EP0246251B1 - Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung - Google Patents

Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung Download PDF

Info

Publication number
EP0246251B1
EP0246251B1 EP19860906261 EP86906261A EP0246251B1 EP 0246251 B1 EP0246251 B1 EP 0246251B1 EP 19860906261 EP19860906261 EP 19860906261 EP 86906261 A EP86906261 A EP 86906261A EP 0246251 B1 EP0246251 B1 EP 0246251B1
Authority
EP
European Patent Office
Prior art keywords
voltage
mains
installation
complementary
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19860906261
Other languages
English (en)
French (fr)
Other versions
EP0246251A1 (de
Inventor
Reinhard Joho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86906261T priority Critical patent/ATE49308T1/de
Publication of EP0246251A1 publication Critical patent/EP0246251A1/de
Application granted granted Critical
Publication of EP0246251B1 publication Critical patent/EP0246251B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/04Regulating voltage or current wherein the variable is ac

Definitions

  • the invention relates to a device for providing a filtered and stabilized mains voltage, the device is connected between the network and the consumer.
  • networks are understood to mean only AC networks.
  • Facilities of this type find a wide range of applications, from flicker-free lighting to trouble-free operation of computers.
  • Devices for stabilizing the mains voltage are known, for. B. in the form of self-regulating auto transformers or magnetic constant voltage.
  • self-regulating auto transformers a transformer-generated auxiliary voltage is added or subtracted to the mains voltage, in modern systems mostly with a large number of valve-controlled transformer taps.
  • the facility has the advantage of good efficiency.
  • Their inability to regulate transient processes with time constants less than half a line voltage period has a disadvantageous effect, and they are therefore not able to block harmonics from the line without additional circuitry.
  • the device cannot regulate any major drops in mains voltage either.
  • Magnetic voltage stabilizers are able to regulate slow to fast mains voltage fluctuations, but outside of a mains voltage window specified by the operating principle they lose their regulating ability, mains voltage failures can only be bridged for a very short time.
  • Load impulses on the consumer side are only regulated to a limited extent; there is also a certain risk of self-excited vibrations in interaction with network or consumer reactances.
  • a device for stabilizing the consumer voltage in which a transistorized complementary stage, controlled by an ideal mains voltage signal synchronized to the mains voltage, regulates serially to the consumer voltage.
  • the complementary stage draws its working voltage from the pulsating instantaneous difference between the mains voltage and the consumer voltage, the amount of the mains voltage for each function of the circuit must be sufficiently above the consumer voltage in every moment, which has a disadvantageous effect on the efficiency of the circuit. Strong drops in mains voltage are not compensated for.
  • the starting point is the idea of a device in which the line voltage is brought to the value of an ideal line voltage by means of serial voltage regulation, in that a correction voltage added to the line voltage continuously applies the difference between ideal line voltage and line voltage.
  • a transistorized push-pull complementary circuit an ideal mains voltage image, which is in phase coverage with the mains voltage, between the common control connection of the transistors and a first conductor of the network, for. B. the neutral conductor, and wherein the DC voltage supply of the complementary circuit is generated from the same network, the supply center with a second conductor of the network, for. B. the pole conductor, and the output of the complementary circuit is connected to the corresponding second conductor of the consumers.
  • This circuit arrangement fulfills points 1, 2 and 3 of the task catalog.
  • the essence of the invention is now to connect a second complementary circuit operating with a higher supply voltage in parallel with the first, which is automatically used as long as the first complementary circuit is activated.
  • the small disturbances that occur during normal operation such as harmonics in the network, smaller load surges and mains voltage distortions, are compensated for by the first complementary circuit, which also requires a low DC voltage supply and consequently has small electrical losses and, due to the limited duration of their occurrence, only marginally impair the good efficiency of the facility.
  • the uncoupling of the second complementary circuit during normal operation is achieved by increasing the amount of the threshold voltage in the input characteristic of the transistors compared to the transistors of the first complementary circuit. This is done either realized by transistors with different input characteristics or by shifting characteristics with bias. In order not to impede the correction voltage swing of the second complementary circuit, series diodes must be switched on in the supply voltage supply lines of the first complementary circuit.
  • the figure shows a circuit arrangement of the device according to the invention.
  • the connections to the network are made at connections P, N, and the consumers to be protected are connected at connections P1, Ni.
  • Switches 1 and 2 are initially accepted in the open position.
  • the connection between the mains pole P and the load pole PI takes place in normal operation via the push-pull complementary circuit of the transverse field transistors 3 and 4.
  • the consumer current flows, depending on the polarity, via the charging capacitor 5 or 6, the anode diode 7 or 8 and the n-channel Cross-field transistor 3 or p-channel cross-field transistor 4.
  • the charging capacitors 5, 6 are supplied via diodes 9, 10 and the autotransformer 11.
  • the grid connections of the transistors are powered without power from an ideal mains voltage image, here generated by a damped parallel resonant circuit 12 which is tuned to the mains frequency and is inductively coupled to the mains via the adjustable resistor 13.
  • the resistor 13 is preferably set so that the voltage at the resonant circuit is equal to the fundamental component of the mains voltage.
  • the actuator 14 can be used in a known manner to reduce the grid bias of the transistors 3, 4 in the vicinity of the threshold voltage in order to reduce the transfer distortion, temperature-compensated if necessary.
  • the second push-pull complementary circuit with the transverse field transistors 15, 16, which operates with a larger operating voltage, is parallel to the first.
  • the increase in the grid threshold voltage of the transistors 15, 16 takes place via two further connections in the actuator 14, the difference in the threshold voltage of the corresponding transistors 3, 15 and 4, 16, depending on the slope and temperature dependence, is from one to a few volts.
  • the charging capacitors 17, 18 of the second push-pull complementary circuit are fed from the autotransformer 11 via the diodes 19, 20.
  • Their charging voltage can also be selected to be greater than the amplitude of the mains voltage, so that the second complementary circuit can ensure the supply to the consumers even in the event of a total failure of the mains voltage from the stored energy of the capacitors 17, 18.
  • This operating mode does mean that the network source impedance seen from the device remains small if the network voltage fails, but this applies to the majority of applications because of the mostly strong meshing of the network.
  • the voltage limiting elements 21 protect the grid connections of the transistors against possible overvoltages.
  • the switches 1, 2 ensure trouble-free switching on and off of the device. They are actuated essentially by the minimum voltage monitor 22 via the delay element 23 and are in the closed position when the device is not activated.
  • the switch-on delay t d ° " covers the charging time of the capacitors 5, 6 and 17, 18 and the settling time of the resonant circuit 12.
  • the switch-off delay 100ft is responsible for the duration of the support operation of the device when the minimum mains voltage is undershot and depends essentially on the storage capacity the capacitors 17, 18 and the damping conditions in the resonant circuit 12.
  • the individual delay elements 24 and 25 ensure that switch 1 always opens before switch 2 and switch 2 before switch 1 closes, so that the complementary circuits never work in short-circuit mode.
  • the generation of the ideal mains voltage in the damped parallel resonant circuit 12 results in a transient stabilization of the output voltage of the device.
  • the time constant depends on the quality of the resonant circuit and is in the range 10 msec ... 2 sec.
  • An artificial increase in this time constant, especially in the event of a mains voltage failure, can be achieved by excitation of the resonant circuit via the resistor 13 during the time of If a minimum line voltage is undershot, the pole conductor P of the input is automatically switched to the pole conductor PI of the output.
  • the ideal mains voltage can also be generated electronically and z. B. can be kept at a constant value corresponding to the nominal value of the mains voltage regardless of the current mains voltage.
  • the first push-pull complementary circuit with the transistors 3, 4 would ensure permanent correction to a constant output voltage in this case.
  • the charging voltage of the capacitors 5, 6 of the first complementary circuit is preferably between 5 and 25% of the mains voltage amplitude, that of the capacitors 17, 18 of the second complementary circuit can be up to twice the peak value of the mains voltage.
  • the supply lines of the capacitors 17, 18 on the mains side can be provided with current-limiting elements.
  • the device can against opening of the input circuit, for. B. be protected by inadvertent pulling of the power plug of the device by a minimum current monitor in the power supply line switches off the device by closing the switches 1, 2 if the minimum internal power requirement of the device is fallen below.
  • a high-resistance load resistor must be connected across the input or output terminals of the device for minimal load current.
  • the circuit arrangement described can also operate at a lower voltage level than the mains voltage, in that it has a transformer on the input and output sides, of which at least one is preferably designed as an insulating transformer.
  • the device according to the invention described fulfills all five points required in the introduction with a minimum of effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Description

  • Die Erfindung betrifft eine Einrichtung zur Bereitstellung einer gefilterten und stabilisierten Netzspannung, die Einrichtung ist zwischen Netz und Verbraucher geschaltet. Unter Netzen werden im folgenden nur Wechselspannungsnetze verstanden.
  • Einrichtungen dieser Art finden ein breites Anwendungsspektrum, von der flackerfreien Beleuchtung bis hin zum störungsfreien Betrieb von Computern.
  • Einrichtungen zur Stabilisierung der Netzspannung sind bekannt, z. B. in Form von selbstregulierenden Autotransformatoren oder magnetischen Spannungskonstanthaltem. Bei selbstregulierenden Autotransformatoren wird zur Netzspannung eine transformatorisch erzeugte Hilfsspannung addiert oder subtrahiert, in modernen Anlagen meist mit einer Vielzahl von ventilgesteuerten Transformatoranzapfungen. Die Einrichtung hat den Vorteil eines guten Wirkungsgrades. Nachteilig wirkt sich ihr Unvermögen aus, transiente Vorgänge mit Zeitkonstanten kleiner als eine halbe Netzspannungsperiode auszuregulieren, sie sind daher ohne Zusatzbeschaltung auch nicht in der Lage, Oberschwingungen aus dem Netz abzublocken. Die Einrichtung kann auch keine stärkeren Netzspannungseinbrüche ausregulieren. Magnetische Spannungskonstanthalter sind in der Lage, langsame bis schnelle Netzspannungsschwankungen auszuregulieren, ausserhalb eines vom Funktionsprinzip vorgegebenen Netzspannungsfensters verlieren sie aber ihre Regulierfähigkeit, Netzspannungsausfälle können nur sehr kurzzeitig überbrückt werden. Verbraucherseitige Laststösse werden nur beschränkt ausreguliert, es besteht auch eine gewisse Gefahr von selbsterregten Schwingungen in Wechselwirkung mit Netz- oder Verbraucherreaktanzen.
  • Aus der US-A-3153187 ist eine Einrichtung zur Stabilisierung der Verbraucherspannung bekannt, bei der eine transistorisierte Komplementärstufe, gesteuert von einem zur Netzspannung synchronisierten Idealnetzspannungssignal, seriell auf die Verbraucherspannung reguliert. Die Komplementärstufe bezieht ihre Arbeitsspannung aus der pulsierenden momentanen Differenz von Netzspannung zu Verbraucherspannung, wobei für Funktionieren der Schaltung die Netzspannung betragsmässig in jedem Moment ausreichend über der Verbraucherspannung liegen muss, was sich auf den Wirkungsgrad der Schaltung nachteilig auswirkt. Starke Netzspannungseinbrüche werden nicht ausreguliert.
  • Die erfindungsgemässe Einrichtung erhält demgegenüber die Aufgabe, folgende vorteilhafte Eigenschaften in sich zu vereinen :
    • 1. Stabilisierte Ausgangsspannung
    • 2. Abblocken von Netz- Oberschwingungen und -Störimpulsen
    • 3. Breitbandig niederimpedante Quellenimpedanz an den Ausgangsklemmen der Einrichtung
    • 4. Ueberbrücken von vorübergehenden Netzspannungseinbrüchen
    • 5. Guter Wirkungsgrad der Einrichtung.
  • Die Aufgabe wird durch die im Patentanspruch gekennzeichnete Einrichtung gelöst Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Ausgegangen wird vom Gedanken einer Einrichtung, in der die Netzspannung durch serielle Spannungsregelung auf den Wert einer Idealnetzspannung gebracht wird, indem eine zur Netzspannung addierte Korrekturspannung kontinuierlich die Differenz zwischen Idealnetzspannung und Netzspannung aufbringt. Dies wird gemäss dem Patentanspruch mit einer transistorisierten Gegentakt-Komplementärschaltung bewerkstelligt, wobei ein Idealnetzspannungsabbild, das in Phasendeckung zur Netzspannung liegt, zwischen dem gemeinsamen Steueranschluss der Transistoren und einem ersten Leiter des Netzes, z. B. dem Nulleiter, anliegt, und wobei die Gleichspannungsspelsung der Komplementärschaltung aus dem selben Netz erzeugt wird, der Speisungs-Mittelpunkt mit einem zweiten Leiter des Netzers, z. B. dem Polleiter, verbunden ist und der Ausgang der Komplementärschaltung mit dem korrespondierenden zweiten Leiter der Verbraucher verbunden ist. Diese Schaltungsanordnung erfüllt die Punkte 1, 2 und 3 des Aufgabenkatalogs.
  • In der so erzielten Schaltungsanordnung besteht aber eine Konfliktsituation zwischen ausreichendem Korrekturspannungshub und gutem Wirkungsgrad, d. h. zwischen den Punkten 4 und 5 des Aufgabenkatalogs, da die Verluste der Einrichtung im wesentlichen aus dem Produkt von maximalem Korrekturspannungshub und Verbraucherstrom gebildet werden.
  • Der Kem der Erfindung liegt nun darin, eine zweite, mit höherer Speisespannung arbeitende Komplementärschaltung parallel zur ersten zu schalten, die automatisch im Einsatz ist, solange die erste Komplementärschaltung ausgesteuert ist. Die im Normalbetrieb anfallenden Kleinstörungen, wie Oberschwingungen im Netz, kleinere Laststösse und Netzspannungsverzerrungen werden mit der ersten Komplementärschaltung ausreguliert, die dazu mit geringer Gleichspannungsversorgung auskommt und demzufolge kleine elektrische Verluste aufweist Seltene grosse Netzspannungssprünge werden von der zweiten, mit grösserer, kondensatorgestützten Versorgungsspannung arbeitenden Komplementärschaltung übernommen und beeinträchtigen wegen der beschränkten Dauer ihres Auftretens, den guten Wirkungsgrad der Einrichtung nur unwesentlich. Das Abkoppeln der zweiten Komplementärschaltung während Normalbetrieb wird durch ein betragsmässiges Anheben der Schwellenspannung in der Eingangskennlinie der Transistoren gegenüber den Transistoren der ersten Komplementärschaltung erreicht Dies wird entweder durch Transistoren mit verschiedenen Eingangskennlinien oder durch Kennlinienverschiebung mit Vorspannung realisiert. Um den Korrekturspannungshub der zweiten Komplementärschaltung nicht zu behindern, müssen in die Speisespannungszuleitungen der ersten Komplementärschaltung Seriedioden eingeschaltet werden.
  • Im folgenden wird die Erfindung anhand der Beschreibung und eines Ausführungsbeispiels näher erläutert.
  • Die Figur zeigt eine Schaltungsanordnung der erfindungsgemässen Einrichtung. An den Anschlüssen P, N erfolgt der Anschluss an das Netz, an den Anschlüssen P1, Ni werden die zu schüttzenden Verbraucher angeschlossen. Die Schalter 1 und 2 werden vorerst in geöffneter Stellung angenommen.
  • Die Verbindung zwischen Netzpolleiter P und Verbraucherpolleiter PI erfolgt im Normalbetrieb über die Gegentakt- Komplementärschaltung der Querfeldtransistoren 3 und 4. Der Verbraucherstrom fliesst dabei, je nach Polarität, über den Ladekondensator 5 bzw. 6, die Anodenseriediode 7 bzw. 8 und den n- Kanal-Querfeldtransistor 3 bzw. p- Kanal-Querfeldtransistor 4. Die Speisung der Ladekondensatoren 5, 6 wird dabei über Dioden 9, 10 und den Autotransformator 11 bewerkstelligt. Die Anspeisung der Gitteranschlüsse der Transistoren erfolgt leistungslos von einem Idealnetzspannungsabbild, hier erzeugt durch einen gedämpften Parallelschwingkreis 12, der auf Netzfrequenz abgestimmt ist und mit seiner Induktivität über den einstellbaren Widerstand 13 transformatorisch an das Netz angekoppelt ist. Der Widerstand 13 wird bevorzugt so eingestellt, dass die Spannung am Schwingkreis gleich dem Grundschwingungsanteil der Netzspannung ist. Ueber das Stellglied 14 kann zur Verkleinerung der Uebemahmeverzerrungen in bekannter Weise die Gittervorspannung der Transistoren 3, 4 in die Nähe der Schwellenspannung gelegt werden, nötigenfalls temperaturkompensiert.
  • Die mit grösserer Betriebsspannung arbeitende zweite Gegentaktkomplementärschaltung mit den Querfeldtransistoren 15, 16 liegt parallel zur ersten. Die Vergrösserung der Gitter- Schwellenspannung der Transistoren 15, 16 erfolgt über zwei weitere Anschlösse im Stellglied 14, die Differenz der Schwellenspannung korrespondierender Transistoren 3, 15 bzw. 4, 16 beträgt je nach Steilheit und Temperaturabhängigkeit ein bis einige Volt.
  • Bei Ansprechen der Transistoren 15, 16 werden die Potentiale der Anoden der Transistoren 3, 4 mitgerissen, mithilfe der nunmehr sperrenden Anodenseriedioden 7, 8 sind aber die Ladekondensatoren 5, 6 abgekoppelt, d. h. es können keine Rückströme aus der zweiten Komplementärschaltung in die Ladekondensatoren der ersten Komplementärschaltung fliessen.
  • Die Ladekondensatoren 17, 18 der zweiten Gegentakt-Komplementärschaltung werden über die Dioden 19, 20 aus dem Autotransformator 11 gespiesen. Ihre Ladespannung kann auch grösser als die Amplitude der Netzspannung gewählt werden, sodass die zweite Komplementärschaltung auch bei Totalausfall der Netzspannung aus der gespeicherten Energie der Kondensatoren 17, 18 die Versorgung der Verbraucher sicherstellen kann. Diese Betriebsart bedingt zwar, dass die von der Einrichtung her gesehene Netz-Quellenimpedanz bei Ausfall der Netzspannung klein bleibt, was aber wegen der meist starken Vermaschung des Netzes für die überwiegende Zahl der Anwendungen zutrifft.
  • Die Spannungsbegrenzungselemente 21 schützen die Gitteranschlüsse der Transistoren vor allfälligen Ueberspannungen.
  • Die Schalter 1, 2 gewährleisten ein störungsfreies Ein- und Ausschalten der Einrichtung. Sie werden im wesentlichen vom Minimalspannungswächter 22 über das Verzögerungsglied 23 betätigt und sind bei nicht aktivierter Einrichtung in geschlossener Position. Die Einschaltverzögerung td°" deckt die Ladezeit der Kondensatoren 5, 6 und 17, 18 und die Einschwingzeit des Schwingkreises 12 ab. Die Ausschaltverzögerung 100ft ist für die Dauer des Stützbetriebes der Einrichtung bei Unterschreitung der Minimalnetzspannung verantwortlich und richtet sich im wesentlichen nach der Speicherkapazität der Kondensatoren 17, 18 und den Dämpfungsverhältnissen im Schwingkreis 12. Ueber die individuellen Verzögerungsglieder 24 und 25 wird gewährleistet, dass Schalter 1 immer vor Schalter 2 öffnet und Schalter 2 vor Schalter 1 schliesst, damit die Komplementärschaltungen nie im Kurzschlussbetrieb arbeiten.
  • Ein induktivitätsarmer Kondensator 26, der parallel zu den Netzanschlüssen liegt, sorgt für eine Verkleinerung der Netzimpedanz und der Flankensteilheit von Netzspannungsstörungen.
  • Die Erzeugung der Idealnetzpannung im gedämpften Parallelschwingkreis 12 ergibt eine transiente Stabilisierung der Ausgangsspannung der Einrichtung. Die Zeitkonstante richtet sich nach der Güte des Schwingkreises und liegt im Bereich 10 msec ... 2 sec. Eine künstliche Vergrösserung dieser Zeitkonstante, vor allem bei Netzspannungsausfall, lässt sich dadurch erreichen, dass die Anregung des Schwingkreises über den Widerstand 13 während der Zeit der Unterschreitung einer Minimalnetzspannung automatisch vom Polleiter P des Eingangs auf den Polleiter PI des Ausgangs umgeschaltet wird. Die Idealnetzspannung kann auch auf elektronischem Weg erzeugt werden und z. B. unabhängig von der aktuellen Netzspannung auf konstantem Wert entsprechend dem Nominalwert der Netzspannung gehalten werden. Die erste Gegentakt-Komplementärschaltung mit den Transistoren 3, 4 würde in diesem Falle für permanente Korrektur auf konstante Ausgangsspannung sorgen.
  • Die Ladespannung der Kondensatoren 5, 6 der ersten Komplementärschaltung liegt bevorzugt zwischen 5 und 25 % der Netzspannungsamplitude, diejenige der Kondensatoren 17, 18 der zweiten Komplementärschaltung kann bis zum zweifachen Betrag des Scheitelwertes der Netzspannung betragen. Zur Begrenzung von Einschaltstromstössen können die netzseitigen Speiseleitungen der Kondensatoren 17, 18 mit strombegrenzenden Elementen versehen werden.
  • Die Einrichtung kann gegen Oeffnen des Eingangskreises, z. B. durch versehentliches Ziehen des Netzsteckers der Einrichtung geschützt werden, indem ein Minimalstromwächter in der Netzzuleitung die Einrichtung durch Schliessen der Schalter 1, 2 ausschaltet, wenn der minimale Eigenstrombedarf der Einrichtung unterschritten wird. Damit dieser Schutz im seltenen Fall von Netzspannungsausfall und gleichzeitig keinen angeschlossenen Verbrauchern nicht versehentlich anspricht, muss über den Ein- oder Ausgangsklemmen der Einrichtung für minimalen Laststrom ein hochohmiger Lastwiderstand geschaltet werden.
  • Als Variante kann die beschriebene Schaltungsanordnung auch auf niedrigerem Spannungsniveau als Netzspannung arbeiten, indem sie ein-und ausgangsseitig einen Transformator aufweist, wovon vorzugsweise mindestens einer als Isoliertransformator ausgeführt wird.
  • Die beschriebene erfindungsgemässe Einrichtung erfüllt alle fünf in der Einleitung geforderten Punkte mit einem minimalen Aufwand.

Claims (10)

1. Einrichtung zur Bereitstellung einer gefilterten und stabilisierten Netzspannung, wobei die Einrichtung zwischen Netz und Verbraucher liegt und aus einer Schaltungsanordnung nach dem Prinzip der seriellen Spannungsregelung besteht, dadurch gekennzeichnet, dass ein spannungsmässig stabilisiertes Idealnetzspannungsabbild in Phasendeckung zur Netzspannung erzeugt wird und zwischen einem ersten Leiter (N) des Netzes und den Steueranschlüssen zweier parallel arbeitenden, gleichspannungsgespiesenen Gegentakt-Komplementärtransistorschaltungen angelegt wird, deren Speisung aus dem selben Netz erfolgt und die mit ihren Speisungs-Mittelpunkten mit einem zweiten Leiter (P) des Netzes und mit ihren Transistorausgängen mit einem korrespondierenden zweiten Leiter der Verbraucher (P1) verbunden sind, wobei die erste Komplementärschaltung (3, 4) mit niedriger Speisespannung zur Korrektur kleiner Störungen dauernd und mit kleinem Verlust arbeitet, und die zweite Komplementärschaltung (15, 16) mit höherer Speisespannung durch eine Eingangskennlinienverschiebung in Richtung grösserer Betrag der Schwellenspannung nur dann zum Arbeiten kommt, solange die erste Komplementärschaltung ausgesteuert ist, und wobei in den Speiseleitungen der ersten Komplementärschaltung zur Vermeidung von Rückströmen Seriedioden (7, 8) angeordnet sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Gleichspannungsversorgungen der Komplementärschaltungen kondensatorgestützt sind und dass die Laderspannung der Kondensatoren (5, 6) der ersten Komplementärschaltung zwischen 5 und 25 % der Netzspannungsamplitude und die der Kondensatoren (17, 18) der zweiten Komplementärschaltung bis zu 200 % der Netzspannungsamplitude beträgt.
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als Transistoren n- und p-Kanal-Querfeldtransistoren verwendet werden.
4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Idealnetzspannungsabbild transient amplitudenstabilisiert ist und mit einer Zeitkonstante zwischen 10 msec und 2 sec der Netzspannung stetig nachgeführt wird.
5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Idealnetzspannungsabbild in einem gedämpften Parallelschwingkreis (12) erzeugt wird, der auf Netzfrequenz abgestimmt ist und dessen Induktivität über einen einstellbaren Widerstand (13) aus dem Netz transformatorisch so angeregt wird, dass die Spannung am Schwingkreis gleich dem Grundschwingungsanteil der Netzspannung ist.
6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, dass bei Unterschreiten einer minimalen Netzspannungs die transformatorische Anregung des Parallelschwingkreises (12) vom zweiten Leiter des Netzes (P) automatisch auf den Korrespondierenden zweiten Leiter der Verbraucher (P1) umgeschaltet wird.
7. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mit einem am Eingang der Einrichtung parallel zum Netz geschalteten induktivitätsarmen Kondensator (26) die Netz-Quellenimpedanz dynamisch verkleinert wird.
8. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein die Netzspannung überwachender Minimalspannungswächter (22) bei Ueberschreiten der Minimalspannungsgrenze mit einer ersten Zeitverzögerung einen ersten Schalter (1), der die Komplementärschaltungen kurzschliesst, öffnet und unmittelbar danach mit einem zweiten Schalter (2) die Steueranschlüsse der Transistoren von Netzspannung auf Idealnetzspannung unterbrechungsfrei umschaltet, und dass bei Unterschreiten der Minimalspannungsgrenze der Minimalspannungswächter (22) mit einer zweiten Zeitverzögerung entsprechend der möglichen Spannungsstützzeit der Einrichtung den zweiten Schalter (2) schliesst und unmittelbar danach auch den ersten Schalter (1) schliesst.
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass ein Minimalstromwächter in der Netzzuleitung die Einrichtung durch Schliessen der Schalter (1, 2) ausschaltet, wenn der minimale Eigenstrombedarf der Einrichtung unterschritten wird, wobei ein hochohmiger Lastwiderstand über den Ein- oder Ausgangsklemmen der Einrichtung für minimalen Laststrom im Falle keiner angeschlossener Verbraucher und Netzspannungsausfall sorgt.
10. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein- und ausgangsseitig Transformatoren eingefügt sind, die das Spannungsniveau in der Einrichtung herabsetzen, wobei mindestens einer der Transformatoren als lsoliertransformator ausgebildet ist.
EP19860906261 1985-11-23 1986-11-19 Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung Expired - Lifetime EP0246251B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86906261T ATE49308T1 (de) 1985-11-23 1986-11-19 Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH498285 1985-11-23
CH4982/85 1985-11-23

Publications (2)

Publication Number Publication Date
EP0246251A1 EP0246251A1 (de) 1987-11-25
EP0246251B1 true EP0246251B1 (de) 1990-01-03

Family

ID=4285902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860906261 Expired - Lifetime EP0246251B1 (de) 1985-11-23 1986-11-19 Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung

Country Status (4)

Country Link
EP (1) EP0246251B1 (de)
AU (1) AU6599686A (de)
DE (1) DE3668082D1 (de)
WO (1) WO1987003392A1 (de)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153187A (en) * 1957-11-29 1964-10-13 North American Aviation Inc Transistor alternating-current voltage regulator

Also Published As

Publication number Publication date
DE3668082D1 (de) 1990-02-08
AU6599686A (en) 1987-07-01
EP0246251A1 (de) 1987-11-25
WO1987003392A1 (en) 1987-06-04

Similar Documents

Publication Publication Date Title
DE3006565A1 (de) Schaltung zur begrenzung des einschaltstromstosses insbesondere fuer gleichrichter und netzgeraete
EP0116275A2 (de) Blindleistungskompensator
DE10144591C2 (de) Schaltungsanordnung zur Spannungsregelung
EP1561366A1 (de) Schaltungsanordnung zum betreiben mindestens einer leuchtdiode
EP0246251B1 (de) Einrichtung zur bereitstellung einer gefilterten und stabilisierten netzspannung
WO2020165215A1 (de) Elektronischer schalter mit stromregulierung
DE2223828B2 (de) Überstromschutzanordnung
DE3103346C2 (de) Niederfrequenzverstärker mit einer Rückkopplungsschaltung zum Kompensieren von Nichtlinearitäten der Lautsprecher-Impedanz
EP0115792B1 (de) Schaltnetzteil für ein Gerät mit Bereitschaftsbetrieb, insbesondere einen Fernsehempfänger
DE2910593C2 (de) Schaltnetzteil, insbesondere für einen Fernsehempfänger
DE2922010A1 (de) Elektronische schutzschaltung
DE2753888C2 (de)
AT390532B (de) Pulsbreiten moduliertes wechselstrom-leistungsstellglied
DE2953289C2 (de)
EP0210192B1 (de) Einrichtung zur filtrierung und transienten stabilisierung der netzspannung
DE2801844A1 (de) Generatoraggregat
DE19841972A1 (de) Getakteter Shuntregler
EP0314982A2 (de) Wechselrichter für hohe Spannungen und hohe Frequenzen
DE3710513A1 (de) Geregelte hochspannungs-versorgungsschaltung
DE3511207A1 (de) Naeherungsschalter mit einer elektronischen lastschalteinrichtung
DE3341767A1 (de) Spannungsschaltregler
DE4228480A1 (de) Gleichstrom-Versorgung mit LC-Filter
DE2160251A1 (de) Elektronisches Relais
DE4130770C2 (de) Verlustarme schaltungsanordnung zur ansteuerung eines aus dem wechselstromnetz gespeisten niedervolt-relais
DE2607722C2 (en) Overvoltage protection system for TV aerial system - has AC receiver, transformer switches and overvoltage triggers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871127

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19900103

Ref country code: SE

Effective date: 19900103

Ref country code: NL

Effective date: 19900103

Ref country code: GB

Effective date: 19900103

REF Corresponds to:

Ref document number: 49308

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3668082

Country of ref document: DE

Date of ref document: 19900208

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901119

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951122

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801