EP0258178A1 - Absorbeurs de radiations nucléaires - Google Patents

Absorbeurs de radiations nucléaires Download PDF

Info

Publication number
EP0258178A1
EP0258178A1 EP87810422A EP87810422A EP0258178A1 EP 0258178 A1 EP0258178 A1 EP 0258178A1 EP 87810422 A EP87810422 A EP 87810422A EP 87810422 A EP87810422 A EP 87810422A EP 0258178 A1 EP0258178 A1 EP 0258178A1
Authority
EP
European Patent Office
Prior art keywords
samarium
alloys
metallic
metal
absorbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87810422A
Other languages
German (de)
English (en)
Inventor
Claude Planchamp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0258178A1 publication Critical patent/EP0258178A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials

Definitions

  • the present invention relates to metal absorbers of nuclear radiation. It more particularly relates to metallic nuclear radiation absorbers containing metallic samarium in the form of metallic alloy chosen from at least one of the families of copper-samarium, aluminum-samarium and magnesium-samarium alloys, respectively, each of said families of alloys containing from 0.05 to 95% by weight of samarium relative to the total weight of the alloy.
  • the absorption materials must meet the following criteria: - firstly, having specific nuclear properties: large cross section of neutron capture, low emission of secondary radiation, good stability over time with respect to radiation; - have a high melting point to withstand the heating generated by the absorption of radiation, and in particular neutron fluxes; - be a good conductor of heat to facilitate cooling to the outside; - not too high residual heat (released as radiation after stopping); - sufficiently high mechanical resistance; - resistance to corrosion with respect to the refrigerant, or in the working atmosphere; - have good stability with respect to heat and radiation; - competitive cost, both in terms of raw material and in implementation.
  • All the elements absorb more or less nuclear radiation, but those which have the most striking neutron-absorbing properties are: cadmium, boron, europium, hafnium, gadolinium, samarium and dysprosium.
  • Europium and dysprosium although having a large effective cross-section, give rise to very limited applications, given their very high price.
  • Gadolinium has the highest cross-sectional area of all known absorbers in the thermal neutron spectrum. It can be observed that for example for neutrons of initial energy from 10 ⁇ 1 to 10 ⁇ 3 Electronvolts, its effective capture section is approximately 100 times higher than that of boron. Unfortunately, in the area of epithermal neutrons and slow neutrons (energy from 0.3 to 102 Electronvolts, the absorption properties are very reduced compared to boron.
  • boron which is used in different forms: elemental boron, borides, boron carbide, boric acid, oxide, nitride, etc. and many patents have been filed.
  • boron-based materials are delicate: elemental boron has poor mechanical properties, it is highly oxidizable at high temperature and its corrosion resistance is poor; it must then be inserted in the form of chemical compounds defined in various matrices, and these composite materials pose problems of homogeneity and are difficult to use.
  • Hafnium has much lower absorption properties than boron for thermal and epithermal neutrons, its cost is high and it is difficult to use because of its oxidability.
  • the samarium compared to all the elements mentioned above, has extreme neutron-absorbing properties interesting, intermediate between boron and gadolinium for thermal neutrons, superior to boron and gadolinium for intermediate and fast neutrons; two resonance zones give only two weaknesses for the samarium compared to boron, the first between 1 and 5 eV of neutron energy, and the second between 30 and 40 eV, but these weaknesses can be compensated by the quantity of elements neutrophages introduced into the final alloy. Compared to gadolinium, it is perfectly clear that the samarium is more interesting overall on the whole spectrum of energy of neutrons.
  • These new absorbers are characterized by the fact that they essentially constitute three families of alloys, one family having as base metal aluminum, another family having as base metal copper, and a third having as base metal the magnesium.
  • These three families of new alloys generally present complementary interests. Indeed, aluminum is very light but has fairly low mechanical properties above 300 ° C. In comparison, copper is heavier, but has a higher thermal conductivity than aluminum (which is already excellent) and gives high mechanical properties up to 500 ° C. Magnesium will give rise to the lightest alloys, but its resistance to corrosion is low, and its thermal conductivity lower than that of aluminum. In these three families, the absorption properties of nuclear radiation are given by the relative mass of samarium present in the metal matrices concerned.
  • the absorption coefficient of the alloy is directly a function of the weight percentage of this element in the alloy.
  • the absorption coefficient will be directly a function of the percentage by weight of samarium.
  • the alloys of the Cu-Sm family will be situated in a range of 0.05% to 50% of Sm, or in a range of 70% to 90% Sm.
  • the alloys of the Al-Sm family it will preferably be situated in a range of 0.05% to 25% by weight of Sm, and for the Mg-Sm family, in a range of 0.05 to 55%.
  • the aluminum, copper and magnesium used can be pure, or alloyed with any other addition element which will make it possible to reinforce the mechanical properties of the absorbers or to modify their technological properties (ease of implementation, resistance corrosion, machinability, weldability ).
  • addition elements other than aluminum, copper, magnesium and samarium other neutron-absorbing elements can be added such as gadolinium, europium, hafnium, boron (in phase dispersed or not), cadmium, lithium, dysprosium, etc. where fibers can be inserted (alumina, silicon carbide, boron, carbon ).
  • the aluminum-samarium, or copper-samarium, or magnesium-samarium alloys exhibit very good ease of implementation by at least one of the manufacturing processes chosen from molding, whether in sand, in shell, under high or low pressure, hot or cold rolling, extrusion, forging, vacuum forming ...
  • the thermal conductivity of the final absorbent metallic material will strongly depend on the mixture selected (Al-Sm, Cu-Sm or Mg-Sm) and possibly on other addition elements introduced into the alloys to improve their mechanical, technological or absorption.
  • an Al-Sm alloy with 10% Sm will have a thermal conductivity of 150 W / m ° K
  • an Al-Si-Sm alloy with 7% silicon and 2% samarium the same thing
  • a Cu-Sm alloy with 4% of Sm will show a thermal conductivity of 250 W / m ° K approximately.
  • This notion of thermal conductivity is important and will strongly influence the choice of the optimal composition sought for the absorbent material, because any absorption of radiation (and especially neutron capture) is accompanied by a release of heat which must be removed from the hot parts to cold parts as quickly as possible. It will be noted that the aluminum and copper matrices are from this point of view very well placed.
  • the starting points of melting of the alloys Al-Sm, Cu-Sm, Mg-Sm are high, which gives them very good stability at high temperature, and which allows them to withstand without problem the heating caused by absorption of neutrons or other radiation.
  • the solidification interval varies according to the chemical composition and Table II indicates some values of alloys studied.
  • Corrosion resistance in general, is not or little affected by the presence of samarium for contents less than 25% by weight, and the corrosion properties will essentially depend on the nature of the aluminum, copper matrices and magnesium used.
  • aluminum for example, aluminum-silicon matrices (7 to 10% of Si) and aluminum-magnesium will exhibit good corrosion resistance against atmospheric agents, against demineralized water at 50 ° C or in a marine atmosphere. This behavior could be further improved by appropriate surface treatments (anodization, alodine, paints, plastic coatings ).
  • the corrosion resistance is practically not affected by the presence of the samarium. This corrosion resistance can be further improved by additions of chromium, nickel, aluminum, tin ...
  • the corrosion resistance will generally be low, and the use of these will be reserved for applications in a non-corrosive environment.
  • Radiation absorbers must have high mechanical properties and be as stable as possible at high temperatures. To do this, and depending on the specifications imposed, a judicious choice of the Al-Sm, Cu-Sm and Mg-Sm alloys and their additional addition elements will be made. The right compromise will have to be found not only based on mechanical characteristics nics, but also depending on the thermal conductivity of the weight, the nuclear characteristics, the possibilities of implementation. As an example, we will see in the following tables the results of mechanical tests on different Al-Sm and Cu-Sm alloys.
  • magnesium-samarium alloys are somewhat special; copper and aluminum do not dissolve samarias in the solid state.
  • magnesium can dissolve up to 12% of samarium at around 550 ° C, and this solidity is no more than 2 or 3% at room temperature: this characteristic shows a possibility of structural hardening by quenching and tempering on these binary alloys.
  • Examples of applications include: baskets for transporting and storing nuclear waste, pool racks for storing fuel elements from nuclear reactors, shielding decontamination facilities, atomic and nuclear protections in general, nuclear reactor components, shielding of control devices using radiation or radioactive sources, shielding of electronic boxes, etc.
  • the metals placed in the crucible are heated for 1 hour at 1200 ° C, then the resulting mixture is maintained for 1 hour at 1100 ° C in order to obtain a perfectly homogeneous liquid mass.
  • the oven is then opened, the top of the crucible stripped of its encrustations and its contents poured into a mold such as an ingot mold, which can be cooled with water.
  • the metal mass is first brought to 660 ° C to melt the aluminum, then brought to 1100 ° C for about 1 hour.
  • the samarium gradually dissolves in liquid aluminum.
  • the temperature is reduced to 800 ° C, the oven is opened, the oxides floating on the surface of the liquid eliminated and the contents of the crucible poured into a mold, such as a metal mold, a sand mold, a ceramic mold or an ingot mold.
  • the alloy obtained can be put into its final form using the usual transformation techniques, such as machining, forging, lamination or extrusion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Les absorbeurs métalliques de radiations nucléaires contiennent du samarium métallique sous forme d'alliage métallique choisi parmi l'une au moins des familles d'alliages suivantes: cuivre-samarium, aluminium-samarium et magnésium-samarium, respectivement, chacune desdites familles d'alliages contenant de 0,05 à 95% en poids de samarium par rapport au poids total de l'alliage. Ils peuvent en outre contenir des éléments additionnels tels qu'éléments neutrophages, éléments renforçateurs des propriétés physiques, mécaniques, technologiques, des fibres ou des éléments anti-corrosion. Ils peuvent être notamment utilisés pour absorber des neutrons et des rayonnements γ et X.

Description

  • La présente invention concerne des absorbeurs métalliques de radiations nucléaires. Elle a plus parti­culièrement pour objet des absorbeurs métalliques de radiations nucléaires contenant du samarium métallique sous forme d'alliage métallique choisi parmi l'une au moins des familles d'alliages cuivre-samarium, aluminium-samarium et magnésium-samarium, respectivement, chacune desdites familles d'alliages contenant de 0,05 à 95% en poids de samarium par rapport au poids total de l'alliage.
  • L'importance des programmes énergétiques électro­nucléaires dans le monde et le développement des techniques nucléaires nécessitent des solutions de protection contre les radiations nucléaires (périphérie des réacteurs, transport et stockage des déchets radioactifs, machines nucléaires...). Il est donc de première importance et de première nécessité de concevoir et fabriquer des absorbeurs de radiations efficaces et compétitifs.
  • Les matériaux d'absorption doivent répondre aux critères suivants:
    - en premier lieu, posséder des propriétés nucléaires spéci­fiques: grande section efficace de capture neutronique, faible émission de rayonnement secondaire, bonne stabilité dans le temps par rapport aux rayonnements;
    - avoir un point de fusion élevé pour supporter l'échauffe­ment engendré par l'absorption des rayonnements, et notamment des flux neutroniques;
    - être bon conducteur de la chaleur pour faciliter le refroidissement vers l'extérieur;
    - chaleur résiduelle pas trop importante (se dégageant sous forme de rayonnement après l'arrêt);
    - résistance mécanique suffisamment grande;
    - résistance à la corrosion par rapport au réfrigérant, ou dans l'atmosphère de travail;
    - présenter une bonne stabilité par rapport à la chaleur et au rayonnement;
    - coût compétitif, tant sur le plan de la matière première que dans la mise en oeuvre.
  • Tous les éléments absorbent plus ou moins les radiations nucléaires, mais ceux qui ont les propriétés neutrophages les plus marquantes sont: le cadmium, le bore, l'europium, le hafnium, le gadolinium, le samarium et le dysprosium.
  • L'europium et le dysprosium, bien qu'ayant une grande section efficace de capture, donnent lieu à des applications très limitées, étant donné leur prix très élevé.
  • Le gadolinium présente dans le spectre de neutrons thermiques la section efficace de capture la plus élevée de tous les absorbeurs connus. On peut observer que par exemple pour des neutrons d'énergie initiale de 10⁻¹ à 10⁻³ Electronvolts, sa section efficace de capture est environ 100 fois plus élevée que celle du bore. Malheureusement, dans la zone des neutrons épithermiques et des neutrons lents (énergie de 0,3 à 10² Electronvolts, les propriétés d'absorption sont très diminuées comparativement au bore.
  • Le matériau absorbeur le plus répandu et le plus connu sur le plan de la criticité est sans conteste possible le bore, qui est utilisé sous différentes formes: bore élé­mentaire, borures, carbure de bore, acide borique, oxyde, nitrure, etc. et de nombreux brevets ont été déposés.
  • La mise en oeuvre des matériaux à base de bore est délicate: le bore élémentaire a de mauvaises propriétés mécaniques, il est hautement oxydable à haute température et sa résistance à la corrosion est mauvaise; il faut alors l'insérer sous forme de composés chimiques définis dans diverses matrices, et ces matériaux composites posent des problèmes d'homogénéité et sont délicats de mise en oeuvre.
  • Le hafnium a des propriétés d'absorption très inférieures au bore pour les neutrons thermiques et épi­thermiques, son coût est élevé et sa mise en oeuvre délicate à cause de son oxydabilité.
  • Le samarium, par rapport à tous les éléments cités précédemment, présente des propriétés neutrophages extrême­ ment intéressantes, intermédiaires entre le bore et le gadolinium pour les neutrons thermiques, supérieures au bore et au gadolinium pour les neutrons intermédiaires et rapi­des; deux zones de résonance donnent deux faiblesses seule­ment pour le samarium par rapport au bore, la première entre 1 et 5 eV d'énergie de neutron, et la deuxième entre 30 et 40 eV, mais ces faiblesses peuvent être compensées par la quantité d'éléments neutrophages introduite dans l'alliage final. Par rapport au gadolinium, il est parfaitement clair que le samarium est plus intéressant globalement sur tout le spectre d'énergie de neutrons.
  • C'est pourquoi le demandeur, conscient de l'inté­rêt du samarium, a cherché et trouvé des moyens de l'allier à d'autres matières métalliques pour en faire des absorbeurs de radiations nucléaires présentant toutes les qualités citées précédemment.
  • Ces nouveaux absorbeurs sont caractérisés par le fait qu'ils constituent essentiellement trois familles d'alliages, une famille ayant pour métal de base l'alu­minium, une autre famille ayant pour métal de base le cuivre, et une troisième ayant pour métal de base le magné­sium. Ces trois familles de nouveaux alliages présentent globalement des intérêts complémentaires. En effet, l'alu­minium est très léger mais présente au-dessus de 300°C des propriétés mécaniques assez faibles. En comparaison, le cuivre est plus lourd, mais a une conductibilité thermique supérieure à celle de l'aluminium (qui est déjà excellente) et donne des propriétés mécaniques élevées jusqu'à 500°C. Le magnésium va donner lieu aux alliages les plus légers, mais sa tenue à la corrosion est faible, et sa conductivité thermique plus basse que celle de l'aluminium. Dans ces trois familles, les propriétés d'absorption des radiations nucléaires sont données par la masse relative de samarium présente dans les matrices métalliques concernées. La capa­cité d'absorption d'un élément est définie par sa section efficace de capture neutronique, exprimée en BARN. A partir de cette section efficace
    Figure imgb0001
    , on peut obtenir un coefficient d'absorption µ grâce à la relation:
    µ = PN
    Figure imgb0002

    µ est exprimé en cm⁻¹
    P est la masse volumique du matériau en g/cm3
    A est la masse atomique en g
    est la section efficace de capture en cm2
    N est le nombre d'Avogadro.
  • Pour calculer le coefficient d'absorption d'un alliage, il faut tenir compte de tous les éléments d'addi­tion présents, et utiliser alors la formule:
    Figure imgb0003
  • En considérant un élément d'addition donné i, le coefficient d'absorption de l'alliage est directement fonction du pourcentage pondéral de cet élément dans l'alliage. Ainsi, pour tous les alliages Al-Sm, Cu-Sm et Mg-Sm faisant l'objet du présent brevet, leur coefficient d'absorption sera directement fonction du pourcentage en poids de samarium.
  • Mais venons-en aux familles d'alliages Al-Sm, Cu-Sm et Mg-Sm, donc d'alliages comportant comme éléments principaux l'aluminium, le cuivre et le magnésium, associés au samarium pouvant aller de 0,05% à 95% en poids de samarium par rapport au poids total de l'alliage considéré. En-dessous de 0,05%, l'effet absorbant s'avère trop réduit, et au-dessus de 95% en tombe dans le cas du samarium métal dont l'oxydabilité est élevée, les propriétés technologiques peu intéressantes, un prix élevé et une mise en oeuvre difficile.
  • De préférence, on se situera avec les alliages de la famille Cu-Sm, dans une fourchette de 0,05% à 50% de Sm, ou dans une fourchette de 70% à 90% de Sm. Avec les alliages de la famille Al-Sm, on se situera préférentiellement dans une fourchette de 0,05% à 25% en poids de Sm, et pour la famille Mg-Sm, dans une fourchette de 0,05 à 55%.
  • Ces fourchettes, sans être exclusives, présentent les meilleurs compromis de propriétés technologiques et la teneur en samarium sera calculée en fonction du flux de radiation à absorber.
  • L'aluminium, le cuivre et le magnésium utilisés peuvent être purs, ou alliés avec n'importe quels autres éléments d'addition qui vont permettre de renforcer les propriétés mécaniques des absorbeurs ou de modifier leurs propriétés technologiques (facilité de mise en oeuvre, résistance à la corrosion, usinabilité, soudabilité...). De même, parmi tous les éléments d'addition autres que l'aluminium, le cuivre, le magnésium et le samarium, pourront être ajoutés d'autres éléments neutrophages tels que le gadolinium, l'europium, le hafnium, le bore (en phase dispersée ou non), le cadmium, le lithium, le dysprosium, etc. où pourront être insérées des fibres (en alumine, en carbure de silicium, en bore, en carbone...).
  • Les alliages aluminium-samarium, ou cuivre-­samarium, ou magnésium-samarium présentent une très bonne facilité de mise en oeuvre par l'un au moins des procédés de fabrication choisis parmi le moulage, que ce soit en sable, en coquille, sous haute ou basse pression, le laminage à chaud ou à froid, l'extrusion, le forgeage, le formage sous vide...
  • Ces alliages faisant l'objet du présent brevet donnent des structures parfaitement homogènes avec des sections efficaces de capture neutronique très régulières. La densité des mélanges va être variable en fonction des proportions de samarium introduites dans l'aluminium, le cuivre ou le magnésium. A titre indicatif, le tableau I donne des valeurs de densité pour différentes compositions.
    Figure imgb0004
  • On peut voir que pour l'aluminium avec des allia­ges allant jusqu'à environ 25% en poids de samarium, la densité reste faible et va donc permettre la fabrication d'absorbeurs de radiations très légers. Par contre, avec les alliages Cu-Sm, la densité des deux métaux étant plus voisine (8,92 pour le cuivre et 7,52 pour le samarium), les valeurs de densités sont assez peu affectées par la teneur en samarium. Les alliages Mg-Sm présentent bien évidemment les densités les plus faibles.
  • En ce qui concerne la conductibilité thermique, elle va être très variable en fonction des alliages finale­ment retenus pour la fabrication des absorbeurs: les valeurs pour le cuivre pur, l'aluminium pur, le magnésium pur et le samarium sont respectivement, en W/m°K (entre 0 et 100°C): 394, 238, 155 et 10 (environ). On voit immédiatement que le samarium par rapport aux trois autres éléments a une conduc­ tibilité très faible. La conductibilité thermique du maté­riau métallique absorbeur final va dépendre fortement du mélange retenu (Al-Sm, Cu-Sm ou Mg-Sm) et éventuellement des autres éléments d'addition introduits dans les alliages pour en améliorer leurs propriétés mécaniques, technologiques ou d'absorption. A titre d'exemple, un alliage Al-Sm à 10% de Sm va avoir une conductibilité thermique de 150 W/m°K, un alliage Al-Si-Sm à 7% de silicium et 2% de samarium, la même chose, enfin un alliage Cu-Sm à 4% de Sm montrera une conductibilité thermique de 250 W/m°K environ. Cette notion de conductibilité thermique est importante et va fortement influencer le choix de la composition optimale recherchée pour le matériau absorbeur, car toute absorption de radia­tion (et spécialement la capture neutronique) s'accompagne d'un dégagement de chaleur qu'il faudra évacuer des parties chaudes vers les parties froides aussi rapidement que possi­ble. On remarquera que les matrices aluminium et cuivre sont de ce point de vue très bien placées.
  • En général, les points de début de fusion des alliages Al-Sm, Cu-Sm, Mg-Sm sont élevés, ce qui leur con­fère une très bonne stabilité à haute température, et qui leur permet de supporter sans problème l'échauffement provo­qué par l'absorption des neutrons ou d'autres rayonnements. L'intervalle de solidification varie en fonction de la composition chimique et le tableau II indique quelques valeurs d'alliages étudiés.
    Figure imgb0005
  • Les masses atomiques du samarium (150,33 g) et du cuivre (63,5 g) étant élevées, les radiations γ et χ seront fortement absorbées par ces deux éléments, tandis que l'effet de l'aluminium et du magnésium est beaucoup plus faible.
  • La résistance à la corrosion, d'une manière géné­rale, n'est pas ou peu affectée par la présence de samarium pour des teneurs inférieures à 25% en poids, et les proprié­tés de corrosion vont essentiellement dépendre de la nature des matrices aluminium, cuivre et magnésium utilisées. Pour l'aluminium par exemple, des matrices aluminium-silicium (7 à 10% de Si) et aluminium-magnésium vont présenter une bonne tenue à la corrosion contre les agents atmosphériques, contre l'eau déminéralisée à 50°C ou en atmosphère marine. Cette tenue pourrait encore être améliorée par des traite­ments de surface appropriés (anodisation, alodine, pein­tures, revêtements plastiques...). Pour les alliages cuivre-­samarium ayant une teneur en samarium inférieure à 20% en poids, la tenue à la corrosion n'est pratiquement pas affec­tée par la présence du samarium. Cette tenue à la corrosion peut encore être améliorée par des additions de chrome, de nickel, d'aluminium, d'étain...
  • En ce qui concerne les alliages magnésium-­samarium, la tenue à la corrosion sera en général faible, et l'utilisation de ceux-ci sera réservée à des applications en milieu non corrosif.
  • A haute température, la tenue à l'oxydation des alliages Al-Sm est remarquable, du même ordre de grandeur que celle des alliages conventionnels d'aluminium. L'utili­sation de tels matériaux à haute température ne posera donc pas de problème de tenue dans le temps. Par contre, les alliages cuivre-samarium binaires peuvent poser problème, car le cuivre s'oxyde à partir de 250°C et l'oxyde de cuivre est soluble dans le cuivre. Pour les hautes températures, il est donc nécessaire d'utiliser un élément d'addition supplé­mentaire qui va donner à la matrice ses propriétés de résis­tance à l'oxydation. Ce sera par exemple le nickel, le chrome, l'aluminium...
  • Aux basses températures, il faut noter que toutes les familles Al-Sm, Cu-Sm et Mg-Sm ne présentent aucun signe de fragilisation.
  • Les absorbeurs de radiations doivent présenter des propriétés mécaniques élevées et aussi stables que possible à hautes températures. Pour ce faire, et en fonction du cahier des charges imposé, un choix judicieux des alliages Al-Sm, Cu-Sm et Mg-Sm et de leurs éléments d'addition supplémentaires sera effectué. Le bon compromis devra être trouvé non seulement en fonction des caractéristiques méca­ niques, mais aussi en fonction de la conductibilité thermi­que du poids, des caractéristiques nucléaires, des possibi­lités de mise en oeuvre. A titre d'exemple, nous allons voir dans les tableaux qui suivent des résultats d'essais mécani­ques sur différents alliages Al-Sm et Cu-Sm.
    Figure imgb0006
    Figure imgb0007
  • Le cas des alliages magnésium-samarium est un peu particulier; en effet, le cuivre et l'aluminium ne dissol­vent pas de samarium à l'état solide. Par contre, le magné­sium peut dissoudre jusqu'à 12% de samarium aux environs de 550°C, et cette solidibilité n'est plus que de 2 ou 3% à température ambiante: cette particularité montre une possi­bilité de durcissement structural par trempe et revenu sur ces alliages binaires.
  • L'usinage et le soudage des alliages Al-Sm, Cu-Sm et Mg-Sm, alliés ou non à d'autres éléments conventionnels, ne posent pas de problèmes particuliers et toutes techniques couramment utilisées dans la pratique pour ce type de matrice métallique conviennent.
  • A titre d'exemples d'application, on peut citer: les paniers de transport et de stockage de déchets nucléai­res, les racks de piscine pour le stockage des éléments combustibles de réacteurs nucléaires, le blindage d'instal­lations de décontamination, les abris anti-atomiques et les protections nucléaires en général, les éléments de réacteurs nucléaires, le blindage d'appareils de contrôle utilisant des rayonnements ou des sources radioactives, le blindage de boîtiers électroniques, etc.
  • Préparation d'un alliage absorbeur de radiations nucléaires Cu-Sm 17-Cr 0,4
  • On place dans un creuset de graphite 1922 grammes de samarium métallique en morceaux, 9294 grammes de cuivre pur sous forme de lingots et 56 grammes de chrome pur. Le creuset est ensuite introduit dans un four à chauffage électrique ou à chauffage par induction: la fusion des métaux peut être effectuée sous vide ou sous atmosphère inerte.
  • Les métaux placés dans le creuset sont chauffés durant 1 heure à 1200°C, puis le mélange résultant est maintenu durant 1 heure à 1100°C en vue de l'obtention d'une masse liquide parfaitement homogène. Le four est ensuite ouvert, le sommet du creuset débarrassé de ses incrustations et son contenu versé dans un moule tel un moule à lingots, qui peut être refroidi à l'eau.
  • Préparation d'un alliage absorbeur de radiations nucléaires Al-Sm 12
  • On place 3740 grammes d'aluminium pur en morceaux et 510 grammes de samarium métallique en morceaux dans un creuset de graphite. La fusion des métaux peut être effec­tuée sous vide ou sous atmosphère inerte, une fois le creuset introduit dans un four à chauffage électrique ou à chauffage par induction.
  • Avant de démarrer le chauffage, il convient de débarrasser les morceaux de samarium de toute trace d'humi­dité, car il y aurait risque d'explosion lors du contact avec l'aluminium en fusion. La masse métallique est premièrement portée à 660°C pour faire fondre l'aluminium, puis portée à 1100°C durant environ 1 heure. Le samarium se dissout progressivement dans l'aluminium liquide. Après dissolution complète du samarium, la température est réduite à 800°C, le four est ouvert, les oxydes surnageant à la surface du liquide éliminés et le contenu du creuset versé dans un moule, tel un moule métallique, un moule de sable, un moule en céramique ou un moule à lingots.
  • Dans les deux cas ci-dessus, une fois la préforme obtenue par moulage ou la mise en lingot, l'alliage obtenu peut être mis dans sa forme définitive à l'aide des techni­ques de transformation usuelles, telles l'usinage, le forgeage, le laminage ou l'extrusion.

Claims (9)

1. Absorbeurs métalliques de radiations nucléaires contenant du samarium métallique sous forme d'alliage métal­lique choisi parmi l'une au moins des familles d'alliages cuivre-samarium, aluminium-samarium et magnésium-samarium, respectivement, chacune desdites familles d'alliages con­tenant de 0,05 à 95% en poids de gadolinium par rapport au poids total de l'alliage.
2. Absorbeurs métalliques selon la revendication 1, caractérisés en ce que la famille d'alliages cuivre-­samarium contient de 0,05 à 50% ou de 70 à 90% en poids de samarium par rapport au poids total de l'alliage.
3. Absorbeurs métalliques selon la revendication 1, caractérisés en ce que la famille d'alliages aluminium-­samarium contient de 0,05 à 25% en poids de samarium par rapport au poids total de l'alliage.
4. Absorbeurs métalliques selon l'une des reven­dications 1 à 3, caractérisés en ce que la famille d'allia­ges magnésium-samarium contient de 0,05 à 55% en poids de samarium par rapport au poids total de l'alliage.
5. Absorbeurs métalliques selon l'une des reven­dications 1 à 4, caractérisés en ce que les alliages métal­liques contiennent un ou plusieurs éléments métalliques additionnels destinés à renforcer ou améliorer les proprié­tés mécaniques, physiques ou technologiques des absorbeurs.
6. Absorbeurs métalliques selon l'une des reven­dications 1 à 5, caractérisés en ce que les alliages métal­liques contiennent un ou plusieurs éléments métalliques neutrophages additionnels.
7. Absorbeurs métalliques selon l'une des reven­dications 1 à 6, caractérisés en ce que les alliages métal­liques contiennent des fibres, telles des fibres d'alumine, de carbure de silicium, de bore ou de carbone par exemple.
8. Absorbeurs métalliques selon l'une des reven­dications 1 à 7, caractérisés en ce que les alliages métal­liques contiennent un ou plusieurs éléments métalliques additionnels destinés à renforcer ou améliorer la résistance à la corrosion des absorbeurs.
9. Utilisation des absorbeurs métalliques selon l'une des revendications 1 à 8 pour l'absorption de radia­tions nucléaires, en particulier les neutrons et les rayon­nements γ et X.
EP87810422A 1986-07-30 1987-07-27 Absorbeurs de radiations nucléaires Withdrawn EP0258178A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3052/86 1986-07-30
CH305286A CH667881A5 (fr) 1986-07-30 1986-07-30 Absorbeurs de radiations nucleaires.

Publications (1)

Publication Number Publication Date
EP0258178A1 true EP0258178A1 (fr) 1988-03-02

Family

ID=4247533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87810422A Withdrawn EP0258178A1 (fr) 1986-07-30 1987-07-27 Absorbeurs de radiations nucléaires

Country Status (2)

Country Link
EP (1) EP0258178A1 (fr)
CH (1) CH667881A5 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400574A1 (fr) * 1989-05-30 1990-12-05 Nissan Motor Co., Ltd. Alliage de magnésium renforcé de fibres
WO1993019216A1 (fr) * 1992-03-17 1993-09-30 Metallgesellschaft Aktiengesellschaft Element mecanique
DE19706758A1 (de) * 1997-02-20 1998-05-07 Siemens Ag Einrichtung zur Lagerung radioaktiven Materials
WO2005103312A1 (fr) 2004-04-22 2005-11-03 Alcan International Limited Efficacite d'absorption de neutrons amelioree pour materiaux en aluminium a teneur en bore
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
US20220259703A1 (en) * 2021-02-18 2022-08-18 Sandy Janice Peters-Phillips Fabrication method and the monolithic binary rare-earth-aluminum, REE-Aloy, matrices thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245782A (en) * 1962-04-06 1966-04-12 Dresser Products Inc Metal dispersions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245782A (en) * 1962-04-06 1966-04-12 Dresser Products Inc Metal dispersions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUNK: "Constitution of binary alloys, second supplement", 1969, pages 495-496, McGraw Hill, GB; *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0400574A1 (fr) * 1989-05-30 1990-12-05 Nissan Motor Co., Ltd. Alliage de magnésium renforcé de fibres
US5077138A (en) * 1989-05-30 1991-12-31 Nissan Motor Company, Limited Fiber reinforced magnesium alloy
WO1993019216A1 (fr) * 1992-03-17 1993-09-30 Metallgesellschaft Aktiengesellschaft Element mecanique
DE19706758A1 (de) * 1997-02-20 1998-05-07 Siemens Ag Einrichtung zur Lagerung radioaktiven Materials
WO2005103312A1 (fr) 2004-04-22 2005-11-03 Alcan International Limited Efficacite d'absorption de neutrons amelioree pour materiaux en aluminium a teneur en bore
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
US20220259703A1 (en) * 2021-02-18 2022-08-18 Sandy Janice Peters-Phillips Fabrication method and the monolithic binary rare-earth-aluminum, REE-Aloy, matrices thereof

Also Published As

Publication number Publication date
CH667881A5 (fr) 1988-11-15

Similar Documents

Publication Publication Date Title
CA1186533A (fr) Procede de fabrication d'alliages composites a base d'aluminium et de bore et son application
US5700962A (en) Metal matrix compositions for neutron shielding applications
CN100523240C (zh) 改进铝基合金铸造复合材料内中子吸收的方法和中子吸收铸造复合材料
EP0255484B1 (fr) Absorbeur de radiations nucléaires
CN100558922C (zh) 一种无铅易切削铝合金材料及其制造工艺
KR101206595B1 (ko) Al-b4c 복합재료의 재생방법
FR2909388A1 (fr) Alliage de zirconium resistant a la corrosion en ombres portees pour composant d'assemblage de combustible pour reacteur a eau bouillante,composant realise en cet alliage, assemblage de combustible et son utilisation.
EP0258178A1 (fr) Absorbeurs de radiations nucléaires
EP1232291B1 (fr) Alliage a base de zirconium a forte resistance a la corrosion et a l'hydruration par l'eau et la vapeur d'eau et procede de transformation thermomecanique de l'alliage
FR2483467A1 (fr) Alliages austenitiques fer-nickel-chrome, hautement refractaires, resistant aussi au gonflement provoque par les neutrons et a la corrosion dans le sodium liquide
EP0258177A1 (fr) Absorbeurs de radiations nucléaires
EP0211779B1 (fr) Absorbeur de radiations nucléaires
FR2669142A1 (fr) Materiau de protection radiologique resistant a la chaleur.
JPH01168833A (ja) ボロン含有チタン合金
CN108251689A (zh) 具备高温热稳定性的耐腐蚀Pb-Li-Zr铅锂合金
FR2677798A1 (fr) Procede de vitrification reductrice de volume de dechets hautement radioactifs.
FR2561665A1 (fr) Procede pour l'elaboration d'un alliage a absorption d'hydrogene contenant du titane
US3343947A (en) Ternary uranium alloys containing molybdenum with niobium or zirconium for use with nuclear reactors
US3112196A (en) Metal alloy suitable for controlling thermal neutron reactors
JPS6338553A (ja) 熱中性子吸収能に優れたアルミニウム合金
Colombo et al. The effect of nitrogen on the radiation embrittlement of iron
JPS6022700A (ja) 放射性廃棄物の固化処理方法
US3069256A (en) Preparation of thorium intermetallic compound dispersion
JP3037916B2 (ja) ウラン水素化物の微粉化防止方法
JPS60135788A (ja) 原子炉用燃料棒

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19881031

17Q First examination report despatched

Effective date: 19900529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19901004