EP0242773B1 - Method for the continuous separation of magnetizable particles, and device therefor - Google Patents

Method for the continuous separation of magnetizable particles, and device therefor Download PDF

Info

Publication number
EP0242773B1
EP0242773B1 EP87105496A EP87105496A EP0242773B1 EP 0242773 B1 EP0242773 B1 EP 0242773B1 EP 87105496 A EP87105496 A EP 87105496A EP 87105496 A EP87105496 A EP 87105496A EP 0242773 B1 EP0242773 B1 EP 0242773B1
Authority
EP
European Patent Office
Prior art keywords
flow
separation
feed
pole body
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87105496A
Other languages
German (de)
French (fr)
Other versions
EP0242773A2 (en
EP0242773A3 (en
Inventor
Horst-Eckart Dr. Vollmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0242773A2 publication Critical patent/EP0242773A2/en
Publication of EP0242773A3 publication Critical patent/EP0242773A3/en
Application granted granted Critical
Publication of EP0242773B1 publication Critical patent/EP0242773B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Definitions

  • the invention relates to a method for the continuous separation of magnetizable paramagnetic and / or diamagnetic particles from a fluid stream loaded with the particles, which is passed through a separation region penetrated by a high gradient magnetic field along a main flow path, according to the preamble of claim 1.
  • a non-generic method which is mainly used for kaolin cleaning, is known, which does not work continuously, but cyclically with high gradient magnetic separators, the magnetizable particles being deposited on the steel wool filling and the latter therefore having to be rinsed cyclically.
  • the processing of substances with a high proportion of magnetizable particles becomes uneconomical due to the short cycle times.
  • OGMS Open Gradient Magnetic Separation
  • a generic method is known from US Pat. No. 4,261,815, which works for continuous magnetic separation with high field gradients.
  • the device of a magnetic separator specified for its implementation consists of a first matrix of wires perpendicular to the magnetic field for generating field gradients and particle deflection and a second grid matrix for separating the particle streams flowing in the wire direction.
  • the first and second matrix form the flow guide matrix, the main problem with this known device in the difficult manufacture of the plurality of thin wires arranged parallel to the axis, the diameter of which is e.g. Is 0.2 mm and their distances from each other e.g. Amount to 2 mm.
  • the high-performance magnetic field passes through the tubular magnetic separator in the transverse direction, the housing of which is accordingly made of non-magnetic material. Due to the difficult arrangement in its interior, a method operating with such a magnetic separator is relatively dirt-prone and therefore susceptible to failure in continuous operation.
  • a second variant of a flow guide matrix for the deposition process according to the aforementioned US PS is published in the magazine "IEEE Trans. Magn. MAG 19, 2127 (1983) and also consists of a wire grid matrix, the magnetic field being applied perpendicular to the wire direction and
  • the separation of the particles is also mentioned by means of repulsive magnetic forces.
  • the range of attractive forces is covered by plates made of non-magnetizable material.
  • the object of the invention is to design it in such a way that the problem of the continuous concentration of magnetizable particles in the range of forces of the high gradient magnetic separators can be realized in a more robust and less prone to clogging manner and therefore overall with a better efficiency.
  • the object is achieved in a generic method according to claim 1 by the features specified in the characterizing part of claim 1.
  • the invention also relates to a device for carrying out the method according to claim 1, as described in the preamble of claim 2 and known in principle by the aforementioned US Pat. No. 4,261,815.
  • this device defined in the preamble of claim 1, the object of creating a particularly advantageous, process- and production-friendly and robust device for carrying out the method according to the invention is achieved according to the invention by the features specified in the characterizing part of claim 2.
  • Advantageous developments of the subject matter of claim 2 are specified in subclaims 3 to 20.
  • the device shown in Figures 1 to 8 realizes a method according to claim 1.
  • the core of this device of a continuous magnetic separator is a perforated plate-like fine structure, which serves both for the formation of the magnetic field gradients required for the separation and also leads the partial currents enriched and depleted in magnetizable material.
  • the fine structure of the flow guide matrix has separating perforated fields designated as a whole and feed perforated fields ZL arranged therebetween in the direction of the main flow path z.
  • the pole body orifices 1 and the pole body wall parts 2 delimiting them are formed by a perforated plate-like fine structure with hollow-cone-shaped, projecting nozzles in the hole area.
  • the pole body wall parts 2 consist of ferromagnetic material, the remaining wall parts 3 of the perforated sheet-like fine structure made of non-magnetizable or diamagnetic or weakly paramagnetic material.
  • Another perforated plate-like fine structure for the feed perforated fields ZL has pairs of perforated plates 5 spaced plane-parallel to one another and arranged with their feed openings 4 congruent to the pole body orifices 1, the space 6 between the paired perforated plates 5, 5 serving as the feed zone for the particle-laden fluid flow A.
  • the perforated plates 3 are stacked in pairs, in particular mirror images of one another, so that the pole body openings 1 and the pole body wall parts 2 each lie on a common axis.
  • the field constriction of the magnetic field denoted as a whole by H, whose main flow direction points in the direction of the arrow fi, is generated schematically by the pole body designated as a whole by PK. Because of the local rotational symmetry, the field narrowing takes place even more strongly than shown in FIG. 1, namely in two dimensions.
  • the flow direction of the incoming particle-laden fluid stream A is shown schematically by broken lines.
  • paramagnetic particles The magnetic forces acting on paramagnetic particles are indicated by arrows Fm and cause a concentration of the paramagnetic particles in the core current flowing into the pole body orifices, while that remaining between the perforated plate 5 and the separating perforated field TL or the associated pole bodies PK and perforated plates 3
  • Partial stream d depleted of paramagnetic particles This partial stream d is referred to as the second branch stream and the branch stream p directed into the pole body orifices 1 is referred to as the first branch stream.
  • the magnetic forces see arrows Fm
  • the magnetic forces which coincide with the corresponding gradient field, act in the opposite direction, so that there is a depletion of diamagnetic particles in the core stream or first branch stream p.
  • the perforated plates 5 of the feed perforated fields ZL consist of non-magnetic or diamagnetic or weakly paramagnetic material. They are arranged at a distance a1 from one another and form the feed zone A1 between them.
  • the perforated plates 3 of the flow guide matrix designated as a whole by PK / 3, are likewise arranged at a distance from one another, which is designated by a2. This spacing gap forms the first collection chamber SK1 for the first branch flows p, which are designated M in the collected form.
  • the flow zone arranged between the perforated plate 5 and the flow guide matrix PK / 3 is a second collecting chamber SK2 for the fraction d (second branch flow) depleted of paramagnetic particles p, and the second branch flows give the total flow NM in the second collecting chamber SK2.
  • FIG. 1 shows a variant of the fine structure shown in FIG. 1, which does not work with attractive forces for paramagnetic particles, but with repulsive forces. It consists of two perforated plate pairs 3 ', 3' stacked one above the other, the particle-laden fluid flow A between the thin perforated plate pairs 5 ', 5' of non-magnetizable material is fed and the fraction d depleted of paramagnetic particles is discharged between the thicker perforated plates 3 ', 3' made of ferromagnetic material (collection chamber SK1), whereas the fraction enriched in paramagnetic particles is discharged inside the SK2 collection chamber.
  • the magnetic field lines are locally greatly diluted, which leads to repulsive forces on paramagnetic particles, which are correspondingly depleted in the core current d.
  • diamagnetic particles are enriched in the core stream.
  • the perforated plates 3 provided with the pole bodies PK or PK 'and the perforated plates 5 having the feed openings 4 can be combined to form modules and stacked to form a separating tube TR.
  • the separating pipe TR is slotted in segments to supply the incoming particle-laden fluid streams (fluid streams can in principle be understood not only as liquid streams but also as gas streams) and to discharge the magnetic and non-magnetic fractions.
  • the feed openings 4 and the polar body orifices 1 or nozzles are each one above the other in a hexagonal grid arrangement.
  • FIG 4 shows, for example, favorable dimensions for a single separating tube (in millimeters).
  • a large number of separation tubes of the type shown in FIG. 3 can be combined to form a separation canister, as is shown in perspective in FIG. 5 or in FIG. 6, which together with the solenoid surrounding the separation canister and the (not shown in more detail) Supply units forms the magnetic separator.
  • the particle-laden fluid stream is fed to the separating canister TK via the pipe socket 11 of a main feed line and fed to each separating pipe TR from three sides via a flow inlet plate 10 and the pipe spaces 20, while the non-magnetic fraction is discharged separately from one another via the other pipe spaces.
  • the intermediate plate 30 (flow guide plate) separates the two fractions in such a way that the channels leading the magnetic fraction end above and the channels leading the non-magnetic fraction below the intermediate plate 30.
  • the first and second main collecting lines 60 and 70 for discharging the two fractions are welded into the intermediate plate 30 and into the base plate 40 with their corresponding pipe connections.
  • the six packing elements 50 resulting from the hexagonal arrangement of the separating tubes TR can be used as a pipeline in a cascade connection, compare FIG. 8, the magnetic separator consisting of several separating canisters in the magnetic field of a solenoid S.
  • the cross section according to FIG. 7 shows the separating pipes TR arranged in a hexagonal grid within the separating canister, an individual separating pipe being shown in more detail.
  • Both the separating pipe TR shown in FIGS. 3 and 4 and the separating canister TK shown in FIGS. 5 to 7 with their main flow paths z can be regarded as separator containers in the sense of the invention. 1, 3 and 4.
  • the slots formed by the stacking in the direction z of the modules M01 and M02 (see FIG. 1) are formed by the radially-axially extending bulkheads 9 on the outer circumference 7 of the separating tube TR divided into three groups of slots: first slots 8.1 for supplying the fluid flow to the feed zones AO of the modules from a feed line.
  • the feed line function is performed by the line volumes vi, v 2 and vs, which have the shape of columns with a ring-sector-shaped cross section and are each delimited between two bulkhead walls 9 which follow one another in the circumferential direction.
  • the bulkhead walls 9 are arranged hexagonally, ie they lie on radii which span sectors with a sector angle of 60 ° between them.
  • the three line volumes vi, v 2 and v 3 are evenly distributed over the circumference of the separating tube. Between the line volumes v i and v 2 , the line volume v 4 is directly adjacent and communicating with or with the second slots 8.2 for discharging the first branch flows M collected in the first collecting chambers SK1 of the modules (FIG. 1).
  • the first branch streams are designated NM by definition, but this will still be discussed.
  • the dashed line indicates within the line volume V4 the exit of the first partial flows M collected in the respective modules. Seen in the clockwise direction, the line volume v 2 is followed by the line volume vs, followed by the line volume v 3 and then the line volume v ⁇ .
  • the line volumes v 5 and v 6 are arranged adjacent to and communicating with the third slots 8.3, that is, they serve as a collecting line for the second partial flows NM radially emerging from the respective modules, as indicated by the dashed flow line in the right part of FIG. 3 .
  • These manifolds vs and v 6 therefore communicate with the second manifolds SK2 (see FIG. 1).
  • the incoming particle-laden fluid stream A per hole 4 is divided into the partial streams d + p, each of which contains para- and diamagnetic particles, via the feed zone AO and the respective feed hole field ZL.
  • the main flow direction z and the main field direction of the high gradient magnetic field H coincide or run parallel to one another;
  • the local gradient fields H1 already mentioned are then generated by the polar bodies PK because the magnetic field lines preferably enter these ferromagnetic bodies, so that the constrictions and field line densifications shown in FIG. 1 result.
  • the first paramagnetic particle group as well as the partial stream enriched with it are denoted by p and the second diamagnetic particle group as well as the partial stream enriched with it are designated by d.
  • the first particle group p is assigned a first magnetic susceptibility ic1 and the second particle group d is assigned a second magnetic susceptibility K2 , which are different from one another and also with respect to the magnetic susceptibility KF of the fluid or carrier fluid, then one can use the local gradient fields H1 the polar body PK is different for each of the two groups of particles exert strong magnetic deflection forces due to different magnetic dipole moments.
  • the flow guide matrix PK / 3 is now formed by at least one separating hole field TL over the cross section of the separating region of pole body orifices 1 and associated ferromagnetic pole body wall parts 2 of a flow guide body.
  • the main magnetic flux H runs, as mentioned, in the axial direction 1.0 of the pole body orifices 1 and thus parallel to the main flow path or the main flow direction z.
  • the perforated feed plate ZL which acts as a flow guide body, divides the fluid stream A flowing in from the outer circumference of the separation region via feed zones vi, v 2 , V3 (compare (FIG. 3)) into the pole body orifices 1 and divides the partial streams p + d.
  • the outlet side communicates at least one first collecting chamber SK1.
  • the flow volume between the perforated feed plate ZL of the diamagnetic flow guide body and the separating perforated field TL of the pole body wall parts 3 serves as a second collecting chamber SK2.
  • the first collecting chamber SK1 is connected to a collecting line v 4 ( 3), and the second collecting chamber SK2 is connected to the other collecting line vs, v 6.
  • At least two collecting lines are then in the context of the union of a plurality of separation tubes TR according to FIG 3 to a separation canister TK ten bus lines V4 connected to the first main bus line 60 and the second bus lines v 5 , v 6 to the second main bus line 70 or communicate with these main lines.
  • the polar body orifices 1 and wall parts 3 of the respective separating perforated field TL are formed by a perforated plate-like fine structure with hollow-cone-shaped, projecting nozzles PK in the perforated area and the field line compression in the area of the nozzle orifices 1 local Gradient fields H1 result which exert attractive forces on paramagnetic particles flowing in the direction of the nozzle axis 1.0, see arrows F m , and repulsive forces on correspondingly flowing diamagnetic particles d, so that the core branch flow p entering paramagnetic through the nozzles PK or pole body Particles is enriched, on the other hand, the other or second branch stream d flowing past the nozzles PK is depleted of paramagnetic particles and enriched on diamagnetic particles.
  • the boundary edges 1.1 of the pole body or nozzle orifices 1 are, as shown, rounded, which is favorable in relation to the field line and the flow resistance and thus improves the degree of separation.
  • the feed openings 4 of the feed perforated plate ZL are each arranged coaxially with the pole body openings 1 of the separating perforated field TL.
  • a perforated sheet-like fine structure is provided for the pole body orifices 1 and the pole body wall parts 3 of the flow guide matrix PK / 3, each in pairs with a plane-parallel spaced apart (distance a2) and congruent arrangement of the two paired perforated sheets 3-3, the space between the paired perforated plates 3-3 serves as a collecting chamber SK1 of the first branch flows p and the space lying outside the perforated plates and adjacent to the feed perforated fields ZL serves as a second collecting chamber SK2 for the second branch flows d.
  • the space between the paired perforated plates 3-3 serves as a collecting chamber SK1 of the first branch flows p
  • the space lying outside the perforated plates and adjacent to the feed perforated fields ZL serves as a second collecting chamber SK2 for the second branch flows d.
  • the flow guide body for the feed perforated field ZL is also designed as a perforated plate-like fine structure, specifically with a spaced plane-parallel spacing (distance a1) and congruent arrangement of the two paired perforated plates 5-5, the space between the paired perforated plates 5-5. 5 serves as the feed zone AO.
  • the separation module is to be understood as the smallest, satisfactorily functioning basic unit M01, which is arranged axially several times in the context of a separation tube TR in the main flow direction z.
  • Each of these separating modules M01 consists of a perforated plate pair 3-3 for the flow guide matrix PK / 3 and a perforated plate 5 for the feed perforated fields ZL, which is arranged on both sides of this perforated plate pair at a distance a3 in mirror image.
  • These modules M01 are stacked at intervals a1 such that the feed-in zones AO are formed by the perforated plates 5 of the feed perforated fields ZL of the successive modules which are adjacent to one another.
  • the separation module M02 can also be regarded as the smallest module unit that repeats itself several times or repeatedly in the stacking direction, each consisting of a perforated plate pair 5-5 for the feed zones AO and a perforated plate arranged in mirror image at a3 distance on both sides of this perforated plate pair 5 for the TL perforated panels.
  • These modules M02 are stacked analogously to the modules M01 at intervals a2 such that the first collecting chambers SK1 are formed by the perforated plates 3-3 of the perforated panels TL of the successive modules which are adjacent to one another.
  • a separating tube TR preferably has a circular cross section, so that the perforated fields or perforated plates ZL, TL, as can be seen from FIG. 3, also have a circular base have crack.
  • the separation modules M01 and M02 are stacked one above the other in the direction z and mechanically fixed to each other to form the separation tube TR (corresponding screw or weld connections are not shown in detail), the separation modules being separated from the tube wall 7 on their outer circumference are surrounded, this tube wall 7 being provided with the slots 8.1, 8.2, 8.3, as already explained.
  • the pole body orifices 1 'and wall parts 3' of a separating perforated field TL are each formed by a perforated plate-like fine structure in such a way that the field line thinning in the perforated region results in local gradient fields H2 which repulsive to para-magnetic particles p flowing in the direction of the perforated axis 1.0 Forces and exert attractive forces on correspondingly flowing diamagnetic particles d, as symbolized by the arrows Frn, so that the core branch flow d 'flowing through the pole body orifices 1' is enriched in diamagnetic particles, whereas the one flowing past the pole body orifices 1 'is enriched Branch stream p is depleted in diamagnetic particles or enriched in paramagnetic particles.
  • a single separation tube TR is shown in FIG. 3 if it is provided with a suitable housing for supplying the particle-laden fluid streams A and for discharging the two fractions M (enriched in paramagnetic particles p) and NM (enriched in diamagnetic particles), already functional, but more for laboratory or experimental use.
  • a plurality of separating pipes TR are combined in an axially parallel arrangement to form a separating pipe field and together with a container 100 surrounding the separating pipe field, which has at least one common main feed line 11 on the top side and first and bottom side has second main manifolds 60, 70, is combined to form a separating canister TK.
  • FIGS. 5 to 7 are almost identical except for the fact that the main feed line 11 in FIG. 5 is connected centrally to the separating canister, but according to FIG. 6 is eccentric to its axis of rotation. 5 to 7, a high-performance solenoid or magnet MM is not shown; it goes without saying that such a high-performance magnet, arranged separating canister, can also be arranged around a single separating canister according to FIGS. 5 to 7, so that its field lines the multiple arrangement of the separating tubes TR inside the separating Push the canister TK through essentially in the axial direction.
  • the separating pipes TR are arranged in a hexagonal grid and that the gusset alleys remaining free between these separating pipes are divided by the bulkhead walls 9 into feed or collecting pipes 20, the feed pipes being separated by the pipe volumes V1 to v 3 are formed and the first collecting lines through the line volumes v 4 and the second collecting lines through the line volumes v 5 , V6 (cf. FIG. 3).
  • the loaded fluid stream A is fed through the cover-side main feed line 11 of a prechamber 12 of the separating canister TK and from there via feed openings 10.1 provided in a correspondingly perforated flow guide plate 10, the outline of which corresponds to the cross section of the gusset spaces 20 between the separating pipes TR and bulkheads 9, all feed lines vi, v 2 , V3 fed in parallel.
  • a correspondingly perforated flow guide plate 10 the outline of which corresponds to the cross section of the gusset spaces 20 between the separating pipes TR and bulkheads 9, all feed lines vi, v 2 , V3 fed in parallel.
  • two further, axially adjacent downstream chambers 13, 14 are provided (FIG.
  • the outer support structure for the separating canister TK according to FIG 5 to 7 has been omitted for reasons of clarity.
  • the particle-laden, partial fluid stream A1 to be prepared is fed to the first canister TK1 as a mixture of the fresh fluid stream A and a fluid stream M2 + NM3 conveyed back from the outlet of the cascade.
  • the collected second branch flows NM1 from this first canister TK1 are fed via line nm12 from the pump P12 as feed fluid stream A2 to the downstream second canister TK2.
  • the collected first branch flows M1 from the first canister TK1, on the other hand, are fed to the third canister TK3 via line m13 through the pump P13 as feed fluid flow A3.
  • the collected second branch streams NM2 from the second canister TK2 and the collected first partial streams M3 from the third canister TK3 are fed via the lines nm2 or m2 as waste stream NM or as useful stream M to their utilization.
  • the collected first branch streams M2 from the second canister TK2 and the collected second branch currents NM3 from the third canister TK3 are brought together via the two lines m2 and nm3 and fed into the return line nmm31, and this feedback current is fed into the line 11 by the pump P31 as a mixed flow M2 + NM3 and mixed into the raw feed current A.
  • the first branch flows p (FIG. 1) or d (FIG. 2) flowing through the pole body orifices 1 or 1 'and enriched on the first group of particles become first collection chambers which communicate with the pole body orifices 1 and 1' on the outlet side SK1 forwarded.
  • the second branch flows d (FIG. 1) and p (FIG. 2), deflected by the polar body orifices 1 and 1 'and enriched on the second group of particles, are each fed to second collection chambers SK2, which each contain the flow volume in the separation region between the Include feed hole field ZL and the separation hole field TL without the first branch flows p (FIG. 1) or d (FIG. 2) entering the pole body orifices 1 or 1 '.
  • the first and second branch flows M and NM brought together in the first and second collecting chambers SK1, SK2 are fed to the at least one first and the at least one second collecting line v 4 and vs, v ⁇ , respectively.
  • the method according to the invention and the device for its implementation are suitable, inter alia, for kaolin purification, ore processing, concentration of gold, uranium and cobalt from tailings heaps, pyrite separation from coal (also siderite and calcite), for coal cleaning during liquefaction, for the recovery of catalyst material in hydrogenation plants, for the recovery of steel particles from waste water and process dusts in steel plants, to name just a few applications.
  • perforated plates 3, 5, 3 ', 5' for the separating perforated fields TL and feed perforated fields ZL is possible with very good precision through material processing using laser beams.

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Disintegrating Or Milling (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur kontinuierlichen Separation magnetisierbarer paramagnetischer und/oder diamagnetischer Partikel aus einem mit den Partikeln beladenen Fluidstrom, der durch eine von einem Hochgradienten-Magnetfeld durchsetzte Trennregion längs eines Strömungshauptpfades geleitet wird, gemäß Oberbegriff des Anspruchs 1.The invention relates to a method for the continuous separation of magnetizable paramagnetic and / or diamagnetic particles from a fluid stream loaded with the particles, which is passed through a separation region penetrated by a high gradient magnetic field along a main flow path, according to the preamble of claim 1.

Es ist ein nicht gattungsgemäßes Verfahren, das überwiegend zur Kaolin-Reinigung eingesetzt wird, bekannt, welches nicht kontinuierlich, sondern zyklisch mit Hochgradienten-Magnetseparatoren arbeitet, wobei die magnetisierbaren Partikel an der Stahlwollefüllung angelagert werden und letztere deshalb zyklisch gespült werden muß. Die Aufarbeitung von Substanzen mit hohem Anteil magnetisierbarer Partikel wird wegen der kurzen Zykluszeiten unwirtschaftlich.A non-generic method, which is mainly used for kaolin cleaning, is known, which does not work continuously, but cyclically with high gradient magnetic separators, the magnetizable particles being deposited on the steel wool filling and the latter therefore having to be rinsed cyclically. The processing of substances with a high proportion of magnetizable particles becomes uneconomical due to the short cycle times.

Es sind weiterhin nach einem nicht gattungsgemäßen Verfahren, d.h. diskontinuierlich, arbeitende Hochgradienten-Magnetscheider in Karussellbauweise bekannt, welche eine aufwendige Spulenkonstruktion haben und das vom Magnetfeld erfüllte Volumen relativ schlecht ausnutzen; außerdem müssen große Massen durch die Magnetspulen bewegt werden.Furthermore, according to a non-generic method, i.e. discontinuous, working high gradient magnetic separators in carousel construction known, which have a complex coil construction and use the volume filled by the magnetic field relatively poorly; In addition, large masses have to be moved through the magnetic coils.

Schließlich sind auch nicht gattungsgemäß nach dem OGMS-Verfahren arbeitende Magnetscheider (OGMS = Open Gradient Magnetic Separation), welche kontinuierlich arbeiten und bei denen die Feldgradienten von gegensinnig erregten supraleitenden Spulen erzeugt werden. Diese sind aber aufgrund der um etwa zwei Größenordnungen kleineren Kraftdichten im Vergleich zu einem gattungsgemäßen Verfahren nur zu Separation größerer, stark paramagnetischer Partikel geeignet.Finally, magnetic separators (OGMS = Open Gradient Magnetic Separation) which do not work according to the generic type (OGMS), which work continuously and in which the field gradients are generated by oppositely excited superconducting coils. However, due to the force densities that are about two orders of magnitude smaller than in a generic method, they are only suitable for separating larger, strongly paramagnetic particles.

Durch die US-PS 4 261 815 ist ein gattungsgemäßes Verfahren bekannt, welches zur kontinuierlichen Magnetscheidung mit hohen Feldgradienten arbeitet. Die zu seiner Durchführung angegebene Einrichtung eines Magnetscheiders besteht aus einer ersten Matrix von senkrecht zum Magnetfeld stehenden Drähten zur Feldgradienten-Erzeugung und Partikelablenkung und einer zweiten Gitter-Ma- trix zur Separation der in Drahtrichtung fließenden Partikelströme. Erste und zweite Matrix bilden die Strömungsleit-Matrix, wobei das Hauptproblem bei dieser bekannten Einrichtung in der schwierigen Fertigung der achsparallel angeordneten Vielzahl von dünnen Drähten, deren Durchmesser z.B. 0,2 mm beträgt und deren Abstände voneinander z.B. 2 mm betragen, liegt. Das Hochleistungs -Magnetfeld durchsetzt den rohrförmigen Magnetscheider in achsquerer Richtung, dessen Gehäuse demgemäß aus nicht magnetischem Material besteht. Aufgrund der diffizilen Anordnung in seinem Inneren ist ein mit einem solchen Magnetscheider arbeitendes Verfahren im kontinuierlichen Betrieb relativ schmutz-und demgemäß störanfällig.A generic method is known from US Pat. No. 4,261,815, which works for continuous magnetic separation with high field gradients. The device of a magnetic separator specified for its implementation consists of a first matrix of wires perpendicular to the magnetic field for generating field gradients and particle deflection and a second grid matrix for separating the particle streams flowing in the wire direction. The first and second matrix form the flow guide matrix, the main problem with this known device in the difficult manufacture of the plurality of thin wires arranged parallel to the axis, the diameter of which is e.g. Is 0.2 mm and their distances from each other e.g. Amount to 2 mm. The high-performance magnetic field passes through the tubular magnetic separator in the transverse direction, the housing of which is accordingly made of non-magnetic material. Due to the difficult arrangement in its interior, a method operating with such a magnetic separator is relatively dirt-prone and therefore susceptible to failure in continuous operation.

Eine zweite Variante einer Strömungsleit-Matrix für das Abscheideverfahren nach der genannten US-PS ist veröffentlicht in der Zeitschrift "IEEE Trans. Magn. MAG 19, 2127 (1983) und besteht ebenfalls aus einer Drahtgittermatrix, wobei senkrecht zur Drahtrichtung das Magnetfeld angelegt wird und der Partikelstrom in Drahtrichtung oder achsparallel dazu fließt. Bei dieser zweiten Variante ist die Separation der Partikel auch über repulsive magnetische Kräfte erwähnt. Der Bereich attraktiver Kräfte wird durch Platten aus nicht magnetisierbarem Material abgedeckt. Auf dieses im Labormaßstab erprobte System treffen die im bezug auf die erste Variante nach der genannten US-PS erwähnten Probleme sinngemäß zu.A second variant of a flow guide matrix for the deposition process according to the aforementioned US PS is published in the magazine "IEEE Trans. Magn. MAG 19, 2127 (1983) and also consists of a wire grid matrix, the magnetic field being applied perpendicular to the wire direction and In this second variant, the separation of the particles is also mentioned by means of repulsive magnetic forces. The range of attractive forces is covered by plates made of non-magnetizable material. This system, which has been tried and tested on a laboratory scale, meets the requirements of the first variant according to the mentioned US-PS problems mentioned analogously.

Ausgehend von dem gattungsgemäßen Verfahren, liegt der Erfindung die Aufgabe zugrunde, dieses so auszugestalten, daß das Problem der kontinuerlichen Aufkonzentrierung magnetisierbarer Partikel im Kräftebereich der Hochgradienten-Magnetseparatoren auf robustere und weniger zu Verstopfungen neigende Weise und deshalb insgesamt auch mit besserem Wirkungsgrad verwirklicht werden kann.Proceeding from the generic method, the object of the invention is to design it in such a way that the problem of the continuous concentration of magnetizable particles in the range of forces of the high gradient magnetic separators can be realized in a more robust and less prone to clogging manner and therefore overall with a better efficiency.

Erfindungsgemäß wird die gestellte Aufgabe bei einem gattungsgemäßen Verfahren nach Anspruch 1 durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.According to the invention, the object is achieved in a generic method according to claim 1 by the features specified in the characterizing part of claim 1.

Die mit diesem Verfahren erzielbaren Vorteile sind vor allem darin zu sehen, daß zu seiner Verwirklichung für die Lochfelder relativ robuste Lochplatten Verwendung finden können. Die Einleitung des Hochgradienten-Magnetfeldes mit seinen Kraftlinien gleichgerichtet zur Richtung des Hauptströmungspfades bzw. in Achsrichtung der Polkörper-Mündungen ermöglicht die Verwendung von zylindrischen Hochleistungs-Solenoidspulen mit einer äusserst günstigen Feldeinleitung in das Innere der Trennregion. Das Verfahren ist kontinuierlich mit großen Durchsatz und erheblich reduzierter Verstopfungsgefahr durchführbar.The advantages that can be achieved with this method can be seen primarily in the fact that relatively robust perforated plates can be used for its implementation for the perforated fields. The introduction of the high gradient magnetic field with its lines of force aligned with the direction of the main flow path or in the axial direction of the polar body orifices enables the use of cylindrical high-performance solenoid coils with an extremely favorable field introduction into the interior of the separation region. The process can be carried out continuously with high throughput and significantly reduced risk of clogging.

Gegenstand der Erfindung ist auch eine Einrichtung zur Durchführung des Verfahrens nach Anspruch 1, wie sie im Oberbegriff des Anspruchs 2 umschrieben und durch die erwähnte US-PS 4 261 815 prinzipiell bekannt ist. Mit dieser im Gattungsbegriff des Anspruchs 1 definierten Einrichtung wird die Aufgabe, eine besonders vorteilhafte, verfahrens- und herstellungs-freundliche sowie robuste Einrichtung zur Durchführung des Verfahrens nach der Erfindung zu schaffen, erfindungsgemäß durch die im Kennzeichen des Anspruchs 2 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen des Gegenstandes des Anspruchs 2 sind in den Unteransprüchen 3 bis 20 angegeben.The invention also relates to a device for carrying out the method according to claim 1, as described in the preamble of claim 2 and known in principle by the aforementioned US Pat. No. 4,261,815. With this device defined in the preamble of claim 1, the object of creating a particularly advantageous, process- and production-friendly and robust device for carrying out the method according to the invention is achieved according to the invention by the features specified in the characterizing part of claim 2. Advantageous developments of the subject matter of claim 2 are specified in subclaims 3 to 20.

Im folgenden werden anhand der Zeichnung, in der mehrere Ausführungsbeispiele dargestellt sind, das Verfahren nach der Erfindung und die Einrichtung zu seiner Durchführung noch näher erläutert.The method according to the invention and the device for carrying it out are explained in more detail below with reference to the drawing, in which several exemplary embodiments are shown.

Darin zeigt in zum Teil vereinfachter, schematischer Darstellung:

  • Fig. 1 einen vergrößerten Ausschnitt der im Innern eines Trennrohres angeordneten Trennstruktur mit einer aus Polkörper-Mündungen, Polkörper-Wandteilen sowie verbindenden Lochblech-Wandteilen bestehenden Strömungsleit-Matrix und mit korrespondierenden Zufuhr-Lochfeldern;
  • Fig. 2 ein zweites Ausführungsbeispiel in einer Fig. 1 entsprechenden Darstellungsweise, wobei die Polkörper-Mündungen nicht als Düsenkörper, sondern als Öffnungen in ebenen Lochblechen ausgeführt sind;
  • Fig. 3 perspektivisch und in verkürzter Darstellung ein Trennrohr, welches eine Trennstruktur nach Fig.1 aufweist;
  • Fig. 4 einen Querschnitt durch das Trennrohr nach Fig.3 mit eingetragenen Maßangaben zur Verdeutlichung der Größenverhältnisse;
  • Fig. 5 ein aus einer Vielzahl von Trennrohren nach Fig. 3 und 4 aufgebauten Trenn-Kanister, perspektivisch, mit zum Teil weggebrochenen Wandteilen;
  • Fig. 6 in entsprechender Darstellung zu Fig. 5, jedoch vergrößert eine geringfügig modifizierte Ausführung des Trenn-Kanisters nach Fig. 5;
  • Fig. 7 einen vergrößerten Querschnitt durch den Trenn-Kanister nach Fig. 6 und
  • Fig. 8 eine Kaskadenschaltung für kontinuierlich arbeitende Hochgradienten-Magnetscheider unter Verwendung dreier unterschiedlich langer Trenn- Kanister nach Fig. 5 bzw. 6.
It shows in a partially simplified, schematic representation:
  • 1 shows an enlarged section of the separating structure arranged in the interior of a separating tube with a flow guide matrix consisting of pole body openings, pole body wall parts and connecting perforated plate wall parts and with corresponding feed perforated fields;
  • FIG. 2 shows a second exemplary embodiment in a representation corresponding to FIG. 1, the pole body orifices not being designed as a nozzle body but as openings in flat perforated plates;
  • 3 is a perspective and shortened representation of a separating tube which has a separating structure according to FIG. 1;
  • 4 shows a cross section through the separating tube according to FIG. 3 with entered dimensions to clarify the size relationships;
  • 5 shows a separating canister constructed from a plurality of separating pipes according to FIGS. 3 and 4, in perspective, with wall parts broken away in part;
  • FIG. 6 in a representation corresponding to FIG. 5, but enlarged a slightly modified embodiment of the separating canister according to FIG. 5;
  • Fig. 7 is an enlarged cross section through the separating canister according to Fig. 6 and
  • 8 shows a cascade circuit for continuously operating high gradient magnetic separators using three separating canisters of different lengths according to FIGS. 5 and 6.

Die in Figuren 1 bis 8 dargestellte Einrichtung verwirklicht ein Verfahren nach Anspruch 1. Kernstück dieser Einrichtung eines kontinuierlichen Magnetscheiders ist eine lochblechartige Feinstruktur, die sowohl zur Ausbildung der zur Separation erforderlichen Magnetfeldgradienten dient, als auch die an magnetisierbarem Material angereicherten und verarmten Teilströme getrennt führt.The device shown in Figures 1 to 8 realizes a method according to claim 1. The core of this device of a continuous magnetic separator is a perforated plate-like fine structure, which serves both for the formation of the magnetic field gradients required for the separation and also leads the partial currents enriched and depleted in magnetizable material.

Die Feinstruktur der Strömungsleit-Matrix weist gemäß Fig. 1 als Ganzes mit TL bezeichnete Trenn-Lochfelder auf und in Richtung des Strömungshauptpfades z dazwischen angeordnete Zufuhr-Lochfelder ZL. Die Polkörper Mündungen 1 und die diese begrenzenden Polkörper-Wandteile 2 werden von einer lochblechartigen Feinstruktur mit hohlkegelförmigen, vorspringenden Düsen im Lochbereich gebildet. Die Polkörper-Wandteile 2 bestehen aus ferromagnetischem Material, die übrigen Wandteile 3 der lochblechartigen Feinstruktur aus nicht magnetisierbarem bzw. diamagnetischem oder schwach paramagnetischem Material. Eine weitere lochblechartige Feinstruktur für die Zufuhr-Loch- felder ZL weist jeweils zueinander planparallel beabstandete und mit ihren Einspeiseöffnungen 4 kongruent zu den Polkörper-Mündungen 1 angeordnete Paare von Lochblechen 5 auf, wobei der Zwischenraum 6 zwischen den gepaarten Lochblechen 5,5 als Einspeisezone dient für den partikelbeladenen Fluidstrom A.1, the fine structure of the flow guide matrix has separating perforated fields designated as a whole and feed perforated fields ZL arranged therebetween in the direction of the main flow path z. The pole body orifices 1 and the pole body wall parts 2 delimiting them are formed by a perforated plate-like fine structure with hollow-cone-shaped, projecting nozzles in the hole area. The pole body wall parts 2 consist of ferromagnetic material, the remaining wall parts 3 of the perforated sheet-like fine structure made of non-magnetizable or diamagnetic or weakly paramagnetic material. Another perforated plate-like fine structure for the feed perforated fields ZL has pairs of perforated plates 5 spaced plane-parallel to one another and arranged with their feed openings 4 congruent to the pole body orifices 1, the space 6 between the paired perforated plates 5, 5 serving as the feed zone for the particle-laden fluid flow A.

Auch bei der Strömungsleit-Matrix aus den Trenn-Lochfeldern TL sind die Lochbleche 3 paarweise, insbesondere spiegelbildlich zueinander, so übereinander gestapelt, daß die Polkörper-Mündungen 1 und die Polkörper-Wandteile 2 jeweils auf einer gemeinsamen Achse liegen. Eingezeichnet ist bei der linken oberen Polkörper-Anordnung schematisch die durch die als Ganzes mit PK bezeichneten Polkörper erzeugte Feldverengung des als Ganzes mit H bezeichneten magnetischen Feldes, dessen Hauptflußrichtung in Richtung des Pfeiles fi weist. Wegen der lokalen Rotationssymmetrie erfolgt die Feldverengung sogar noch stärker als in Fig. 1 dargestellt, und zwar zweidimensional. Rechts neben dem schematisch dargestellten Feldverlauf ist schematisch die Flußrichtung des ankommenden partikelbeladenen Fluidstromes A durch unterbrochene Linien dargestellt. Die auf paramagnetische Partikel wirkenden magnetischen Kräfte sind durch Pfeile Fm angedeutet und bewirken eine Konzentration der paramagnetischen Partikel im in die Polkörper-Mündungen fließenden Kernstrom, während der zwischen dem Lochblech 5 und dem Trenn-Lochfeld TL bzw. den zugehörigen Polkörpern PK und Lochblechen 3 verbleibende Teilstrom d an paramagnetischen Partikeln verarmt. Dieser Teilstrom d wird als zweiter Zweigstrom und der in die Polkörper Mündungen 1 gelenkte Zweigstrom p als erster Zweigstrom bezeichnet. Für diamagnetische Partikel wirken die magnetischen Kräfte (siehe Pfeile Fm), welche mit dem entsprechenden Gradientenfeld zusammenfallen, in entgegengesetzter Richtung, so daß sich eine Verarmung diamagnetischer Partikel im Kernstrom bzw. ersten Zweigstrom p ergibt.Also in the flow guide matrix from the separating perforated fields TL, the perforated plates 3 are stacked in pairs, in particular mirror images of one another, so that the pole body openings 1 and the pole body wall parts 2 each lie on a common axis. In the left upper pole body arrangement, the field constriction of the magnetic field, denoted as a whole by H, whose main flow direction points in the direction of the arrow fi, is generated schematically by the pole body designated as a whole by PK. Because of the local rotational symmetry, the field narrowing takes place even more strongly than shown in FIG. 1, namely in two dimensions. To the right of the schematically represented field course, the flow direction of the incoming particle-laden fluid stream A is shown schematically by broken lines. The magnetic forces acting on paramagnetic particles are indicated by arrows Fm and cause a concentration of the paramagnetic particles in the core current flowing into the pole body orifices, while that remaining between the perforated plate 5 and the separating perforated field TL or the associated pole bodies PK and perforated plates 3 Partial stream d depleted of paramagnetic particles. This partial stream d is referred to as the second branch stream and the branch stream p directed into the pole body orifices 1 is referred to as the first branch stream. For diamagnetic particles, the magnetic forces (see arrows Fm), which coincide with the corresponding gradient field, act in the opposite direction, so that there is a depletion of diamagnetic particles in the core stream or first branch stream p.

Die Lochbleche 5 der Zufuhr-Lochfelder ZL bestehen ebenso wie die Lochblech-Wandteile 3 aus nicht magnetischem bzw. diamagnetischem oder schwach paramagnetischem Material. Sie sind mit Abstand a1 zueinander angeordnet und bilden zwischen sich die Einspeisezone A1. Die Lochbleche 3 der als Ganzes mit PK/3 bezeichneten Strömungsleit-Matrix sind ebenfalls mit Abstand zueinander angeordnet, der mit a2 bezeichnet ist. Dieser Abstandszwischenraum bildet die erste Sammelkammer SK1 für die ersten Zweigströme p, die in gesammelter Form mit M bezeichnet sind. Die zwischen dem Lochblech 5 und der Strömungsleit Matrix PK/3 angeordnete Strömungszone ist eine zweite Sammelkammer SK2 für die an paramagnetischen Partikeln p verarmte Fraktion d (zweiter Zweigstrom), und die zweiten Zweigströme ergeben den Gesamtstrom NM in der zweiten Sammelkammer SK2.The perforated plates 5 of the feed perforated fields ZL, like the perforated plate wall parts 3, consist of non-magnetic or diamagnetic or weakly paramagnetic material. They are arranged at a distance a1 from one another and form the feed zone A1 between them. The perforated plates 3 of the flow guide matrix, designated as a whole by PK / 3, are likewise arranged at a distance from one another, which is designated by a2. This spacing gap forms the first collection chamber SK1 for the first branch flows p, which are designated M in the collected form. The flow zone arranged between the perforated plate 5 and the flow guide matrix PK / 3 is a second collecting chamber SK2 for the fraction d (second branch flow) depleted of paramagnetic particles p, and the second branch flows give the total flow NM in the second collecting chamber SK2.

Eine Variante der in Fig. 1 gezeigten Feinstruktur, die nicht mit attraktiven Kräften für paramagnetische Partikel, sondern mit repulsiven Kräften arbeitet, zeigt Fig. 2. Sie besteht aus je zwei übereinander gestapelten Lochblechpaaren 3', 3', wobei der partikelbeladene Fluidstrom A zwischen den dünnen Lochblechpaaren 5', 5' aus nicht magnetisierbarem Material zugeführt wird und die an paramagnetischen Partikeln verarmte Fraktion d zwischen den aus ferromagnetischem Material gefertigten stärkeren Lochblechen 3', 3' (Sammelkammer SK1) abgeführt wird, dagegen die an paramagnetischen Partikeln angereicherte Fraktion innerhalb der Sammelkammer SK2.1 shows a variant of the fine structure shown in FIG. 1, which does not work with attractive forces for paramagnetic particles, but with repulsive forces. It consists of two perforated plate pairs 3 ', 3' stacked one above the other, the particle-laden fluid flow A between the thin perforated plate pairs 5 ', 5' of non-magnetizable material is fed and the fraction d depleted of paramagnetic particles is discharged between the thicker perforated plates 3 ', 3' made of ferromagnetic material (collection chamber SK1), whereas the fraction enriched in paramagnetic particles is discharged inside the SK2 collection chamber.

Zur Separation werden hierbei die magnetischen Feldlinien lokal stark verdünnt, was zu repulsiven Kräften auf paramagnetische Partikel führt, die im Kernstrom d entsprechend verarmt werden. Diamagnetische Partikel dagegen werden im Kernstrom angereichert. Der Vorteil dieser Trennstruktur ist die noch geringere Verstopfungsgefahr, falls ein gewisser Anteil an ferro- oder stark paramagnetischen Partikeln im ankommenden Fluidstrom A vorhanden ist. Außerdem ist diese Trennstruktur einfacher herzustellen.For separation, the magnetic field lines are locally greatly diluted, which leads to repulsive forces on paramagnetic particles, which are correspondingly depleted in the core current d. In contrast, diamagnetic particles are enriched in the core stream. The advantage of this separation structure is the even lower risk of clogging if a certain proportion of ferro- or strongly paramagneti is present in the incoming fluid stream A. This separation structure is also easier to manufacture.

Gemäß FIG 3 lassen sich die mit den Polkörpern PK oder PK' versehenen Lochbleche 3 und die die Einspeiseöffnungen 4 aufweisenden Lochbleche 5 zu Modulen zusammenfassen und zu einem Trennrohr TR stapeln. Dabei wird das Trennrohr TR segmentweise geschlitzt zur Zufuhr der ankommenden partikelbeladenen Fluidströme (unter Fluidströmen können grundsätzlich nicht nur Flüssigkeitsströme, sondern auch Gasströme verstanden werden) und zur Ableitung der magnetischen und der nichtmagnetischen Fraktionen. Die Einspeisöffnungen 4 und die Polkörper-Mündungen 1 bzw. Düsen befinden sich jeweils übereinander in hexagonaler Gitteranordnung.According to FIG. 3, the perforated plates 3 provided with the pole bodies PK or PK 'and the perforated plates 5 having the feed openings 4 can be combined to form modules and stacked to form a separating tube TR. The separating pipe TR is slotted in segments to supply the incoming particle-laden fluid streams (fluid streams can in principle be understood not only as liquid streams but also as gas streams) and to discharge the magnetic and non-magnetic fractions. The feed openings 4 and the polar body orifices 1 or nozzles are each one above the other in a hexagonal grid arrangement.

FIG 4 vermittelt beispielsweise günstige Abmessungen für ein einzelnes Trennrohr (in Millimeter).FIG 4 shows, for example, favorable dimensions for a single separating tube (in millimeters).

Eine Vielzahl von Trennrohren der in FIG 3 gezeigten Art lassen sich zu einem Trenn-Kanister zusammenfassen, wie er in FIG 5 bzw. in FIG 6 perspektivisch dargestellt ist, der zusammen mit dem den Trenn-Kanister umgebenden Solenoid und den (nicht näher dargestellten) Versorgungseinheiten den Magnetseparator bildet.A large number of separation tubes of the type shown in FIG. 3 can be combined to form a separation canister, as is shown in perspective in FIG. 5 or in FIG. 6, which together with the solenoid surrounding the separation canister and the (not shown in more detail) Supply units forms the magnetic separator.

Gemäß FIG 5 wird der partikelbeladene Fluidstrom über den Rohrstutzen 11 einer Haupt-Einspeiseleitung dem Trennkanister TK zugeführt und über ein Strömungseinleitblech 10 und die Rohrzwischenräume 20 jedem Trennrohr TR von drei Seiten zugeleitet, während die nicht magnetische Fraktion über die übrigen Rohrzwischenräume getrennt voneinander abgeleitet wird. Die Zwischenplatte 30 (Strömungsausleitblech) trennt die beiden Fraktionen auf die Weise, daß die die magnetische Fraktion führenden Kanäle oberhalb und die die nicht magnetische Fraktion führenden Kanäle unterhalb der Zwischenplatte 30 enden. Die erste und die zweite Haupt-Sammelleitung 60 bzw. 70 zur Ableitung der beiden Fraktionen sind mit ihren entsprechenden Rohrstutzen in die Zwischenplatte 30 bzw. in die Grundplatte 40 eingeschweißt.According to FIG. 5, the particle-laden fluid stream is fed to the separating canister TK via the pipe socket 11 of a main feed line and fed to each separating pipe TR from three sides via a flow inlet plate 10 and the pipe spaces 20, while the non-magnetic fraction is discharged separately from one another via the other pipe spaces. The intermediate plate 30 (flow guide plate) separates the two fractions in such a way that the channels leading the magnetic fraction end above and the channels leading the non-magnetic fraction below the intermediate plate 30. The first and second main collecting lines 60 and 70 for discharging the two fractions are welded into the intermediate plate 30 and into the base plate 40 with their corresponding pipe connections.

Die sich aus der hexagonalen Anordnung der Trennrohre TR ergebenden sechs Füllkörper 50 können als Rohrleitung bei einer Kaskadenschaltung verwendet werden, vergleiche FIG 8, wobei der Magnetseparator aus mehreren Trenn-Kanistern im Magnetfeld eines Solenoids S besteht.The six packing elements 50 resulting from the hexagonal arrangement of the separating tubes TR can be used as a pipeline in a cascade connection, compare FIG. 8, the magnetic separator consisting of several separating canisters in the magnetic field of a solenoid S.

Der Querschnitt nach FIG 7 zeigt die in einem hexagonalen Raster angeordneten Trennrohre TR innerhalb des Trenn-Kanisters, wobei ein einzelnes Trennrohr detaillierter dargestellt ist.The cross section according to FIG. 7 shows the separating pipes TR arranged in a hexagonal grid within the separating canister, an individual separating pipe being shown in more detail.

Als Separator-Behälter im Sinne der Erfindung können sowohl das in FIG 3 und 4 dargestellte Trennrohr TR als auch der in FIG 5 bis 7 dargestellte Trennkanister TK mit ihren Strömungshauptpfaden z aufgefaßt werden. Zunächst im einzelnen zum Ausführungsbeispiel nach FIG 1, 3 und 4. Die durch die Stapelung in Richtung z der Module M01 bzw. M02 (vergleiche FIG 1) gebilde ten Schlitze werden durch die am Außenumfang 7 des Trennrohres TR angebrachten radial-axial verlaufenden Schottwände 9 in drei Gruppen von Schlitzen unterteilt: erste Schlitze 8.1 zur Zufuhr des Fluidstromes zu den Einspeisezonen AO der Module von einer Einspeiseleitung. Die Einspeiseleitungsfunktion übernehmen hierbei die Leitungsvolumina vi, v2 und vs, welche die Gestalt von Säulen mit ringsektorförmigem Querschnitt haben und jeweils zwischen zwei in Umfangsrichtung aufeinanderfolgenden Schottwänden 9 begrenzt sind. Im dargestellten Ausführungsbeispiel sind die Schottwände 9 hexagonal angeordnet, d.h. sie liegen auf Radien, die zwischen sich jeweils Sektoren mit einem Sektorwinkel von 60° aufspannen. Die drei Leitungsvolumina vi, v2 und v3 sind gleichmäßsig über den Umfang des Trennrohres verteilt. Zwischen den Leitungsvolumina vi und v2 befindet sich das Leitungsvolumen v4 unmittelbar anliegend und kommunizierend zu bzw. mit den zweiten Schlitzen 8.2 zur Abfuhr der in den ersten Sammelkammern SK1 der Module (FIG 1) gesammelten ersten Zweigströme M. Im Falle des zweiten Ausführungsbeispiels nach FIG 2 sind die ersten Zweigströme definitionsgemäß mit NM bezeichnet, worauf aber noch eingegangen wird. Durch die gestrichelte Linie ist innerhalb des Leitungsvolumens V4 der Austritt der in den jeweiligen Modulen gesammelten ersten Teilströme M angedeutet. In Uhrzeigerrichtung gesehen folgt auf das Leitungsvolumen v2 das Leitungsvolumen vs, darauf das Leitungsvolumen v3 und darauf wiederum das Leitungsvolumen vε. Die Leitungsvolumina v5 und v6 sind anliegend zu und kommunizierend mit den dritten Schlitzen 8.3 angeordnet, d.h., sie dienen als Sammelleitung für die aus den jeweiligen Modulen radial austretenden gesammelten zweiten Teilströmen NM, wie durch die gestrichelte Strömungslinie im rechten Teil der FIG 3 angedeutet. Diese Sammelleitungen vs und v6 kommunizieren mithin mit den zweiten Sammelkammern SK2 (vergleiche FIG 1).Both the separating pipe TR shown in FIGS. 3 and 4 and the separating canister TK shown in FIGS. 5 to 7 with their main flow paths z can be regarded as separator containers in the sense of the invention. 1, 3 and 4. The slots formed by the stacking in the direction z of the modules M01 and M02 (see FIG. 1) are formed by the radially-axially extending bulkheads 9 on the outer circumference 7 of the separating tube TR divided into three groups of slots: first slots 8.1 for supplying the fluid flow to the feed zones AO of the modules from a feed line. The feed line function is performed by the line volumes vi, v 2 and vs, which have the shape of columns with a ring-sector-shaped cross section and are each delimited between two bulkhead walls 9 which follow one another in the circumferential direction. In the exemplary embodiment shown, the bulkhead walls 9 are arranged hexagonally, ie they lie on radii which span sectors with a sector angle of 60 ° between them. The three line volumes vi, v 2 and v 3 are evenly distributed over the circumference of the separating tube. Between the line volumes v i and v 2 , the line volume v 4 is directly adjacent and communicating with or with the second slots 8.2 for discharging the first branch flows M collected in the first collecting chambers SK1 of the modules (FIG. 1). In the case of the second exemplary embodiment According to FIG. 2, the first branch streams are designated NM by definition, but this will still be discussed. The dashed line indicates within the line volume V4 the exit of the first partial flows M collected in the respective modules. Seen in the clockwise direction, the line volume v 2 is followed by the line volume vs, followed by the line volume v 3 and then the line volume vε. The line volumes v 5 and v 6 are arranged adjacent to and communicating with the third slots 8.3, that is, they serve as a collecting line for the second partial flows NM radially emerging from the respective modules, as indicated by the dashed flow line in the right part of FIG. 3 . These manifolds vs and v 6 therefore communicate with the second manifolds SK2 (see FIG. 1).

Zurückkommend auf die Detaildarstellung nach FIG 1 ist erkennbar, daß über die Einspeisezone AO und das jeweilige Zufuhr-Lochfeld ZL der ankommende partikelbeladene Fluidstrom A pro Loch 4 in die Partialströme d + p jeweils unterteilt wird, welche jeweils para- und diamagnetische Partikel enthalten. Die Hauptströmungsrichtung z und die Hauptfeldrichtung des Hochgradienten-Magnetfeldes H fallen zusammen bzw. laufen achsparallel zueinander; durch die Polkörper PK werden dann die schon erwähnten lokalen Gradientenfelder H1 erzeugt, weil die magnetischen Feldlinien bevorzugt in diese ferromagnetischen Körper eintreten, so daß sich die in FIG 1 dargestellten Einschnürungen und Feldlinien-Verdichtungen ergeben. Der Einfachheit halber sei für die folgenden Betrachtungen die erste, paramagnetische Partikelgruppe ebenso wie der mit ihr angereicherte Teilstrom mit p und die zweite diamagnetische Partikelgruppe ebenso wie der mit ihr angereicherte Teilstrom mit d bezeichnet. Ordnet man der ersten Partikelgruppe p eine erste magnetische Suszeptibilität icl und der zweiten Partikelgruppe d eine zweite magnetische Suszeptibilität K2 zu, die voneinander und auch im Bezug auf die magnetische Suszeptibilität KF des Fluids bzw. Trägerfluids unterschiedlich sind, so kann man mit den lokalen Gradientenfeldern H1 der Polkörper PK jeweils auf die beiden Gruppen der Partikel unterschiedlich starke magnetische Ablenkkräfte aufgrund unterschiedlicher magnetischer Dipolmomente ausüben. Zur Erzielung dieses bereits erläuterten Ablenkvorganges ist nun die Strömungsleit-Matrix PK/3 durch wenigstens ein Trenn-Lochfeld TL über den Querschnitt der Trennregion verteilter Polkörper- Mündungen 1 und zugehöriger ferromagnetischer Polkörper-Wandteile 2 eines Strömungsleitkörpers gebildet. Der Hauptmagnetfluß H verläuft, wie erwähnt, in Achsrichtung 1.0 der Polkörpermündungen 1 und damit parallel zum Strömungshauptpfad bzw. der Hauptströmungsrichtung z. Stromaufwärts und im Abstand a3 zur Strömungsleit-Matrix PK/3 ist wenigstens ein Zufuhr-Lochblech ZL eines weiteren Strömungsleitkörpers angeordnet, dessen Einspeiseöffnungen 4 mit den Polkörper-Mündungen 1 korrespondieren und insbesondere mit diesen gleichachsig angeordnet sind. Das als Strömungsleitkörper fungierende Zufuhr-Lochblech ZL teilt den ihm vom Außenumfang der Trennregion her über Einspeisezonen vi, v2, V3 (vergleiche (FIG 3) zuströmenden Fluidstrom A in den Polkörper-Mündungen 1 zuströmende Partialströme p + d auf. Mit den Polkörper-Mündungen 1 kommuniziert auslaßseitig wenigstens eine erste Sammelkammer SK1. Das Strömungsvolumen zwischen dem Zufuhr-Lochblech ZL des diamagnetischen Strömungsleitkörpers und dem Trenn-Lochfeld TL der Polkörper-Wandteile 3 dient als zweite Sammelkammer SK2. Die erste Sammelkammer SK1 ist an eine Sammelleitung v4 angeschlossen (FIG 3), und die zweite Sammelkammer SK2 ist an die andere Sammelleitung vs, v6 angeschlossen. Es sind also wenigstens zwei Sammelleitungen, je eine für den ersten Zweigstrom p bzw. den zweiten Zweigstrom d, erforderlich. Wie es weiter unten noch erläutert wird, sind dann im Rahmen der Vereinigung einer Vielzahl von Trennrohren TR nach FIG 3 zu einem Trennkanister TK die ersten Sammelleitungen V4 an die erste Haupt- sammelleitung 60 und die zweiten Sammelleitungen v5, v6 an die zweite Hauptsammelleitung 70 angeschlossen bzw. kommunizieren mit diesen Hauptleitungen.Returning to the detailed illustration according to FIG. 1, it can be seen that the incoming particle-laden fluid stream A per hole 4 is divided into the partial streams d + p, each of which contains para- and diamagnetic particles, via the feed zone AO and the respective feed hole field ZL. The main flow direction z and the main field direction of the high gradient magnetic field H coincide or run parallel to one another; The local gradient fields H1 already mentioned are then generated by the polar bodies PK because the magnetic field lines preferably enter these ferromagnetic bodies, so that the constrictions and field line densifications shown in FIG. 1 result. For the sake of simplicity, for the following considerations, the first paramagnetic particle group as well as the partial stream enriched with it are denoted by p and the second diamagnetic particle group as well as the partial stream enriched with it are designated by d. If the first particle group p is assigned a first magnetic susceptibility ic1 and the second particle group d is assigned a second magnetic susceptibility K2 , which are different from one another and also with respect to the magnetic susceptibility KF of the fluid or carrier fluid, then one can use the local gradient fields H1 the polar body PK is different for each of the two groups of particles exert strong magnetic deflection forces due to different magnetic dipole moments. To achieve this deflection process, which has already been explained, the flow guide matrix PK / 3 is now formed by at least one separating hole field TL over the cross section of the separating region of pole body orifices 1 and associated ferromagnetic pole body wall parts 2 of a flow guide body. The main magnetic flux H runs, as mentioned, in the axial direction 1.0 of the pole body orifices 1 and thus parallel to the main flow path or the main flow direction z. Upstream and at a distance a3 from the flow guide matrix PK / 3 there is at least one feed perforated plate ZL of another flow guide body, the feed openings 4 of which correspond to the pole body orifices 1 and in particular are arranged coaxially therewith. The perforated feed plate ZL, which acts as a flow guide body, divides the fluid stream A flowing in from the outer circumference of the separation region via feed zones vi, v 2 , V3 (compare (FIG. 3)) into the pole body orifices 1 and divides the partial streams p + d. The outlet side communicates at least one first collecting chamber SK1. The flow volume between the perforated feed plate ZL of the diamagnetic flow guide body and the separating perforated field TL of the pole body wall parts 3 serves as a second collecting chamber SK2. The first collecting chamber SK1 is connected to a collecting line v 4 ( 3), and the second collecting chamber SK2 is connected to the other collecting line vs, v 6. At least two collecting lines, one for the first branch flow p and one for the second branch flow d, are required, as will be explained further below , are then in the context of the union of a plurality of separation tubes TR according to FIG 3 to a separation canister TK ten bus lines V4 connected to the first main bus line 60 and the second bus lines v 5 , v 6 to the second main bus line 70 or communicate with these main lines.

Man erkennt aus FIG 1 und FIG 3, daß die Polkörper-Mündungen 1 und -Wandteile 3 des jeweiligen Trenn-Lochfeldes TL von einer lochblechartigen Feinstruktur mit hohlkegelförmigen, vorspringenden Düsen PK im Lochbereich gebildet sind und die Feldlinienverdichtung im Bereich der Düsen-Mündungen 1 lokale Gradientenfelder H1 ergibt, welche auf in Richtung der Düsenachse 1.0 zuströmende paramagnetische Partikel attraktive Kräfte, siehe Pfeile Fm, und auf entsprechend zuströmende diamagnetische Partikel d repulsive Kräfte ausüben, so daß der durch die Düsen PK bzw. Polkörper eintretende Kern-Zweigstrom p an paramagnetischen Partikeln angereichert ist, dagegen der vor den Düsen PK vorbeiströmende andere bzw. zweite Zweigstrom d an paramagnetischen Partikeln verarmt und an diamagnetischen Partikeln angereichert ist. Die Begrenzungskanten 1.1 der Polkörper- bzw. Düsen- mündungen 1 sind, wie dargestellt, abgerundet, was günstig in Bezug auf den Feldlinienverlauf und den Durchströmungswiderstand ist und somit den Abscheidegrad verbessert. Die Einspeiseöffnungen 4 des Zufuhr-Lochbleches ZL sind zu den Polkörper-Mündungen 1 des Trenn-Lochfeldes TL jeweils gleichachsig angeordnet. Insbesondere ist eine lochblechartige Feinstruktur für die Polkörper- Mündungen 1 und die Polkörper-Wandteile 3 der Strömungsleit-Matrix PK/3 jeweils paarweise mit zueinander planparallel beabstandeter (Abstand a2) und kongruenter Anordnung der beiden gepaarten Lochbleche 3-3 vorgesehen, wobei der Zwischenraum zwischen den gepaarten Lochblechen 3-3 als Sammelkammer SK1 der ersten Zweigströme p dient und der außerhalb der Lochbleche liegende, an die Zufuhr-Lochfelder ZL angrenzende Raum als zweite Sammelkammer SK2 für die zweiten Zweigströme d dient. Dabei ist gemäß FIG 1 auch der Strömungsleitkörper für das Zufuhr-Lochfeld ZL jeweils als lochblechartige Feinstruktur ausgebildet, und zwar mit zueinander planparallel beabstandeter (Abstand a1) und kongruenter Anordnung der beiden gepaarten Lochbleche 5-5, wobei der Zwischenraum zwischen den gepaarten Lochblechen 5-5 als Einspeisezone AO dient.It can be seen from FIG. 1 and FIG. 3 that the polar body orifices 1 and wall parts 3 of the respective separating perforated field TL are formed by a perforated plate-like fine structure with hollow-cone-shaped, projecting nozzles PK in the perforated area and the field line compression in the area of the nozzle orifices 1 local Gradient fields H1 result which exert attractive forces on paramagnetic particles flowing in the direction of the nozzle axis 1.0, see arrows F m , and repulsive forces on correspondingly flowing diamagnetic particles d, so that the core branch flow p entering paramagnetic through the nozzles PK or pole body Particles is enriched, on the other hand, the other or second branch stream d flowing past the nozzles PK is depleted of paramagnetic particles and enriched on diamagnetic particles. The boundary edges 1.1 of the pole body or nozzle orifices 1 are, as shown, rounded, which is favorable in relation to the field line and the flow resistance and thus improves the degree of separation. The feed openings 4 of the feed perforated plate ZL are each arranged coaxially with the pole body openings 1 of the separating perforated field TL. In particular, a perforated sheet-like fine structure is provided for the pole body orifices 1 and the pole body wall parts 3 of the flow guide matrix PK / 3, each in pairs with a plane-parallel spaced apart (distance a2) and congruent arrangement of the two paired perforated sheets 3-3, the space between the paired perforated plates 3-3 serves as a collecting chamber SK1 of the first branch flows p and the space lying outside the perforated plates and adjacent to the feed perforated fields ZL serves as a second collecting chamber SK2 for the second branch flows d. According to FIG. 1, the flow guide body for the feed perforated field ZL is also designed as a perforated plate-like fine structure, specifically with a spaced plane-parallel spacing (distance a1) and congruent arrangement of the two paired perforated plates 5-5, the space between the paired perforated plates 5-5. 5 serves as the feed zone AO.

An sich läßt sich bereits ein Trenneffekt erzielen, wenn man einem Trenn-Lochfeld TL mit einem einzigen Lochblech 3 mit Polkörpern PK auf dessen Polkörperseite ein Zufuhr-Lochfeld ZL mit einem einzigen Lochblech 5 zuordnet. Hier wie im folgenden soll jedoch unter Trenn-Modul die kleinste, zufriedenstellend funktionierende und im Rahmen eines Trennrohres TR in Hauptströmungsrichtung z mehrfach axial aneinandergereihte Grundeinheit M01 verstanden werden. Jedes dieser Trenn-Module M01 besteht aus einem Lochblech-Paar 3-3 für die Strömungsleit-Matrix PK/3 und je einem beidseits dieses Lochblechpaares im Abstand a3 spiegelbildlich angeordneten Lochblech 5 für die Zu- fuhr-Lochfelder ZL. Diese Module M01, von denen eines aus FIG 1 vollständig erkennbar ist, sind derart mit Abständen a1 übereinander gestapelt, daß durch die einander benachbarten Lochbleche 5 der Zufuhr-Lochfelder ZL der aufeinanderfolgenden Module die Einspeisezonen AO gebildet sind. Als kleinste in Stapelrichtung sich mehrfach oder vielfach wiederholende Moduleinheit kann auch der Trenn-Modul M02 angesehen werden, jeder davon be stehend aus einem Lochblech-Paar 5-5 für die Einspeisezonen AO und je einem beidseits dieses Lochblech-Paares im Abstand a3 spiegelbildlich angeordneten Lochblech 5 für die Trenn-Lochfelder TL. Diese Module M02 sind sinngemäß zu den Modulen M01 derart mit Abständen a2 übereinander gestapelt, daß durch die einander benachbarten Lochbleche 3-3 der Trenn-Lochfelder TL der aufeinanderfolgenden Module die ersten Sammelkammern SK1 gebildet sind. Durch diese gestapelte Anordnung der einzelnen Module M01 bzw. M02 ergibt sich die zweiflutige Zuströmung in Richtung z und in Richtung -z und auch eine zweiflutige Abströmung in diesen beiden Richtungen, was eine sehr gute Ausnutzung des Volumens eines Trennrohres TR (FIG 3) ergibt. Bevorzugt hat ein solches Trennrohr TR einen kreisförmigen Querschnitt, so daß also auch die Lochfelder bzw. Lochbleche ZL, TL, wie aus FIG 3 zu ersehen, einen kreisförmigen Grundriß aufweisen. Die Trenn-Module M01 bzw. M02 sind entsprechend FIG 3 in Richtung z übereinandergestapelt und mechanisch fest miteinander zum Trennrohr TR verbunden (entsprechende Schraub-oder Schweiß-Verbindungen sind nicht näher dargestellt), wobei die Trenn-Module von der Rohrwand 7 an ihrem Außenumfang umgeben sind, wobei diese Rohrwand 7 mit den Schlitzen 8.1, 8.2, 8.3 versehen ist, wie bereits erläutert.In itself, a separating effect can already be achieved if a feed perforated field ZL with a single perforated plate 5 is assigned to a separating perforated field TL with a single perforated plate 3 with pole bodies PK on its pole body side. Here as in the following, however, the separation module is to be understood as the smallest, satisfactorily functioning basic unit M01, which is arranged axially several times in the context of a separation tube TR in the main flow direction z. Each of these separating modules M01 consists of a perforated plate pair 3-3 for the flow guide matrix PK / 3 and a perforated plate 5 for the feed perforated fields ZL, which is arranged on both sides of this perforated plate pair at a distance a3 in mirror image. These modules M01, one of which can be seen in full in FIG. 1, are stacked at intervals a1 such that the feed-in zones AO are formed by the perforated plates 5 of the feed perforated fields ZL of the successive modules which are adjacent to one another. The separation module M02 can also be regarded as the smallest module unit that repeats itself several times or repeatedly in the stacking direction, each consisting of a perforated plate pair 5-5 for the feed zones AO and a perforated plate arranged in mirror image at a3 distance on both sides of this perforated plate pair 5 for the TL perforated panels. These modules M02 are stacked analogously to the modules M01 at intervals a2 such that the first collecting chambers SK1 are formed by the perforated plates 3-3 of the perforated panels TL of the successive modules which are adjacent to one another. This stacked arrangement of the individual modules M01 and M02 results in the double-flow inflow in direction z and in direction -z and also a double-flow outflow in these two directions, which results in very good utilization of the volume of a separating pipe TR (FIG. 3). Such a separating tube TR preferably has a circular cross section, so that the perforated fields or perforated plates ZL, TL, as can be seen from FIG. 3, also have a circular base have crack. 3, the separation modules M01 and M02 are stacked one above the other in the direction z and mechanically fixed to each other to form the separation tube TR (corresponding screw or weld connections are not shown in detail), the separation modules being separated from the tube wall 7 on their outer circumference are surrounded, this tube wall 7 being provided with the slots 8.1, 8.2, 8.3, as already explained.

Das anhand von FIG 1 erläuterte Grundprinzip der Lochblechanordnung ist auch beim zweiten Ausführungsbeispiel nach FIG 2 beibehalten worden. Dort sind die Polkörper-Mündungen 1' und -Wandteile 3' eines Trenn-Lochfeldes TL jeweils von einer lochblechartigen Feinstruktur derart gebildet, daß die Feldlinienverdünnung im Lochbereich lokale Gradientenfelder H2 ergibt, welche auf in Richtung der Lochachse 1.0 zuströmende para-magnetische Partikel p repulsive Kräfte und auf entsprechend zuströmende diamagnetische Partikel d attraktive Kräfte ausüben, wie anhand der Pfeile Frn symbolisiert, so daß der durch die Polkörper-Mündungen 1' strömende Kern-Zweigstrom d an diamagnetischen Partikeln angereichert ist, dagegen der vor den Polkörper-Mündungen 1' vorbeiströmende Zweigstrom p an diamag netischen Partikeln verarmt bzw. an paramagnetischen Partikeln angereichert ist. Sinngemäß zum ersten Ausführungsbeispiel nach FIG 1 ist es auch hierbei vorteilhaft, die Lochbegrenzungskanten 1.1', wie dargestellt, auf der Zu- und auf der Abströmseite abzurunden. Die zu FIG 1 analogen Trenn-Module sind hier mit M01' bzw. M02' bezeichnet. Aus diesen einzelnen Trenn-Modulen kann dann wieder ein Trennrohr TR sinngemäß zur Anordnung nach FIG 3 aufgebaut werden. Der Vorteil eines solchen Trennrohres aus den Modulen M01' bzw. M02' ist insbesondere der, daß die Herstellung der Strömungsleit-Matrix PK/3' preiswerter ist als diejenige der Strömungsleit-Matrix nach FIG 1, weil als Polkörper PK' lediglich die stehenbleibenden Partien eines ferromagnetischen Lochbleches dienen und besondere Düsenkörper hier nicht vorgesehen sind.The basic principle of the perforated plate arrangement explained with reference to FIG. 1 has also been retained in the second exemplary embodiment according to FIG. There, the pole body orifices 1 'and wall parts 3' of a separating perforated field TL are each formed by a perforated plate-like fine structure in such a way that the field line thinning in the perforated region results in local gradient fields H2 which repulsive to para-magnetic particles p flowing in the direction of the perforated axis 1.0 Forces and exert attractive forces on correspondingly flowing diamagnetic particles d, as symbolized by the arrows Frn, so that the core branch flow d 'flowing through the pole body orifices 1' is enriched in diamagnetic particles, whereas the one flowing past the pole body orifices 1 'is enriched Branch stream p is depleted in diamagnetic particles or enriched in paramagnetic particles. Analogously to the first exemplary embodiment according to FIG. 1, it is also advantageous in this case to round off the hole-delimiting edges 1.1 ', as shown, on the inflow and outflow sides. The isolating modules analogous to FIG. 1 are designated here with M01 'or M02'. A separation tube TR can then be constructed from these individual separation modules in a manner corresponding to the arrangement according to FIG. 3. The advantage of such a separating tube from the modules M01 'or M02' is, in particular, that the production of the flow guide matrix PK / 3 'is cheaper than that of the flow guide matrix according to FIG. 1, because as the polar body PK' only the parts that remain standing serve a ferromagnetic perforated plate and special nozzle bodies are not provided here.

Wie bereits angedeutet, ist ein einzelnes Trennrohr TR nach FIG 3, wenn es mit einem geeigneten Gehäuse zur Zuleitung der partikelbeladenen Fluidströme A und zur Ableitung der beiden Fraktionen M (an paramagnetischen Partikeln p angereichert) und NM ( an diamagnetischen Partikeln angereichert) versehen ist, schon funktionstüchtig, allerdings eher für labormäßigen bzw. experimentellen Gebrauch. Für kommerzielle Zwecke empfiehlt es sich, gemäß FIG 5 bis 7, daß eine Vielzahl von Trennrohren TR in achsparalleler Anordnung zu einem Trennrohrfeld vereinigt wird und zusammen mit einem das Trennrohrfeld umgebenen Behälter 100, welcher deckseitig wenigstens eine gemeinsame Haupt-Einspeiseleitung 11 und bodenseitig erste sowie zweite Haupt-Sammelleitungen 60, 70 aufweist, zu einem Trenn-Kanister TK zusammengefaßt wird. Die Ausführungen nach FIG 5 und FIG 6 sind fast identisch bis auf die Tatsache, daß die Haupt-Einspeiseleitung 11 in FIG 5 zentral an den Trenn-Kanister angeschlossen ist, nach FIG 6 dagegen exzentrisch zu dessen Rotationsachse. In FIG 5 bis 7 ist ein Hochleistungs-Solenoid bzw. -Magnet MM nicht dargestellt; es versteht sich, daß ein solcher Hochleistungs-Magnet, scht angeordnete Trenn- Kanister, auch um einen einzigen Trenn-Kanister nach FIG 5 bis 7 herum angeordnet sein kann, so daß dessen Feldlinien die Mehrfach-Anordnung der Trennrohre TR im Inneren des Trenn-Kanisters TK im wesentlichen in axialer Richtung durchsetzen.As already indicated, a single separation tube TR is shown in FIG. 3 if it is provided with a suitable housing for supplying the particle-laden fluid streams A and for discharging the two fractions M (enriched in paramagnetic particles p) and NM (enriched in diamagnetic particles), already functional, but more for laboratory or experimental use. For commercial purposes, it is recommended, according to FIGS. 5 to 7, that a plurality of separating pipes TR are combined in an axially parallel arrangement to form a separating pipe field and together with a container 100 surrounding the separating pipe field, which has at least one common main feed line 11 on the top side and first and bottom side has second main manifolds 60, 70, is combined to form a separating canister TK. The designs according to FIG. 5 and FIG. 6 are almost identical except for the fact that the main feed line 11 in FIG. 5 is connected centrally to the separating canister, but according to FIG. 6 is eccentric to its axis of rotation. 5 to 7, a high-performance solenoid or magnet MM is not shown; it goes without saying that such a high-performance magnet, arranged separating canister, can also be arranged around a single separating canister according to FIGS. 5 to 7, so that its field lines the multiple arrangement of the separating tubes TR inside the separating Push the canister TK through essentially in the axial direction.

Man erkennt insbesondere aus FIG 6 und 7, daß die Trennrohre TR in einem hexagonalen Raster angeordnet sind und daß die zwischen diesen Trennrohren freibleibenden Zwickel-Gassen durch die Schottwände 9 in Einspeise- oder Sammelleitungen 20 unterteilt werden, wobei die Einspeiseleitungen durch die Leitungsvolumina V1 bis v3 gebildet werden und erste Sammelleitungen durch die Leitungsvolumina v4 sowie die zweiten Sammelleitungen durch die Leitungsvolumina v5, V6 (vergleiche dazu FIG 3). Der beladene Fluidstrom A wird über die deckseitige Haupt-Einspeiseleitung 11 einer Vorkammer 12 des Trenn-Kanisters TK und von dieser über in einem entsprechend gelochten Strömungsleitblech 10 vorgesehene Einspeiseöffnungen 10.1, deren Grundriß dem Querschnitt der Zwickelräume 20 zwischen den Trennrohren TR und Schottwänden 9 entspricht, allen Einspeiseleitungen vi, v2, V3 parallel zugeführt. Bodenseitig sind am Trenn-Kanister TK zwei weitere, axial benachbarte Nachschaltkammern 13, 14 vorgesehen (FIG 6), welche über die zwickelförmigen Auslaßöffnungen 30.1 bzw. 31.1 der gelochten Strömungsausleitbleche 30, 31 mit den ersten bzw. zweiten Sammelleitungen v4 bzw. vs, v6 kommunizieren und in die erste bzw. zweite Haupt- Sammelleitung 60 für die Fraktion M bzw. 70 für die Fraktion NM münden.It can be seen in particular from FIGS. 6 and 7 that the separating pipes TR are arranged in a hexagonal grid and that the gusset alleys remaining free between these separating pipes are divided by the bulkhead walls 9 into feed or collecting pipes 20, the feed pipes being separated by the pipe volumes V1 to v 3 are formed and the first collecting lines through the line volumes v 4 and the second collecting lines through the line volumes v 5 , V6 (cf. FIG. 3). The loaded fluid stream A is fed through the cover-side main feed line 11 of a prechamber 12 of the separating canister TK and from there via feed openings 10.1 provided in a correspondingly perforated flow guide plate 10, the outline of which corresponds to the cross section of the gusset spaces 20 between the separating pipes TR and bulkheads 9, all feed lines vi, v 2 , V3 fed in parallel. At the bottom of the separating canister TK, two further, axially adjacent downstream chambers 13, 14 are provided (FIG. 6), which via the gusset-shaped outlet openings 30.1 and 31.1 of the perforated flow deflection plates 30, 31 with the first and second manifolds v 4 and vs, respectively, v 6 communicate and open into the first and second main manifold 60 for the M fraction and 70 for the NM fraction.

Die äußere Stützkonstruktion für den Trennkanister TK nach FIG 5 bis 7 ist aus Gründen der übersichtlichen Darstellung weggelassen worden.The outer support structure for the separating canister TK according to FIG 5 to 7 has been omitted for reasons of clarity.

Dies gilt auch für die schematische Darstellung nach FIG 8 einer Separator-Kaskade mit drei Trennkanistern TK1, TK2 und TK3, welche in axialer Flucht zueinander übereinander angeordnet und von einem Hochleistungsmagneten MM mit Magnetspule S umgeben sind. Bei diesem fünften Ausführungsbeispiel wird der partikel beladene, aufzubereitende Fluid-Teilstrom A1 dem ersten Kanister TK1 als Mischung aus dem frischen Fluidstrom A und einem vom Ausgang der Kaskade rückgeförderten Fluidstrom M2 + NM3 zugeleitet. Die gesammelten zweiten Zweigströme NM1 aus diesem ersten Kanister TK1 werden über die Leitung nm12 von der Pumpe P12 als Einspeise-Fluidstrom A2 dem nachgeschalteten zweiten Kanister TK2 zugeführt. Die gesammelten ersten Zweigströme M1 aus dem ersten Kanister TK1 werden dagegen dem dritten Kanister TK3 über Leitung m13 durch die Pumpe P13 als Einspeise-Fluidstrom A3 zugeleitet. Die gesammelten zweiten Zweigströme NM2 aus dem zweiten Kanister TK2 und die gesammelten ersten Teilströme M3 aus dem dritten Kanister TK3 werden über die Leitungen nm2 bzw. m2 als Abfallstrom NM bzw. als Nutzstrom M ihrer Verwertung zugeführt. Die gesammelten ersten Zweigströme M2 aus dem zweiten Kanister TK2 und die gesammelten zweiten Zweigströme NM3 aus dem dritten Kanister TK3 werden über die beiden Leitungen m2 bzw. nm3 zusammengeführt und in die Rückführleitung nmm31 eingespeist, und dieser Rückspeisestrom wird durch die Pumpe P31 als Mischstrom M2 + NM3 in die Leitung 11 eingespeist und dem Roh-Einspeisestrom A zugemischt.This also applies to the schematic representation according to FIG. 8 of a separator cascade with three separating canisters TK1, TK2 and TK3, which are arranged one above the other in axial alignment and are surrounded by a high-performance magnet MM with magnet coil S. In this fifth exemplary embodiment, the particle-laden, partial fluid stream A1 to be prepared is fed to the first canister TK1 as a mixture of the fresh fluid stream A and a fluid stream M2 + NM3 conveyed back from the outlet of the cascade. The collected second branch flows NM1 from this first canister TK1 are fed via line nm12 from the pump P12 as feed fluid stream A2 to the downstream second canister TK2. The collected first branch flows M1 from the first canister TK1, on the other hand, are fed to the third canister TK3 via line m13 through the pump P13 as feed fluid flow A3. The collected second branch streams NM2 from the second canister TK2 and the collected first partial streams M3 from the third canister TK3 are fed via the lines nm2 or m2 as waste stream NM or as useful stream M to their utilization. The collected first branch streams M2 from the second canister TK2 and the collected second branch currents NM3 from the third canister TK3 are brought together via the two lines m2 and nm3 and fed into the return line nmm31, and this feedback current is fed into the line 11 by the pump P31 as a mixed flow M2 + NM3 and mixed into the raw feed current A.

Zurückkommend auf die beiden Ausführungsbeispiele nach den Figuren 1 bis 3, in denen der Kern der Erfindung dargestellt ist, wird deutlich, daß durch die Erfindung ein Verfahren verwirklicht wird, nach welchem der partikelbeladene Fluidstrom A der Trennregion jeweils über vom Außenumfang der Trennregion her versorgte Einspeisezonen AO und durch über den Querschnitt der Trennregion in Form wenigstens eines Zufuhr-Lochfeldes ZL verteilte Einspeiseöffnungen 4 von Strömungsleitkörpern als Vielzahl von Partikelströmen d + p zugeleitet wird. Die Partialströme d + p werden sodann innerhalb der Trennregion über wenigstens ein Trenn-Lochfeld TL von über den Querschnitt der Trennregion verteilten Polkörper-Mündungen 1 bzw. 1' und zugehörigen Wandteilen 2 bzw. 3' ferromagnetischer Polkörper PK bzw. PK' als Strömungsleit-Ma- trix geleitet. Diese Polkörper werden in Richtung ihrer Mündungsachsen 1.0 vom Hauptmagnetfluß H durchsetzt, und sie teilen mit ihren zu den jeweils benachbarten Einspeiseöffnungen 4 korrespondierenden Polkörper-Mündungen 1 bzw. 1' die wenigstens zwei Gruppen von Partikeln enthaltenden Partialströme jeweils in die wenigstens zwei Zweigströme auf:

  • - einen ersten Zweigstrom p (FIG 1) bzw. d (FIG 2), auf welchen von dem Gradientenfeld der Polkörper PK (FIG 1) bzw. PK' (FIG 2) attraktive Kräfte in Richtung auf die Polkörper-Mündungen 1 bzw. 1' ausgeübt werden,
  • - und in einen zweiten Zweigstrom d (FIG 1) bzw. p (FIG 2), auf welchen von dem Gradientenfeld H1 der Polkörper PK (FIG 1) bzw. von dem Gradientenfeld H2 der Polkörper PK' (FIG 2) repulsive Kräfte in einer Richtung weg von der jeweiligen Polkörper-Mündung 1 bzw. 1' ausgeübt werden.
Returning to the two exemplary embodiments according to FIGS. 1 to 3, in which the essence of the invention is shown, it becomes clear that the invention realizes a method according to which the particle-laden fluid stream A of the separation region is supplied in each case via feed zones supplied from the outer periphery of the separation region AO and through the cross-section of the separation region in the form of at least one feed perforated field ZL, feed openings 4 of flow guide bodies are supplied as a plurality of particle streams d + p. The partial currents d + p are then within the separation region via at least one separation hole field TL of pole body orifices 1 and 1 'distributed over the cross section of the separation region and associated wall parts 2 and 3' of ferromagnetic pole bodies PK and PK 'as flow control Matrix directed. These pole bodies are penetrated by the main magnetic flux H in the direction of their outlet axes 1.0, and they divide the partial streams containing partial streams 1 and 1 ′, which correspond to the respective adjacent feed openings 4, into the at least two branch streams:
  • a first branch flow p (FIG. 1) or d (FIG. 2), on which from the gradient field the pole body PK (FIG. 1) or PK '(FIG. 2) attractive forces in the direction of the pole body orifices 1 or 1 'are exercised
  • - And in a second branch flow d (FIG. 1) or p (FIG. 2), on which of the gradient field H1 the pole body PK (FIG. 1) or of the gradient field H2 of the pole body PK '(FIG. 2) repulsive forces in one Direction away from the respective pole body mouth 1 or 1 'are exercised.

Die durch die Polkörper-Mündungen 1 bzw. 1' hindurchströmenden, an der ersten Gruppe von Partikeln angereicherten ersten Zweigströme p (FIG 1) bzw. d (FIG 2) werden ersten, mit den Polkörper- Mündungen 1 bzw. 1' auslaßseitig kommunizierenden Sammelkammern SK1 zugeleitet. Die von den Polkörper-Mündungen 1 bzw. 1' abgelenkten, an der zweiten Gruppe von Partikeln angereicherten zweiten Zweigströme d (FIG 1) bzw. p (FIG 2) werden jeweils zweiten Sammelkammern SK2 zugeleitet, welche jeweils das Strömungsvolumen in der Trennregion zwischen dem Zufuhr-Lochfeld ZL und dem Trenn-Lochfeld TL ohne die in die Polkörper-Mündungen 1 bzw. 1' eintretenden ersten Zweigströme p (FIG 1) bzw. d (FIG 2) umfassen. Schließlich werden die in den ersten und zweiten Sammelkammern SK1, SK2 zusammengeführten ersten und zweiten Zweigströme M bzw. NM der wenigstens einen ersten bzw. der wenigstens einen zweiten Sammelleitung v4 bzw. vs, vε zugeführt.The first branch flows p (FIG. 1) or d (FIG. 2) flowing through the pole body orifices 1 or 1 'and enriched on the first group of particles become first collection chambers which communicate with the pole body orifices 1 and 1' on the outlet side SK1 forwarded. The second branch flows d (FIG. 1) and p (FIG. 2), deflected by the polar body orifices 1 and 1 'and enriched on the second group of particles, are each fed to second collection chambers SK2, which each contain the flow volume in the separation region between the Include feed hole field ZL and the separation hole field TL without the first branch flows p (FIG. 1) or d (FIG. 2) entering the pole body orifices 1 or 1 '. Finally, the first and second branch flows M and NM brought together in the first and second collecting chambers SK1, SK2 are fed to the at least one first and the at least one second collecting line v 4 and vs, vε, respectively.

Das Verfahren nach der Erfindung sowie die Einrichtung zu seiner Durchführung eignen sich unter anderem zur Kaolin-Reinigung, Erzaufbereitung, Aufkonzentrierung von Gold, Uran und Kobalt aus Abraumhalden, Pyrit-Abscheidung aus Kohle (auch Siderit und Calcit), zur Kohlereinigung bei der Verflüssigung, zur Rückgewinnung von Katalysatormaterial bei Hydrieranlagen, zur Rückgewinnung von Stahlpartikeln aus Abwasser und Prozeßstäuben in Stahlwerken, um nur einige Anwendungen zu nennen.The method according to the invention and the device for its implementation are suitable, inter alia, for kaolin purification, ore processing, concentration of gold, uranium and cobalt from tailings heaps, pyrite separation from coal (also siderite and calcite), for coal cleaning during liquefaction, for the recovery of catalyst material in hydrogenation plants, for the recovery of steel particles from waste water and process dusts in steel plants, to name just a few applications.

Die Herstellung der Lochbleche 3, 5, 3', 5' für die Trenn-Lochfelder TL und Zufuhr-Lochfelder ZL ist mit sehr guter Präzision möglich durch Materialbearbeitung mittels Laserstrahlen.The production of perforated plates 3, 5, 3 ', 5' for the separating perforated fields TL and feed perforated fields ZL is possible with very good precision through material processing using laser beams.

Claims (20)

1. Method for the continuous separation of magnetizable para- and/or diamagnetic particles from a fluid flow (A) laden with the particles, which fluid flow is guided through a separation region, penetrated by a high gradient magnetic field (H), along a main flow path (z), wherein the high gradient magnetic field (H) is generated by a plurality of ferromagnetic pole bodies (2) which are arranged inside the separation region in a flow guiding matrix and are penetrated by the magnetic flux of an external high power magnet, and which transform the main magnetic flux of the external high power magnet into a plurality of partial fluxes with non-homogeneous field distribution, corresponding to the number and arrangement of said ferromagnetic pole bodies, and wherein the fluid flow (A) contains at least two groups of particles whose respective magnetic susceptibilities X1 or X2, in relation to the magnetic susceptibility XF of the fluid, differ from one another such that, due to differently sized magnetic dipole moments of the particles in the fluid flow of the separation region, one group of particles in a respective first branch flow (p or d) is deflected in the direction of increasing field gradients and the other group is deflected in a second respective branch flow (d or p) in the direction of decreasing field gradients or at least one group, as the first branch flow (p), is deflected to a greater extent than the other group, as the second branch flow (d), in the direction of increasing or decreasing field gradients, and wherein further both the at least two branch flows (p, d) are separated from one another and the first branch flow (p) enriched with the first group of particles is supplied to a first collecting line (60) and the second branch flow enriched with the second group of particles is supplied to a second collecting line (70), characterised
- in that the particle-laden fluid flow (A) is guided in the form of a plurality of partial flows (d + p) to the separation region, in each case via feed zones (AO) supplied from the outer periphery of the separation region and through feed openings (4) of flow guiding bodies distributed over the cross-section of the separation region in the form of at least one feed hole field (ZL),
- in that the partial flows (d + p) are then guided inside the separation region over at least one separation hole field (TL) of pole body orifices (1; 1') distributed over the cross-section of the separation region and associated wall parts (2) of ferromagnetic pole bodies (PK; PK') as a flow guiding matrix, penetrated by the main magnetic flux (H) in the direction of the axes (1.0) of their orifices and dividing each of the partial flows containing at least two groups of particles into the at least two branch flows with their pole body orifices (1; 1') corresponding to the respectively adjacent feed openings (4):
- a first branch flow (p or d) upon which attractive forces are exerted from the gradient field of the pole bodies (PK) in a direction towards the pole body orifices (1; 1'),
- and a second branch flow (d or p) upon which repulsive forces are exerted from the gradient field of the pole bodies (PK) in a direction away from the respective pole body orifice (1; 1'), and
- in that the first branch flows (p or d) flowing through the pole body orifices (1; 1' ) and enriched with the first group of particles are supplied to first collecting chambers (SK1) communicating on the outlet side with the pole body orifices (1; 1')
- and in that each of the second branch flows (d or p) deflected by the pole body orifices (1; 1') and enriched with the second group of particles are supplied to second collecting chambers (SK2) each of which enclose the flow volume in the separation region between the feed hole field (ZL) and the separation hole field (TL) without the first branch flows (p or d) entering in the pole body orifices(1;1'),
- and in that, finally, the first and second branch flows (M or NM), each reunited in the first and second collecting chambers (SK1, SK2), are supplied to at least one first or to at least one second collecting line (v4 or v5, vε).
2. Apparatus for implementing the method according to claim 1, comprising at least one separator vessel (TR, TK) through which the fluid flow Ptd) (sic) laden with particles at least of one first group and one second group may continuously flow along a main flow path (z), and which has at one end of the flow path at least one connection (11) for feeding the fluid flow and at the other end of the flow path a fluid flow outlet divided into at least two collecting lines (v4 or vs, vs; 60 or 70), one collecting line (v4; 60) transporting the fluid flow fraction (M) enriched with one particle group and the other collecting line (vs, vε; 70) transporting the fluid flow fraction (NM) enriched with the other particle group, and comprising at least one separation region inside the vessel (TR; TK); comprising a plurality of ferromagnetic pole bodies (PK; PK') disposed inside the separation region in a flow guiding matrix (PK/3; PK'/3') to generate a high gradient magnetic field (H), and comprising an arrangement of flow guiding walls (3; 3') forming part of the flow guiding matrix along with the pole bodies (PK; PK') to divide the at least two branch flows (p or d) deflected to different extents at the gradient fields of the pole bodies (PK; PK') to the associated collecting lines, further comprising a high power magnet (MN) disposed at the outer periphery of the separator vessel (TR; TK), the main magnetic flux of which penetrates the separation region and the pole bodies (PK; PK') located therein, producing non-homogeneous partial flows at the individual pole bodies, the first particle group (p or d) having a first magnetic susceptibility X1 and the second particle group (d or p) having a second magnetic susceptibility x2, which susceptibilities X1, X2, in relation to the magnetic susceptibility xF of the fluid, differ such that magnetic deflection forces of different strengths are exerted by the gradient fields (H) of the pole bodies (PK; PK') upon the two groups of particles, due to different magnetic dipole moments, characterised
- in that the flow guiding matrix (PK/3; PK'/3') is formed by at least one separation hole field (TL) of pole body orifices (1; 1') distributed over the cross-section of the separation region and associated ferromagnetic pole body wall parts (2; 3') of a flow guiding body,
- in that the main magnetic flux is oriented in the axial direction (1.0) of the pole body orifices (1; 1'),
- in that at least one feed hole plate (ZL) of a further flow guiding body is disposed upstream and at a distance (a3) from the flow guiding matrix, the feed openings (4) of which correspone with the pole body orifices (1; 1'), and which divides the fluid flow (A) flowing to it from the outer periphery of the separation region via feed zones into partial flows (p + d) flowing to the pole body orifices (1; 1'),
- in that at least one first collecting chamber (SK1) communicates with the pole body orifices (1; 1') on the outlet side,
- in that the flow volume between the feed hole plate (ZL) of the diamagnetic flow guiding body and the separation hole field (TL) of the pole body wall parts (3; 3') serves as a second collecting chamber (SK2),
- and in that the first collecting chamber (SK1) is connected to one, and the second collecting chamber (SK2) is connected to the other of the at least two collecting lines (v4/60 or v5, vε, 70).
3. Apparatus according to claim 2, characterised in that the pole body orifices (1') and pole body wall parts (3') of a separation hole field (TL) are in each case formed by a fine structure in the form of a perforated plate and the field line attenuation in the hole region produces local gradient fields (H2) which exert repulsive forces upon paramagnetic particles inflowing in the direction of the hole axis (1.0) and attractive forces onl correspondingly inflowing diamagnetic particles, so that the core branch flow (d) flowing through the pole body orifices (1') is enriched with diamagnetic particles, whereas the branch flow (p) bypassing the pole body orifices (1') is depleted of diamagnetic particles or is enriched with paramagnetic particles.
4. Apparatus according to claim 3, characterised in that the hole limiting edges (1. 1') are rounded on the inflow and outflow side.
5. Apparatus according to claim 2, characterised in that the pole body orifices (1) and pole body wall parts (3) of a separation hole field (TL) are formed by a fine structure, in the form of a perforated plate, with hollow conical protruding nozzles (PK) in the hole region and the field line concentration in the region of the nozzle orifices produces local gradient fields (H1) which exert attractive forces on paramagnetic particles inflowing in the direction of the nozzle axis (1.0) and repulsive forces on correspondingly inflowing diamagnetic particles, so that the core branch flow (p) entering through the nozzles (PK) is enriched with paramagnetic particles, whereas the other or second branch flow (d) bypassing the nozzles is depleted of paramagnetic particles and enriched with diamagnetic particles.
6. Apparatus according to claim 5, characterised in that the limiting edges (1.1) of the nozzle orifices (1) are rounded.
7. Apparatus according to one of claims 2 to 6, characterised in that the feed openings (4) of the feed hole plate (ZL) are arranged on the same axis as the pole body orifices (1; 1') of the separation hole field (TL).
8. Apparatus according to one of claims 2 to 6, characterised in that a fine structure in the fcrm of a perforated plate for the pole body orifices (1; 1') and pole body wall parts (3; 3') of the flow guiding matrix (PK/7; PK') is provided in each case in pairs with the two paired perforated plates (3-3 or 3'-3') arranged so as to be mutually spaced apart in plane parallel manner and congruent, and in that the intervening space between the paired perforated plates serves as the collecting chamber (SK1) of the first branch flows (p or d) and the space lying outside the perforated plates and adjoining the feed hole fields (ZL) serves as the second collecting chamber (SK2) for the second partial flows (d or p).
9. Apparatus according to one of claims 2 to 8, characterised in that the flow guiding body for the feed hole field (ZL) is also a fine structure in the form of a perforated plate.
10. Apparatus according to claim 8 or 9, characterised in that a fine structure in the form of a perforated plate for the feed hole field (ZL) is provided in each case in pairs with the two paired perforated plates (5-5 or 5'-5') arranged so as to be mutually spaced apart in plane parallel manner and congruent, and in that the intervening space between the paired perforated plates serves as a feed zone (AO).
11. Apparatus according to one of claims 8 or 10, characterised in that a plurality of identical separation modules (Mo 1), each consisting of a perforated plate pair (3-3 or 3'-3') for the flow guiding matrix (PK/3 or PK'/3') and a perforated plate (5 or 5') disposed on each of the two sides of this perforated plate pair for the feed hole fields (ZL), are stacked one on top of the other at distances (a1) apart such that the feed zones (AO) are formed by the mutually adjacent perforated plates of the feed hole fields (ZL) of successive modules.
12. Apparatus according to one of claims 8 or 10, characterised in that a plurality of identical separation modules (Mo 2), each consisting of a perforated plate pair (5-5 or 5'-5') for the feed zones (AO) and a perforated plate disposed on each of the two sides of this perforated plate pair for the separation hole fields, are stacked one on top of the other at distances (a2) apart such that the first collecting chambers (SK1) are formed by the mutually adjacent perforated plates (3 or 3') of the separation hole fields (TL) of successive modules.
13. Apparatus according to claim 11 or 12, characterised in that the outer periphery of the stacked separation modules is surrounded by a tubular wall (7), forming a separation tube (TR).
14. Apparatus according to one of claims 1 to 13, characterised in that the hole fields or perforated plates (ZL, TL) are circular in outline.
15. Apparatus according to claim 14, characterised in that the shell (7) of the separation tube (TR) is provided in segments with slits (8) located along peripheral lines, in accordance with the number and arrangement of the modules (Mo 1 or Mo 2) contained therein:
first slits (8.1) for feeding the fluid flow to the feed zones (AO) of the modules from a feed line,
second slits (8.2) for removing the first branch flows (M or NM) collected in the first collecting chambers (SK1) of the modules to the first collecting line and
third slits (8.3) for removing the second branch flows (NM or M) collected in the second collecting chambers (SK 2) of the modules to a second collecting line.
16. Apparatus according to claim 15, characterised in that the first to third slits (8.1, 8.2, 8.3) are disposed hexagonally and are in each case distributed in several slit groups over the periphery of the separation tube (TR), the slits of each slit group being located one above the other and extending over about one sixth of the periphery of the separation tube.
17. Apparatus according to claim 16, characterised in that three sector arc sections distributed over the periphery of the separation tube are associated with the first slits (8.1) in accordance with the inflowing or outflowing quantities of the fluid flow, and in that of the remaining sector arc sections, one sector arc section is associated with the second slits (8.2) and two sector arc sections are associated with the third slits (8.3).
18. Apparatus according to claim 16 or 17, characterised in that bulkhead partitions (9) which lie in radially-axially extending planes are secured at the outer periphery of the separation tube (TR), forming a seal, and these, in accordance with the hexagonal arrangement of the slits, divide an annular chamber volume at the outer periphery of the separation tube into six different line volumes (vi-v6), three of which line volumes vi-vs) communicate with the first slits (8.1) and form feed lines, one line volume (v4) communicates with the second slits (8.2) and forms a first collecting line and two further line volumes (vs, vs) communicate with the third slits (8.3) and form second collecting lines.
19. Apparatus according to one of claims 16 to 18, characterised in that a plurality of separation tubes (TR) is combined in axially parallel arrangement to form a separation tube field and together with a vessel (100) surrounding the separation tube field which has at least one common main feed line (11) at its top and first and second main collecting lines (60, 70) at its base, is combined to form a separation canister (TK) which is surrounded by a high power solenoid (MM) to generate the high gradient magnetic field (H), the narrowing gaps left clear between the separation tubes (TR) arranged in a hexagonal grid being divided by the bulkhead partitions (9) into feed or collecting lines (20) and the laden fluid flow (A) being supplied via the main feed line (11) at the top to a forechamber (12) of the canister and from there via a correspondingly perforated flow feed plate (10) in parallel to all the feed lines (vi-v3), while two further axially adjacent afterchambers (13, 14) are provided at the base of the canister, these communicating with the first or second collecting lines (v4 (sic) or v5, v6) via perforated flow outlet guiding plates (30, 31) and opening into the first or second main collecting line (60 or 70).
20. Apparatus according to claim 19, characterised in that several separating canisters (TK) are connected together to form a separator cascade, wherein the collected second branch flows (NM 1) may be supplied from a first canister (TK 1) as a feed fluid flow (A2) to a second canister (TK 2), the collected first branch flows (M1) may be supplied from the first canister (TK 1) to a third canister (TK 3) as a feed fluid flow (A3), the collected second branch flows (NM 2) from the second canister and the collected first partial flows (M3) from the third canister may be utilized as a waste flow or as a useful flow, and wherein finally the collected first branch flows (M2) from the second canister (TK 2) and the collected second branch flows (NM3) from the third canister (TK3) may be united and supplied to the main feed line of the first canister (TK 1) again as a feed fluid flow (A1).
EP87105496A 1986-04-21 1987-04-14 Method for the continuous separation of magnetizable particles, and device therefor Expired - Lifetime EP0242773B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3613393 1986-04-21
DE3613393 1986-04-21

Publications (3)

Publication Number Publication Date
EP0242773A2 EP0242773A2 (en) 1987-10-28
EP0242773A3 EP0242773A3 (en) 1989-03-22
EP0242773B1 true EP0242773B1 (en) 1990-08-22

Family

ID=6299142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87105496A Expired - Lifetime EP0242773B1 (en) 1986-04-21 1987-04-14 Method for the continuous separation of magnetizable particles, and device therefor

Country Status (6)

Country Link
US (1) US4816143A (en)
EP (1) EP0242773B1 (en)
JP (1) JPS62258763A (en)
AU (1) AU589274B2 (en)
DE (1) DE3764390D1 (en)
ZA (1) ZA872787B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501097A (en) * 1988-05-25 1991-03-14 ウクラインスキ インスティテュト インジェネロフ ボドノゴ ホジアイストバ Device for separating ferromagnetic materials from fluid media
FR2641983B1 (en) * 1988-12-30 1991-03-29 Commissariat Energie Atomique ELECTROMAGNETIC FILTER WITH HIGH FIELD GRADIENT FOR THE EXTRACTION OF PARTICLES SUSPENDED IN A FLUID
DE4143573C2 (en) * 1991-08-19 1996-07-04 Fraunhofer Ges Forschung Device for separating mixtures of microscopic dielectric particles suspended in a liquid or a gel
US5169006A (en) * 1991-11-14 1992-12-08 Ceil Stelzer Continuous magnetic separator
FR2748569B1 (en) * 1996-05-07 1998-08-07 Biocom Sa METHOD AND PLANT FOR SEPARATING MAGNETIC PARTICLES IN A FLUID FOR BIOLOGICAL ANALYSIS, AND APPLICATION OF SAID METHOD
US6036857A (en) * 1998-02-20 2000-03-14 Florida State University Research Foundation, Inc. Apparatus for continuous magnetic separation of components from a mixture
US6159271A (en) * 1998-09-11 2000-12-12 The Boeing Company Method and system for orienting diamagnetic liquid with respect to a gas in a low gravity environment
JP4607875B2 (en) * 2003-07-30 2011-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Use of magnetic particles to determine binding between bioactive molecules
US8083069B2 (en) * 2009-07-31 2011-12-27 General Electric Company High throughput magnetic isolation technique and device for biological materials
WO2016088282A1 (en) * 2014-12-02 2016-06-09 株式会社エコラ・テック Oil filter device and oil filter element
JP6283084B2 (en) * 2015-10-26 2018-02-21 エリーズ マニュファクチュアリング カンパニー Improved material separation and recovery matrix for dry vibratory magnetic filters
US11009292B2 (en) * 2016-02-24 2021-05-18 Zeine, Inc. Systems for extracting oxygen from a liquid
US10350611B2 (en) * 2017-06-27 2019-07-16 General Electric Company Apparatus and methods for particle separation by ferrofluid constriction

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE159293C (en) *
US1245717A (en) * 1914-06-20 1917-11-06 Cutler Hammer Mfg Co Electromagnetic separator.
FR1141536A (en) * 1956-01-19 1957-09-03 Magnetic separator in aqueous medium
US2979202A (en) * 1958-12-30 1961-04-11 Orbeliani Andre Magnetic baffle separator
US3382977A (en) * 1965-03-08 1968-05-14 Interior Usa Magnetic separator with a combination field
SU223825A1 (en) * 1967-01-16 1978-06-15 N V Telushkin Method of enriching liquefied air with oxygen and isolating it from air
US3608718A (en) * 1968-12-20 1971-09-28 Bethlehem Steel Corp Magnetic separator method and apparatus
US3770629A (en) * 1971-06-10 1973-11-06 Magnetic Eng Ass Inc Multiple matrix magnetic separation device and method
US3984309A (en) * 1974-09-27 1976-10-05 Allen James W Magnetic separator
JPS52115481A (en) * 1976-03-25 1977-09-28 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for separating and recovering paramagnetic gas fr om mixed gas
SU597645A1 (en) * 1976-06-28 1978-03-15 Винницкий политехнический институт Apparatus for magnetic treatment of liquids
JPS54350A (en) * 1977-05-30 1979-01-05 Kansai Coke & Chemicals Device of detecting loading of shoot
JPS5453695A (en) * 1977-10-06 1979-04-27 Takesaburou Furukawa Method and apparatus for continuously manufacturing oxygen by separating air
US4261815A (en) * 1979-12-31 1981-04-14 Massachusetts Institute Of Technology Magnetic separator and method
SU1015911A1 (en) * 1981-07-01 1983-05-07 Государственный проектно-конструкторский институт "Гипромашуглеобогащение" Magnetic separator for concentrating low magnetic ores
JPS58143856A (en) * 1982-02-18 1983-08-26 Nec Corp Filter for adsorbing magnetic material
US4539040A (en) * 1982-09-20 1985-09-03 Mawardi Osman K Beneficiating ore by magnetic fractional filtration of solutes
SU1096000A1 (en) * 1982-11-11 1984-06-07 Ждановский Филиал Украинского Государственного Института По Проектированию Металлургических Заводов Air separator
DE3337145A1 (en) * 1983-10-12 1985-04-25 Krupp Polysius Ag, 4720 Beckum STARKFELD-MAGNETSCHEIDER
JPS6261655A (en) * 1985-09-11 1987-03-18 Hitachi Ltd Method and apparatus for separating gas

Also Published As

Publication number Publication date
EP0242773A2 (en) 1987-10-28
EP0242773A3 (en) 1989-03-22
DE3764390D1 (en) 1990-09-27
ZA872787B (en) 1988-07-27
AU7181387A (en) 1987-11-12
US4816143A (en) 1989-03-28
JPS62258763A (en) 1987-11-11
AU589274B2 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
EP0242773B1 (en) Method for the continuous separation of magnetizable particles, and device therefor
DE3610303C1 (en) Methods and devices for sorting paramagnetic particles in the fine and fine grain range in a strong magnetic field
DE2628095C3 (en) Magnetic separation device
DE3039171C2 (en) Device for separating magnetizable particles according to the principle of high-gradient magnetic separation technology
EP1198296B1 (en) High gradient magnetic separator
EP0111825B1 (en) Device used in the high gradient magnetic separation technique for separating magnetizable particles
DE2624090C2 (en) Magnetic separator
DE3827252C2 (en)
DE19626999C1 (en) High gradient magnet separator
DE3532534C2 (en) Separator for solid mixtures
WO2017050649A1 (en) Isolation and enrichment of magnetically marked cells in throughflow
DE2801923C2 (en) Method and device for separating gaseous or vaporous substances, in particular isotopes, according to the separation nozzle principle
DE69220930T2 (en) MAGNETIC CUTTER
DE2501858C2 (en) Device for separating magnetizable particles suspended in a liquid
DE3523192A1 (en) Process for purifying air or gas streams by the multipath sorption principle and moving bed filter unit suitable for carrying out the process
DE2461760C3 (en) Free-fall magnetic separator
DE2428273C3 (en) Magnetic cutter for sorting fabric mix
DE2650925C3 (en) Magnetic separator with devices for cleaning the matrices
EP2435177A2 (en) Microfluidic reactor having an annular reaction chamber
DE2933504A1 (en) Double plasma centrifuge - having two plasma chambers mounted coaxial to each other with anodes mounted adjacent to each other
EP0180094B1 (en) Process for separating isotopes, especially for separating istopes of uranium, device for performing it and use thereof
DE102017107089B4 (en) Apparatus and method for selective fractionation of fines
DE8608353U1 (en) Device for sorting paramagnetic particles in the fine and ultrafine grain range in a strong magnetic field
EP0277581A2 (en) Device for the separation of charged particles from a fluid current
DE102012108703A1 (en) Separating a mixture of organic substances dissolved in solvent, useful in biorefinery, comprises e.g. passing solution obtained from mixture and solvent into e.g. separation chamber, separating the mixture, and filtering organic substance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19890410

17Q First examination report despatched

Effective date: 19900208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3764390

Country of ref document: DE

Date of ref document: 19900927

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910318

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910423

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910626

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920414

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST