shaikh Ghaleb Mohammad Y A Process and plant for producing a stretchable product for use in extinguishing fires and for preventing explosions
DE4017057C2 (en) * 1990-05-26 1999-11-04 Peter Breidenbach Clay building board and process for its manufacture
CA2052301A1 (en) * 1990-10-01 1992-04-02 Hiroshi Uchida Method of producing patterned shaped article
DK17592A (en) * 1992-02-13 1993-08-14 Inge Bodil Elmstroem Soerensen PLASTIC PLATE FOR SOUND ABSORPTION AND PROCEDURE FOR PREPARING SUCH A PLASTIC PLATE
DE4214335A1 (en) * 1992-05-04 1993-11-11 Helmut Meister Process for producing a lightweight component in the form of a plate or cuboid
SE501129C2 (en) * 1993-06-18 1994-11-21 Delcon Ab Concrete Dev Methods of manufacturing concrete structures with a surface protection and concrete structure prepared according to the method
TW350894B (en) * 1994-08-02 1999-01-21 Stylite Kogyo Co Ltd Refractory coating components, building siding panels and the siding structure
EP0875371A1 (en) * 1997-04-28 1998-11-04 Mineralka d.o.o. Refractory plate-shaped composite material, method for its production and its use
DE29708687U1 (en) * 1997-05-15 1997-07-24 Siemens AG, 80333 München Adhesive connection
US6976345B2 (en) 1999-04-05 2005-12-20 Firouzeh Keshmiri Cementitious based structural lumber product and externally reinforced lightweight retaining wall system
US7273634B2 (en) 1999-10-15 2007-09-25 Fitzgibbons Jr Robert T Coatings and additives containing ceramic material
US6423129B1 (en) * 1999-10-15 2002-07-23 Robert T. Fitzgibbons, Jr. Coatings and additives containing ceramic material
US6740395B2 (en) 2001-12-21 2004-05-25 United States Gypsum Company Substrate smoothed by coating with gypsum-containing composition and method of making
SE0502666L (en) * 2005-12-06 2007-06-05 Skanska Sverige Ab Floor Concrete device
US20080057318A1 (en) * 2006-08-29 2008-03-06 Adzima Leonard J Low density drywall
US7776170B2 (en) * 2006-10-12 2010-08-17 United States Gypsum Company Fire-resistant gypsum panel
FR2909695B1 (en) * 2006-12-07 2012-01-27 Const Composites Bois COMPOSITE STRUCTURE FOR THE PRODUCTION OF WALLS, PANELS, SLABS OR THE LIKE AND METHOD OF MAKING SUCH A COMPOSITE STRUCTURE
DE102007062125B4 (en) * 2007-12-21 2013-01-10 B.T. Innovation Gmbh Functional component and method for its production
DE202008011589U1 (en) * 2008-09-01 2008-11-27 Akzenta Paneele + Profile Gmbh Plastic floor panel with mechanical locking edges
US10132097B2 (en) * 2013-10-24 2018-11-20 Knauf Gips Kg Breakage-resistant composite material and stud wall, roof or ceiling structure
NL2011875C2 (en) * 2013-11-29 2015-06-01 Thermoform Nederland B V A method for producing a wood strand construction element, a construction element obtained therewith and a production facility therefor.
JP6412431B2 (en) * 2014-02-08 2018-10-24 吉野石膏株式会社 Bearing wall structure of wooden outer wall and its construction method
DE102014103254A1 (en) * 2014-03-11 2015-09-17 Pta Solutions Gmbh Fire resistance body and method of making the same
DE102017113023A1 (en) * 2016-06-21 2017-12-21 Heimann Sensor Gmbh Thermopile infrared single sensor for temperature measurements or for gas detection

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513710A (en) * 1894-01-30 Harley w
CA469822A (en) * 1950-12-05 Schwarz Alfred Insulated building units
US957144A (en) * 1909-09-16 1910-05-03 Erling Bye Plaster-board.
US1439954A (en) * 1921-07-21 1922-12-26 Joseph W Emerson Gypsum wall board
GB497561A (en) * 1938-06-09 1938-12-21 Hermann Steiner A process for the manufacture of a two-layer building slab
US2268965A (en) * 1939-05-02 1942-01-06 Schumann Artur Method of molding reinforced building panels
US2220349A (en) * 1939-10-03 1940-11-05 Truscon Lab Building construction
US2305126A (en) * 1940-08-04 1942-12-15 Wohl Max Process of molding imitation terrazza tile
GB561231A (en) * 1942-11-05 1944-05-10 Sergey Steuerman Laminated reinforced concrete structures
US2522116A (en) * 1945-12-18 1950-09-12 Hayes Econocrete Corp Of Ameri Method of molding lightweight concrete panels
FR1112328A (en) * 1954-07-16 1956-03-13 Brick
US3284980A (en) * 1964-07-15 1966-11-15 Paul E Dinkel Hydraulic cement panel with low density core and fiber reinforced high density surface layers
US3565650A (en) * 1966-05-18 1971-02-23 William A Cordon Lightweight concrete products and a process of producing same
CH507882A (en) * 1967-12-06 1971-05-31 Repla Sa Process for the production of synthetic resin-bonded panels
DE1808187A1 (en) * 1968-11-11 1970-06-11 Weller Dr Ing Konrad Building board, especially for soundproofing and fire protection
DE1813733A1 (en) * 1968-12-10 1970-06-25 Doerken Ewald Ag Plastic lattice reinforced building mater - ials
US3882215A (en) * 1970-06-10 1975-05-06 Fpa Fypol Limited Methods of making building and like components
BE791262A (en) * 1971-11-11 1973-03-01 Battelle Development Corp IMPROVEMENTS IN CONCRETE CONSTRUCTION ELEMENTS
DE2628457A1 (en) * 1976-06-25 1978-01-05 Werner Mitschrick Thin concrete panels for covering walls or ceilings - where panel has one layer of concrete reinforced by glass fibres
AT347840B (en) * 1977-03-11 1979-01-10 Construction & Finance Ag PROCESS FOR MANUFACTURING A BUILDING COMPOSED OF A BLOWED OPEN-PORED MINERAL AND AT LEAST ONE WATER-BINDING AGENT
US4185837A (en) * 1978-05-05 1980-01-29 Jerome Greene Fluid seal with lubricated sealing surfaces
US4185437A (en) * 1978-10-10 1980-01-29 Olympian Stone Company Building wall panel and method of making same
DE2854228C2 (en) * 1978-12-15 1983-11-24 Ytong AG, 8000 München Multi-layer sheet made of aerated concrete, as well as process for their manufacture
DE2919311B1 (en) * 1979-05-14 1980-09-18 Gert Prof Dr-Ing Habil Kossatz Process for the production of gypsum components, in particular gypsum boards
GB2065742B (en) * 1979-10-03 1984-01-11 Kurimoto Ltd Glass fibre reinforced cement plates and method and apparaus for their manufacture
DE3230406A1 (en) * 1982-08-16 1984-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München BINDER MIXTURE OF SULFATIC, LIME-DISPENSING AND PUZZOLANIC SUBSTANCES
FI69270C (en) * 1984-09-21 1986-01-10 Metsaeliiton Teollisuus Oy BRACKBESTAENDIGA TRAEKOMPOSITER SPECIELLT INREDNINGSSKIVOR OCHFOERFARANDE FOER FRAMSTAELLNING AV DESSA

Also Published As

Publication number Publication date
EP0258734A3 (en) 1988-07-13
AR241947A1 (en) 1993-01-29
AU601207B2 (en) 1990-09-06
MX169302B (en) 1993-06-29
BR8704417A (en) 1988-04-19
NO175161B (en) 1994-05-30
DE3629223A1 (en) 1988-03-10
NO175161C (en) 1994-09-07
FI86454B (en) 1992-05-15
ZA875740B (en) 1989-04-26
NO873605L (en) 1988-02-29
FI86454C (en) 1992-08-25
US4923664A (en) 1990-05-08
US4955171A (en) 1990-09-11
NO873605D0 (en) 1987-08-26
AU7760487A (en) 1988-03-03
DE3775304D1 (en) 1992-01-30
FI873714A0 (en) 1987-08-27
NZ221599A (en) 1990-11-27
FI873714A (en) 1988-02-29
ATE70583T1 (en) 1992-01-15
EP0258734A2 (en) 1988-03-09

Similar Documents

Publication Publication Date Title
EP0258734B1 (en) Layered building panel and method of manufacturing it
EP0019207B1 (en) Method of producing gypsum building elements
DE60035215T2 (en) WALL PLATE WITH GASBETON CONTAINING CORE
AT391445B (en) ACOUSTIC POROESES COMPOSITE MATERIAL FOR BUILDING PURPOSES AND METHOD FOR THE PRODUCTION THEREOF
DE69917719T2 (en) Method for producing a gypsum fiberboard with improved impact strength
DE3248663C1 (en) Coated facade or roof insulation board made of mineral fibers, as well as processes for their production
EP1981826B1 (en) Construction panel
DE102013007800B4 (en) Dry mortar plate and method and use of a device for its production
DE2524147B2 (en) Process for the production of lightweight panels from a porous aggregate and plaster of paris
DE1784657A1 (en) Process for the continuous production of molded bodies, in particular plates, from plaster of paris
DE102017112282B4 (en) Dry mortar shaped body, dry mortar granules and method for producing a dry mortar shaped body
DE1571466A1 (en) Process and device for the production of plasterboard and molded articles
DE102008055110A1 (en) Wood cement board
DE4222872C2 (en) Three-layer gypsum-based building material board and manufacturing method
DE4142286C2 (en) Three-layer gypsum-based building material board and manufacturing method
DE3147174A1 (en) Sound-absorbing wall panelling or wall panelling element
DE19854884A1 (en) Method for producing an at least two-layer outer wall element and an outer wall element produced thereby
DE3248664A1 (en) Coated facade or roof insulating panel of mineral fibres and process for its production
EP0585665B1 (en) Panel with two layers based on water or air hardened binders for making raised floors
EP1783294B1 (en) Building board
EP1584767B1 (en) Plate-shaped buidling element and method of manufacturing
DE8816997U1 (en) Lightweight concrete structure with a lightweight aggregate made of foam cement
DE68925277T2 (en) PROCESS FOR THE PRODUCTION OF A BUILDING MATERIAL
AT404591B (en) METHOD FOR COATING LIGHTWEIGHT CONCRETE PANELS
EP0034345A1 (en) Large-size construction panel, process for its production and storey-high wall slab of such construction panels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19881107

17Q First examination report despatched

Effective date: 19900226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 70583

Country of ref document: AT

Date of ref document: 19920115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3775304

Country of ref document: DE

Date of ref document: 19920130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RIGIPS GMBH

Effective date: 19920724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940815

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940908

Year of fee payment: 8

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940927

Year of fee payment: 8

27O Opposition rejected

Effective date: 19940623

EAL Se: european patent in force in sweden

Ref document number: 87111975.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950818

Ref country code: AT

Effective date: 19950818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 87111975.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST