EP0248423B1 - Process or the acylation of aromatic compounds - Google Patents

Process or the acylation of aromatic compounds Download PDF

Info

Publication number
EP0248423B1
EP0248423B1 EP87108066A EP87108066A EP0248423B1 EP 0248423 B1 EP0248423 B1 EP 0248423B1 EP 87108066 A EP87108066 A EP 87108066A EP 87108066 A EP87108066 A EP 87108066A EP 0248423 B1 EP0248423 B1 EP 0248423B1
Authority
EP
European Patent Office
Prior art keywords
halide
mol
aluminum
alkyl
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87108066A
Other languages
German (de)
French (fr)
Other versions
EP0248423A1 (en
Inventor
Manfred Dr. Eggersdorfer
Hardo Dr. Siegel
Alfred Dr. Schuhmacher
Walter Dr. Grosch
Jochem Dr. Henkelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19863619169 external-priority patent/DE3619169A1/en
Priority claimed from DE19863642329 external-priority patent/DE3642329A1/en
Application filed by BASF SE filed Critical BASF SE
Priority to AT87108066T priority Critical patent/ATE45940T1/en
Publication of EP0248423A1 publication Critical patent/EP0248423A1/en
Application granted granted Critical
Publication of EP0248423B1 publication Critical patent/EP0248423B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/02Addition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/373Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in doubly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring

Definitions

  • the invention relates to an improved process for the acylation of aromatics according to Friedel-Crafts, in particular for the production of alkyl-substituted aromatic ketones by reacting carboxylic acid halides or carboxylic acid anhydrides with alkyl aromatics in the presence of a Friedel-Crafts catalyst.
  • the invention was therefore based on the object of improving the Friedel-Crafts acylation of aromatics so that side reactions are largely avoided and the products are obtained in high yields.
  • the elimination and isomerization of the alkyl groups should be suppressed in the reaction of alkyl aromatics.
  • a process for acylating aromatics according to Friedel-Crafts has now been found, which is characterized in that the acylation in the presence of metal alkyls or metal alkyl halides of metals or semimetals of the second to fifth main group and / or metals of the second or fourth subgroup of the periodic table carries out.
  • Carboxylic acid halides or anhydrides can be reacted with alkylaromatics to give alkyl-substituted ketones particularly advantageously by the process according to the invention.
  • alkylaromatics particularly advantageously by the process according to the invention.
  • a) acetyl chloride or b) phthalic anhydride and tert-butylbenzene as starting materials and a mixture of metal alkyl or metal alkyl halide and aluminum chloride as catalyst
  • the reaction can be described by the following reaction equations:
  • the Friedel-Crafts acylation is carried out in the presence of effective amounts of metal alkyls or metal alkyl halides of metals or semimetals of the second to fifth, in particular the third main group of the periodic table and metals of the second and / or fourth subgroup.
  • metal alkyls or metal alkyl halides of metals or semimetals of the second to fifth in particular the third main group of the periodic table and metals of the second and / or fourth subgroup.
  • radical R is the same or different alkyl groups each having 1 to 12, preferably
  • se 1 to 6, especially 1 to 4 carbon atoms e.g. Methyl, ethyl, n-propyl, iso-propyl, n-butyl or iso-butyl groups means M metals or semimetals of the groups mentioned, e.g. Represents beryllium, magnesium, aluminum, boron, gallium, indium, thallium, silicon, tin, lead, antimony, zinc, cadmium, mercury and titanium, X represents fluorine, chlorine, bromine or iodine, chlorine often being preferred for reasons of cost, n the numbers 1 to 4 and m the numbers 0 to 4, the sum n plus m giving the valence of the metal.
  • the preparation of the organometallic compounds can be carried out in a manner known per se, e.g. as described in Brockhaus ABC Chemie, Vol. 2, pp. 867-869, 1971.
  • Organometallic compounds of magnesium such as dialkylmagnesium or Grignard compounds (RMgX), boron such as trialkylboron, dialkylborhalogenide or alkyl boron dihalide, tin such as tetraalkyltin or trialkyltin halide, titanium such as alkyltitanium trihalide or dialkyltitanium dialkidium and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide as well as zincadimidium halide and zincadmin.-zincadimidium halide and zincadimidium halide as well as zincadimidium halide and zincadmin.-zincadimide and halide-zincadimidium halide as well as zincidium halide and
  • R is the same or different alkyl groups each having 1 to 12, preferably 1 to 6, in particular 1 to 4 carbon atoms, for example Methyl, ethyl, n-propyl, iso-propyl, n-butyl or iso-butyl groups
  • X represents fluorine, chlorine, bromine or iodine, chlorine being preferred for reasons of cost
  • n the numbers 1, 2 or 3 or mixtures of two different compounds of formula la.
  • methyl magnesium chloride ethyl magnesium, diethyl magnesium, trimethyl, triethyl, Diethylborchlorid, Diethylborbromid, Ethylbordichlorid, tetramethyl tin, triethyltin, methyltitanium, Diethyltitandichlorid, Dimethyl and especially dimethyl, diethyl, dibutyl and dipropylzinc and ethylzinc.
  • Particularly preferred compounds are: methyl aluminum dichloride and dibromide, ethyl aluminum dichloride and dibromide, isopropyl aluminum dibromide, n-hexyl aluminum dichloride, dodecyl aluminum diiodide, dimethyl aluminum chloride, diethyl aluminum bromide or dibutyl aluminum iodide.
  • Mixtures of this compound are, for example, methyl aluminum sesquichloride, ethyl aluminum sesquichloride or mixtures of alkyl aluminum dichloride and dialkyl aluminum chloride in a molar ratio of e.g. 20 1 to 1:20.
  • trialkyl aluminum can also advantageously be added to the reaction mixture, e.g. Trimethyl, triethyl, tri-n-propyl, triisopropyl, tri-n-butyl or tri-n-hexyl aluminum as well as aluminum alkyls with mixed alkyl radicals, e.g. Methyl diethyl aluminum.
  • the compounds known per se such as FeC1 3 , BF 3 , ZnC1 2 or TiCl 4 , can be used as Friedel-Crafts catalysts.
  • Aluminum halides are particularly suitable, preferably aluminum bromide and in particular aluminum chloride.
  • Aromatic compounds which are commonly used for Friedel-Crafts reactions such as isocyclic and heterocyclic aromatic hydrocarbons, are suitable.
  • Alkylaromatics for example alkyl-substituted benzenes, naphthalenes, anthracenes, furans, benzofurans, thiophenes, etc., can be reacted particularly advantageously by the process according to the invention.
  • Alkyl radicals are, for example, those having 1 to 20, in particular 1 to 12, preferably 1 to 8, carbon atoms.
  • alkyl radical and the aromatic nucleus can also carry further substituents such as halogen, for example chlorine or bromine or C i -C 4 alkyl or alkoxy radicals or hydroxyl groups, and the alkyl radical can also contain double or triple bonds.
  • alkyl benzenes having 1 or 2 branched or unbranched alkyl radicals are preferably reacted.
  • alkylbenzenes examples include the following alkylbenzenes: toluene, ethylbenzene, n-propylbenzene, iso-propylbenzene, n-butylbenzene, sec.-butylbenzene, tert.-butylbenzene, n-pentylbenzene, (2-methylbutyl) -benzene, (3-methylbutyl) benzene , (1-methylbutyl) benzene, (1,1-dimethylpropyl) benzene, n-hexylbenzene, (1-ethyl-1-methylpropyl) benzene, (1,1-dimethylbutyl) benzene, (1-methylpentyl) benzene, (1-ethyl-1-methyl) benzene, (1-ethylhexyl) benzene, (4-octyl) benzene, 1,
  • carboxylic acid halides or carboxylic acid anhydrides there are no restrictions with regard to the carboxylic acid halides or carboxylic acid anhydrides to be reacted, so the acid fluorides, iodides and in particular bromides and chlorides can be converted.
  • the acid chlorides of aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic carboxylic acids will be reacted.
  • R 1 represents hydrogen or an aliphatic radical, for example an alkyl radical having 1 to 20, in particular 1 to 8 carbon atoms, an optionally substituted aryl radical, preferably a phenyl radical, which, when substituted, is , in particular 1 to 2 substituents such as Cibis C 4 alkyl, aryloxy such as phenoxy, halogen such as fluorine, chlorine or bromine or nitro groups.
  • R1 can mean an aralkyl radical such as a benzyl radical or a heterocyclic radical, preferably an oxygen or sulfur-containing heterocyclic radical with 5 or 6 ring members, for example a furanyl, pyranyl or thiophene radical.
  • aralkyl radical such as a benzyl radical or a heterocyclic radical, preferably an oxygen or sulfur-containing heterocyclic radical with 5 or 6 ring members, for example a furanyl, pyranyl or thiophene radical.
  • Anhydrides of aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic mono- or dicarboxylic acids can be used as acid anhydrides.
  • Anhydrides of monocarboxylic acids are, for example, those of alkylcarboxylic acids such as acetic anhydride, propionic anhydride, n-butyric anhydride or benzoic anhydride
  • anhydrides of dicarboxylic acids are, for example, those of the formula in the R 2 the meaning of? has and moreover R i and R 2 can be connected to one another in a ring to form an optionally substituted aromatic system, for example a benzene ring.
  • Examples include maleic anhydride, succinic anhydride, methyl maleic anhydride, tetraethyl succinic anhydride, phthalic anhydride or 4,5-methylenedioxy-phthalic anhydride.
  • Stoichiometric amounts of aromatic compound and acylating agent can expediently be used. However, it is also possible to use one of the two components in excess of the other, for example 1 to 1.5 mol of aromatic per mol of acylating agent.
  • the amounts of catalyst usually used for Friedel-Crafts reactions can also be used in the process according to the invention, the total amount of catalyst resulting from the sum of the Lewis acid such as aluminum halide and the organometallic compound I.
  • the addition of the organometallic compound causes the hydrogen chloride present or formed in the reaction mixture to be bound.
  • the effective amount therefore depends on the number of alkyl residues present in the molecule.
  • the proportion of metal alkyl or metal alkyl halide can influence the ratio of the isomerization products (e.g. in the case of tert.-amyl-substituted aromatics, the tert./sec.-alkyl ratio) and also the amount of by-products.
  • 1 to 1.5 mol, preferably 1.1 to 1.2 mol, of a mixture of Friedel-Crafts catalyst and alkyl aluminum halide can be used per equivalent of acid halide. If starting materials with substituents that form stable complexes with the catalyst are used, the total amount of catalyst must be increased accordingly.
  • the effective amount of the organoaluminum compound is advantageously 0.1 to about 1 mol of alkyl aluminum dihalide or about 0.05 to 0.5 mol of dialkyl aluminum halide or about 0.03 to 0.33 mol of trialkyl aluminum, in each case based on one equivalent of carboxylic acid derivative such as acid halide or anhydride. Larger amounts up to the complete replacement of the aluminum halide are possible, however, for economic reasons, attempts will be made to keep the proportion of the organoaluminum compound as low as possible.
  • the reaction can be carried out without or advantageously in the presence of a solvent
  • the solvents which can be used are the conventional solvents for Friedel-Crafts reactions, e.g. Chlorobenzene, dichlorobenzene, 1,2-dichloroethane, carbon disulfide, nitromethane or nitrobenzene.
  • the amount of solvent is not critical; in general, 100 to 1000 g of solvent can be used per mole of alkylbenzene.
  • the carboxylic acid halide or anhydride is advantageously placed together with the solution medium before and adds the aluminum halide and then the alkyl aromatics in a mixture with the metal alkyl or metal alkyl halide.
  • the reaction mixture is worked up and the products are isolated in a customary manner, e.g. by pouring the reaction mixture onto water and / or ice and, after the aqueous phase has been separated off, the ketone is obtained by distillation or crystallization.
  • alkyl-substituted, especially tert-alkyl-substituted aromatics can be acylated without a strong isomerization of the alkyl radical, which is of particular interest in the case of the synthesis of (tert-amylbenzoyl) benzoic acid, since this is an important intermediate for the preparation of tert. -Amylanthraquinone, which is required for the production of hydrogen peroxide (see DE-OS 20 13 299).
  • reaction product was poured onto a mixture of 1 l of water with 300 g of ice and 30 ml of concentrated H 2 SO 4 , the organic phase was extracted with dilute sodium hydroxide solution and the amylbenzoylbenzoic acids were precipitated from the aqueous phase with sulfuric acid and dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

1. A process for the acylation of an aromatic by the Friedel-Crafts method, wherein the acylation is carried out in the presence of a metalalkyl or metalalkyl halide of a metal or semimetal of main groups two to five and/or of a metal of subgroups two or four of the Periodic Table.

Description

Die Erfindung betrifft ein verbessertes Verfahren zur Acylierung von Aromaten nach Friedel-Crafts, insbesondere zur Herstellung von alkylsubstituierten aromatischen Ketonen durch Umsetzung von Carbonsäurehalogeniden oder Carbonsäureanhydriden mit Alkylaromaten in Gegenwart eines Friedel-Crafts-Katalysators.The invention relates to an improved process for the acylation of aromatics according to Friedel-Crafts, in particular for the production of alkyl-substituted aromatic ketones by reacting carboxylic acid halides or carboxylic acid anhydrides with alkyl aromatics in the presence of a Friedel-Crafts catalyst.

Die Friedel-Craft-Acylierung von Aromaten, d.h. die Einführung einer Acylgruppe in aromatische Verbindungen durch Einwirkung eines Acylierungsmittels auf Aromaten in Gegenwart bestimmter Metallhalogenide wie beispielsweise Aluminiumchlorid, ist allgemein bekannt, z.B. aus Houben-Weyl, Methoden der org. Chem. Bd. VII/2a, 1973, Seiten 15-39 und 311-325. Nachteilig an diesem Verfahren ist das Auftreten von Nebenreaktionen, insbesondere wenn alkylsubstituierte Aromaten acyliert werden. So kommt es zur Bildung harziger Nebenprodukte, sowie zur Abspaltung der Alkylgruppe und zu Isomerisierungen, vor allem wenn Aromaten mit sekundären oder tertiären Alkylresten umgesetzt werden. Wie aus verschiedenen Veröffentlichungen hervorgeht, sollen diese Nebenreaktionen durch ein Zusammenwirken von AlCl3 und Chlorwasserstoff, der, sofern er nicht im Katalysator gegenwärtig ist, während der Friedel-Crafts-Acylierung entsteht (s. C.A. Olah, Friedel-Crafts and Related Reactions, Bd. I, Seite 207 und Bd. 111, Teil I, S. 550 ff, Intersience 1964), verursacht werden. Um die Nebenreaktionen zurückzudrängen, wird empfohlen, frisch sublimierte Katalysatoren zu verwenden und den entstehenden Halogenwasserstoff durch Anlegen von vermindertem Druck oder Durchleiten von Inertgasen aus dem Reaktionsgemisch zu entfernen (s. C.A. Olah, Friedel-Crafts and Related Reactions, Bd. 111, S. 549 und dort zitierte Literatur). Durch diese Maßnahmen kann, wie auch aus der DE-AS 27 20 294 hervorgeht, die Isomerisierung in gewissem Maße zurückgedrängt werden, jedoch ist das Ergebnis noch unbefriedigend; die weitere Auftrennung der anfallenden Produktgemische ist aufwendig und in vielen Fällen nicht wirtschaftlich möglich, so daß die entsprechenden Gemische für Folgeumsetzungen eingesetzt werden müssen. Weiterhin ist nachteilig, daß erhebliche Mengen der Reaktanten aus dem Reaktionsgemisch entfemt werden, wodurch schlechte Ausbeuten resultieren.The Friedel-Craft acylation of aromatics, ie the introduction of an acyl group into aromatic compounds by the action of an acylating agent on aromatics in the presence of certain metal halides such as aluminum chloride, is generally known, for example from Houben-Weyl, methods of org. Chem. Vol. VII / 2a, 1973, pages 15-39 and 311-325. A disadvantage of this process is the occurrence of side reactions, especially when alkyl-substituted aromatics are acylated. This leads to the formation of resinous by-products, as well as to the elimination of the alkyl group and to isomerizations, especially when aromatics are reacted with secondary or tertiary alkyl radicals. As can be seen from various publications, these side reactions are to be caused by the interaction of AlCl 3 and hydrogen chloride, which, if it is not present in the catalyst, arises during Friedel-Crafts acylation (see CA Olah, Friedel-Crafts and Related Reactions, Vol I, page 207 and vol. 111, part I, p. 550 ff, Intersience 1964). In order to suppress the side reactions, it is recommended to use freshly sublimed catalysts and to remove the hydrogen halide formed from the reaction mixture by applying reduced pressure or by passing inert gases through it (see CA Olah, Friedel-Crafts and Related Reactions, vol. 111, p. 111). 549 and literature cited there). These measures can, as is also apparent from DE-AS 27 20 294, somewhat suppress the isomerization, but the result is still unsatisfactory; the further separation of the product mixtures obtained is complex and in many cases not economically possible, so that the corresponding mixtures have to be used for subsequent reactions. Another disadvantage is that considerable amounts of the reactants are removed from the reaction mixture, resulting in poor yields.

Der Erfindung lag daher die Aufgabe zugrunde, die Friedel-Crafts-Acylierung von Aromaten so zu verbessern, daß Nebenreaktionen weitgehend vermieden werden und die Produkte in hohen Ausbeuten anfallen. Insbesondere sollte bei der Umsetzung von Alkylaromaten die Abspaltung und Isomerisierung der Alkylgruppen unterdrückt werden.The invention was therefore based on the object of improving the Friedel-Crafts acylation of aromatics so that side reactions are largely avoided and the products are obtained in high yields. In particular, the elimination and isomerization of the alkyl groups should be suppressed in the reaction of alkyl aromatics.

Es wurde nun ein Verfahren zur Acylierung von Aromaten nach Friedel-Crafts gefunden, das dadurch gekennzeichnet ist, daß man die Acylierung in Gegenwart von Metallalkylen oder Metallalkylhalogeniden von Metallen oder Halbmetallen der zweiten bis fünften Hauptgruppe und/oder Metallen der zweiten oder vierten Nebengruppe des Periodensystems durchführt.A process for acylating aromatics according to Friedel-Crafts has now been found, which is characterized in that the acylation in the presence of metal alkyls or metal alkyl halides of metals or semimetals of the second to fifth main group and / or metals of the second or fourth subgroup of the periodic table carries out.

Besonders vorteilhaft können nach dem erfindungsgemäßen Verfahren Carbonsäurehalogenide oder -anhydride mit Alkylaromaten zu alkylsubstituierten Ketonen umgesetzt werden. Bei Verwendung von a) Acetylchlorid bzw. b) Phthalsäureanhydrid und tert.-Butylbenzol als Ausgangsstoffe und einem Gemisch aus Metallalkyl bzw. Metallalkylhalogenid und Aluminiumchlorid als Katalysator läßt sich die Umsetzung durch folgende Reaktionsgleichungen beschreiben:Carboxylic acid halides or anhydrides can be reacted with alkylaromatics to give alkyl-substituted ketones particularly advantageously by the process according to the invention. When using a) acetyl chloride or b) phthalic anhydride and tert-butylbenzene as starting materials and a mixture of metal alkyl or metal alkyl halide and aluminum chloride as catalyst, the reaction can be described by the following reaction equations:

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002

  • R= AlkylrestR = alkyl radical
  • X= HalogenX = halogen
  • M= Metall bzw. HalbmetallM = metal or semi-metal
  • n= 1 bis 4n = 1 to 4
  • m= 0 bis 4m = 0 to 4
  • wobei m + n = Wertigkeit des Metallswhere m + n = valence of the metal

Erfindungsgemäß wird die Friedel-Crafts Acylierung in Gegenwart wirksamer Mengen an Metallalkylen bzw. Metallalkylhalogeniden von Metallen oder Halbmetallen der zweiten bis fünften, insbesondere der dritten Hauptgruppe des Periodensystems sowie Metallen der zweiten und/oder vierten Nebengruppe durchgeführt. Sie lassen sich durch die allgemeine Formel RnMXmlAccording to the invention, the Friedel-Crafts acylation is carried out in the presence of effective amounts of metal alkyls or metal alkyl halides of metals or semimetals of the second to fifth, in particular the third main group of the periodic table and metals of the second and / or fourth subgroup. They can be represented by the general formula RnMXml

wiedergeben, worin der Rest R gleiche oder verschiedene Alkylgruppen mit jeweils 1 bis 12, vorzugswei-represent in which the radical R is the same or different alkyl groups each having 1 to 12, preferably

se 1 bis 6, insbesondere 1 bis 4 Kohlenstoffatomen z.B. Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-oder iso-Butylgruppen bedeutet, M Metalle bzw. Halbmetalle der genannten Gruppen, z.B. Beryllium, Magnesium, Aluminium, Bor, Gallium, Indium, Thallium, Silicium, Zinn, Blei, Antimon, Zink, Cadmium, Quecksilber und Titan darstellt, X für Fluor, Chlor, Brom oder Jod steht, wobei aus Kostengründen häufig Chlor bevorzugt ist, n die Zahlen 1 bis 4 und m die Zahlen 0 bis 4 bedeuten, wobei die Summe n plus m die Wertigkeit des Metalls ergibt.se 1 to 6, especially 1 to 4 carbon atoms e.g. Methyl, ethyl, n-propyl, iso-propyl, n-butyl or iso-butyl groups means M metals or semimetals of the groups mentioned, e.g. Represents beryllium, magnesium, aluminum, boron, gallium, indium, thallium, silicon, tin, lead, antimony, zinc, cadmium, mercury and titanium, X represents fluorine, chlorine, bromine or iodine, chlorine often being preferred for reasons of cost, n the numbers 1 to 4 and m the numbers 0 to 4, the sum n plus m giving the valence of the metal.

Auch Gemische verschiedener Verbindungen I sind möglich.Mixtures of different compounds I are also possible.

Die Herstellung der metallorganischen Verbindungen kann in an sich bekannter Weise, z.B. wie in Brockhaus ABC Chemie, Bd. 2, S. 867-869,1971 beschrieben, erfolgen.The preparation of the organometallic compounds can be carried out in a manner known per se, e.g. as described in Brockhaus ABC Chemie, Vol. 2, pp. 867-869, 1971.

Für das erfindungsgemäße Verfahren besonders geeignet sind metallorganische Verbindungen von Magnesium wie Dialkylmagnesium oder Grignardverbindungen (RMgX), Bor wie Trialkylbor, Dialkylborhalogenid oder Alkylbordihalogenid, Zinn wie Tetraalkylzinn oder Trialkylzinnhalogenide, Titan wie Alkyltitantrihalogenid oder Dialkyltitandihalogenid sowie zink-und cadmiumorganische Verbindungen wie Dialkylzink oder Dialkylcadmium. Bevorzugt können insbesondere zinkorganische Verbindungen verwendet werden. Besonders bevorzugt sind Aluminiumalkyle bzw. Alkylaluminiumhalogenide z.B. solche der Formel i a RnAIX3_nl aOrganometallic compounds of magnesium such as dialkylmagnesium or Grignard compounds (RMgX), boron such as trialkylboron, dialkylborhalogenide or alkyl boron dihalide, tin such as tetraalkyltin or trialkyltin halide, titanium such as alkyltitanium trihalide or dialkyltitanium dialkidium and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide and zincadimidium halide as well as zincadimidium halide and zincadmin.-zincadimidium halide and zincadimidium halide as well as zincadimidium halide and zincadmin.-zincadimide and halide-zincadimidium halide as well as zincidium halide and halide and halide as well. In particular, organic zinc compounds can preferably be used. Aluminum alkyls or alkyl aluminum halides are particularly preferred, for example those of the formula ia R n AIX 3 _ n la

in der R gleiche oder verschiedene Alkylgruppen mit jeweils 1 bis 12, vorzugsweise 1 bis 6, insbesondere 1 bis 4 Kohlenstoffatomen z.B. Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl- oder iso-Butylgruppen bedeutet, X für Fluor, Chlor, Brom oder Jod steht, wobei aus Kostengründen Chlor bevorzugt ist, n die Zahlen 1, 2 oder 3 darstellt oder Gemische von zwei verschiedenen Verbindungen der Formel la.in which R is the same or different alkyl groups each having 1 to 12, preferably 1 to 6, in particular 1 to 4 carbon atoms, for example Methyl, ethyl, n-propyl, iso-propyl, n-butyl or iso-butyl groups, X represents fluorine, chlorine, bromine or iodine, chlorine being preferred for reasons of cost, n the numbers 1, 2 or 3 or mixtures of two different compounds of formula la.

Beispielsweise seien folgende Verbindungen aufgeführt: Methylmagnesiumchlorid, Ethylmagnesiumbromid, Diethylmagnesium, Trimethylbor, Triethylbor, Diethylborchlorid, Diethylborbromid, Ethylbordichlorid, Tetramethylzinn, Triethylzinnchlorid, Methyltitantrichlorid, Diethyltitandichlorid, Dimethylcadmium und insbesondere Dimethylzink, Diethylzink, Dipropylzink sowie Dibutylzink und Ethylzinkchlorid.For example, the following compounds may be mentioned: methyl magnesium chloride, ethyl magnesium, diethyl magnesium, trimethyl, triethyl, Diethylborchlorid, Diethylborbromid, Ethylbordichlorid, tetramethyl tin, triethyltin, methyltitanium, Diethyltitandichlorid, Dimethyl and especially dimethyl, diethyl, dibutyl and dipropylzinc and ethylzinc.

Besonders bevorzugte Verbindungen sind: Methylaluminiumdichlorid und -dibromid, Ethylaluminiumdichlorid und -dibromid, iso-Propylaluminiumdibromid, n-Hexylaluminiumdichlorid, Dodecylaluminiumdijodid, Dimethylaluminiumchlorid, Diethylaluminiumbromid oder Dibutylaluminiumiodid. Gemische dieser Verbindung sind beispielsweise Methylaluminiumsesquichlorid, Ethylaluminiumsesquichlorid oder Gemische von Alkylaluminiumdichlorid und Dialkylaluminiumchlorid in einem Molverhältnis von z.B. 20 1 bis 1 : 20.Particularly preferred compounds are: methyl aluminum dichloride and dibromide, ethyl aluminum dichloride and dibromide, isopropyl aluminum dibromide, n-hexyl aluminum dichloride, dodecyl aluminum diiodide, dimethyl aluminum chloride, diethyl aluminum bromide or dibutyl aluminum iodide. Mixtures of this compound are, for example, methyl aluminum sesquichloride, ethyl aluminum sesquichloride or mixtures of alkyl aluminum dichloride and dialkyl aluminum chloride in a molar ratio of e.g. 20 1 to 1:20.

Anstelle der Alkylaluminiumhalogenide kann dem Reaktionsgemisch auch vorteilhaft Trialkylaluminium zugesetzt werden, z.B. Trimethyl-, Triethyl-, Tri-n-propyl-, Triisopropyl-, Tri-n-butyl- oder Tri-n-hexylaluminium sowie Aluminiumalkyle mit gemischten Alkylresten, z.B. Methyldiethylaluminium.Instead of the alkyl aluminum halides, trialkyl aluminum can also advantageously be added to the reaction mixture, e.g. Trimethyl, triethyl, tri-n-propyl, triisopropyl, tri-n-butyl or tri-n-hexyl aluminum as well as aluminum alkyls with mixed alkyl radicals, e.g. Methyl diethyl aluminum.

Als Friedel-Crafts-Katalysatoren können die an sich üblichen Verbindungen wie FeC13, BF3, ZnC12 oder TiCl4 verwendet werden. Besonders geeignet sind Aluminiumhalogenide, bevorzugt Aluminiumbromid und insbesondere Aluminiumchlorid.The compounds known per se, such as FeC1 3 , BF 3 , ZnC1 2 or TiCl 4 , can be used as Friedel-Crafts catalysts. Aluminum halides are particularly suitable, preferably aluminum bromide and in particular aluminum chloride.

Als Aromaten kommen die üblicherweise für Friedel-Crafts-Reaktionen verwendeten Verbindungen wie isocyclische und heterocyclische aromatische Kohlenwasserstoffe in Betracht. Nach dem erfindungsgemäßen Verfahren lassen sich besonders vorteilhaft Alkylaromaten, z.B. alkylsubstituierte Benzole, Naphthaline, Anthracene, Furane, Benzofurane, Thiophene usw. umsetzen. Alkylreste sind z.B. solche mit 1 bis 20, insbesondere 1 bis 12, vorzugsweise 1 bis 8 Kohlenstoffatomen. Der Alkylrest sowie der aromatische Kern können noch weitere Substituenten wie Halogen, z.B. Chlor oder Brom oder Ci-C4-Alkyl- oder -Alkoxyreste oder Hydroxygruppen tragen, ferner können im Alkylrest Doppel- oder Dreifachbindungen enthalten sein. Vorzugsweise werden Alkylbenzole mit 1 oder 2 verzweigten oder unverzweigten Alkylresten umgesetzt. Beispielsweise seien folgende Alkylbenzole genannt: Toluol, Ethylbenzol, n-Propylbenzol, iso-Propylbenzol, n-Butylbenzol, sek.-Butylbenzol, tert.-Butylbenzol, n-Pentylbenzol, (2-Methylbutyl)-benzol, (3-Methylbutyl)benzol, (1-Methylbutyl)-benzol, (1,1-Dimethylpropyl)benzol, n-Hexylbenzol, (1-Ethyl-1-methylpropyl)benzol, (1,1-Dimethylbutyl)benzol, (1-Methylpentyl)-benzol, (1-Ethyl-1-methyl)-benzol, (1-Ethylhexyl)benzol, (4-Octyl)-benzol, 1,2-Dimethylbenzol oder 1,4-Diethylbenzol.Aromatic compounds which are commonly used for Friedel-Crafts reactions, such as isocyclic and heterocyclic aromatic hydrocarbons, are suitable. Alkylaromatics, for example alkyl-substituted benzenes, naphthalenes, anthracenes, furans, benzofurans, thiophenes, etc., can be reacted particularly advantageously by the process according to the invention. Alkyl radicals are, for example, those having 1 to 20, in particular 1 to 12, preferably 1 to 8, carbon atoms. The alkyl radical and the aromatic nucleus can also carry further substituents such as halogen, for example chlorine or bromine or C i -C 4 alkyl or alkoxy radicals or hydroxyl groups, and the alkyl radical can also contain double or triple bonds. Alkyl benzenes having 1 or 2 branched or unbranched alkyl radicals are preferably reacted. Examples include the following alkylbenzenes: toluene, ethylbenzene, n-propylbenzene, iso-propylbenzene, n-butylbenzene, sec.-butylbenzene, tert.-butylbenzene, n-pentylbenzene, (2-methylbutyl) -benzene, (3-methylbutyl) benzene , (1-methylbutyl) benzene, (1,1-dimethylpropyl) benzene, n-hexylbenzene, (1-ethyl-1-methylpropyl) benzene, (1,1-dimethylbutyl) benzene, (1-methylpentyl) benzene, (1-ethyl-1-methyl) benzene, (1-ethylhexyl) benzene, (4-octyl) benzene, 1,2-dimethylbenzene or 1,4-diethylbenzene.

Als Acylierungsmittel dienen die üblicherweise verwendeten Verbindungen, insbesondere Carbonsäurehalogenide und -anhydride, aber auch -imidchloride oder die Carbonsäuren selbst.The commonly used compounds, in particular carboxylic acid halides and anhydrides, but also imide chlorides or the carboxylic acids themselves serve as acylating agents.

Hinsichtlich der umzusetzenden Carbonsäurehalogenide bzw. Carbonsäureanhydride bestehen keine Beschränkungen, so lassen sich die Säurefluoride, -iodide und insbesondere -bromide und -chloride umsetzen. In der Regel wird man die Säurechloride aliphatischer , cycloaliphatischer, araliphatischer, aromatischer und heterocyclischer Carbonsäuren umsetzen. Beispielsweise seien Säurechloride der Formel RICOCI aufgeführt, in der R1 Wasserstoff oder einen aliphatischen Rest darstellt, z.B. einen Alkylrest mit 1 bis 20, insbesondere 1 bis 8 Kohlenstoffatomen, einen gegebenenfalls substituierten Arylrest, vorzugsweise einen Phenylrest, der, wenn er substituiert ist, insbesondere 1 bis 2 Substituenten wie Cibis C4-Alkylreste, Aryloxy- wie Phenoxy-, Halogen wie Fluor, Chlor oder Brom oder Nitrogruppen tragen kann. Darüber hinaus kann R1 einen Aralkylrest wie Benzylrest oder einen heterocyclischen Rest, vorzugsweise einen Sauerstoff oder Schwefel enthaltenden heterocyclischen Rest mit 5 oder 6 Ringgliedern, z.B. einen Furanyl-, Pyranyl- oder Thiophenrest bedeuten.There are no restrictions with regard to the carboxylic acid halides or carboxylic acid anhydrides to be reacted, so the acid fluorides, iodides and in particular bromides and chlorides can be converted. As a rule, the acid chlorides of aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic carboxylic acids will be reacted. For example, acid chlorides of the formula R I COCI are listed in which R 1 represents hydrogen or an aliphatic radical, for example an alkyl radical having 1 to 20, in particular 1 to 8 carbon atoms, an optionally substituted aryl radical, preferably a phenyl radical, which, when substituted, is , in particular 1 to 2 substituents such as Cibis C 4 alkyl, aryloxy such as phenoxy, halogen such as fluorine, chlorine or bromine or nitro groups. In addition, R1 can mean an aralkyl radical such as a benzyl radical or a heterocyclic radical, preferably an oxygen or sulfur-containing heterocyclic radical with 5 or 6 ring members, for example a furanyl, pyranyl or thiophene radical.

Beispielsweise seien folgende Säurechloride genannt:

  • Formylchlorid, Acetylchlorid, Propionylchlorid, n-Butyrylchlorid, n-Octadecansäurechlorid, 3,3-Dimethylacrylsäurechlorid, Benzoylchlorid, 3-Methoxybenzoylchlorid, 3-Phenoxybenzoylchlorid, o-Chlorbenzoylchlorid, 3-Chlor-5-methylbenzoylchlorid, 2,6-Dichlorbenzoylchlorid, m-Brombenzoylchlorid, o-Brombenzoylchlorid, p-Methylbenzoylchlorid, p-tert.-Butyl-benzoylchlorid, p-Nitrobenzoylchlorid, p-Carbomethoxybenzoylchlorid, m-Carbobutoxybenzoylchlorid, Phenylessigsäurechlorid, 4-Chlorphenyl- essigsäurechlorid,- Zimtsäurechlorid, 4--Chlorzimtsäurech.lorid, Furan-2-carbonsäurechlorid, Thiophen-2-carbonsäurechlorid.
For example, the following acid chlorides are mentioned:
  • Formyl chloride, acetyl chloride, propionyl chloride, n-butyryl chloride, n-octadecanoic acid chloride, 3,3-dimethylacrylic acid chloride, benzoyl chloride, 3-methoxybenzoyl chloride, 3-phenoxybenzoyl chloride, o-chlorobenzoyl chloride, 3-chloro-5-methylbenzoyl chloride, 2,6-dichlorobenzoyl chloride, Bromobenzoyl chloride, o-bromobenzoyl chloride, p-methylbenzoyl chloride, p-tert-butyl-benzoyl chloride, p-nitrobenzoyl chloride, p-carbomethoxybenzoyl chloride, m-carbobutoxybenzoyl chloride, phenylacetic acid chloride, 4-chlorophenyl acetic acid chloride, - cinnamic acid chloride, - cinnamic acid chloride, - -2-carboxylic acid chloride, thiophene-2-carboxylic acid chloride.

Als Säureanhydride können Anhydride von aliphatischen, cycloaliphatischen, araliphatischen, aromatischen oder heterocyclischen Mono- oder Dicarbonsäuren eingesetzt werden. Anhydride von Monocarbonsäuren sind beispielsweise solche von Alkylcarbonsäuren wie Acetanhydrid, Propionsäureanhydrid, n-Buttersäureanhydrid oder Benzoesäureanhydrid, Anhydride von Dicarbonsäuren sind beispielsweise solche der Formel

Figure imgb0003
in der R2 die Bedeutung von ? hat und darüberhinaus Ri und R2 miteinander ringförmig zu einem gegebenenfalls substituierten aromatischen System, z.B. einen Benzolring verbunden sein können. Beispielsweise seien Maleinsäureanhydrid, Bernsteinsäureanhydrid, Methylmaleinsäureanhydrid, Tetraethylbernsteinsäureanhydrid, Phthalsäureanhydrid oder 4,5-Methylendioxy-phthalsäureanhydrid genannt.Anhydrides of aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic mono- or dicarboxylic acids can be used as acid anhydrides. Anhydrides of monocarboxylic acids are, for example, those of alkylcarboxylic acids such as acetic anhydride, propionic anhydride, n-butyric anhydride or benzoic anhydride, anhydrides of dicarboxylic acids are, for example, those of the formula
Figure imgb0003
in the R 2 the meaning of? has and moreover R i and R 2 can be connected to one another in a ring to form an optionally substituted aromatic system, for example a benzene ring. Examples include maleic anhydride, succinic anhydride, methyl maleic anhydride, tetraethyl succinic anhydride, phthalic anhydride or 4,5-methylenedioxy-phthalic anhydride.

Zweckmäßigerweise können stöchiometrische Mengen an aromatischer Verbindung und Acylierungsmittel verwendet werden. Es ist aber auch möglich, eine der beiden Komponenten gegenüber der anderen im Überschuß einzusetzen, so kann man beispielsweise 1 bis 1,5 mol Aromat je Mol Acylierungsmittel verwenden.Stoichiometric amounts of aromatic compound and acylating agent can expediently be used. However, it is also possible to use one of the two components in excess of the other, for example 1 to 1.5 mol of aromatic per mol of acylating agent.

Die für Friedel-Crafts-Reaktionen üblicherweise verwendeten Katalysatormengen können auch im erfindungsgemäßen Verfahren eingesetzt werden, wobei sich die Gesamtkatalysatormenge aus der Summe der Lewis-Säure wie Aluminiumhalogenid und der metallorganischen Verbindung I ergibt.The amounts of catalyst usually used for Friedel-Crafts reactions can also be used in the process according to the invention, the total amount of catalyst resulting from the sum of the Lewis acid such as aluminum halide and the organometallic compound I.

Der Zusatz der metallorganischen Verbindung bewirkt, daß der im Reaktionsgemisch vorhandene bzw. entstehende Chlorwasserstoff gebunden wird. Die wirksame Menge richtet sich daher nach der Anzahl der im Molekül vorhandenen Alkylreste. Durch den Anteil an Metallalkyl oder Metallalkylhalogenid kann das Verhältnis der Isomerisierungsprodukte (z.B. im Falle tert.-amylsubstituierter Aromaten, das tert./sek.-Alkylverhältnis) und weiterhin die Menge an Nebenprodukten beeinflußt werden. In der Regel können pro Äquivalent Carbonsäurehalogenid 0,1 bis etwa 1,1 Metallalkyläquivalente als Metallalkyl oder Metallalkylhalogenid und 0,1 bis 1,5 mol Friedel-Crafts-Katalysatoren, z.B. Aluminiumhalogenid zugesetzt werden, wobei es vorteilhaft ist, einen geringen, z.B. 10 %igen Überschuß des Friedel-Crafts-Katalysators, zu verwenden. Höhere Überschüsse können eingesetzt werden, bringen aber keinen Vorteil. Bei Carbonsäureanhydriden oder Carbonsäurehalogniden, die Substituenten tragen, welche mit Friedel-Crafts-Katalysatoren, z.B. Aluminiumhalogeniden und metallorganischen Verbindungen stabile Komplexe bilden, werden pro Substituent ein Äquivalent an Katalysator zusätzlich benötigt.The addition of the organometallic compound causes the hydrogen chloride present or formed in the reaction mixture to be bound. The effective amount therefore depends on the number of alkyl residues present in the molecule. The proportion of metal alkyl or metal alkyl halide can influence the ratio of the isomerization products (e.g. in the case of tert.-amyl-substituted aromatics, the tert./sec.-alkyl ratio) and also the amount of by-products. Typically 0.1 to about 1.1 metal alkyl equivalents as the metal alkyl or metal alkyl halide and 0.1 to 1.5 mole Friedel-Crafts catalysts, e.g. Aluminum halide may be added, it being advantageous to use a small e.g. 10% excess of the Friedel-Crafts catalyst to use. Higher surpluses can be used, but have no advantage. For carboxylic acid anhydrides or carboxylic acid halognides which carry substituents which are supported by Friedel-Crafts catalysts, e.g. Aluminum halides and organometallic compounds form stable complexes, one equivalent of catalyst is additionally required per substituent.

Gemäß der bevorzugten Ausführungsform des Verfahrens können pro Äquivalent Säurehalogenid 1 bis 1,5 mol, vorzugsweise 1,1 bis 1,2 mol eines Gemisches aus Friedel-Crafts-Katalysator und Alkylaluminiumhalogenid verwendet werden. Werden Ausgangsstoffe mit Substituenten, die mit dem Katalysator stabile Komplexe bilden, verwendet, so ist die Gesamtkatalysatormenge entsprechend zu erhöhen. Die wirksame Menge der aluminiumorganischen Verbindung liegt vorteilhaft bei 0,1 bis ca. 1 mol Alkylaluminiumdihalogenid oder etwa 0,05 bis 0,5 mol Dialkylaluminiumhalogenid oder etwa 0,03 bis 0,33 mol Trialkylaluminium, jeweils bezogen auf ein Äquivalent Carbonsäurederivat wie Säurehalogenid bzw. -anhydrid. Größere Mengen bis hin zum völligen Ersatz des Aluminiumhalogenids sind möglich, jedoch wird man aus wirtschaftlichen Erwägungen versuchen, den Anteil der aluminiumorganischen Verbindung möglichst gering zu halten.According to the preferred embodiment of the process, 1 to 1.5 mol, preferably 1.1 to 1.2 mol, of a mixture of Friedel-Crafts catalyst and alkyl aluminum halide can be used per equivalent of acid halide. If starting materials with substituents that form stable complexes with the catalyst are used, the total amount of catalyst must be increased accordingly. The effective amount of the organoaluminum compound is advantageously 0.1 to about 1 mol of alkyl aluminum dihalide or about 0.05 to 0.5 mol of dialkyl aluminum halide or about 0.03 to 0.33 mol of trialkyl aluminum, in each case based on one equivalent of carboxylic acid derivative such as acid halide or anhydride. Larger amounts up to the complete replacement of the aluminum halide are possible, however, for economic reasons, attempts will be made to keep the proportion of the organoaluminum compound as low as possible.

Die Reaktion kann ohne oder vorteilhaft in Gegenwart eines Lösungsmittels ausgeführt werden, wobei als Lösungsmittel die konventionellen Lösungsmittel für Friedel-Crafts-Reaktionen in Betracht kommen, z.B. Chlorbenzol, Dichlorbenzol, 1,2-Dichlorethan, Schwefelkohlenstoff, Nitromethan oder Nitrobenzol. Die Lösungsmittelmenge ist nicht kritisch, im allgemeinen können 100 bis 1000 g Lösungsmittel je Mol Alkylbenzol verwendet werden.The reaction can be carried out without or advantageously in the presence of a solvent, the solvents which can be used are the conventional solvents for Friedel-Crafts reactions, e.g. Chlorobenzene, dichlorobenzene, 1,2-dichloroethane, carbon disulfide, nitromethane or nitrobenzene. The amount of solvent is not critical; in general, 100 to 1000 g of solvent can be used per mole of alkylbenzene.

Die Durchführung der Reaktion kann in an sich bekannter Weise erfolgen, wobei man die Ausgangsstoffe bei Temperaturen von -20 bis 100, vorzugsweise 0 bis 60, insbesondere 10 bis 40°C und bei erhöhtem oder vermindertem Druck, vorzugsweise bei Normaldruck umsetzen kann.Can be carried out in manner known per se, wherein the starting materials at temperatures of -20 to 100, preferably 0 to 60, particularly 10, preferably implemented to 40 ° C and at elevated or reduced pressure, at atmospheric pressure, the performance of the reaction.

Zweckmäßigerweise legt man das Carbonsäurehalogenid bzw. -anhydrid zusammen mit dem Lösungsmittel vor und gibt das Aluminiumhalogenid sowie anschließend den Alkylaromaten im Gemisch mit dem Metallalkyl oder Metallalkylhalogenid hinzu.The carboxylic acid halide or anhydride is advantageously placed together with the solution medium before and adds the aluminum halide and then the alkyl aromatics in a mixture with the metal alkyl or metal alkyl halide.

Die Aufarbeitung des Reaktionsgemisches und Isolierung der Produkte erfolgt in üblicher Weise, z.B. indem man das Reaktionsgemisch auf Wasser und/oder Eis gießt und nach Abtrennung der wäßrigen Phase das Keton durch Destillation oder Kristallisation gewinnt.The reaction mixture is worked up and the products are isolated in a customary manner, e.g. by pouring the reaction mixture onto water and / or ice and, after the aqueous phase has been separated off, the ketone is obtained by distillation or crystallization.

Nach dem erfindungsgemäßen Verfahren ist es überraschend möglich, die aromatischen Ketone, die wertvolle Zwischen- und Endprodukte beispielsweise für Farbstoffe, Hilfsstoffe, Pflanzenschutzmittel und Pharmaka sind, in gegenüber dem Stand der Technik höheren Ausbeuten herzustellen. Weiterhin können alkylsubstituierte, insbesondere tert.-alkylsubstituierte Aromaten acyliert werden, ohne daß eine starke Isomerisierung des Alkylrestes auftritt, was insbesondere im Fall der Synthese von (tert.-Amylbenzoyl)benzoesäure von Interesse ist, da diese ein wichtiges Zwischenprodukt zur Herstellung von tert.-Amylanthrachinon darstellt, das für die Produktion von Wasserstoffperoxid (s. DE-OS 20 13 299) benötigt wird.Using the process according to the invention, it is surprisingly possible to produce the aromatic ketones, which are valuable intermediates and end products, for example for dyes, auxiliaries, crop protection agents and pharmaceuticals, in higher yields than in the prior art. Furthermore, alkyl-substituted, especially tert-alkyl-substituted aromatics can be acylated without a strong isomerization of the alkyl radical, which is of particular interest in the case of the synthesis of (tert-amylbenzoyl) benzoic acid, since this is an important intermediate for the preparation of tert. -Amylanthraquinone, which is required for the production of hydrogen peroxide (see DE-OS 20 13 299).

Beisciel 1Example 1 Herstellung von 4-tert.-ButylacetophenonPreparation of 4-tert-butylacetophenone

78 g (1 mol) Acetylchlorid wurden in 100 ml Dichlorbenzol vorgelegt und dann 73 g (0,6 mol) AlCl3 in Portionen hinzugegeben. Im Verlaufe von 5 Stunden wurde in diese Lösung bei 15 bis 20°C ein Gemisch von 134 g (1 mol) tert. Butylbenzol und 60 g (0,5 mol) Diethylaluminiumchlorid in 50 ml 1,2-Dichlorbenzol getropft. Anschließend wurde 1 Stunde bei 30°C nachgerührt.78 g (1 mol) of acetyl chloride were placed in 100 ml of dichlorobenzene and then 73 g (0.6 mol) of AlCl 3 were added in portions. In the course of 5 hours, a mixture of 134 g (1 mol) was tert in this solution at 15 to 20 ° C. Butylbenzene and 60 g (0.5 mol) of diethyl aluminum chloride in 50 ml of 1,2-dichlorobenzene were added dropwise. The mixture was then stirred at 30 ° C for 1 hour.

Nach beendeter Reaktion wurde der Reaktionsaustrag auf ein Gemisch von 1 I H20 mit 300 g Eis und 30 ml konzentrierte HzS04 gegossen, die organische Phase abgetrennt, getrocknet und destilliert. Ausbeute: 162 g 4-tert.-Butylacetophenon (= 92 % d. Theorie).After completion of the reaction, the reaction onto a mixture of 1 IH 2 0 was charged with 300 g of ice and 30 ml concentrated H z S0 4 cast, the organic phase separated, dried and distilled. Yield: 162 g of 4-tert-butylacetophenone (= 92% of theory).

Beispiel 2Example 2

Herstellung von 4-tert.-Amylpropiophenon Entsprechend Beispiel 1 wurden umgesetzt:

  • 92 g (1 mol) Propionsäurechlorid
  • 148 g (1 mol) tert.-Amylbenzol
  • 27 g (0,2 mol) AlCl3
  • 113 g (0,9 mol) Ethylaluminiumdichlorid
  • Ausbeute: 184 g 4-tert.-Amylpropiophenon (= 90 % d.Theorie).
Preparation of 4-tert-amylpropiophenone According to Example 1, the following were implemented:
  • 92 g (1 mol) of propionic acid chloride
  • 148 g (1 mol) tert-amylbenzene
  • 27 g (0.2 mol) AlCl 3
  • 113 g (0.9 mol) of ethyl aluminum dichloride
  • Yield: 184 g of 4-tert-amylpropiophenone (= 90% of theory).

Beispiel 3Example 3 Herstellung von 2-(4'-tert-Amyl-benzoyl)-benzoesäurePreparation of 2- (4'-tert-amyl-benzoyl) benzoic acid

Entsprechend Beispiel 1 wurden in 300 ml Dichlorbenzol umgesetzt:

  • 74 g (0,5 mol) Phthalsäureanhydrid
  • 74 g (0,5 mol) tert.-Amylbenzoyl
  • 73 g (0,6 mol) AICI3
  • 63 g (0,5 mol) Ethylaluminiumdichlorid
  • Ausbeute: 133 g 2-(4'-tert-Amyl-benzoyl)-benzoesäure (=90 % d. Theorie).
According to Example 1, 300 ml of dichlorobenzene were reacted:
  • 74 g (0.5 mol) phthalic anhydride
  • 74 g (0.5 mol) of tert-amylbenzoyl
  • 73 g (0.6 mol) AICI 3
  • 63 g (0.5 mol) of ethyl aluminum dichloride
  • Yield: 133 g of 2- (4'-tert-amyl-benzoyl) benzoic acid (= 9 0 % of theory).

Vercleichsbeisciel 3a und 3bComparative examples 3a and 3b

Die Umsetzung erfolgte entsprechend Beispiel 3 jedoch in Gegenwart von

  • a) 145 g (1,1 Mol) AlCl3 ohne Zusatz von Ethylaluminiumdichlorid in 150 ml Dichlorbenzol.
  • b) Entsprechend Beispiel a) jedoch unter Einleiten von trockener Luft während der Umsetzung.
The reaction was carried out according to Example 3, but in the presence of
  • a) 145 g (1.1 mol) AlCl 3 without the addition of ethyl aluminum dichloride in 150 ml dichlorobenzene.
  • b) According to example a) but with the introduction of dry air during the reaction.

Nach beendeter Reaktion wurde der Reaktionsaustrag auf ein Gemisch von 1 I Wasser mit 300 g Eis und 30 ml konzentrierte H2S04 gegossen, die organische Phase mit verdünnter Natronlauge extrahiert und die Amylbenzoyl-benzoesäuren aus der wäßrigen Phase mit Schwefelsäure ausgefällt und getrocknet. Man erhielt a) 120,5 g und b) 115 g eines Feststoffes, der gemäß HPLC-Analyse folgende Zusammensetzung aufwies (HPLC-Flächenprozente):

Figure imgb0004
After the reaction had ended, the reaction product was poured onto a mixture of 1 l of water with 300 g of ice and 30 ml of concentrated H 2 SO 4 , the organic phase was extracted with dilute sodium hydroxide solution and the amylbenzoylbenzoic acids were precipitated from the aqueous phase with sulfuric acid and dried. This gave a) 120.5 g and b) 115 g of a solid which, according to HPLC analysis, had the following composition (HPLC area percentages):
Figure imgb0004

Beispiel 4Example 4

Herstellung von 2-(4'-tert-Amylbenzoyl)-benzoesäure.Preparation of 2- (4'-tert-amylbenzoyl) benzoic acid.

Entsprechend Beispiel 1 wurden in 300 ml Dichlorbenzol umgesetzt.

  • 74 g (0,5 mol) Phthalsäureanhydrid
  • 74 g (0,5 mol) tert.-Amylbenzol
  • 81,3 g (0,6 mol) AlCl3
  • 51,4 g (0,25 mol) Methylaluminiumsesquichlorid (CH3)3Al2Cl3
  • Ausbeute: 139 g 2-(4'-tert.-Amylbenzoyl)-benzoesäure (= 94 % d. Theorie).
According to Example 1, 300 ml of dichlorobenzene were reacted.
  • 74 g (0.5 mol) phthalic anhydride
  • 74 g (0.5 mol) tert-amylbenzene
  • 81.3 g (0.6 mol) AlCl 3
  • 51.4 g (0.25 mol) of methyl aluminum sesquichloride (CH 3 ) 3 Al 2 Cl 3
  • Yield: 139 g of 2- (4'-tert.-amylbenzoyl) benzoic acid (= 94% of theory).

Beispiel 5Example 5

Herstellung von 2-[4' -(1-Ethyl-1-methyl-pentyl-benzoyl)]-benzoesäurePreparation of 2- [4 '- (1-ethyl-1-methylpentylbenzoyl)] benzoic acid

Entsprechend Beispiel 1 wurden umgesetzt:

  • 74 g (0,5 mol) Phthalsäureanhydrid
  • 95 g (0,5 mol) (1-Ethyl-1-methyl-pentyl)-benzol
  • 113 g (0,85 mol) AlCl3
  • 30 g (0,25 mol) Diethylaluminiumchlorid
In accordance with Example 1, the following were implemented:
  • 74 g (0.5 mol) phthalic anhydride
  • 95 g (0.5 mol) of (1-ethyl-1-methylpentyl) benzene
  • 113 g (0.85 mol) AlCl 3
  • 30 g (0.25 mol) of diethyl aluminum chloride

Ausbeute: 154 g 2-[4'-Ethyl-1-methyl-pentyl-benzoyil)]-benzoesäure (= 91 % d. Theorie).Yield: 154 g of 2- [4'-ethyl-1-methylpentylbenzoyil)] - benzoic acid (= 91% of theory).

Beispiel 6Example 6

Herstellung von 2-(4'-tert.-Amyl-benzoyl)-benzoesäurePreparation of 2- (4'-tert-amyl-benzoyl) -benzoic acid

Entsprechend Beispiel 3 wurden umgesetzt:

  • 74 g (0,5 mol) Phthalsäureanhydrid
  • 74 g (0,5 mol) tert.-Amylbenzol
  • 97 g (0,8 mol) AICI3
  • 34 g (0,3 mol) Triethylaluminium
In accordance with Example 3, the following were implemented:
  • 74 g (0.5 mol) phthalic anhydride
  • 74 g (0.5 mol) tert-amylbenzene
  • 97 g (0.8 mol) AICI 3
  • 34 g (0.3 mol) of triethyl aluminum

Ausbeute: 127 g 2-(4'-tert.-Amylbenzoyl)-benzoesäure (= 86 % d. Theorie).Yield: 127 g of 2- (4'-tert.-amylbenzoyl) benzoic acid (= 86% of theory).

Beispiel 7Example 7

74 g (0,5 mol) Phthalsäureanhydrid wurden in 200 ml o-Dichlorbenzol vorgelegt und 128 g (1,05 mol) - AICI3 in Portionen bei 15 bis 20°C zugegeben. Im Verlaufe von 5 Stunden wurde bei dieser Temperatur ein Gemisch von 8,3 g (0,07 mol) Diethylzink und 74 g (0,5 mol) tert.-Amylbenzol zur Reaktionslösung getropft. Anschließend wurde 2 Stunden bei Raumtemperatur nachgerührt.74 g (0.5 mol) of phthalic anhydride were placed in 200 ml of o-dichlorobenzene and 128 g (1.05 mol) of AICI 3 were added in portions at 15 to 20 ° C. A mixture of 8.3 g (0.07 mol) of diethyl zinc and 74 g (0.5 mol) of tert-amylbenzene was added dropwise to the reaction solution at this temperature in the course of 5 hours. The mixture was then stirred at room temperature for 2 hours.

Nach beendeter Reaktion wurde der Reaktionsaustrag auf ein Gemisch von 1 I Wasser mit 300 g Eis und 30 ml konzentrierte H2S04 gegossen, die organische Phase mit verdünnter Natronlauge extrahiert und die Amylbenzoyl-benzoesäuren aus der wäßrigen Phase mit Schwefelsäure ausgefällt und getrocknet. Man erhielt 133 g (90 % d. Theorie) eines Gemisches aus 2-(4'-tert-Amyl-und 4'-sek-Isoamylben- zoyl)-benzoesäure (Verhältnis tert./sek. = 79 : 21).After the reaction had ended, the reaction product was poured onto a mixture of 1 l of water with 300 g of ice and 30 ml of concentrated H 2 SO 4 , the organic phase was extracted with dilute sodium hydroxide solution and the amylbenzoylbenzoic acids were precipitated from the aqueous phase with sulfuric acid and dried. 133 g (90% of theory) of a mixture of 2- (4'-tert-amyl- and 4'-sec-isoamylbenzoyl) -benzoic acid (ratio tert./sec. = 79: 21) were obtained.

Beispiel 8Example 8

74 g (0,5 mol) Phthalsäureanhydrid wurden analog Beispiel 1 mit 128 g (1,05 mol) AlCl3 und 25 g (0,2 mol) Diethylzink in 74 g tert.-Amylbenzol zur Reaktion gebracht. Nach der Aufarbeitung erhielt man 118 g (80 % d. Theorie) reine 2-(4'-tert.-Amylbenzoyl)-benzoesäure.74 g (0.5 mol) of phthalic anhydride were reacted analogously to Example 1 with 128 g (1.05 mol) of AlCl 3 and 25 g (0.2 mol) of diethyl zinc in 74 g of tert-amylbenzene. After working up, 118 g (80% of theory) of pure 2- (4'-tert.-amylbenzoyl) benzoic acid were obtained.

Beispiel 9Example 9

74 g (0,5 mol) Phthalsäureanhydrid und 134 g (1,10 mol) AICIs wurden, wie unter Beispiel 1 beschrieben, mit 20 g (0,2 mol) Triethylbor in 74 g tert.-Amylbenzoyl in 8 Stunden zur Reaktion gebracht. Man erhielt nach der üblichen Aufarbeitung 127 g (86 % d. Theorie) eines Gemisches aus 2-(4'-tert.-Amyl- und 4'- sek.-Isoamylbenzoyl)-benzoesäure (Verhältnis tert./sek. = 60 : 40).74 g (0.5 mol) of phthalic anhydride and 134 g (1.10 mol) of AICI s, were as described in Example 1, 20 g (0.2 mol) of triethyl in 74 g of tert-amylbenzoyl in 8 hours of reaction brought. After the usual working up, 127 g (86% of theory) of a mixture of 2- (4'-tert.-amyl- and 4'-sec.-isoamylbenzoyl) -benzoic acid (ratio tert./sec. = 60: 40).

Claims (11)

1. A process for the acylation of an aromatic by the Friedel-Crafts method, wherein the acylation is carried out in the presence of a metalalkyl or metalalkyl halide of a metal or semimetal of main groups two to five and/or of a metal of subgroups two or four of the Periodic Table.
2. A process as claimed in claim 1, wherein a carbonyl halide or carboxylic anhydride is reacted with an alkylaromatic to give an alkyl-substituted aromatic ketone.
3. A process as claimed in claims 1 and 2, wherein a metalalkyl or metalalkyl halide of aluminum, magnesium, boron, tin, zinc or titanium is used.
4. A process as claimed in claims 1 and 2, wherein a trialkylaluminum or an alkylaluminum halide of the formule la RnAIX3.n la
where the radicals R are identical or different alkyl groups of 1 to 12 carbon atoms, X is halogen and n is 1, 2 or 3, or a mixture of two compounds of the formula I is used.
5. A process as claimed in claim 1 or 2 or 3 or 4, wherein the metalalkyl halide used is a metalalkyl chloride or bromide.
6. A process as claimed in claim 1 or 2 or 3 or 4 or 5, wherein the Friedel-Crafts catalyst used is aluminum chloride or bromide.
7. A process as claimed in claim 1 or 2 or 3 or 4 or 5 or 6, wherein the aromatic used is an alkylbenzene.
8. A process as claimed in claim 2 or 3 or 4 or 5 or 6 or 7, wherein a mixture of the Friedel-Crafts catalyst and the trialkylaluminum or alkylaluminum halide is used in an amount of from 1 to 1.5 moles per equivalent of acyl halide or in an amount of from 2 to 2.5 moles per equivalent of anhydride.
9. A process as claimed in claim 2 or 3 or 4 or 5 or 6 or 7, wherein from 0.1 to about 1 mole of alkylaluminum dihalide or from 0.03 to about 0.33 mole of trialkylaluminum is used per equivalent of acyl halide or anhydride.
EP87108066A 1986-06-06 1987-06-04 Process or the acylation of aromatic compounds Expired EP0248423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87108066T ATE45940T1 (en) 1986-06-06 1987-06-04 PROCESS FOR ACYLATION OF AROMATICS.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3619169 1986-06-06
DE19863619169 DE3619169A1 (en) 1986-06-06 1986-06-06 Process for the acylation of aromatics
DE3642329 1986-12-11
DE19863642329 DE3642329A1 (en) 1986-12-11 1986-12-11 Process for acylating aromatics

Publications (2)

Publication Number Publication Date
EP0248423A1 EP0248423A1 (en) 1987-12-09
EP0248423B1 true EP0248423B1 (en) 1989-08-30

Family

ID=25844428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87108066A Expired EP0248423B1 (en) 1986-06-06 1987-06-04 Process or the acylation of aromatic compounds

Country Status (10)

Country Link
US (1) US4895984A (en)
EP (1) EP0248423B1 (en)
JP (1) JP2535018B2 (en)
KR (1) KR880000360A (en)
AU (1) AU601191B2 (en)
CA (1) CA1305723C (en)
DE (1) DE3760505D1 (en)
ES (1) ES2010203B3 (en)
FI (1) FI88914C (en)
NO (1) NO165392C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732015A1 (en) * 1987-09-23 1989-04-06 Basf Ag 2-NEOPENTYLANTHRACHINONE, METHOD FOR PRODUCING 2-NEOPENTYLANTHRACHINONE AND THE USE THEREOF AS A CATALYST FOR H (ARROW DOWN) 2 (ARROW DOWN) O (ARROW DOWN) 2 (ARROW DOWN) MANUFACTURER
DE4011916A1 (en) * 1990-04-12 1991-10-17 Basf Ag METHOD FOR ACYLATING ALKYL FLAVORS
KR0170778B1 (en) * 1990-04-18 1999-03-30 기율라스주크;타마스스주츠 Improved process for the preparation of ketone compounds
US5532416A (en) * 1994-07-20 1996-07-02 Monsanto Company Benzoyl derivatives and synthesis thereof
DE4233387A1 (en) * 1992-10-05 1994-04-07 Basf Ag New 2-tert-amyl compounds
US5880290A (en) * 1994-01-31 1999-03-09 Monsanto Company Preparation of substituted 3-aryl-5-haloalkyl-pyrazoles having herbicidal activity
US5869688A (en) * 1994-07-20 1999-02-09 Monsanto Company Preparation of substituted 3-aryl-5-haloalkyl-pyrazoles having herbicidal activity
US5698708A (en) * 1996-06-20 1997-12-16 Monsanto Company Preparation of substituted 3-aryl-5-haloalkyl-pyrazoles having herbicidal activity
FR2760744B1 (en) * 1997-03-12 1999-04-23 Rhodia Chimie Sa PROCESS FOR ACYLATION OF AN AROMATIC COMPOUND
US6700036B2 (en) 2000-09-22 2004-03-02 Tredegar Film Products Corporation Acquisition distribution layer having void volumes for an absorbent article
US6610904B1 (en) 2000-09-22 2003-08-26 Tredegar Film Products Corporation Acquisition distribution layer having void volumes for an absorbent article
GB0123597D0 (en) 2001-10-02 2001-11-21 Univ Belfast Friedal-crafts reactions
WO2013040311A1 (en) * 2011-09-14 2013-03-21 Los Alamos National Security, Llc Compounds and methods for the production of long chain hydrocarbons from biological sources
TWI496739B (en) * 2011-11-30 2015-08-21 Univ Chang Gung Chemically modified graphene and its preparation method
CN103524336A (en) * 2013-09-18 2014-01-22 北京石油化工学院 Preparation method of 2-(4-pentyloxybenzoyl) benzoic acid with high secondary-tertiary ratio

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004069A (en) * 1931-05-14 1935-06-04 Rohm & Haas Process for preparing alkylated aromatic ketones and product
US2587540A (en) * 1950-03-22 1952-02-26 Goodrich Co B F Method for the preparation of alpha-beta unsaturated ketones and aralkyl carboxylic acids
US3154585A (en) * 1961-07-21 1964-10-27 Continental Oil Co Method of producing ketones and alochols
DE1288584B (en) * 1966-01-31 1969-02-06 Akad Wissenschaften Ddr Process for the production of ketocarboxylic acids with ª † - or ª € -staendigen keto groups and / or the corresponding unsaturated and saturated lactones
AT351019B (en) * 1976-05-10 1979-07-10 Yamamoto Kagaku Gosei Kk PROCESS FOR THE PREPARATION OF 2- (P-AMYLBENZOYL) -BENZOIC ACID
DE2851371C2 (en) * 1978-11-28 1981-01-29 Hoechst Ag, 6000 Frankfurt Process for the production of ketones
EP0012850B1 (en) * 1978-11-28 1981-11-25 Hoechst Aktiengesellschaft Process for the preparation of ketones by reacting carboxylic-acid halides with alkyl aluminium compounds
JPS55113735A (en) * 1979-02-23 1980-09-02 Agency Of Ind Science & Technol Preparation of aromatic ketone
DE2928944A1 (en) * 1979-07-18 1981-02-12 Basf Ag IMPROVED METHOD FOR PRODUCING HIGHER UNSATURATED KETONES

Also Published As

Publication number Publication date
NO165392C (en) 1991-02-06
NO872383L (en) 1987-12-07
FI872515A (en) 1987-12-07
EP0248423A1 (en) 1987-12-09
FI88914B (en) 1993-04-15
AU601191B2 (en) 1990-09-06
KR880000360A (en) 1988-03-25
US4895984A (en) 1990-01-23
FI88914C (en) 1993-07-26
DE3760505D1 (en) 1989-10-05
CA1305723C (en) 1992-07-28
JP2535018B2 (en) 1996-09-18
ES2010203B3 (en) 1989-11-01
NO872383D0 (en) 1987-06-05
NO165392B (en) 1990-10-29
JPS62298538A (en) 1987-12-25
AU7389387A (en) 1987-12-10
FI872515A0 (en) 1987-06-04

Similar Documents

Publication Publication Date Title
EP0248423B1 (en) Process or the acylation of aromatic compounds
DE3118682A1 (en) METHOD FOR PRODUCING SUBSTITUTED BENZALDEHYDES
EP0587107B1 (en) Process for the preparation of substituted indanones
EP0706987B1 (en) Process for preparing alkylated aromatic carboxylic acids and carboxylic acid halogenides
EP0012850B1 (en) Process for the preparation of ketones by reacting carboxylic-acid halides with alkyl aluminium compounds
EP0032576B1 (en) Process for the preparation of p-substituted phenyl propanols and their esters and of p-substituted 3-phenyl-2-methyl propanals
DE60018077T2 (en) PERFLUOROSULFONYLMETHIDE COMPOUNDS; THEIR USE IN THE PREPARATION OF C-C BINDINGS
DE2336289A1 (en) PROCESS FOR THE PREPARATION OF O-BENZYL TOLUENE
EP0451714B1 (en) Process for the acylation of alkyl aromatics
DE3642329A1 (en) Process for acylating aromatics
DE1768578B2 (en) PROCESS FOR THE PREPARATION OF 2,4-DISUBSTITUTED PHENYLKETONE
DE3619169A1 (en) Process for the acylation of aromatics
EP0348464B1 (en) 2-neopentylanthraquinone
EP0226152B1 (en) Process for preparing optionally-substituted 2-benzyl toluenes
EP0041672B1 (en) Process for the preparation of aromatic aldehydes
DE2721142A1 (en) PROCESS FOR THE PREPARATION OF 3-BROMPHTHALIDE
EP0601438A1 (en) Process for the preparation of polyacylated aromatics
DE2442883A1 (en) Carboxylic acid fluorides prepn. from acid halides - by reaction with metal fluorides in a two phase system using phase transfer catalysts
DE2200070A1 (en) 2-METHYLBENZOPHENONE SUBSTITUTED BY HALOGEN
DE1139111B (en) Process for the preparation of diaryl ketones.
EP0826654B1 (en) Process for the preparation of derivatives of indene
DE965490C (en) Process for the preparation of aromatic sulfonium compounds
EP0829465B1 (en) Process for the preparation of substituted indanones
DE2139994A1 (en) Acylation aromatic and heterocyclic cpds - using a perfluoroalkanesulphonic acid catalyst
DE2113439A1 (en) Process for the preparation of 4-chloroformyl-phthalic anhydride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19890113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 45940

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3760505

Country of ref document: DE

Date of ref document: 19891005

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87108066.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010515

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020521

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020527

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020528

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020529

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020531

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020605

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020607

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020615

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20030522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030604

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030605

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030604

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630