EP0251881A1 - Méthode de production assistée d'un effluent à produire contenu dans une formation géologique - Google Patents

Méthode de production assistée d'un effluent à produire contenu dans une formation géologique Download PDF

Info

Publication number
EP0251881A1
EP0251881A1 EP87401421A EP87401421A EP0251881A1 EP 0251881 A1 EP0251881 A1 EP 0251881A1 EP 87401421 A EP87401421 A EP 87401421A EP 87401421 A EP87401421 A EP 87401421A EP 0251881 A1 EP0251881 A1 EP 0251881A1
Authority
EP
European Patent Office
Prior art keywords
formation
well
effluent
production
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87401421A
Other languages
German (de)
English (en)
Other versions
EP0251881B1 (fr
Inventor
Gérard Renard
Jean-François Giannesini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe National Elf Aquitaine
IFP Energies Nouvelles IFPEN
Societe Nationale Elf Aquitaine Production SA
Original Assignee
Societe National Elf Aquitaine
IFP Energies Nouvelles IFPEN
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8609422A external-priority patent/FR2600714B1/fr
Priority claimed from FR8609420A external-priority patent/FR2601998B1/fr
Priority claimed from FR8609419A external-priority patent/FR2600713B1/fr
Application filed by Societe National Elf Aquitaine, IFP Energies Nouvelles IFPEN, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Publication of EP0251881A1 publication Critical patent/EP0251881A1/fr
Application granted granted Critical
Publication of EP0251881B1 publication Critical patent/EP0251881B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons

Definitions

  • the present invention relates to a method of assisted production of a petroleum effluent, in particular viscous, contained in a geological formation surmounting another formation which does not contain the effluent to be produced and which is impermeable to said effluent.
  • the method according to the present invention allows better exploitation of the formation containing the effluent to be produced, while limiting the number of wells to be drilled relative to the methods used according to the prior art, which can be illustrated by the US patent. A-3.386.508.
  • a main well is drilled as well as other wells which will be qualified as auxiliary wells.
  • auxiliary wells which are inclined, join the main well at the level of the formation containing the effluent to be produced.
  • the production mechanism described in this prior patent resides in the fact that it is the portion of the auxiliary well located in the formation to be produced which is used to collect the effluent to be produced which is located in the vicinity of the auxiliary well.
  • this height is at most equal to that of the formation containing the fluid to be produced.
  • the present invention provides a method for improving the recovery of the fluid to be produced.
  • This improvement is reflected, for certain embodiments, by a better recovery rate due to the increase in gravity effects allowing drainage and by the exploitation of an extended area with a reduced number of wells drilled.
  • a displacement fluid or displacing fluid either from a central well, or from one or several subhorizontal drains.
  • subhorizontal drain is meant a drain whose inclination approaches 90 °, but without actually reaching it.
  • the advantages of this new system are: - the exploitation of a wider range of tanks, in particular those containing an oil of lower viscosity, - improving the volumetric scanning, - to distinguish the production of each drain and to remedy the problems of local heterogeneities of the reservoir by seeking an adequate solution in the drain concerned, - And for certain embodiments, in particular when the displacement fluid is injected by the main well, taking advantage of the phenomenon of segregation in the reservoir of fluids of very different densities, by injection of gas or vapor making it possible to form a gas umbrella on the roof of the tank, without premature breakthrough at the drains, given the strong inclination of the latter, this inclination being close to the horizontal, - to reduce the losses of fluids injected outside the area covered by the system. - have a single injection source located near the production center,
  • the present invention relates to a method for producing an effluent contained in a geological formation forming a reservoir for said effluent, or producing formation, using a central well, at least one subhorizontal drain, as well as a displacing or displacing agent, said geological formation surmounting another geological formation substantially impermeable to said effluent or impermeable formation, the interface between said geological formations being qualified as the wall of said reservoir.
  • said displacement agent is injected into said formation from either said central well or said subhorizontal drain and said displacement agent causes the migration of the effluent to be produced.
  • a central well as a production well and at least one subhorizontal well as a production stimulation well.
  • the stimulation well can be drilled from the surface and pass through the producing formation to pass into said impermeable formation and join the production well.
  • the stimulation well may be perforated over a portion of its length, this portion corresponding substantially to the fraction of the stimulation well passing through the producing formation.
  • a fluid suitable for reducing the viscosity of the petroleum effluent to be produced can be injected into the stimulation drain, in order to increase the flow speed in the stimulation well.
  • the stimulation drain may be interrupted after reaching the producing formation, but before it reaches the producing well.
  • the vertical central well is not only used to convey to the surface the production collected by the subhorizontal drains, but it is equipped with a particular completion, in order also to allow injection. of a fluid in the tank.
  • this sub-variant relates to a method of producing an effluent contained in a geological formation forming a reservoir for said effluent, using a central well, sub-horizontal drains as well as a displacing agent, said geological formation overcoming a another geological formation substantially impermeable to said effluent, the interface between said geological formations being qualified as the wall of said reservoir.
  • This method is characterized in that said displacement agent is injected into said formation from said central well, said displacement agent causing the migration of the effluent to be produced and in that this effluent is drained by said subhorizontal drains towards a lower part from the central well where it transits and from which it is produced to the surface.
  • said effluent to be produced can be collected by subhorizontal drains situated all around said central well.
  • the vertical central well is not used to convey to the surface the production collected by the subhorizontal drains, but it is equipped with a completion allowing the injection of a fluid into the reservoir.
  • the sub-horizontal drains themselves, which are used to route production to the surface.
  • this new sub-variant relates to a method for producing an effluent contained in a geological formation forming a reservoir for said effluent, using a central well, sub-horizontal drains as well as a displacement agent or displacement agent, said geological formation surmounting another geological formation substantially impermeable to said effluent, the interface between said geological formations being qualified as the wall of said reservoir.
  • This method is characterized in that said displacement agent is injected into said formation from said central well and in that said agent causes the migration of the effluent to be produced, the latter being conveyed to the surface by said subhorizontal drains.
  • said effluent can be produced by subhorizontal drains located all around said central well.
  • the present invention also relates to a system for producing an effluent contained in a geological formation comprising a central well and sub-horizontal drains.
  • This system is characterized in that said main well comprises a perforated zone at the level of said geological formation, an injection conduit connecting said perforated zone to a source of injection of a displacement product, and in that said subhorizontal drains pass in said training.
  • the main well may also include a transit zone isolated from the perforated zone and located below said perforated zone, said transit zone being connected to the surface by a pipe production and in that said sub-horizontal drains pass through said formation to reach said transit zone.
  • the production system used for this embodiment may also include a tube located in said well constituting the production conduit.
  • the injection pipe may consist of the annular space delimited by said main well.
  • Said tube may include a plug which isolates the perforated area from the transit area.
  • This tube can pass through said plug.
  • the production conduit may include a pump located at its lower end in the transit zone and the tube forming said production conduit may slide in said plug.
  • the transit zone may have a cross section larger than the cross section of the upper part of the central well, thus forming a collection pit for the effluent produced.
  • the system according to the invention could advantageously be applied in the case where said geological formation overcomes another geological formation impermeable to the effluent to be produced.
  • said collection zone can be located at least partially in said impermeable formation and said sub-horizontal drains can join said transit zone by passing through said impermeable formation after having crossed the producing formation.
  • the sub-horizontal drains which pass through the formation may have a length such that they stop at a certain distance, not zero, from the axis of the main well.
  • the injection well may include a plug.
  • the system according to the invention could advantageously be applied in the case where said geological formation overcomes another geological formation impermeable to the effluent to be produced.
  • the collection drains may be interrupted substantially in the vicinity of the interface between said waterproof formation and said formation containing the effluent to be produced.
  • FIG. 1 represents the implementation of a variant of the method according to the present invention for the production of a geological formation 1 from the ground surface 2.
  • the geological layer 1 contains a viscous petroleum effluent to be produced .
  • Reference 3 designates a geological formation located below the producing formation 1. This lower formation is impermeable to the effluent to be produced contained in the producing formation.
  • the reference 4 designates a main well drilled from the surface 2 and passing through the producing formation 1, this main well being interrupted at 5 in the impermeable formation 3.
  • the producing formation is overcome by another formation bearing the reference 6 and which will be called higher formation.
  • Reference 7 designates a well used to stimulate and drain at least a fraction of the production of the viscous effluent contained in formation 1.
  • this stimulation well crosses the upper formation 6 as well as the producing formation 1 and passes into the lower impermeable formation 3 to join the main well 4 at the level of this lower formation.
  • the auxiliary well opens into the main well at the level of a formation situated below the producing formation, after having entered a formation impermeable to the fluid to be produced.
  • the reference 8 designates the place where the stimulation well or drain 7 enters the producing formation 1 and the reference 9 the place from where it leaves it.
  • the reference 10 designates the portion of the stimulation well included in the producing formation 1.
  • the portion 10 of the stimulation drain 7 located in the producing formation 1 is as long as possible.
  • the production is carried out by circulating a stimulating agent in the stimulation drain 7.
  • This agent causes a reduction in the viscosity of the effluent to be produced, next to the drain.
  • the effluent to be produced then flows to the main well 4 via the stimulation drain itself.
  • the portion 10 of the stimulation drain 7 located in the producing formation 1, when this portion does not consist of an exposed well, may already be perforated before its descent into the well, such a perforated portion of the drain is generally designated by the Anglo-Saxon term of "liner", or be perforated on the spot.
  • FIG. 2 illustrates a second mode of production according to the present variant.
  • the portion 10 of the stimulation drain located in the producing formation 1 is perforated only over two portions of its length 11 and 13, a plug 17 being placed in said drain so as to separate these two portions.
  • An agent is injected into the stimulation drain 7 making it possible to reduce the viscosity of the petroleum effluent to be produced which is found in the producing formation 1, this in order to facilitate the flow of the effluent to be produced.
  • Such an agent can consist of water vapor or comprise other products, such as a solvent, for example based on hydrocarbon.
  • the agent considered will be water vapor.
  • the water vapor injected from the surface enters the producing formation 1 through the upper portion of the perforations 11.
  • the diffusion of water vapor in the producing formation 1 is represented by arrows 12.
  • the water vapor heats the petroleum effluent contained in the producing formation 1, in particular by condensing, thereby causing the viscosity of the effluent to be produced to decrease, a fraction of which consequently flows towards the lower part of the perforations 13.
  • the flow of the effluent produced is represented by the arrows 14.
  • This flow occurs in the direction of the lower part of the stimulation well 1 by gravity, on the one hand, and by the presence of a decreasing pressure gradient in the direction of the stimulation well, on the other hand.
  • This decrease in the pressure gradient is due to the fact that the stimulation well 10 is placed in communication with the main well 4 which itself is in communication with the surface and is therefore substantially at atmospheric pressure at the surface.
  • the effluent to be produced flows through the part of the stimulation drain 15 located in the lower formation 3 up to the main well 4 at the bottom of which it collects.
  • the effluent thus produced is returned in a conventional manner from the main well 4, for example by pumps 21 controlled from the surface.
  • the separation between the portion 11 of the perforations from which the water vapor diffuses in the producing formation and the portion 13 of the perforations from which the effluent flows. to be produced is done by interposing the plug 17.
  • the steam 12 is forced to leave the auxiliary drain 7 upstream of the plug 17 and the petroleum effluent is produced downstream of the plug 14.
  • a fraction of the injected vapor 12 diffuses into the producing formation 1, that is to say towards the well 4, thus sweeping a large area 20 belonging to the producing formation and lying between the portion 10 of the stimulation drain 7 and the main well.
  • This fraction is represented by the arrows 19 and directly causes the arrival of the effluent to be produced in the well 4, this is represented by the arrows 22.
  • the lower part 15 of the stimulation drain 7 produces nothing. All the production is done directly in the well 4, as represented by the arrows 22.
  • the stimulation drain 7 is used only for injecting the stimulation agent. This is symbolized by the arrows 19 (Fig. 3).
  • Figures 5 and 6 show a general production scheme.
  • the main well 4 is surrounded by a number of stimulation wells 7 a ... 7 i .
  • these wells are, on the surface, equidistant from the main well 4. This is by no means compulsory and the wells 7 a ... 7 i can be placed at distances from the main well which is best suited to exploitation producer training.
  • the references 8 a ... 8 i designate the places where the drains 7 a ... 7 i enter the production formation 1 and the references 9 a ... 9 i the places where they come out.
  • this vertical central well 101 is drilled to the wall 102 of a tank 113, then cased and cemented.
  • the casing 103 thus prevents any flow of fluids from the reservoir into the well.
  • the wall of the reservoir means the lower part of the geological formation containing the petroleum effluent and the roof of the reservoir the upper limit of this geological formation.
  • the drilling is then continued at a larger diameter using a widener in the layer 104 located under the reservoir, in order to produce a pit 105 intended to receive the fluids collected by subhorizontal drains 106.
  • This pit will be isolated from the rest of the hole using a tight plug 107 of the type generally designated by the Anglo-Saxon term of "packer”, allowing the passage of a conduit 108 serving to raise the production of the fluids collected towards the surface using of a pumping device 109.
  • the watertight plug 107 may be fitted with a sliding joint allowing vertical movement of the duct, while ensuring perfect sealing.
  • the pipe 108 may include several pipe elements connected one after the other.
  • the collection device will be completed by drilling sub-horizontal drains 106, from the surface to the collection pit 105, each of these drains intersecting the wall 102 of the reservoir at a point 110 whose distance from the central well, depending on the The inclination of the drain will be an important parameter of the system, since all the production, of fluids in place or of injected fluid, will leave the reservoir at this point.
  • the production rate of the system will be chosen so that the liquid level in the pit is always below the side of the wall of the tank to allow the evacuation of the fluids collected by the drains at the right of the tank.
  • the injection of the fluid intended to mobilize and move the fluids in place will be done in the reservoir 113 by means of perforations 111 produced in a conventional manner in the casing 103 of the central well 101.
  • the communication can be improved by acidification and stimulation of the reservoir at the perforations.
  • the dimension of these perforations 111 can be chosen after simulation at using digital programs capable of representing the flows involved in order to obtain the best volumetric scanning of the reservoir by the injected fluids (hot water, steam, CO2, gas, foam, ...) until penetration into the drains.
  • the parameters to be taken into account are also: the thickness of the tank, the viscosity of the oil in place, the angle of the drains with respect to the horizontal, the points of exit of the tank from each drain, the flow d injection, the number of drains, ...
  • the displacement agent or displacing agent 115 is introduced into the producing formation 113 from the annular space 116 delimited by the casing 103 and the conduit 108 which is located in this casing 103 by passing through the 111 perforations made on the same casing.
  • the displacing agent will diffuse in the producing formation 113 by causing the migration of the petroleum effluent towards the drains manifolds 106 which are perforated over the portion of their length located in the producing formation 113.
  • the drain 106 collects the petroleum effluent and pours it into the pit 105 from which it is produced.
  • this vertical central well 201 is drilled to the wall 202 of a reservoir 213, then cased and cemented.
  • the casing 203 prevents any flow of fluids from the reservoir into the well.
  • the wall of the reservoir means the lower part of the geological formation containing the petroleum effluent and the roof of the reservoir the upper limit of this geological formation.
  • Drilling can then be interrupted. If it were continued in the layer 204 located under the tank, this extension would be advantageously isolated from the rest of the hole using a tight plug 207 preventing the passage of any product towards the extension of the well, in order to achieve an extension the well intended for later use.
  • the extension of the well can be considered in particular when there are several geological formations containing an effluent to be produced, separated by formations impermeable to this effluent.
  • the system or device for collecting the effluent to be produced is produced by drilling subhorizontal drains 206, from the surface to the producing formation. 213, each of these drains intersecting the wall 202 of the reservoir at a point 10 distant from the central well and are substantially interrupted at this point.
  • the injection of the fluid intended to mobilize and move the fluids in place will be done in the reservoir 213 by means of perforations 211 produced in a conventional manner in the casing 203 of the central well 201.
  • the communication can be improved by acidification and stimulation of the reservoir at the perforations.
  • the dimension of these perforations 211 may be chosen after simulation using digital programs capable of representing the flows involved in order to obtain the best volumetric scanning of the reservoir by the fluids injected (hot water, steam, CO2, gas, foam, ...) until penetration into the drains 206.
  • the parameters to be taken into account are also: the thickness of the tank, the viscosity of the oil in place, the angle of the drains relative to the '' horizontal, the outlet points of the tank of each drain, the injection rate, the number of drains, ...
  • the displacing agent 215 is introduced into the producing formation 213 from the main well, passing through the perforations 211 made on this same casing.
  • the displacing agent will diffuse in the producing formation 213 by causing the migration of the petroleum effluent towards the collecting drains 206 which are perforated over the portion of their length located in the producing formation 213.
  • the drains 206 collect the petroleum effluent which is produced separately from each of these drains towards the surface 209.
  • the production takes place either naturally or using pumps. These pumps can be placed on the surface or inside at least some of the sub-horizontal drains at the level of the producing formation.
  • the petroleum effluent is produced from subhorizontal drains surrounding the main well. These drains are interrupted before meeting the axis of the main well and at a certain distance L from this axis.
  • the present invention therefore makes it possible to increase the operated volume of the tank.
  • the sub-horizontal drains are substantially interrupted at the level of the wall 202, however it would not go beyond the scope of the present invention if the drains were interrupted before or after this wall.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Earth Drilling (AREA)
  • Edible Oils And Fats (AREA)

Abstract

La présente invention concerne un système et une méthode de production d'un effluent contenu dans une formation géologique formant un réservoir pour ledit effluent ou formation productrice. La méthode selon l'invention utilise un puits central, au moins un drain subhorizontal ainsi qu'un agent déplaçant ou de déplacement. La méthode selon l'invention se caractérise en ce qu'on injecte dans la formation l'agent de déplacement à partir soit du puits central, soit du drain subhorizontal et en ce que l'agent de déplacement provoque la migration de l'effluent à produire.

Description

  • La présente invention concerne une méthode de production assistée d'un effluent pétrolier, notamment visqueux, contenu dans une formation géologique surmontant une autre formation qui ne contient pas l'effluent à produire et qui est imperméable audit effluent.
  • La méthode selon la présente invention permet une meilleure exploitation de la formation contenant l'effluent à produire, tout en limitant le nombre de puits à forer relativement aux méthodes mises en oeuvre selon l'art antérieur, qui peut être illustré par le brevet US-A-3.386.508.
  • Selon ce brevet antérieur, un puits principal est foré ainsi que d'autres puits qui seront qualifiés de puits auxiliaires. Ces puits auxiliaires qui sont inclinés, rejoignent le puits principal au niveau de la formation contenant l'effluent à produire.
  • Le mécanisme de production décrit dans ce brevet antérieur réside dans le fait que c'est la portion du puits auxiliaire située dans la formation à produire qui sert à collecter l'effluent à produire qui se trouve au voisinage du puits auxiliaire.
  • Par ailleurs, selon ce brevet antérieur, la production se fait en utilisant le phénomène de gravité pour drainer l'effluent vers le puits principal. Or, l'intensité de l'effet de la gravité est limitée par la hauteur comprise entre le toit de la formation contenant l'effluent à produire et l'endroit où le puits auxiliaire débouche dans le puits principal, ceci lorsque la formation contenant l'effluent à produire est comprise entre deux autres formations qui ne contiennent pas l'effluent à produire.
  • Selon ce brevet antérieur, cette hauteur est au plus égale à celle de la formation contenant le fluide à produire.
  • La présente invention propose une méthode permettant d'améliorer la récupération du fluide à produire.
  • Cette amélioration se traduit, pour certains modes de réalisation, par un meilleur taux de récupération dû à l'augmentation des effets de gravité permettant le drainage et par l'exploitation d'une zone étendue avec un nombre réduit de puits forés.
  • Dans le but d'améliorer la productivité du système, on propose selon la présente invention de balayer le réservoir en injectant dans la formation un fluide de déplacement ou fluide déplaçant, soit à partir d'un puits central, soit à partir d'un ou plusieurs drains subhorizontal.
  • Par drain subhorizontal, on entend un drain dont l'inclinaison approche 90°, mais sans réellement l'atteindre.
  • Les avantages de ce nouveau système sont de permettre :

    - l'exploitation d'une gamme plus étendue de réservoirs, en particulier ceux renfermant une huile de moindre viscosité,

    - l'amélioration du balayage volumétrique,

    - de distinguer la production de chaque drain et de remédier aux problèmes d'hétérogénéïtés locales du réservoir en recherchant une solution adéquate dans le drain concerné,

    - et pour certains modes de réalisation, notamment lorsque le fluide de déplacement est injecté par le puits principal, la mise à profit du phénomène de ségrégation dans le réservoir de fluides de densités très différentes, par injection de gaz ou de vapeur permettant de former une ombrelle de gaz au toit du réservoir, sans percée prématurée aux drains, étant donné la forte inclinaison de ceux-ci, cette inclinaison étant proche de l'horizontale,

    - de diminuer les pertes de fluides injectés en dehors de l'aire couverte par le système.

    - de disposer d'une seule source d'injection située près du centre de production,
  • La présente invention concerne une méthode de production d'un effluent contenu dans une formation géologique formant un réservoir pour ledit effluent, ou formation productrice, en utilisant un puits central, au moins un drain subhorizontal, ainsi qu'un agent déplaçant ou de déplacement, ladite formation géologique surmontant une autre formation géologique sensiblement imperméable audit effluent ou formation imperméable, l'interface entre lesdites formations géologiques étant qualifiée de mur dudit réservoir.
  • Selon la présente invention, on injecte ledit agent de déplacement dans ladite formation à partir, soit dudit puits central, soit dudit drain subhorizontal et ledit agent de déplacement provoque la migration de l'effluent à produire.
  • Selon une variante de la présente invention, appliquée à la production d'un effluent pétrolier visqueux, on pourra utiliser un puits central comme puits de production et au moins un puits subhorizontal comme puits de stimulation de la production. Le puits de stimulation pourra être foré depuis la surface et traverser la formation productrice pour passer dans ladite formation imperméable et rejoindre le puits de production.
  • Le puits de stimulation pourra être perforé sur une portion de sa longueur, cette portion correspondant sensiblement à la fraction du puits de stimulation traversant la formation productrice.
  • On pourra injecter dans le drain de stimulation un fluide adapté à diminuer la viscosité de l'effluent pétrolier à produire, afin d'augmenter la vitesse d'écoulement dans le puits de stimulation.
  • On pourra interposer un bouchon dans le drain de stimulation et placer le bouchon dans la portion perforée du drain de stimulation.
  • On pourra aussi interposer un bouchon dans le drain de stimulation, dans la portion dudit drain contenu dans la formation non productrice.
  • On pourra également placer un bouchon dans le drain de stimulation, sensiblement à la limite de la formation productrice et de la formation non productrice.
  • Le drain de stimulation pourra être interrompu après avoir atteint la formation productrice, mais avant qu'il n'atteigne le puits producteur.
  • Suivant une autre variante de la méthode selon la présente invention, on pourra injecter l'agent de déplacement ou agent déplaçant à partir du puits central et on pourra utiliser plusieurs drains subhorizontaux.
  • Selon une sous-variante de la présente invention, le puits central vertical n'est pas seulement utilisé pour acheminer vers la surface la production collectée par les drains subhorizontaux, mais il est équipé d'une complétion particulière, afin de permettre également l'injection d'un fluide dans le réservoir.
  • D'une manière générale cette sous-variante concerne une méthode de production d'un effluent contenu dans une formation géologique formant un réservoir pour ledit effluent, utilisant un puits central, des drains subhorizontaux ainsi qu'un agent déplaçant, ladite formation géologique surmontant une autre formation géologique sensiblement imperméable audit effluent, l'interface entre lesdites formations géologiques étant qualifiée de mur dudit réservoir. Cette méthode se caractérise en ce qu'on injecte dans ladite formation ledit agent déplaçant à partir dudit puits central, ledit agent déplaçant provoquant la migration de l'effluent à produire et en ce que cet effluent est drainé par lesdit drains subhorizontaux vers une partie inférieure du puits central où il transite et à partir de laquelle il est produit vers la surface.
  • Selon cette sous-variante, on pourra recueillir ledit effluent à produire par des drains subhorizontaux situés tout autour dudit puits central.
  • Egalement, selon cette sous-variante, on pourra drainer ledit effluent à produire dans ladite partie inférieure, jusqu'à un niveau inférieur audit mur du réservoir.
  • Selon une autre sous-variante, le puits central vertical n'est pas utilisé pour acheminer vers la surface la production collectée par les drains subhorizontaux, mais il est équipé d'une complétion permettant l'injection d'un fluide dans le réservoir. Ce sont les drains subhorizontaux, eux-mêmes, qui sont utilisés pour acheminer la production vers la surface.
  • D'une manière genérale cette nouvelle sous-variante concerne une méthode de production d'un effluent contenu dans une formation géologique formant un réservoir pour ledit effluent, utilisant un puits central, des drains subhorizontaux ainsi qu'un agent de déplacement ou agent déplaçant, ladite formation géologique surmontant une autre formation géologique sensiblement imperméable audit effluent, l'interface entre lesdites formations géologiques étant qualifiée de mur dudit réservoir. Cette méthode se caractérise en ce qu'on injecte dans ladite formation ledit agent de déplacement à partir dudit puits central et en ce que ledit agent provoque la migration de l'effluent à produire, ce dernier étant acheminé vers la surface par lesdit drains subhorizontaux.
  • Selon cette sous-variante, on pourra produire ledit effluent par des drains subhorizontaux situés tout autour dudit puits central.
  • La présente invention concerne également un système de production d'un effluent contenu dans une formation géologique comportant un puits central et des drains subhorizontaux. Ce système se caractérise en ce que ledit puits principal comporte une zone perforée au niveau de ladite formation géologique, un conduit d'injection reliant ladite zone perforée à une source d'injection d'un produit de déplacement, et en ce que lesdits drains subhorizontaux passent dans ladite formation.
  • Selon une mise en oeuvre de ce système de production, le puits principal pourra comporter en outre une zone de transit isolée de la zone perforée et située en-dessous de ladite zone perforée, ladite zone de transit étant reliée à la surface par une conduite de production et en ce que lesdits drains subhorizontaux passent dans ladite formation pour rejoindre ladite zone de transit.
  • Le système de production utilisé pour ce mode de mise en oeuvre pourra également comporter un tube situé dans ledit puits constituant le conduit de production. Le conduit d'injection pourra être constitué de l'espace annulaire délimité par ledit puits principal. Ledit tube pourra comporter un bouchon qui isole la zone perforée de la zone de transit.
  • Ce tube pourra traverser ledit bouchon.
  • Le conduit de production pourra comporter une pompe située à son extrémité inférieure dans la zone de transit et le tube formant ledit conduit de production pourra coulisser dans ledit bouchon.
  • La zone de transit pourra posséder une section droite plus grande que la section droite de la partie supérieure du puits central, formant ainsi une fosse de collecte de l'effluent produit.
  • Le système selon l'invention pourra être avantageusement appliqué au cas où ladite formation géologique surmonte une autre formation géologique imperméable à l'effluent à produire. Dans cette application ladite zone de collecte pourra être située au moins partiellement dans ladite formation imperméable et lesdit drains subhorizontaux pourront rejoindre ladite zone de transit en passant par ladite formation imperméable après avoir traversé la formation productrice.
  • Selon une autre mise en oeuvre possible, les drains subhorizontaux qui passent dans la formation pourront avoir une longueur telle qu'ils s'interrompent à une certaine distance, non nulle, de l'axe du puits principal.
  • Le puits d'injection pourra comporter un bouchon.
  • Le système selon l'invention pourra être avantageusement appliqué au cas où ladite formation géologique surmonte une autre formation géologique imperméable à l'effluent à produire. Dans cette application les drains de collecte pourront s'interrompre sensiblement au voisinage de l'interface entre ladite formation imperméable et ladite formation contenant l'effluent à produire.
  • La présente invention sera mieux comprise et ses avantages apparaitront plus clairement à la description qui suit d'un exemple particulier illustré par les figures ci-annexée,s représentant l'exploitation d'une formation géologique qui renferme un effluent pétrolier.
    • - la figure 1 montre la configuration d'un puits principal et d'un puits de stimulation, ou puits auxiliaire, permettant la mise en oeuvre de la méthode selon la présente invention,
    • - la figure 2 illustre le mécanisme de production selon la présente invention,
    • - les figures 3 et 4 représentent différentes variantes selon la présente invention,
    • - les figures 5 et 6 illustrent une vue d'ensemble de la mise en production d'une formation contenant un effluent visqueux à produire, et
    • - les figures 7 et 8 illustrent deux variantes où le puits central sert à l'injection de l'agent de déplacement.
  • La figure 1 représente la mise en oeuvre d'une variante de la méthode selon la présente invention pour la mise en production d'une formation géologique 1 à partir de la surface du sol 2. La couche géologique 1 contient un effluent pétrolier visqueux à produire.
  • La référence 3 désigne une formation géologique située au-dessous de la formation productrice 1. Cette formation inférieure est imperméable à l'effluent à produire contenu dans la formation productrice.
  • La référence 4 désigne un puits principal foré depuis la surface 2 et traversant la formation productrice 1, ce puits principal s'interrompant en 5 dans la formation imperméable 3.
  • Dans le cas de la figure 1, la formation productrice est surmontée par une autre formation portant la référence 6 et qui sera dite formation supérieure.
  • La référence 7 désigne un puits servant à stimuler et à drainer une fraction au moins de la production de l'effluent visqueux contenu dans la formation 1.
  • Sur la figure 1, ce puits de stimulation traverse la formation supérieure 6 ainsi que la formation productrice 1 et passe dans la formation imperméable inférieure 3 pour rejoindre le puits principal 4 au niveau de cette formation inférieure.
  • D'une manière plus générale, selon la présente invention, le puits auxiliaire débouche dans le puits principal au niveau d'une formation se trouvant au-dessous de la formation productrice, après avoir pénétré dans une formation imperméable au fluide à produire.
  • Sur la figure 1, la référence 8 désigne l'endroit où le puits ou drain de stimulation 7 pénètre dans la formation productrice 1 et la réfé­rence 9 l'endroit d'où il en sort. La référence 10 désigne la portion du puits de stimulation comprise dans la formation productrice 1.
  • Bien entendu, il est préférable selon la présente variante que la portion 10 du drain de stimulation 7 se trouvant dans la formation productrice 1 soit la plus longue possible.
  • Dans le cas de la figure 1, la production s'effectue en faisant circuler un agent stimulant dans le drain de stimulation 7. Cet agent provoque une diminution de la viscosité de l'effluent à produire, voisin du drain. L'effluent à produire s'écoule alors vers le puits principal 4 via le drain de stimulation lui-même.
  • Bien entendu, la portion 10 du drain de stimulation 7 se trouvant dans la formation productrice 1, lorsque cette portion n'est pas constituée d'un puit découvert, pourra être déjà perforée avant sa descente dans le puits, une telle portion perforée du drain est généralement désigné par le terme anglo-saxon de "liner", ou bien être perforée sur place. Par ailleurs, il peut être possible de reboucher certaines perforations du drain de stimulation 7.
  • La figure 2 illustre un deuxième mode de production selon la présente variante. Selon ce mode, la portion 10 du drain de stimulation se trouvant dans la formation productrice 1 est perforée uniquement sur deux portions de sa longueur 11 et 13, un bouchon 17 étant placé dans ledit drain de manière à séparer ces deux portions.
  • On injecte dans le drain de stimulation 7 un agent permettant de diminuer la viscosité de l'effluent pétrolier à produire se trouvant dans la formation productrice 1, ceci afin de faciliter l'écoulement de l'effluent à produire.
  • Un tel agent peut être constitué de vapeur d'eau ou comporter d'autres produits, tels un solvant, par exemple à base d'hydrocarbure.
  • Dans l'exemple décrit, l'agent considéré sera de la vapeur d'eau.
  • La vapeur d'eau injectée depuis la surface pénètre dans la formation productrice 1 par la portion supérieure des perforations 11.
  • La diffusion de la vapeur d'eau dans la formation productrice 1 est représentée par des flêches 12.
  • La vapeur d'eau échauffe l'effluent pétrolier contenu dans la formation productrice 1, notamment en se condensant, provoquant ainsi la diminution de la viscosité de l'effluent à produire dont une fraction s'écoule par voie de conséquence vers la partie inférieure des perforations 13.
  • L'écoulement de l'effluent produit est représenté par les flêches 14.
  • Cet écoulement se produit dans la direction de la partie inférieure du puits de stimulation 1 par gravité, d'une part, et par la présence d'un gradient de pression décroissant dans la direction du puits de stimulation, d'autre part.
  • Cette décroissance du gradient de pression est due au fait que le puits de stimulation 10 est mis en communication avec le puits principal 4 qui lui même est en communication avec la surface et se trouve donc sensiblement à la pression atmosphérique en surface.
  • L'écoulement de l'effluent à produire s'effectue par la partie du drain de stimulation 15 se trouvant dans la formation inférieure 3 jusqu'au puits principal 4 au fond duquel il se rassemble.
  • Cet écoulement est symbolisé par les flêches 16 sur la figure 2.
  • L'effluent ainsi produit est remonté de manière classique à partir du puits principal 4, par exemple par des pompes 21 commandées depuis la surface.
  • Dans le cas de l'exemple décrit précédemment, la séparation entre la portion 11 des perforations à partir desquelles la vapeur d'eau diffuse dans la formation productrice et la portion 13 des perforations à partir desquelles s'effectue l'écoulement de l'effluent à produire, se fait par l'interposition du bouchon 17. Dans ce cas, la vapeur 12 est obligée de sortir du drain auxiliaire 7 en amont du bouchon 17 et l'effluent pétrolier est produit en aval du bouchon 14. Ainsi, il est facile de contrôler l'endroit de la séparation.
  • Une fraction de la vapeur injectée 12 diffuse dans la formation productrice 1, c'est-à-dire vers le puits 4, balayant ainsi une grande zone 20 appartenant à la formation productrice et comprise entre la portion 10 du drain de stimulation 7 et le puits principal. Cette fraction est représentée par les flèches 19 et provoque directement la venue de l'effluent à produire dans le puits 4, ceci est représenté par les flèches 22.
  • Il est possible de positionner un bouchon 18 sensiblement à la limite de l'interface séparant la formation productrice 1 et la formation imperméable inférieure 3 (Fig. 3), selon la présente variante, le drain de stimulation 7 étant perforé sur toute sa longueur présente dans la formation productrice.
  • Dans ce cas bien entendu, la partie inférieure 15 du drain de stimulation 7 ne produit rien. Toute la production se fait directement dans le puits 4, comme représenté par les flèches 22. Le drain de stimulation 7 sert uniquement à injecter l'agent de stimulation. Ceci est symbolisé par les flèches 19 (Fig. 3).
  • Les figures 5 et 6 montrent un schéma général de production. Le puits principal 4 est entouré d'un certain nombre de puits de stimulation 7a...7i.
  • Sur la figure 5, ces puits sont, en surface, équidistants du puits principal 4. Ceci n'est nullement obligatoire et les puits 7a...7i peuvent être placés à des distances du puits principal convenant au mieux à l'exploitation de la formation productrice.
  • Les références 8a...8i désignent les endroits où les drains 7a...7i penètrent dans la formation productrice 1 et les références 9a...9i les endroits où ils en sortent.
  • Ainsi, il est possible d'exploiter toute la zone hachurée 23 (Fig. 6), ceci par l'interposition de bouchons en 9a...9i.
  • Dans le cas représenté à la figure 6, les points 9a...9i sont équi­distants du puits principal 4, mais ceci n'est nullement obligatoire.
  • Il est possible, lorsque l'on utilise un bouchon 17, de varier la position de ce dernier en fonction de l'exploitation des différentes zones.
  • Ainsi, il sera possible, pour commencer l'injection, de positionner le bouchon 17 de manière à ce qu'il soit situé dans la formation productrice, tout en étant relativement proche de l'interface 25 entre la formation supérieure 6 et la formation productrice 1. Puis, au fur et à mesure de l'avancement de la production, il sera possible de descendre le bouchon 17. L'inverse est également possible, c'est-à-dire de commencer en plaçant le bouchon 17 le plus près possible de l'interface inférieure 25 entre la formation productrice 1 et la formation inférieure 3, puis de remonter la position du bouchon 17 au fur et à mesure de l'exploitation de la formation productrice.
  • Si lors du forage d'un puits de stimulation 7, on rencontre des difficultés alors que celui-ci se trouve dans la formation productrice, il sera possible de se contenter de l'utiliser comme un drain d'injection de stimulation. Ceci est représenté à la figure 4 où le drain 7 ne sert qu'à injecter l'agent stimulant.
  • Suivant une autre variante où le puits central sert à injecter l'agent de déplacement (Fig. 7), ce puits central vertical 101 est foré jusqu'au mur 102 d'un réservoir 113, puis tubé et cimenté. Ainsi le tubage 103 empêche tout écoulement de fluides du réservoir dans le puits.
  • On entend par mur du réservoir la partie inférieure de la formation géologique contenant l'effluent pétrolier et par toit du réservoir la limite supérieure de cette formation géologique.
  • Le forage est ensuite poursuivi en plus grand diamètre à l'aide d'un élargisseur dans la couche 104 située sous le réservoir, afin de réaliser une fosse 105 destinée à recevoir les fluides collectés par des drains subhorizontaux 106. Cette fosse sera isolée du reste du trou à l'aide d'un bouchon étanche 107 du type généralement désigné par le terme anglo-saxon de "packer", permettant le passage d'un conduit 108 servant à remonter la production des fluides collectés vers la surface à l'aide d'un dispositif de pompage 109. Le bouchon étanche 107 pourra être équipé d'un joint coulissant permettant un mouvement vertical du conduit, tout en assurant une parfaite étanchéïté. Le conduit 108 pourra comporter plusieurs éléments de conduite raccordés les uns au bout des autres.
  • Le dispositif de collecte sera achevé par le forage de drains subhorizontaux 106, depuis la surface jusqu'à la fosse de collecte 105, chacun de ces drains recoupant le mur 102 du réservoir en un point 110 dont la distance au puits central, fonction de l'inclinaison du drain, sera un paramètre important du système, puisque toute la production, de fluides en place ou de fluide injecté, sortira du réservoir en ce point. Le débit de production du système sera choisi de telle façon que le niveau liquide dans la fosse soit toujours en-dessous de la côte du mur du réservoir pour permettre l'évacuation des fluides collectés par les drains au droit du réservoir.
  • L'injection du fluide destiné à mobiliser et à déplacer les fluides en place se fera dans le réservoir 113 par l'intermédiaire de perforations 111 réalisées de manière classique dans le tubage 103 du puits central 101. La communication pourra être améliorée par acidification et stimulation du réservoir au niveau des perforations. La cote de ces perforations 111 pourra être choisie après simulation à l'aide de programmes numériques aptes à représenter les écoulements mis en jeu afin d'obtenir le meilleur balayage volumétrique du réservoir par les fluides injectés (eau chaude, vapeur, CO₂, gaz, mousse, ...) jusqu'à la pénétration dans les drains. Les paramètres à prendre en compte sont en outre : l'épaisseur du réservoir, la viscosité de l'huile en place, l'angle des drains par rapport à l'horizontale, les points de sortie du réservoir de chaque drain, le débit d'injection, le nombre de drains, ...
  • Dans le cas où le fluide injecté est plus léger que l'huile en place, on profitera de l'effet de ségrégation par gravité, lequel permet d'obtenir une forme d'ombrelle pour l'interface entre l'agent de déplacement et l'effluent à produire. Au cours du temps, cette forme d'ombrelle se développera latéralement autour du puits central. Les paramètres énoncés ci-dessus pourront alors être calculés de telle sorte que la limite atteinte par l'ombrelle soit pratiquement parallèle aux drains subhorizontaux dans les plans respectifs de chacun d'eux. Ainsi, l'huile sera déplacée vers les drains de façon uniforme.
  • Dans la phase initiale de production, comme pour le système proposé antérieurement, il sera bon, dans le cas de réservoirs d'huiles lourdes, de procéder à une circulation continue de vapeur dans les drains pour améliorer l'écoulement des fluides par diminution de la viscosité.
  • Ainsi selon la présente variante, l'agent de déplacement ou agent déplaçant 115 est introduit dans la formation productrice 113 à partir de l'espace annulaire 116 délimité par le tubage 103 et le conduit 108 qui est situé dans ce tubage 103 en transitant par les perforations 111 pratiquées sur ce même tubage.
  • L'agent déplaçant va diffuser dans la formation productrice 113 en provoquant la migration de l'effluent pétrolier vers les drains collecteurs 106 qui sont perforés sur la portion de leur longueur située dans la formation productrice 113.
  • Le drain 106 collecte l'effluent pétrolier et le déverse dans la fosse 105 à partir de laquelle il est produit.
  • Bien entendu, pour une bonne efficacité de la méthode selon la présente invention, il est nécessaire de disposer plusieurs drains de collecte situés tout autour du puits central vertical.
  • Suivant encore une autre variante, où le puits central sert à injecter l'agent de déplacement (Fig. 8), ce puits central vertical 201 est foré jusqu'au mur 202 d'un réservoir 213, puis tubé et cimenté. Ainsi le tubage 203 empêche tout écoulement de fluides du réservoir dans le puits.
  • On entend par mur du réservoir la partie inférieure de la formation géologique contenant l'effluent pétrolier et par toit du réservoir la limite supérieure de cette formation géologique.
  • Le forage pourra alors être interrompu. S'il était poursuivi dans la couche 204 située sous le réservoir, ce prolongement serait avantageusement isolé du reste du trou à l'aide d'un bouchon étanche 207 interdisant le passage de tout produit vers le prolongement du puits, afin de réaliser un prolongement du puits destiné à un usage ultérieur.
  • Le prolongement du puits peut être envisagé notamment lorsqu'il existe plusieurs formations géologiques contenant un effluent à produire, séparées par des formations imperméables à cet effluent.
  • Selon le mode de réalisation représenté le système ou dispositif de collecte de l'effluent à produire est réalisé par le forage de drains subhorizontaux 206, depuis la surface jusqu'à la formation productrice 213, chacun de ces drains recoupant le mur 202 du réservoir en un point 10 distant du puits central et s'interrompent sensiblement au niveau de ce point.
  • L'injection du fluide destiné à mobiliser et à déplacer les fluides en place se fera dans le réservoir 213 par l'intermédiaire de perforations 211 réalisées de manière classique dans le tubage 203 du puits central 201. La communication pourra être améliorée par acidification et stimulation du réservoir au niveau des perforations. La cote de ces perforations 211 pourra être choisie après simulation à l'aide de programmes numériques aptes à représenter les écoulements mis en jeu afin d'obtenir le meilleur balayage volumétrique du réservoir par les fluides injectés (eau chaude, vapeur, CO₂, gaz, mousse, ...) jusqu'à la pénétration dans les drains 206. Les paramètres à prendre en compte sont en outre : l'épaisseur du réservoir, la viscosité de l'huile en place, l'angle des drains par rapport à l'horizontale, les points de sortie du réservoir de chaque drain, le débit d'injection, le nombre de drains, ...
  • Dans le cas où le fluide injecté est plus léger que l'huile en place, on profitera de l'effet de ségrégation par gravité lequel permet d'obtenir une forme d'ombrelle pour l'interface entre l'agent de déplacement et l'effluent à produire. Au cours du temps, cette forme d'ombrelle se développera latéralement autour du puits central. Les paramètres énoncés ci-dessus pourront alors être calculés de telle sorte que la limite atteinte par l'ombrelle soit pratiquement parallèle aux drains subhorizontaux dans les plans respectifs de chacun d'eux Ainsi, l'huile sera déplacée vers les drains de façon uniforme.
  • Ainsi selon la présente variante l'agent déplaçant 215 est introduit dans la formation productrice 213 à partir du puits principal en transitant par les perforations 211 pratiquées sur ce même tubage.
  • L'agent déplaçant va diffuser dans la formation productrice 213 en provoquant la migration de l'effluent pétrolier vers les drains collecteurs 206 qui sont perforés sur la portion de leur longueur située dans la formation productrice 213.
  • Les drains 206 collectent l'effluent pétrolier qui est produit séparément à partir de chacun de ces drains vers la surface 209. La production se fait soit naturellement, soit à l'aide de pompes. Ces pompes peuvent être placées en surface ou à l'intérieur de certains au moins des drains subhorizontaux au niveau de la formation productrice.
  • Ainsi, selon la présente invention, l'effluent pétrolier est produit à partir de drains subhorizontaux entourant le puits principal. Ces drains s'interrompent avant de rencontrer l'axe du puits principal et à une certaine distance L de cet axe. La présente invention permet donc d'augmenter le volume exploité du réservoir.
  • Dans le cas de la figure les drains subhorizontaux s'interrompent sensiblement au niveau du mur 202, toutefois on ne sortirait pas du cadre de la présente invention si les drains s'interrompaient avant ou après ce mur.

Claims (26)

1. - Méthode de production d'un effluent contenu dans une formation géologique formant un réservoir pour ledit effluent ou formation productrice, en utilisant un puits central, au moins un drain subhorizontal ainsi qu'un agent déplaçant ou de déplacement, ladite formation géologique surmontant une autre formation géologique sensiblement imperméable audit effluent ou formation imperméable, l'interface entre lesdites formations géologiques étant qualifiée de mur dudit réservoir, caractérisée en ce qu'on injecte dans ladite formation ledit agent de déplacement à partir soit dudit puits central, soit dudit drain subhorizontal et en ce que ledit agent de déplacement provoque la migration de l'effluent à produire.
2. - Méthode de production selon la revendication 1 appliquée à la production d'un effluent pétrolier visqueux, caractérisée en ce que l'on utilise le puits central comme puits de production et ledit puits subhorizontal comme puits de stimulation de la production, en ce que ledit puits de stimulation est foré depuis la surface et en ce qu'il traverse ladite formation productrice pour passer dans ladite formation imperméable et rejoindre ledit puits de production.
3. - Méthode selon la revendication 2, caractérisée en ce que ledit puits de stimulation est perforé sur une portion de sa longueur, ladite portion correspondant sensiblement à la fraction dudit puits de stimulation traversant la formation productrice.
4. - Méthode selon la revendication 3, caractérisée en ce que l'on injecte dans ledit drain de stimulation un fluide adapté à diminuer la viscosité de l'effluent pétrolier à produire.
5. - Méthode selon l'une des revendications 3 ou 4, caractérisée en ce que l'on interpose un bouchon dans ledit drain de stimulation et en ce que l'on place ledit bouchon dans ladite portion perforée dudit drain de stimulation.
6. - Méthode selon l'une des revendications 3 ou 4, caractérisée en ce que l'on interpose un bouchon dans ledit drain de stimulation, dans la portion dudit drain contenue dans la formation non productrice.
7. - Méthode selon l'une des revendications 3 ou 4, caractérisée en ce que l'on place un bouchon dans ledit drain de stimulation, sensi­blement à la limite de la formation productrice et de la formation non productrice.
8. - Méthode selon la revendication 2, caractérisée en ce que ledit drain de stimulation est interrompu après avoir atteint la formation productrice, mais avant d'atteindre le puits producteur.
9. - Méthode selon l'une des revendications 2 à 8, caractérisée en ce que l'on utilise plusieurs drains de stimulation entourant le puits de production.
10. - Méthode de production selon la revendication 1, caractérisée en ce que l'on injecte ledit agent déplaçant ou de déplacement à partir dudit puits central et en ce que l'on utilise plusieurs drains subhorizontaux.
11. - Méthode de production selon la revendication 10 dans laquelle on draine ledit fluide à produire par lesdit drains subhorizontaux vers une partie inférieure du puits central où ledit fluide transite et à partir de laquelle il est produit vers la surface.
12. - Méthode selon la revendication 11, caractérisée en ce que l'on recueille ledit effluent à produire par des drains subhorizontaux situés tout autour dudit puits central.
13. - Méthode selon la revendication 11, caractérisée en ce que l'on draine ledit effluent à produire dans ladite partie inférieure jusqu'à un niveau inférieur audit mur du réservoir.
14. - Méthode de production selon la revendication 10, caractérisée en ce que l'on achemine l'effluent à produire vers la surface par lesdits drains subhorizontaux.
15. - Méthode selon la revendication 14, caractérisée en ce que l'on produit ledit effluent par des drains subhorizontaux situés tout autour dudit puits central.
16. - Système de production d'un effluent contenu dans une formation géologique comportant un puits central et des drains subhorizontaux, caractérisé en ce que ledit puits principal (101, 201) comporte une zone perforée (111, 211) au niveau de ladite formation géologique (113, 213), un conduit d'injection reliant ladite zone perforée (111, 211) à une source d'injection (115, 215) d'un produit de déplacement, et en ce que lesdits drains subhorizontaux (106, 206) penètrent dans ladite formation (113, 213).
17. - Système de production selon la revendication 16, caractérisé en ce que ledit puits principal (101) comporte en outre une zone de transit (105) isolée de la zone perforée et située en-dessous de ladite zone perforée, ladite zone de transit étant reliée à la surface par une conduite de production (108) et en ce que lesdits drains subhorizontaux (106) traversent dans ladite formation (113) pour rejoindre ladite zone de transit.
18. - Système de production selon la revendication 17, caractérisé en ce qu'il comporte un tube (108) situé dans ledit puits constituant le conduit de production en ce que le conduit d'injection est constitué de l'espace annulaire délimité par ledit puits principal (101) et ledit tube et en ce qu'il comporte un bouchon (107) qui isole la zone perforée de la zone de transit.
19. - Système selon la revendication 18, caractérisé en ce que ledit tube (108) traverse ledit bouchon (107).
20. - Système selon la revendication 19, caractérisé en ce que ledit conduit de production (108) comporte une pompe située à son extrémité inférieure dans la zone de transit (105) et en ce que ledit tube (108) formant ledit conduit de production (108) peut coulisser dans ledit bouchon.
21. - Système selon l'une des revendications 17 à 19, caractérisé en ce que ledit conduit de production comporte une pompe (109) située à l'extrémité inférieure dudit conduit de production (108), dans la zone de transit.
22. - Système selon l'une des revendications 17 à 21, caractérisé en ce que la zone de transit (105) possède une section droite plus grande que la section droite de la partie supérieure du puits principal (101), formant ainsi une fosse de collecte (105) de l'effluent produit.
23. - Système selon les revendications 17 à 22 appliquée au cas où ladite formation géologique surmonte une autre formation géologique imperméable à l'effluent à produire, caractérisé en ce que ladite zone de collecte est située au moins partiellement dans ladite formation imperméable et en ce que lesdit drains subhorizontaux rejoignent ladite zone de transit (105) en penétrant dans ladite formation imperméable après avoir traversé la formation productrice.
24. - Système de production selon la revendication 16, caractérisé en ce que lesdits drains subhorizontaux (206) qui passent dans ladite formation (213) ont une longueur telle qu'ils s'interrompent à une certaine distance (L) non nulle de l'axe dudit puits principal (201).
25. - Système de production selon la revendication 24, caractérisé en ce qu'il comporte un bouchon (207).
26. - Système selon l'une des revendications 24 et 25 appliquée au cas où ladite formation géologique surmonte une autre formation géologique imperméable à l'effluent à produire, caractérisé en ce que lesdits drains subhorizontaux s'interrompent sensiblement au voisinage de l'interface entre ladite formation imperméable et ladite formation géologique contenant l'effluent à produire.
EP87401421A 1986-06-26 1987-06-22 Méthode de production assistée d'un effluent à produire contenu dans une formation géologique Expired - Lifetime EP0251881B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR8609422A FR2600714B1 (fr) 1986-06-26 1986-06-26 Methode et systeme de production assistee par injection a partir d'un puits central d'un agent de deplacement
FR8609420A FR2601998B1 (fr) 1986-06-26 1986-06-26 Methode et systeme de production par puits central et drains de collecte
FR8609420 1986-06-26
FR8609419 1986-06-26
FR8609422 1986-06-26
FR8609419A FR2600713B1 (fr) 1986-06-26 1986-06-26 Methode de production assistee d'un effluent visqueux contenu dans une formation geologique

Publications (2)

Publication Number Publication Date
EP0251881A1 true EP0251881A1 (fr) 1988-01-07
EP0251881B1 EP0251881B1 (fr) 1992-04-29

Family

ID=27251376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401421A Expired - Lifetime EP0251881B1 (fr) 1986-06-26 1987-06-22 Méthode de production assistée d'un effluent à produire contenu dans une formation géologique

Country Status (7)

Country Link
US (1) US5016710A (fr)
EP (1) EP0251881B1 (fr)
CN (1) CN1014337B (fr)
BR (1) BR8703209A (fr)
DE (1) DE3778593D1 (fr)
IN (1) IN169933B (fr)
NO (1) NO872640L (fr)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656650B1 (fr) * 1989-12-29 1995-09-01 Inst Francais Du Petrole Methode et dispositif pour stimuler une zone souterraine par injection controlee de fluide provenant d'une zone voisine que l'on relie a la premiere par un drain traversant une couche intermediaire peu permeable.
FR2656651B1 (fr) * 1989-12-29 1995-09-08 Inst Francais Du Petrole Methode et dispositif pour stimuler une zone souterraine par injection differee de fluide provenant d'une zone voisine, le long de fractures faites depuis un drain fore dans une couche intermediaire peu permeable.
US5450902A (en) * 1993-05-14 1995-09-19 Matthews; Cameron M. Method and apparatus for producing and drilling a well
US5655605A (en) * 1993-05-14 1997-08-12 Matthews; Cameron M. Method and apparatus for producing and drilling a well
US5431482A (en) * 1993-10-13 1995-07-11 Sandia Corporation Horizontal natural gas storage caverns and methods for producing same
EA000057B1 (ru) * 1995-04-07 1998-04-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Система скважин для добычи вязкой нефти
NO305719B1 (no) * 1997-06-11 1999-07-12 Gr Sfjell Invent As FremgangsmÕte og system for Õ °ke utvinningstakt i en av to eksisterende, nµrliggende petroleumsbr°nner
US6263965B1 (en) 1998-05-27 2001-07-24 Tecmark International Multiple drain method for recovering oil from tar sand
US6167966B1 (en) * 1998-09-04 2001-01-02 Alberta Research Council, Inc. Toe-to-heel oil recovery process
US6598686B1 (en) 1998-11-20 2003-07-29 Cdx Gas, Llc Method and system for enhanced access to a subterranean zone
US6280000B1 (en) 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US6681855B2 (en) 2001-10-19 2004-01-27 Cdx Gas, L.L.C. Method and system for management of by-products from subterranean zones
US8297377B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US6454000B1 (en) 1999-11-19 2002-09-24 Cdx Gas, Llc Cavity well positioning system and method
US6708764B2 (en) 2002-07-12 2004-03-23 Cdx Gas, L.L.C. Undulating well bore
US6662870B1 (en) 2001-01-30 2003-12-16 Cdx Gas, L.L.C. Method and system for accessing subterranean deposits from a limited surface area
US7073595B2 (en) * 2002-09-12 2006-07-11 Cdx Gas, Llc Method and system for controlling pressure in a dual well system
US6425448B1 (en) 2001-01-30 2002-07-30 Cdx Gas, L.L.P. Method and system for accessing subterranean zones from a limited surface area
US7048049B2 (en) * 2001-10-30 2006-05-23 Cdx Gas, Llc Slant entry well system and method
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US7025154B2 (en) * 1998-11-20 2006-04-11 Cdx Gas, Llc Method and system for circulating fluid in a well system
US6250391B1 (en) 1999-01-29 2001-06-26 Glenn C. Proudfoot Producing hydrocarbons from well with underground reservoir
US6412556B1 (en) 2000-08-03 2002-07-02 Cdx Gas, Inc. Cavity positioning tool and method
US6591903B2 (en) 2001-12-06 2003-07-15 Eog Resources Inc. Method of recovery of hydrocarbons from low pressure formations
US6679326B2 (en) * 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
US6725922B2 (en) 2002-07-12 2004-04-27 Cdx Gas, Llc Ramping well bores
US7025137B2 (en) * 2002-09-12 2006-04-11 Cdx Gas, Llc Three-dimensional well system for accessing subterranean zones
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US7264048B2 (en) * 2003-04-21 2007-09-04 Cdx Gas, Llc Slot cavity
US7419005B2 (en) * 2003-07-30 2008-09-02 Saudi Arabian Oil Company Method of stimulating long horizontal wells to improve well productivity
US20060201715A1 (en) * 2003-11-26 2006-09-14 Seams Douglas P Drilling normally to sub-normally pressured formations
US20060201714A1 (en) * 2003-11-26 2006-09-14 Seams Douglas P Well bore cleaning
US7419223B2 (en) * 2003-11-26 2008-09-02 Cdx Gas, Llc System and method for enhancing permeability of a subterranean zone at a horizontal well bore
WO2006015277A1 (fr) * 2004-07-30 2006-02-09 Baker Hughes Incorporated Dispositif de fond pour reguler le flux entrant au moyen d'un dispositif de fermeture
US20050051326A1 (en) * 2004-09-29 2005-03-10 Toothman Richard L. Method for making wells for removing fluid from a desired subterranean
EP2518264B1 (fr) * 2004-11-19 2014-04-09 Halliburton Energy Services, Inc. Procédés et appareil pour forer, exécuter et configurer des trous de forage à tube en u
US7353877B2 (en) * 2004-12-21 2008-04-08 Cdx Gas, Llc Accessing subterranean resources by formation collapse
US20070044957A1 (en) * 2005-05-27 2007-03-01 Oil Sands Underground Mining, Inc. Method for underground recovery of hydrocarbons
US8287050B2 (en) * 2005-07-18 2012-10-16 Osum Oil Sands Corp. Method of increasing reservoir permeability
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7621326B2 (en) * 2006-02-01 2009-11-24 Henry B Crichlow Petroleum extraction from hydrocarbon formations
CA2649850A1 (fr) * 2006-04-21 2007-11-01 Osum Oil Sands Corp. Procede de forage a partir d'un puits pour recuperation souterraine d'hydrocarbures
US20080078552A1 (en) * 2006-09-29 2008-04-03 Osum Oil Sands Corp. Method of heating hydrocarbons
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7644769B2 (en) * 2006-10-16 2010-01-12 Osum Oil Sands Corp. Method of collecting hydrocarbons using a barrier tunnel
CA2668774A1 (fr) 2006-11-22 2008-05-29 Osum Oil Sands Corp. Recuperation de bitume par excavation hydraulique
US20090084707A1 (en) * 2007-09-28 2009-04-02 Osum Oil Sands Corp. Method of upgrading bitumen and heavy oil
US8096351B2 (en) * 2007-10-19 2012-01-17 Baker Hughes Incorporated Water sensing adaptable in-flow control device and method of use
US7942206B2 (en) * 2007-10-12 2011-05-17 Baker Hughes Incorporated In-flow control device utilizing a water sensitive media
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US20090301726A1 (en) * 2007-10-12 2009-12-10 Baker Hughes Incorporated Apparatus and Method for Controlling Water In-Flow Into Wellbores
US7891430B2 (en) 2007-10-19 2011-02-22 Baker Hughes Incorporated Water control device using electromagnetics
US7784543B2 (en) * 2007-10-19 2010-08-31 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7789139B2 (en) * 2007-10-19 2010-09-07 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7793714B2 (en) * 2007-10-19 2010-09-14 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7775277B2 (en) * 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918272B2 (en) * 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US8544548B2 (en) * 2007-10-19 2013-10-01 Baker Hughes Incorporated Water dissolvable materials for activating inflow control devices that control flow of subsurface fluids
US7775271B2 (en) * 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7913755B2 (en) * 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US20090101336A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7913765B2 (en) * 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US20090101354A1 (en) * 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids
CA2698238C (fr) * 2007-10-22 2014-04-01 Osum Oil Sands Corp. Procede d'elimination des emissions de dioxyde de carbone issues de la recuperation in-situ de bitume et d'huile lourde
US20090101344A1 (en) * 2007-10-22 2009-04-23 Baker Hughes Incorporated Water Dissolvable Released Material Used as Inflow Control Device
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
CA2701164A1 (fr) * 2007-12-03 2009-06-11 Osum Oil Sands Corp. Procede de recuperation de bitume d'un tunnel ou d'un puits avec elements chauffants et puits de recuperation
CA2713536C (fr) * 2008-02-06 2013-06-25 Osum Oil Sands Corp. Procede de commande d'une operation de recuperation et de valorisation dans un reservoir
US8839849B2 (en) 2008-03-18 2014-09-23 Baker Hughes Incorporated Water sensitive variable counterweight device driven by osmosis
US7992637B2 (en) * 2008-04-02 2011-08-09 Baker Hughes Incorporated Reverse flow in-flow control device
US8931570B2 (en) * 2008-05-08 2015-01-13 Baker Hughes Incorporated Reactive in-flow control device for subterranean wellbores
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
US8113292B2 (en) * 2008-05-13 2012-02-14 Baker Hughes Incorporated Strokable liner hanger and method
US8555958B2 (en) 2008-05-13 2013-10-15 Baker Hughes Incorporated Pipeless steam assisted gravity drainage system and method
US8209192B2 (en) 2008-05-20 2012-06-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US20100170672A1 (en) * 2008-07-14 2010-07-08 Schwoebel Jeffrey J Method of and system for hydrocarbon recovery
US8132624B2 (en) 2009-06-02 2012-03-13 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8151881B2 (en) 2009-06-02 2012-04-10 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8056627B2 (en) 2009-06-02 2011-11-15 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8893809B2 (en) * 2009-07-02 2014-11-25 Baker Hughes Incorporated Flow control device with one or more retrievable elements and related methods
BRPI0902366B1 (pt) * 2009-07-06 2018-10-16 Petroleo Brasileiro S.A. - Petrobras poço lateral receptor e método para sua implantação
US8550166B2 (en) * 2009-07-21 2013-10-08 Baker Hughes Incorporated Self-adjusting in-flow control device
US9016371B2 (en) * 2009-09-04 2015-04-28 Baker Hughes Incorporated Flow rate dependent flow control device and methods for using same in a wellbore
EA201290503A1 (ru) * 2009-12-15 2012-12-28 Шеврон Ю.Эс.Эй. Инк. Система, способ и компоновка для техобслуживания и эксплуатации стволов скважин
CO6310134A1 (es) * 2010-08-31 2011-08-22 Pacific Rubiales Energy Corp Sistema sincronizado de produccion de crudo por combustion in situ
CA2972203C (fr) 2017-06-29 2018-07-17 Exxonmobil Upstream Research Company Solvant de chasse destine aux procedes ameliores de recuperation
CA2974712C (fr) 2017-07-27 2018-09-25 Imperial Oil Resources Limited Methodes ameliorees de recuperation d'hydrocarbures visqueux d'une formation souterraine comme etape qui suit des procedes de recuperation thermique
CA2978157C (fr) 2017-08-31 2018-10-16 Exxonmobil Upstream Research Company Methodes de recuperation thermique servant a recuperer des hydrocarbures visqueux d'une formation souterraine
CA2983541C (fr) 2017-10-24 2019-01-22 Exxonmobil Upstream Research Company Systemes et methodes de surveillance et controle dynamiques de niveau de liquide
US10612355B1 (en) 2019-02-11 2020-04-07 Saudi Arabian Oil Company Stimulating u-shape wellbores
US11035212B2 (en) * 2019-02-11 2021-06-15 Saudi Arabian Oil Company Stimulating U-shape wellbores
US11460330B2 (en) 2020-07-06 2022-10-04 Saudi Arabian Oil Company Reducing noise in a vortex flow meter
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
US11649702B2 (en) 2020-12-03 2023-05-16 Saudi Arabian Oil Company Wellbore shaped perforation assembly
US11619127B1 (en) 2021-12-06 2023-04-04 Saudi Arabian Oil Company Wellhead acoustic insulation to monitor hydraulic fracturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825408A (en) * 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US3159214A (en) * 1961-06-05 1964-12-01 Pan American Petroleum Corp Method for injecting and recovering fluids from a formation
US3386508A (en) * 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
DE3030110A1 (de) * 1980-08-08 1982-02-25 Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva Thermoschachtverfahren zum abbau von erdoellagerstaetten
US4362213A (en) * 1978-12-29 1982-12-07 Hydrocarbon Research, Inc. Method of in situ oil extraction using hot solvent vapor injection
CA1173356A (fr) * 1982-01-15 1984-08-28 Canada Cities Service Limited Extraction de matieres visqueuses sur chantier d'exploitation d'un gisement
CH653741A5 (en) * 1980-11-10 1986-01-15 Elektra Energy Ag Method of extracting crude oil from oil shale or oil sand

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1520737A (en) * 1924-04-26 1924-12-30 Robert L Wright Method of increasing oil extraction from oil-bearing strata
US2404341A (en) * 1944-06-15 1946-07-16 John A Zublin Method of producing oil and retaining gas through deviating bores
US3572436A (en) * 1969-01-17 1971-03-30 Frederick W Riehl Method for recovering petroleum
US4099570A (en) * 1976-04-09 1978-07-11 Donald Bruce Vandergrift Oil production processes and apparatus
US4201420A (en) * 1978-08-31 1980-05-06 Pechorsky Gosudarstvenny Naucnno-Issledovalelsley I Proerthy Institut "Pechornipineft" Method of oil recovery by thermal mining
US4368781A (en) * 1980-10-20 1983-01-18 Chevron Research Company Method of recovering viscous petroleum employing heated subsurface perforated casing containing a movable diverter
US4460044A (en) * 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4463988A (en) * 1982-09-07 1984-08-07 Cities Service Co. Horizontal heated plane process
US4532986A (en) * 1983-05-05 1985-08-06 Texaco Inc. Bitumen production and substrate stimulation with flow diverter means
US4646824A (en) * 1985-12-23 1987-03-03 Texaco Inc. Patterns of horizontal and vertical wells for improving oil recovery efficiency
US4702314A (en) * 1986-03-03 1987-10-27 Texaco Inc. Patterns of horizontal and vertical wells for improving oil recovery efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825408A (en) * 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US3159214A (en) * 1961-06-05 1964-12-01 Pan American Petroleum Corp Method for injecting and recovering fluids from a formation
US3386508A (en) * 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US4362213A (en) * 1978-12-29 1982-12-07 Hydrocarbon Research, Inc. Method of in situ oil extraction using hot solvent vapor injection
DE3030110A1 (de) * 1980-08-08 1982-02-25 Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva Thermoschachtverfahren zum abbau von erdoellagerstaetten
CH653741A5 (en) * 1980-11-10 1986-01-15 Elektra Energy Ag Method of extracting crude oil from oil shale or oil sand
CA1173356A (fr) * 1982-01-15 1984-08-28 Canada Cities Service Limited Extraction de matieres visqueuses sur chantier d'exploitation d'un gisement

Also Published As

Publication number Publication date
CN1030117A (zh) 1989-01-04
NO872640L (no) 1987-12-28
US5016710A (en) 1991-05-21
EP0251881B1 (fr) 1992-04-29
BR8703209A (pt) 1988-03-15
NO872640D0 (no) 1987-06-24
CN1014337B (zh) 1991-10-16
IN169933B (fr) 1992-01-11
DE3778593D1 (de) 1992-06-04

Similar Documents

Publication Publication Date Title
EP0251881B1 (fr) Méthode de production assistée d'un effluent à produire contenu dans une formation géologique
EP0364362B1 (fr) Procédé et dispositif de diagraphie en puits de production non éruptif
CA2209515C (fr) Procede et installation de pompage d'un effluent petrolier
FR2861127A1 (fr) Appareil d'echantillonnage de fond et methode d'utilisation de celui-ci
FR2484524A1 (fr) Train de tiges d'essai et procede d'essai de puits de petrole
CA2033358C (fr) Methode et dispositif pour stimuler une zone souterraine par injection differee de fluide provenant d'une zone voisine, le long de fractures faites depuis un drain fore dans une couche intermediaire peu permeable
CA2120187C (fr) Dispositif et methode de pompage comportant deux orifices d'entrees d'aspiration - application a un drain subhorizontal
EP0136935A1 (fr) Dispositif de forage et de mise en production pétrolière multidrains
FR2565357A1 (fr) Procede de determination de la productivite d'un site de forage, notamment petrolifere, avec localisation de perforations dans le tubage de puits
CA2033357C (fr) Methode et dispositif pour stimuler une zone souterraine par injection controlee de fluide provenant d'une zone voisine que l'on relie a la premiere par un drain traversant une couche intermediaire peu permeable
FR2543213A1 (fr) Train de forage
EP0230918B1 (fr) Dispositif pour drainer des sols en profondeur
EP0484207A1 (fr) Méthode pour favoriser la production d'effluents d'une zone de production
FR2787827A1 (fr) Methode de reglage a une valeur objectif d'un niveau de liquide de forage dans un tube prolongateur d'une installation de forage d'un puits et dispositif pour la mise en oeuvre de cette methode
CA1317214C (fr) Methode et systeme de production par puits central et drains de collecte
FR2600714A1 (fr) Methode et systeme de production assistee par injection a partir d'un puits central d'un agent de deplacement
CA2012772C (fr) Methode et dispositif de diagraphie de production en puits eruptif
FR2668796A1 (fr) Methode pour favoriser l'injection de fluides dans une zone de production.
FR2772826A1 (fr) Procede et outil pour traiter au moins la paroi d'une zone critique d'un trou de forage
FR2600713A1 (fr) Methode de production assistee d'un effluent visqueux contenu dans une formation geologique
FR2637939A1 (fr) Procede et dispositif de diagraphie en puits de production non eruptif
EP0172971A1 (fr) Production de gisements d'hydrocarbures avec réinjection d'effluents dans le gisement
CA1278927C (fr) Dispositif pour drainer des sols en profondeur
CA2067848A1 (fr) Methode pour stimuler par un fluide chaud une zone productrice d'effluents adjacente a une zone aquifere
FR2671375A1 (fr) Procede d'exploitation de gisements petroliers en "double completion".

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19880813

17Q First examination report despatched

Effective date: 19891024

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3778593

Country of ref document: DE

Date of ref document: 19920604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930527

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930608

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: SOC. NATIONALE ELF AQUITAINE (PRODUCTION)

Effective date: 19940630

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940622

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050622