EP0240467B1 - Rotating-reciprocating machine - Google Patents
Rotating-reciprocating machine Download PDFInfo
- Publication number
- EP0240467B1 EP0240467B1 EP87810206A EP87810206A EP0240467B1 EP 0240467 B1 EP0240467 B1 EP 0240467B1 EP 87810206 A EP87810206 A EP 87810206A EP 87810206 A EP87810206 A EP 87810206A EP 0240467 B1 EP0240467 B1 EP 0240467B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- cylinder
- working
- engine
- pistons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 59
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 4
- 238000005461 lubrication Methods 0.000 claims description 3
- 230000005489 elastic deformation Effects 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 3
- 230000009365 direct transmission Effects 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 2
- 230000010354 integration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 15
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F01B3/0079—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having pistons with rotary and reciprocating motion, i.e. spinning pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B3/00—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F01B3/04—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces
- F01B3/06—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal
- F01B3/08—Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis the piston motion being transmitted by curved surfaces by multi-turn helical surfaces and automatic reversal the helices being arranged on the pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/26—Engines with cylinder axes coaxial with, or parallel or inclined to, main-shaft axis; Engines with cylinder axes arranged substantially tangentially to a circle centred on main-shaft axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the "classic”, well-known reciprocating piston machine has pistons that only make a reciprocating movement.
- the piston movement is usually generated by the crankshaft and connecting rod.
- the disadvantages of the classic reciprocating piston machine include the friction of the reciprocating piston on the cylinder, the space required for the crank mechanism and the need for separate organs to control the inlets and outlets.
- Rotary reciprocating piston machine here means a work machine or an engine.
- the rotary reciprocating piston machine from Wilfried Schwant also controls the slots by the rotary and reciprocating motion of the piston, but in a different way:
- the piston has a channel that leads inside the piston from the piston face to the side surface of the piston .
- the channel connects the working area with the cylinder wall and, depending on the piston position, with the slots in the cylinder wall.
- the rotary reciprocating piston machine from Joe Burrough (US 2,473,936) also has pistons which perform a rotary reciprocating movement, but the control of the slots is not influenced by the rotary movement of the piston.
- a cam track rotates relative to guide elements and thereby makes a rotary stroke movement relative to the guide elements.
- Either this cam track is on the piston and the guide elements in the form of rollers etc. are attached to the cylinder (Maltby, Burrough, Schwandt), or vice versa.
- a problem with the previous rotary reciprocating machines with control of the inlet and outlet openings by the piston is the large dead space at the top dead center.
- a high compression ratio is therefore not possible.
- the reason for the large dead space lies in the design principle: In order to realize a small dead space in the top dead center, the shape of the cylinder head would have to correspond approximately to the negative shape of the piston surface. However, this is only possible approximately because otherwise the non-rotating cylinder head hinders the non-rotationally symmetrical piston in its top dead center during its rotational movement.
- a second problem is that the changing pressure of the working medium causes an alternating force in the radial direction on the asymmetrical piston. If the piston is pressed against the cylinder wall, this increases the friction.
- some of the advantages offered by the rotary stroke movement of the piston have not been consistently exploited. It is therefore the object of the present invention to provide a rotary reciprocating piston machine which, with its various designs, eliminates the problems mentioned.
- the end face of the pistons facing the working space is additionally shaped in such a way that the radial force components on the piston end face resulting from the pressure of the working medium compensate each other, so that only one axial force is applied the piston results (see claim 2).
- Figures 1a and 1b is a longitudinal section of a machine along the axis of a cylinder with the cylinder parts 1a, 1b, 1c. The machine is shown in two different positions by half a shaft revolution (Fig. 1a and 1b).
- the cylinder has openings (slots) in its wall, which are provided for the inlet (8, 10) and for the Outlet (9, 11) of the working medium.
- the slots are opened and closed by the pistons (2) and by the piston-like members (5).
- the rotary piston machine of Figure 1 is shown as a 2-stroke internal combustion engine. If the arrangement of the slots were changed, however, this rotary piston machine could function differently, for example as a compressor.
- the piston (2) makes an oscillating stroke movement and at the same time a rotary movement around the cylinder axis.
- the piston-like member (5) only rotates around the cylinder axis.
- the variant shown has 4 work rooms (7a and 7b).
- the position shown shows two working spaces (7a) at maximum volume, corresponding to the bottom dead center.
- the other two work spaces (7b) have at the moment called the minimum volume, dead space or compression space, corresponding to the top dead center. Because the end faces simultaneously rotate and fit together according to the invention, the dead space is very small.
- Figure 1b shows the pistons in other positions after half a revolution.
- the movement of the rotary piston (2) is generated in a known manner by a cam track (3), which is supported on the guides (4).
- the pistons (2) make one stroke cycle, i.e. a reciprocating movement, per revolution.
- the power is transferred from the piston to the outside by means of a central shaft (14).
- the pistons (2) are connected to the central shaft (14) so that they are longitudinally displaceable along the central shaft, but that they transmit the torque to the central shaft (14).
- Figure 2 shows schematically a section through the cylinder axis of a rotary reciprocating machine, in which the lifting movement of the piston (2) is generated in a known, conventional manner by means of a crankshaft (28), connecting rod (27) and crosshead (25).
- the rotation of the piston (2) is generated in a separate manner.
- the rotary motion through a gear (22) and a central shaft (14) on the piston (2) and the piston-like member (5) transferred.
- the arrangement and the shape of the piston and the piston-like member and the manner in which the openings in the cylinder wall are controlled are designed according to the invention and are analogous to FIG. 1.
- Figure 3 illustrates the charge change in a rotary reciprocating machine which works as a pump.
- a cross section through the working space (7) in the cylinder (1) with a view of the piston face is shown schematically.
- Fig. 3a The piston is at top dead center, the inlet slot (8) and the outlet slot (9) are closed by the piston.
- Fig. 3b The inlet slot is opened by the piston, the piston goes down, the working medium flows in (10).
- Fig. 3c The piston is approximately at bottom dead center.
- the inlet slot is just closed, the outlet slot is not yet open.
- Fig. 3d The piston comes up, the outlet (9) is open, the working medium flows out (11).
- FIG. 4 shows, analogously to FIG. 3, the charge exchange in the case of a 4-stroke engine.
- 4a top dead center
- 4b suction
- 4c bottom dead center
- 4d compacting
- 4e start of combustion and top dead center
- 4f work cycle
- 4g bottom dead center
- 4h exhaust.
- FIG. 5 shows schematic examples of shapes of pistons (2) or piston-like members (5):
- FIGS. 5a and 5b show asymmetrical shapes; 5c and d, 5e and 5f show point-symmetrical shapes, in which the pressure in the working space does not result in a resulting transverse force.
- Figures 6 to 9 show variants of the mechanism which leads the piston (2) to the rotary-stroke movement.
- the spatial cam track (3) is fixed to the piston (2) as a disk-like cam track.
- the guides here consist of rollers (4).
- the piston (2) makes one stroke cycle per revolution. This version corresponds to the current state of the art.
- the spatial cam track (3) is shaped as a circumferential groove in which the guide (4) engages. This version also corresponds to the prior art.
- FIGS. 9a-9c show details of an improved embodiment from three viewing directions.
- the guides (4) are connected to one another by rockers (16), the rockers are connected to the cylinder (see FIG. 7).
- FIGS. 10a-c show an example of the shape of the end faces of pistons (2) or of piston-like members (5) which can be used for the machine according to the invention.
- Figure 10c shows a view from the working area on the piston end.
- Figure 10a and 10b show a detail from a section along the cylinder axis in the direction of AA and BB.
- the piston (2) moves to the top dead center.
- the working medium pressed out of the narrow squeezing surfaces is introduced tangentially into the toroidal swirl space (43). Such a swirling of the working medium is desirable for diesel engines, for example.
- FIGS. 11 and 12 schematically show the torque transmission between the central shaft (14) and the rotary reciprocating piston (2) by means of a membrane (18) or by means of a bellows (19).
- FIG. 13 schematically shows an example of an embodiment of additional inner working spaces (47) according to the invention in the piston (2).
- the inner piston (31) is fixed on the central shaft (14) and makes a rotational movement.
- the piston (2) serves the inner piston (31) as a cylinder and increases and decreases by its rotary-stroke movement the inner working spaces (47) on both sides of the inner piston (31).
- an inlet duct (30) in the central shaft (14) leads via non-return valves (32) into the inner working spaces (47).
- the outlet takes place through slots (33) in the piston (2) and in the cylinder (1), which are opened and closed by the movement of the piston (2).
- the inner work spaces can e.g. can be used as a pump or compressor, or, for example, to pre-compress the working medium and to guide it from the inner working spaces (47) through a special channel (34) into the working spaces (7).
- the end faces of the inner piston (31) and the inner shape of the piston (2) are advantageously matched to one another in such a way that the dead space is small.
- the working space is delimited by the cylinder (1; 1a, 1b, 1c) and either by two pistons (2) or by a piston (2) and a piston-like member (5).
- the pistons (2) rotate around the cylinder axis and additionally make an oscillating stroke movement along the cylinder axis.
- the piston-like member (5) only rotates around the cylinder axis.
- At least one piston (2) or a piston-like member (5) controls one or more slots in the cylinder wall by covering or uncovering these slots with its outer surface. The frontal boundary of this lateral surface is not rotationally symmetrical. Therefore, the rotary movement has an effect on the opening and closing of the slots.
- the dead space in top dead center can be made as small as desired.
- the dead space is almost zero:
- the two pistons or the piston and the piston-like member fit exactly into one another with their end faces like a negative form and a positive form. Because both parts rotate in the cylinder, there is no impediment to the rotary movement.
- this invention can be used for all known applications of piston machines.
- 2-stroke, 4-stroke engines, pumps and compressors, etc. which are realized according to this principle, are therefore only different types of embodiment of the same idea according to the invention.
- a version according to the invention avoids the second disadvantage of previous rotary reciprocating piston machines with control of the slots by the piston: it avoids the resulting radial force component which the pressure of the working medium exerts on the non-rotationally symmetrical piston end face.
- the piston is additionally shaped such that the radial transverse force components cancel each other out.
- the piston (2) of another version also makes a rotary-stroke movement and serves with its inner surface as a cylinder for an additional inner piston (31) enclosed therein.
- This inner piston is attached to a shaft or axis which extends into the piston (2) or passes through the piston (2).
- This inner piston (31) therefore executes a lifting movement relative to the piston (2) surrounding it, as a result of which this inner system also functions as a power or working machine and is used, for example, to pre-compress the working medium.
- Figure 13 schematically shows an embodiment thereof).
- Another version is characterized in that a plurality of inlet slots or a plurality of outlet slots or a plurality of inlet slots and a plurality of outlet slots per working space exist in the cylinder wall, and in that these inlet slots and / or these outlet slots are not opened and closed together at the same time.
- This is achieved by arranging the slots in the cylinder wall in such a way that the piston or the piston-like member opens or closes them one after the other, or by valves or valve-like devices which additionally open or close at least one of these slots. Examples of this will be mentioned below in connection with "Examples for carrying out the invention”.
- Another version is characterized in that the working medium is set in rotation or swirled in the working space: This movement of the working medium is caused by the rotational movement of the end faces of the piston (2) or the piston-like member (5) and by the direction of the inlet channel or of the inlet channels (8) which have a tangential component relative to the cylinder axis.
- Additional rotation or swirling of the working medium can be caused near the top dead center by the shape of the two end faces.
- the working medium is introduced into a swirl space between these two end faces. (See Figure 10a-c).
- the synchronization between the rotary movement and the stroke movement of the piston is variable.
- the control times of the slot control are changed, for example.
- This adjustable synchronization is done in the following way: That part of the device to generate the rotary stroke movement of the piston, which is directly or indirectly attached to the cylinder (1), is rotatable relative to the cylinder about the cylinder axis, or that part of the device which is attached to the piston (2) is rotatable about the axis of rotation of the piston and therefore also relative to the end face of the piston.
- a central shaft (14) transmits the rotary movement of the piston (2) to one or two outer end faces of the machine. It is made in such a way that a torque is transmitted between the piston (2) and the central shaft (14) and that the oscillating stroke movement is nevertheless ensured by an axial displacement.
- This is achieved according to the invention by means of rolling elements which transmit tangential forces and move in a rolling manner during the axial displacement. Constructions of such elements are known as longitudinally displaceable homokinetic joints which are used for the front wheel drive of cars.
- the torque transmission from the piston (2) to the central shaft (14) or the torque transmission between two adjacent pistons (2) takes place by means of one or more diaphragms or bellows or other spring-like elements which allow the axial longitudinal displacement by elastic deformation.
- the piston-like member (5) also forms a component, e.g. the anchor, an electric motor or an electric generator.
- the other component e.g. the stator, the electric motor or generator is attached directly or indirectly to the cylinder. In this way, electromagnetic forces act in a tangential direction on this rotating member.
- the torque transmission between the piston (2), or between the piston (2) and the piston-like member (5) takes place by means of a positive fit, in that the adjacent end faces of these parts (2 or 5) as Interlocking claws.
- the shape of these end faces is matched to the stroke length in such a way that they remain in engagement with one another and in this way transmit tangential forces by means of sliding surfaces.
- Another version is characterized in that the pistons (2) and, if present, the piston-like member (5) rest on a lubricating film which is located in that region of the cylinder wall where there are no slots (8/9) to be controlled.
- the rotational movement of these parts (2 and 5) creates a hydrodynamic lubrication state.
- a sealing element e.g. a scraper ring mounted in the cylinder so that the lubricant can get into the work area or into the slots.
- the choice of the embodiment of the invention depends on the size, the use, the working method of the machine and so on.
- embodiments of the rotary reciprocating piston machine according to the invention in use as an internal combustion engine are described because the use and function of piston engines as an internal combustion engine are best known:
- the working space (7) is delimited by two pistons (2), both of which perform a rotary stroke movement. This has the advantage that the relative surface of the work area is small.
- the two pistons control the inlet and outlet slots in the cylinder walls.
- the pistons are shaped such that the compression ratio is as high as is desired for the application (for example gasoline engine) and that the pressure of the working medium does not exert any radial force on the pistons.
- the first example relates to the exhaust process in an internal combustion engine which is charged by the exhaust gas energy, for example by means of a turbocharger.
- the exhaust process looks as follows: When the exhaust opens, the pressure in the cylinder is many times higher than in the exhaust manifold in front of the turbocharger. The exhaust gas flows out at the speed of sound and is expanded to the pressure level of the exhaust manifold. As a result, a lot of useful energy is lost in this first phase of the exhaust. Later the pressure in the cylinder drops to the level of the exhaust manifold.
- the rotary piston machine according to the invention works as follows: When the first outlet opens, the exhaust gas flows into an exhaust manifold, in which the pressure is relatively high. If the pressure in the exhaust manifold does not exceed approximately half the cylinder pressure, the speed of sound is still achieved.
- the piston opens a second outlet channel, which leads the exhaust gases into another exhaust manifold, in which the pressure is lower.
- the first exhaust port is closed.
- the second outlet duct leads directly to the outside via a silencer. Or the exhaust gases are first led through additional outlet slots into additional different exhaust manifolds with different pressure levels to turbochargers. Because of the higher exploitation of the exhaust gas energy in the In the first phase, the turbo receives enough energy and therefore does not require the entire amount of exhaust gas.
- the cylinder internal pressure is now significantly lower than the compressed intake gas in the late phase of the exhaust. With a four-stroke engine, this results in a noticeable additional performance and an improvement in efficiency even during the gas change. With the two-stroke engine you can achieve an extremely fast and effective gas change.
- the exhaust system mentioned in the example above also provides a clear advantage for the "cooperation" between engine and turbo and for the characteristics of the engine's power output:
- the first exhaust is designed, for example, so that the exhaust gas during full load and rather low speed during the opening time of the first outlet, flows out at the speed of sound.
- the absolute duration of the opening time of the first outlet is reduced linearly with the speed. For this, the number of openings per unit of time increases linearly.
- the boost pressure drops. The engine torque therefore increases with decreasing speed.
- additional slots During compression, pre-compressed additional air or a fuel-air mixture is blown into the work area through a special inlet slot.
- the fuel or a fuel-air mixture is only added to the intake air when the outlet is closed. This prevents unburned fuel from being emitted.
- the ability of the piston to cover openings or areas in the cylinder wall can also be used to protect valves, nozzles, igniters, sensors, etc. from the high combustion temperature or pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Hydraulic Motors (AREA)
- Reciprocating Pumps (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Compressor (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
- Transmission Devices (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Massaging Devices (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
Technisches Gebiet der Erfindung sind Kolbenmaschinen mit hin- und hergehenden und gleichzeitig drehenden Kolben im Zylinder, wie sie im Oberbegriff von Anspruch 1 beschrieben sind. Eine derartige Maschine ist z.B. aus US-A-2473936 bekannt.Technical field of the invention are piston machines with reciprocating and simultaneously rotating pistons in the cylinder, as described in the preamble of
Die "klassische", wohlbekannte Hubkolbenmaschine hat Kolben, die nur eine hin- und hergehende Bewegung machen. Die Kolbenbewegung wird dort meist durch Kurbelwelle und Pleuel erzeugt. Die Nachteile der klassischen Hubkolbenmaschine sind unter anderem die Reibung des nur hin- und hergehenden Kolbens am Zylinder, der Platzbedarf des Kurbeltriebs und die Notwendigkeit von separaten Organen zur Steuerung der Ein- und Auslässe.The "classic", well-known reciprocating piston machine has pistons that only make a reciprocating movement. The piston movement is usually generated by the crankshaft and connecting rod. The disadvantages of the classic reciprocating piston machine include the friction of the reciprocating piston on the cylinder, the space required for the crank mechanism and the need for separate organs to control the inlets and outlets.
Nur in speziellen Fällen ist es möglich, dass der Kolben der klassischen Hubkolbenmaschine Oeffnungen in der Zylinderwand direkt steuert. Der Grund liegt darin, dass nur die Position des Kolbens in bezug auf die Hubbewegung bestimmt, ob eine Oeffnung in der Zylinderwand offen oder zugedeckt ist. Die Bewegungsrichtung des Kolben spielt dabei keine Rolle: Bei einer bestimmten Position des Kolbens ist eine Oeffnung beispielsweise offen, unabhängig davon, ob der Kolben sich in Richtung des oberen Totpunkts oder des unteren Totpunkts bewegt. Aus diesem Grund kann die sogenannte Schlitzsteuerung bei klassischen Hubkolbenmaschinen fast nur für 2-Takt-Verbrennungsmotoren verwendet werden.Only in special cases is it possible for the piston of the classic reciprocating machine to directly control openings in the cylinder wall. The reason is that only the position of the piston in relation to the stroke movement determines whether an opening in the cylinder wall is open or covered. The direction of movement of the piston is irrelevant: At a certain position of the piston, for example, an opening is open, regardless of whether the piston is moving in the direction of top dead center or bottom dead center. For this reason, the so-called slot control in classic reciprocating piston machines can be used almost only for 2-stroke internal combustion engines.
Es wurden daher universell einsetzbare Kolbenmaschinen vorgeschlagen, welche diese Nachteile vermeiden, indem der Kolben zusammen mit der Hin- und Herbewegung zugleich auch eine Drehbewegung ausführt. Wegen der typischen Dreh- und Hubbewegung des Kolbens wird diese Maschinenart nachfolgend "Dreh-Hubkolben-Maschine" genannt. Mit "Dreh-Hubkolben-Maschine" ist hier nachfolgend eine Arbeitsmaschine oder auch eine Kraftmaschine gemeint.Piston machines that can be used universally have therefore been proposed, which avoid these disadvantages by simultaneously carrying out a rotary movement together with the reciprocating movement. Because of the typical rotation and stroke movement of the piston, this type of machine is hereinafter referred to as the "rotary piston machine". "Rotary reciprocating piston machine" here means a work machine or an engine.
Es sind folgende Ausführungen von Dreh-Hubkolben-Maschinen bekannt:
Kenneth R. Maltby beschreibt in seinem Patent (US 2,352,396) eine Kolbenmaschine, in welcher der Kolben eine Hubbewegung bei gleichzeitiger Drehbewegung ausführt. Die dem Arbeitsraum zugewandte Kolbenstirnseite hat auf einer Seite exzentrisch einen Absatz. D.h. die Kantenlinie, welche die Stirnseite des Kolbens gegen die Mantelfläche hin begrenzt und daher als Steuerkante wirkt, ist nicht rotationssymmetrisch bezüglich der Zylinderachse. Dadurch beeinflusst die Drehbewegung des Kolbens das Oeffnen und Schliessen der Schlitze in der Zylinderwand. Die Dreh-Hubkolben-Maschine von Wilfried Schwant (DE 3038673) steuert die Schlitze auch durch die Dreh-Hubbewegung des Kolbens, aber in einer anderen Weise: Der Kolben hat einen Kanal, welcher im Innern des Kolbens von der Kolbenstirnseite zur Seitenfläche des Kolbens führt. Der Kanal verbindet dadurch den Arbeitsraum mit der Zylinderwand und, je nach Kolbenstellung, mit den Schlitzen in der Zylinderwand.The following designs of rotary reciprocating piston machines are known:
Kenneth R. Maltby describes in his patent (US 2,352,396) a piston machine in which the piston carries out a stroke movement with a simultaneous rotary movement. The piston end facing the working area has an offset eccentrically on one side. That is, the edge line which delimits the end face of the piston against the lateral surface and therefore acts as a control edge is not rotationally symmetrical with respect to the cylinder axis. As a result, the rotary movement of the piston influences the opening and closing of the slots in the cylinder wall. The rotary reciprocating piston machine from Wilfried Schwant (DE 3038673) also controls the slots by the rotary and reciprocating motion of the piston, but in a different way: The piston has a channel that leads inside the piston from the piston face to the side surface of the piston . The channel connects the working area with the cylinder wall and, depending on the piston position, with the slots in the cylinder wall.
Die Dreh-Hubkolben-Maschine von Joe Burrough (US 2,473,936) hat zwar auch Kolben, welche eine Dreh-Hubbewegung ausführen, aber die Steuerung der Schlitze wird durch die Drehbewegung des Kolbens nicht beeinflusst.The rotary reciprocating piston machine from Joe Burrough (US 2,473,936) also has pistons which perform a rotary reciprocating movement, but the control of the slots is not influenced by the rotary movement of the piston.
Um die Kolbenbewegung von Dreh-Hubkolben-Maschinen zu erzeugen, wurde häufig folgende Vorrichtung vorgeschlagen: Eine Kurvenbahn dreht sich relativ zu Führungselementen und macht dadurch relativ zu den Führungselementen eine Dreh-Hubbewegung. Entweder ist diese Kurvenbahn am Kolben und die Führungselemente in Form von Rollen etc. sind am Zylinder befestigt (Maltby, Burrough, Schwandt), oder umgekehrt.In order to generate the piston movement of rotary reciprocating piston machines, the following device has often been proposed: a cam track rotates relative to guide elements and thereby makes a rotary stroke movement relative to the guide elements. Either this cam track is on the piston and the guide elements in the form of rollers etc. are attached to the cylinder (Maltby, Burrough, Schwandt), or vice versa.
Ein Problem der bisherigen Dreh-Hubkolben-Maschinen mit Steuerung der Ein- und Auslassöffnungen durch den Kolben (z.B. nach Maltby oder Schwant) ist der grosse Totraum im oberen Totpunkt. Ein hohes Verdichtungsverhältnis ist deshalb nicht möglich. Der Grund für den grossen Totraum liegt im Konstruktionsprinzip: Um im oberen Totpunkt einen kleinen Totraum zu verwirklichen, müsste die Form des Zylinderkopfs ungefähr der Negativform der Kolbenoberfläche entsprechen. Dies ist aber nur annähernd möglich, weil sonst der nicht rotierende Zylinderkopf den nicht rotationssymmetrisch geformten Kolben im oberen Totpunkt bei seiner Drehbewegung behindert.A problem with the previous rotary reciprocating machines with control of the inlet and outlet openings by the piston (e.g. according to Maltby or Schwant) is the large dead space at the top dead center. A high compression ratio is therefore not possible. The reason for the large dead space lies in the design principle: In order to realize a small dead space in the top dead center, the shape of the cylinder head would have to correspond approximately to the negative shape of the piston surface. However, this is only possible approximately because otherwise the non-rotating cylinder head hinders the non-rotationally symmetrical piston in its top dead center during its rotational movement.
Ein zweites Problem besteht darin, dass der wechselnde Druck des Arbeitsmediums eine wechselnde Kraft in radialer Richtung auf den unsymmetrischen Kolben bewirkt. Wenn der Kolben gegen die Zylinderwand gedrückt wird, erhöht dies die Reibung. Zudem wurden bisher einige Vorteile, welche die Dreh-Hubbewegung des Kolbens bietet, nicht konsequent ausgenutzt. Es ist deshalb die Aufgabe der vorliegenden Erfindung, eine Dreh-Hubkolben-Maschine zu schaffen, welche mit ihren verschiedenen Ausführungen die erwähnten Probleme behebt.A second problem is that the changing pressure of the working medium causes an alternating force in the radial direction on the asymmetrical piston. If the piston is pressed against the cylinder wall, this increases the friction. In addition, some of the advantages offered by the rotary stroke movement of the piston have not been consistently exploited. It is therefore the object of the present invention to provide a rotary reciprocating piston machine which, with its various designs, eliminates the problems mentioned.
Entsprechend der vorliegenden Erfindung ist daher eine Kolbenmaschine mit den Merkmalen gemäss Anspruch 1 vorgesehen.According to the present invention, therefore, a piston machine with the features according to
Dadurch ist das oben erwähnte Problem des grossen Totraums gelöst.This solves the above-mentioned problem of large dead space.
Um das oben erwähnte Problem der radialen Kraftkomponente auf die Kolben zu vermeiden, ist die dem Arbeitsraum zugewandte Stirnfläche der Kolben zusätzlich so geformt, dass sich die vom Druck des Arbeitsmediums herrührenden radialen Kraftkomponenten auf der Kolbenstirnseite gegenseitig kompensieren, so dass jeweils nur eine axiale Kraft auf den Kolben resultiert (siehe Anspruch 2).In order to avoid the above-mentioned problem of the radial force component on the pistons, the end face of the pistons facing the working space is additionally shaped in such a way that the radial force components on the piston end face resulting from the pressure of the working medium compensate each other, so that only one axial force is applied the piston results (see claim 2).
Für ein besseres Verständis der Erfindung wird nun bezug genommen auf die zugehörigen Zeichnungen, welche schematisch folgende Ausführungsbeispiele illustrieren:
- Figur 1a und 1b ist ein Längsschnitt entlang der Zylinderachse einer ersten Ausführung einer Maschine welche die erfindungsgemässen Merkmale aufweist;
Figur 2 ist ein Längsschnitt durch die Zylinderachse einer zweiten Ausführung einer Maschine welche die erfindungsgemässen Merkmale aufweist;- Figuren 3a bis 3d sind schematische Querschnitte durch den Arbeitsraum einer Maschine von
Figur 1 oder 2 mit Sicht auf eine Kolbenstirnseite und illustrieren den Ladungswechsel bei einer Arbeitsweise als Pumpe; - Figuren 4a bis 4g sind schematische Querschnitte durch den Arbeitsraum einer Maschine gemäss
Figur 1 oder 2 mit Sicht auf eine Kolbenstirnseite und illustrieren den Ladungswechsel bei einer Arbeitsweise als Viertaktmotor. Figuren 5a bis 5f illustrieren schematische Beispiele für Kolbenformen welche in Maschinen anwendbar sind, welche die Merkmale der Erfindung aufweisen;Figuren 6 bis 9 sind Querschnitte von Ausführungen von Vorrichtungen zur Erzeugung der Kolbenbewegung;- Figuren 9a bis 9c illustrieren Details der in Figur 7 illustrierten Vorrichtung;
- Figuren 10a bis 10c illustrieren ein Beispiel für die Form der Stirnseite von Kolben, welche in erfindungsgemässen Maschinen anwendbar sind.
Figuren 11 und 12 sind Längsschnitte, welche schematisch Arten der Kraftübertragung zwischen einer zentralen Welle und dem Kolben illustrieren;Figur 13 ist ein Längsschnitt, welcher eine Ausführung einer erfindungsgemässen Maschine mit äusseren und inneren Arbeitsräumen illustriert.
- Figures 1a and 1b is a longitudinal section along the cylinder axis of a first embodiment of a machine which has the features according to the invention;
- FIG. 2 is a longitudinal section through the cylinder axis of a second embodiment of a machine which has the features according to the invention;
- Figures 3a to 3d are schematic cross sections through the working area of a machine of Figure 1 or 2 with a view of a piston face and illustrate the charge change when operating as a pump;
- FIGS. 4a to 4g are schematic cross sections through the working space of a machine according to FIG. 1 or 2 with a view of a piston end face and illustrate the gas exchange when working as a four-stroke engine.
- FIGS. 5a to 5f illustrate schematic examples of piston shapes which can be used in machines which have the features of the invention;
- Figures 6 through 9 are cross sections of embodiments of devices for generating piston movement;
- Figures 9a to 9c illustrate details of the device illustrated in Figure 7;
- FIGS. 10a to 10c illustrate an example of the shape of the end face of pistons which can be used in machines according to the invention.
- Figures 11 and 12 are longitudinal sections schematically illustrating types of power transmission between a central shaft and the piston;
- FIG. 13 is a longitudinal section which illustrates an embodiment of a machine according to the invention with outer and inner work spaces.
Es werden nun die Zeichnungen beschrieben. Figur 1a und 1b ist ein Längsschnitt einer Maschine entlang der Achse eines Zylinders mit den Zylinderteilen 1a, 1b, 1c. Die Maschine ist in zwei um eine halbe Wellenumdrehung unterschiedlichen Stellungen gezeichnet (Fig. 1a und 1b).The drawings will now be described. Figures 1a and 1b is a longitudinal section of a machine along the axis of a cylinder with the
Der Zylinder weist in seiner Wand Öffnungen (Schlitze) auf, welche vorgesehen sind für den Einlass (8, 10) und für den Auslass (9, 11) des Arbeitsmediums. Die Schlitze werden durch die Kolben (2) und durch die kolbenähnlichen Glieder (5) geöffnet und geschlossen. Die Dreh-Hubkolben-Maschine von Figur 1 ist als 2-Takt-Verbrennungsmotor dargestellt. Wenn die Anordnung der Schlitze verändert wäre, könnte diese Dreh-Hubkolben-Maschine jedoch anders funktionieren, beispielsweise als Verdichter.The cylinder has openings (slots) in its wall, which are provided for the inlet (8, 10) and for the Outlet (9, 11) of the working medium. The slots are opened and closed by the pistons (2) and by the piston-like members (5). The rotary piston machine of Figure 1 is shown as a 2-stroke internal combustion engine. If the arrangement of the slots were changed, however, this rotary piston machine could function differently, for example as a compressor.
Der Kolben (2) macht eine oscillierende Hubbewegung und gleichzeitig eine Drehbewegung um die Zylinderachse. Das kolbenähnliche Glied (5) führt nur die Rotation um die Zylinderachse aus. Die dargestellte Variante hat 4 Arbeitsräume (7a und 7b). In Figur 1a zeigt die gezeichnete Stellung zwei Arbeitsräume (7a) bei maximalem Volumen, entsprechend dem unteren Totpunkt. Die andern zwei Arbeitsräume (7b) haben im Moment das minimale Volumen, Totraum oder Kompressionsraum genannt, entsprechend dem oberen Totpunkt. Weil die Stirnflächen erfindungsgemäss simultan drehen und zusammenpassen, ist der Totraum sehr klein. Figur 1b zeigt die Kolben in anderen Stellungen nach einer halben Umdrehung.The piston (2) makes an oscillating stroke movement and at the same time a rotary movement around the cylinder axis. The piston-like member (5) only rotates around the cylinder axis. The variant shown has 4 work rooms (7a and 7b). In Figure 1a, the position shown shows two working spaces (7a) at maximum volume, corresponding to the bottom dead center. The other two work spaces (7b) have at the moment called the minimum volume, dead space or compression space, corresponding to the top dead center. Because the end faces simultaneously rotate and fit together according to the invention, the dead space is very small. Figure 1b shows the pistons in other positions after half a revolution.
Die Bewegung des Dreh-Hubkolbens (2) wird auf bekannte Art durch eine Kurvenbahn (3) erzeugt, welche sich auf die Führungen (4) abstüzt. Die Kolben (2) machen einen Hubzyklus, das heisst eine Hin- und Herbewegung, pro Umdrehung. Die Leistungsübertragung vom Kolben nach aussen erfolgt mittels einer zentralen Welle (14). Die Kolben (2) sind mit der zentralen Welle (14) so verbunden, dass sie entlang der zentralen Welle längs verschiebbar sind, aber dass sie das Drehmoment auf die zentrale Welle (14) übertragen.The movement of the rotary piston (2) is generated in a known manner by a cam track (3), which is supported on the guides (4). The pistons (2) make one stroke cycle, i.e. a reciprocating movement, per revolution. The power is transferred from the piston to the outside by means of a central shaft (14). The pistons (2) are connected to the central shaft (14) so that they are longitudinally displaceable along the central shaft, but that they transmit the torque to the central shaft (14).
Figur 2 zeigt schematisch einen Schnitt durch die Zylinderachse einer Dreh-Hubkolben-Maschine, bei welcher die Hubbewegung des Kolbens (2) auf bekannte, konventionelle Weise mittels Kurbelwelle (28), Pleuelstange (27) und Kreuzkopf (25) erzeugt wird. Die Drehung des Kolbens (2) wird auf separate Weise erzeugt. In diesem Beispiel wird die Drehbewegung durch ein Zahnrad (22) und eine zentrale Welle (14) auf den Kolben (2) und das kolbenähnliche Glied (5) übertragen. Die Anordnung und die Form des Kolbens und des kolbenähnlichen Glieds und die Art und Weise der Steuerung der Öffnungen in der Zylinderwand sind erfindungsgemäss ausgeführt und sind analog zu Figur 1. Figure 2 shows schematically a section through the cylinder axis of a rotary reciprocating machine, in which the lifting movement of the piston (2) is generated in a known, conventional manner by means of a crankshaft (28), connecting rod (27) and crosshead (25). The rotation of the piston (2) is generated in a separate manner. In this example, the rotary motion through a gear (22) and a central shaft (14) on the piston (2) and the piston-like member (5) transferred. The arrangement and the shape of the piston and the piston-like member and the manner in which the openings in the cylinder wall are controlled are designed according to the invention and are analogous to FIG. 1.
Figur 3 illustriert den Ladungswechsel bei einer Dreh-Hubkolben-Maschine welche als Pumpe arbeitet. Es ist je ein Querschnitt durch den Arbeitsraum (7) im Zylinder (1) mit Sicht auf die Kolbenstirnseite schematisch dargestellt. Figure 3 illustrates the charge change in a rotary reciprocating machine which works as a pump. A cross section through the working space (7) in the cylinder (1) with a view of the piston face is shown schematically.
Fig. 3a: Der Kolben ist im oberen Totpunkt, der Einlassschlitz (8) und der Auslassschlitz (9) sind durch den Kolben verschlossen.Fig. 3a: The piston is at top dead center, the inlet slot (8) and the outlet slot (9) are closed by the piston.
Fig. 3b: Der Einlassschlitz ist durch den Kolben geöffnet, der Kolben geht nach unten, das Arbeitsmedium strömt ein (10).Fig. 3b: The inlet slot is opened by the piston, the piston goes down, the working medium flows in (10).
Fig. 3c: Der Kolben ist ungefähr im unteren Totpunkt. Der Einlassschlitz ist gerade geschlossen, der Auslassschlitz ist noch nicht offen.Fig. 3c: The piston is approximately at bottom dead center. The inlet slot is just closed, the outlet slot is not yet open.
Fig. 3d: Der Kolben kommt nach oben, der Auslass (9) ist geöffnet, das Arbeitsmedium strömt aus (11).Fig. 3d: The piston comes up, the outlet (9) is open, the working medium flows out (11).
Figur 4 zeigt analog zu Figur 3 schematisch den Ladungswechsel für den Fall eines 4-Takt-Motors.
Fig. 4a: oberer Totpunkt; 4b: Ansaugen;
4c: unterer Totpunkt; 4d: Verdichten;
4e: Beginn der Verbrennung und oberer Totpunkt; 4f: Arbeitstakt
4g: unterer Totpunkt; 4h: Auspuffen. FIG. 4 shows, analogously to FIG. 3, the charge exchange in the case of a 4-stroke engine.
4a: top dead center; 4b: suction;
4c: bottom dead center; 4d: compacting;
4e: start of combustion and top dead center; 4f: work cycle
4g: bottom dead center; 4h: exhaust.
Figur 5 zeigt schematische Beispiele für Formen von Kolben (2) oder kolbenähnlichen Gliedern (5): Fig 5a und 5b zeigen asymmetrische Formen; Fig 5c und d, 5e und 5f zeigen punktsymmetrische Formen, bei denen der Druck im Arbeitsraum keine resultierende Querkraft bewirkt. FIG. 5 shows schematic examples of shapes of pistons (2) or piston-like members (5): FIGS. 5a and 5b show asymmetrical shapes; 5c and d, 5e and 5f show point-symmetrical shapes, in which the pressure in the working space does not result in a resulting transverse force.
Figuren 6 bis 9 zeigen Ausführungsvarianten des Mechanismus, welcher den Kolben (2) zur Dreh-Hubbewegung führt. In Figur 6 ist die räumliche Kurvenbahn (3) als scheibenähnliche Kurvenbahn fest am Kolben (2). Die Führungen bestehen hier aus Rollen (4). Der Kolben (2) macht einen Hubzyklus pro Umdrehung. Diese Ausführung entspricht dem bisherigen Stand der Technik. Figures 6 to 9 show variants of the mechanism which leads the piston (2) to the rotary-stroke movement. In Figure 6, the spatial cam track (3) is fixed to the piston (2) as a disk-like cam track. The guides here consist of rollers (4). The piston (2) makes one stroke cycle per revolution. This version corresponds to the current state of the art.
In Figur 7 macht der Kolben infolge der Form der räumlichen Kurvenbahn (3) zwei Hubzylen pro Umdrehung.In Figure 7, the piston makes two stroke cycles per revolution due to the shape of the spatial cam track (3).
In Figur 8 ist die räumliche Kurvenbahn (3) als umlaufende Nut geformt, in welche die Führung (4) greift. Diese Ausführung entspricht auch dem bisherigen Stand der Technik.In Figure 8, the spatial cam track (3) is shaped as a circumferential groove in which the guide (4) engages. This version also corresponds to the prior art.
Figur 9a - 9c zeigt Details einer verbesserten Ausführung aus drei Blickrichtungen. Die Führungen (4) sind durch Wippen (16) miteinander verbunden, die Wippen sind mit dem Zylinder verbunden (Siehe Figur 7).FIGS. 9a-9c show details of an improved embodiment from three viewing directions. The guides (4) are connected to one another by rockers (16), the rockers are connected to the cylinder (see FIG. 7).
Zusätzlich zu den erwähnten Varianten mit am Kolben (2) befestigter Kurvenbahn (3) existieren auch die entsprechenden konträren Varianten: Die Kurvenbahn (3) ist mit dem Zylinder (1) verbunden, und die Führungen (4) sind am Kolben (2) befestigt.In addition to the variants mentioned with a curved track (3) attached to the piston (2), there are also the corresponding opposite versions: The curved track (3) is connected to the cylinder (1) and the guides (4) are attached to the piston (2) .
Figur 10a-c zeigt ein Beispiel für die Form der Stirnseiten von Kolben (2) bzw. von kolbenähnlichen Gliedern (5), welche für die erfindungsgemässe Maschine anwendbar sind. Figur 10c zeigt eine Ansicht vom Arbeitsraum her auf die Kolbenstirnseite. Figure 10a und 10b zeigen ein Detail aus einem Schnitt längs der Zylinderachse in der Richtung von A-A und B-B. Der Kolben (2) bewegt sich zum oberen Totpunkt. Das aus den engen Quetschflächen herausgepresste Arbeitsmedium wird dabei tangential in den torusförmigen Wirbelraum (43) eingeleitet. Eine solche Verwirbelung des Arbeitsmediums ist zum Beispiel für Dieselmotoren erwünscht. 10a-c show an example of the shape of the end faces of pistons (2) or of piston-like members (5) which can be used for the machine according to the invention. Figure 10c shows a view from the working area on the piston end. Figure 10a and 10b show a detail from a section along the cylinder axis in the direction of AA and BB. The piston (2) moves to the top dead center. The working medium pressed out of the narrow squeezing surfaces is introduced tangentially into the toroidal swirl space (43). Such a swirling of the working medium is desirable for diesel engines, for example.
Figuren 11 bzw. 12 zeigen schematisch die Drehmomentübertragung zwischen zentraler Welle (14) und Dreh-Hubkolben (2) mittels Membrane (18) bzw. mittels Balg (19). FIGS. 11 and 12 schematically show the torque transmission between the central shaft (14) and the rotary reciprocating piston (2) by means of a membrane (18) or by means of a bellows (19).
Figur 13 zeigt schematisch ein Beispiel einer Ausführungsform von erfindungsgemässen zusätzlichen inneren Arbeitsräumen (47) im Kolben (2). Der innere Kolben (31) ist auf der zentralen Welle (14) befestigt und macht eine Rotationsbewegung. Der Kolben (2) dient dem inneren Kolben (31) als Zylinder und vergrössert und verkleinert durch seine Dreh-Hubbewegung die inneren Arbeitsräume (47) beidseits des inneren Kolbens (31). Im Beispiel führt ein Einlass-Kanal (30) in der zentralen Welle (14) via Rückschlagventile (32) in die inneren Arbeitsräume (47). Der Auslass erfolgt durch Schlitze (33) im Kolben (2) und im Zylinder (1), welche durch die Bewegung des Kolbens (2) geöffnet und geschlossen werden. FIG. 13 schematically shows an example of an embodiment of additional inner working spaces (47) according to the invention in the piston (2). The inner piston (31) is fixed on the central shaft (14) and makes a rotational movement. The piston (2) serves the inner piston (31) as a cylinder and increases and decreases by its rotary-stroke movement the inner working spaces (47) on both sides of the inner piston (31). In the example, an inlet duct (30) in the central shaft (14) leads via non-return valves (32) into the inner working spaces (47). The outlet takes place through slots (33) in the piston (2) and in the cylinder (1), which are opened and closed by the movement of the piston (2).
Die inneren Arbeitsräume können z.B. als Pumpe oder Verdichter verwendet werden, oder beispielsweise um das Arbeitsmedium vorzuverdichten und es von den inneren Arbeitsräumen (47) durch einen speziellen Kanal (34) in die Arbeitsräume (7) zu leiten. Bei Verwendung als Verdichter werden die Stirnseiten des inneren Kolbens (31) und die Innenform des Kolbens (2) vorteilhafterweise formlich so aufeinander angepasst, dass der Totraum klein ist.The inner work spaces can e.g. can be used as a pump or compressor, or, for example, to pre-compress the working medium and to guide it from the inner working spaces (47) through a special channel (34) into the working spaces (7). When used as a compressor, the end faces of the inner piston (31) and the inner shape of the piston (2) are advantageously matched to one another in such a way that the dead space is small.
In der erfindungsgemässen Dreh-Hubkolben-Maschine wird der Arbeitsraum durch den Zylinder (1;1a,1b,1c) und entweder durch zwei Kolben (2) begrenzt, oder durch einen Kolben (2) und ein kolbenähnliches Glied (5). Die Kolben (2) rotieren um die Zylinderachse und machen zusätzlich eine oscillierende Hubbewegung entlang der Zylinderachse. Das kolbenähnliche Glied (5) macht nur eine Rotation um die Zylinderachse. Mindestens ein Kolben (2) oder ein kolbenähnliches Glied (5) steuert einen oder mehrere Schlitze in der Zylinderwand durch Zudecken oder Freigeben dieser Schlitze mit seiner Mantelfläche. Die stirnseitige Begrenzung dieser Mantelfläche ist nicht rotationssymmetrisch. Daher hat die Drehbewegung eine Wirkung auf das Oeffnen und Schliessen der Schlitze. Entsprechend der Erfindung kann der Totraum im oberen Totpunkt beliebig klein gemacht werden. Im Extremfall ist der Totraum annähernd gleich Null: In diesem Fall passen die beiden Kolben beziehungsweise der Kolben und das kolbenähnliche Glied mit ihren Stirnseiten wie eine Negativform und eine Positivform genau ineinander. Weil sich beide Teile im Zylinder drehen, besteht keine Behinderung der Drehbewegung.In the rotary reciprocating piston machine according to the invention, the working space is delimited by the cylinder (1; 1a, 1b, 1c) and either by two pistons (2) or by a piston (2) and a piston-like member (5). The pistons (2) rotate around the cylinder axis and additionally make an oscillating stroke movement along the cylinder axis. The piston-like member (5) only rotates around the cylinder axis. At least one piston (2) or a piston-like member (5) controls one or more slots in the cylinder wall by covering or uncovering these slots with its outer surface. The frontal boundary of this lateral surface is not rotationally symmetrical. Therefore, the rotary movement has an effect on the opening and closing of the slots. According to the invention, the dead space in top dead center can be made as small as desired. In an extreme case, the dead space is almost zero: In this case, the two pistons or the piston and the piston-like member fit exactly into one another with their end faces like a negative form and a positive form. Because both parts rotate in the cylinder, there is no impediment to the rotary movement.
Infolge von Kolbendrehung und Kolbenform ist jede beliebige Abfolge von Oeffnen und Schliessen der Schlitze möglich. Und es ist ein hohes Verdichtungsverhältnis realisierbar.Due to the piston rotation and piston shape, any sequence of opening and closing of the slots is possible. And a high compression ratio can be achieved.
Daher lässt sich diese Erfindung für alle bekannten Anwendungen von Kolbenmaschinen einsetzen. 2-Takt-, 4-Takt-Motoren, Pumpen und Verdichter u.s.w., welche nach diesem Prinzip realisiert werden, sind daher nur verschiedene Arten von Verkörperungen der selben erfindungsgemässen Idee.Therefore, this invention can be used for all known applications of piston machines. 2-stroke, 4-stroke engines, pumps and compressors, etc., which are realized according to this principle, are therefore only different types of embodiment of the same idea according to the invention.
Eine erfindungsgemässe Version vermeidet den zweiten Nachteil bisheriger Dreh-Hubkolben-Maschinen mit Steuerung der Schlitze durch den Kolben: Sie vermeidet die resultierende radiale Kraftlkomponente, welche der Druck des Arbeitsmediums auf die nicht rotationssymmetrische Kolbenstirnfläche ausübt. In dieser erfindungsgemässen Version ist der Kolben zusätzlich so geformt, dass sich die radialen Querkraftkomponenten gegenseitig aufheben.A version according to the invention avoids the second disadvantage of previous rotary reciprocating piston machines with control of the slots by the piston: it avoids the resulting radial force component which the pressure of the working medium exerts on the non-rotationally symmetrical piston end face. In this version according to the invention, the piston is additionally shaped such that the radial transverse force components cancel each other out.
Der Kolben (2) einer anderen Version macht auch eine Dreh-Hubbewegung und dient mit seiner Innenfläche als Zylinder für einen darin eingeschlossenen zusätzlichen inneren Kolben (31). Dieser innere Kolben ist auf einer Welle oder Achse befestigt, welche in den Kolben (2) hineinreicht oder durch den Kolben (2) hindurchführt. Deshalb führt dieser innere Kolben (31) relativ zum ihn umschliessenden Kolben (2) eine Hubbewegung aus, wodurch dieses innere System ebenso als Kraft- oder Arbeitsmaschine arbeitet und beispielsweise benutzt wird um das Arbeitsmedium vorzuverdichten. (Figur 13 zeigt schematisch eine Ausführung davon).The piston (2) of another version also makes a rotary-stroke movement and serves with its inner surface as a cylinder for an additional inner piston (31) enclosed therein. This inner piston is attached to a shaft or axis which extends into the piston (2) or passes through the piston (2). This inner piston (31) therefore executes a lifting movement relative to the piston (2) surrounding it, as a result of which this inner system also functions as a power or working machine and is used, for example, to pre-compress the working medium. (Figure 13 schematically shows an embodiment thereof).
Eine andere Version ist dadurch gekennzeichnet, dass die Dreh-Hubbewegung des Kolbens erzeugt wird mittels einer Kurvenbahn (3) und Führungen (4) (Fig. 1 und 6 bis 9), und dadurch dass die Führungselemente, beispielsweise Rollen oder Gleiter, miteinander durch Wippen (16) verbunden sind. Diese Wippen lösen das folgende Problem: Wenn die Führungselemente (4) fest mit dem Zylinder (1) verbunden sind, kann die Dicke des Kurvenbahn offensichtlich nicht konstant sein. (Vergleiche Figure 6 mit Figur 7 und siehe Figur 9a-9c).Another version is characterized in that the rotary stroke movement of the piston is generated by means of a cam track (3) and guides (4) (FIGS. 1 and 6 to 9), and in that the guide elements, for example rollers or sliders, pass through one another Rockers (16) are connected. These rockers solve the following problem: If the guide elements (4) are firmly connected to the cylinder (1), the thickness of the cam track can obviously not be constant. (Compare Figure 6 with Figure 7 and see Figures 9a-9c).
Eine andere Version ist dadurch gekennzeichnet, dass mehrere Einlassschlitze oder mehrere Auslassschlitze oder mehrere Einlassschlitze und mehrere Auslassschlitze pro Arbeitsraum in der Zylinderwand existieren, und dadurch dass diese Einlassschlitze und/oder diese Auslassschlitze nicht gleichzeitig zusammen geöffnet und geschlossen werden. Dies wird erreicht, indem die Schlitze in der Zylinderwand auf solche Weise angeordnet sind, dass der Kolben oder das kolbenähnliche Glied diese nacheinander öffnet oder schliesst, oder durch Ventile oder ventilähnliche Vorrichtungen, welche mindestens einen dieser Schlitze zusätzlich öffnen oder schliessen. Beispiele hierzu werden nachfolgend erwähnt werden im Zusammenhang mit "Beispiele zur Ausführung der Erfindung".Another version is characterized in that a plurality of inlet slots or a plurality of outlet slots or a plurality of inlet slots and a plurality of outlet slots per working space exist in the cylinder wall, and in that these inlet slots and / or these outlet slots are not opened and closed together at the same time. This is achieved by arranging the slots in the cylinder wall in such a way that the piston or the piston-like member opens or closes them one after the other, or by valves or valve-like devices which additionally open or close at least one of these slots. Examples of this will be mentioned below in connection with "Examples for carrying out the invention".
Eine andere Version ist dadurch gekennzeichnet, dass das Arbeitsmedium im Arbeitsraum in Rotation versetzt oder verwirbelt wird: Diese Bewegung des Arbeitsmediums wird verursacht durch die Drehbewegung der Stirnflächen des Kolbens (2), beziehungsweise des kolbenähnlichen Glieds (5) und durch die Richtung des Einlasskanals oder der Einlasskanäle (8) welche eine tangetiale Komponente relativ zur Zylinderachse aufweisen.Another version is characterized in that the working medium is set in rotation or swirled in the working space: This movement of the working medium is caused by the rotational movement of the end faces of the piston (2) or the piston-like member (5) and by the direction of the inlet channel or of the inlet channels (8) which have a tangential component relative to the cylinder axis.
Zusätzliche Drehungen oder Verwirbelungen des Arbeitsmediums können in der Nähe des oberen Totpunktes bewirkt werden durch die Form der zwei Stirnflächen. Das Arbeitsmedium wird zum Beispiel in einen Wirbelraum zwischen diesen beiden Stirnflächen eingeleitet. (Siehe Figur 10a - c).Additional rotation or swirling of the working medium can be caused near the top dead center by the shape of the two end faces. For example, the working medium is introduced into a swirl space between these two end faces. (See Figure 10a-c).
In einer anderen Version ist die Synchronisation zwischen der Drehbewegung und der Hubbewegung des Kolbens variabel. Auf diese Weise werden zum Beispiel die Steuerzeiten der Schlitzsteuerung verändert. Diese verstellbare Synchronisation wird auf folgende Weise gemacht: Derjenige Teil der Vorrichtung zur Erzeugung der Dreh-Hubbewegung des Kolbens, welcher direkt oder indirekt am Zylinder (1) befestigt ist, ist relativ zum Zylinder um die Zylinderachse drehbar, oder derjenige Teil der Vorrichtung, welcher am Kolben (2) befestigt ist, ist drehbar um die Rotationsachse des Kolbens und daher auch relativ zur Stirnseite des Kolbens.In another version, the synchronization between the rotary movement and the stroke movement of the piston is variable. In this way, the control times of the slot control are changed, for example. This adjustable synchronization is done in the following way: That part of the device to generate the rotary stroke movement of the piston, which is directly or indirectly attached to the cylinder (1), is rotatable relative to the cylinder about the cylinder axis, or that part of the device which is attached to the piston (2) is rotatable about the axis of rotation of the piston and therefore also relative to the end face of the piston.
Eine andere Version hat die folgenden zusätzlichen charakteristischen Merkmale: Eine zentrale Welle (14) überträgt die Drehbewegung des Kolbens (2) auf eine oder zwei Aussen-Stirnseiten der Maschine. Sie ist so gemacht, dass zwischen Kolben (2) und zentraler Welle (14) ein Drehmoment übertragen wird und dass trotzdem die oscillierende Hubbewegung durch eine axiale Verschiebbarkeit gewährleistet ist. Dies wird erfindungsgemäss erreicht mittels Wälzkörper, welche Tangentialkräfte übertragen und sich während der Axialverschiebung rollend bewegen. Konstruktionen solcher Elemente sind bekannt als längsverschiebbare homokinetische Gelenke, welche für den Vorderradantrieb von Autos benutzt werden.Another version has the following additional characteristic features: a central shaft (14) transmits the rotary movement of the piston (2) to one or two outer end faces of the machine. It is made in such a way that a torque is transmitted between the piston (2) and the central shaft (14) and that the oscillating stroke movement is nevertheless ensured by an axial displacement. This is achieved according to the invention by means of rolling elements which transmit tangential forces and move in a rolling manner during the axial displacement. Constructions of such elements are known as longitudinally displaceable homokinetic joints which are used for the front wheel drive of cars.
In einer anderen Version erfolgt die Drehmomentübertragung vom Kolben (2) auf die zentrale Welle (14) oder die Drehmomentübertragung zwischen zwei benachbarten Kolben (2) mittles einer oder mehrerer Membranen oder Bälgen oder anderer federartiger Elemente, welche die axiale Längsverschiebung durch elastische Verformung zulassen.In another version, the torque transmission from the piston (2) to the central shaft (14) or the torque transmission between two adjacent pistons (2) takes place by means of one or more diaphragms or bellows or other spring-like elements which allow the axial longitudinal displacement by elastic deformation.
Bei einer anderen Version bildet das kolbenähnliche Glied (5) zugleich eine Komponente, z.B. der Anker, eines Elektromotors oder eines elektrischen Generators. Die andere Komponente, z.B. der Stator, des Elektromotors oder Generators ist direkt oder indirekt am Zylinder befestigt. Auf diese Weise wirken elektromagnetische Kräfte in tangentialer Richtung auf dieses drehende Glied.In another version, the piston-like member (5) also forms a component, e.g. the anchor, an electric motor or an electric generator. The other component, e.g. the stator, the electric motor or generator is attached directly or indirectly to the cylinder. In this way, electromagnetic forces act in a tangential direction on this rotating member.
Bei einer anderen Version erfolgt die Drehmomentübertragung zwischen den Kolben (2), oder zwischen dem Kolben (2) und dem kolbenähnlichen Glied (5), mittels Formschluss, indem die benachbarten Stirnseiten dieser Teile (2 oder 5) wie Klauen ineinander greifen. Die Form dieser Stirnseiten ist so auf die Hublänge abgestimmt, dass diese dauernd ineinander im Eingriff bleiben und auf diese Weise Tangentialkräfte mittels Gleitflächen übertragen.In another version, the torque transmission between the piston (2), or between the piston (2) and the piston-like member (5), takes place by means of a positive fit, in that the adjacent end faces of these parts (2 or 5) as Interlocking claws. The shape of these end faces is matched to the stroke length in such a way that they remain in engagement with one another and in this way transmit tangential forces by means of sliding surfaces.
Eine andere Version ist dadurch gekennzeichnet, dass die Kolben (2) und, falls vorhanden, das kolbenähnliche Glied(5) auf einem Schmierfilm aufliegen, welcher sich in jenem Bereich der Zylinderwand befindet, wo keine zu steuernden Schlitze (8/9) sind. Die Rotationsbewegung dieser Teile (2 und 5) erzeugt einen hydrodynamischen Schmierzustand. Bei Anwendungen, wo das Schmiermittel nicht in den Arbeitsraum (7;7a,7b) oder in die Schlitze gelangen darf, verhindert ein Dichtungselement, wie z.B. ein im Zylinder montierter Abstreifring, dass das Schmiermittel in den Arbeitsraum oder in die Schlitze gelangt.Another version is characterized in that the pistons (2) and, if present, the piston-like member (5) rest on a lubricating film which is located in that region of the cylinder wall where there are no slots (8/9) to be controlled. The rotational movement of these parts (2 and 5) creates a hydrodynamic lubrication state. In applications where the lubricant must not get into the work area (7; 7a, 7b) or into the slots, a sealing element, e.g. a scraper ring mounted in the cylinder so that the lubricant can get into the work area or into the slots.
Es gibt zusätzliche verschiedene Versionen, indem die Merkmale von mehreren verschiedenen Ansprüchen kombiniert werden.There are additional different versions by combining the features of several different claims.
Die Wahl der Ausführungsart der Erfindung hängt von der Grösse, der Verwendungsweise, dem Arbeitsverfahren der Maschine und so weiter ab. Im folgenden werden Ausführungsformen der erfindungsgemässen Dreh-Hubkolben-Maschine in der Anwendung als Verbrennungsmotor beschrieben, weil die Anwendung und Funktion von Kolbenmaschinen als Verbrennungsmotor am besten bekannt ist:
Der Arbeitsraum (7) wird von zwei Kolben (2) begrenzt, welche beide eine Dreh-Hubbewegung ausführen. Dies hat den Vorteil, dass die relative Oberfläche des Arbeitsraumes klein ist. Die beiden Kolben steuern die Ein- und Auslassschlitze in den Zylinderwänden. Die Kolben sind erfindungsgemäss so geformt, dass das Verdichtungverhältnis so hoch ist, wie es für die Anwendung (z.B. Benzinmotor) erwünscht ist und dass der Druck des Arbeitsmediums keine resultierende Radialkraft auf die Kolben ausübt.The choice of the embodiment of the invention depends on the size, the use, the working method of the machine and so on. In the following, embodiments of the rotary reciprocating piston machine according to the invention in use as an internal combustion engine are described because the use and function of piston engines as an internal combustion engine are best known:
The working space (7) is delimited by two pistons (2), both of which perform a rotary stroke movement. This has the advantage that the relative surface of the work area is small. The two pistons control the inlet and outlet slots in the cylinder walls. According to the invention, the pistons are shaped such that the compression ratio is as high as is desired for the application (for example gasoline engine) and that the pressure of the working medium does not exert any radial force on the pistons.
Die Kolben sind so geführt, dass sie entweder einen oder zwei Hubzyklen pro Umdrehung machen. Es sind je mehrere Schlitze für Einlass und für Auslass vorhanden. Diese werden auf spezielle Weise gesteuert, wie anhand der nachfolgenden Beispielen erklärt:
Das erste Beispiel betrifft den Auslassvorgang bei einem Verbrennungsmotor, welcher durch die Abgasenergie aufgeladen ist, z.B. mittels Turbolader.The pistons are guided so that they make either one or two stroke cycles per revolution. There are several slots for inlet and outlet. These are controlled in a special way, as explained in the following examples:
The first example relates to the exhaust process in an internal combustion engine which is charged by the exhaust gas energy, for example by means of a turbocharger.
Bei bisherigen Motoren mit Abgas-Turbolader sieht der Auslassvorgang folgendermassen aus: Wenn der Auslass öffnet, ist der Druck im Zylinder noch um ein Vielfaches höher als im Abgassammelrohr vor dem Turbolader. Das Abgas strömt mit Schallgeschwindigkeit aus und wird auf das Druckniveau des Abgassammelrohres entspannt. Dadurch geht in dieser ersten Phase des Auspuffens viel Nutzenergie verloren. Später fällt der Druck im Zylinder auf das Niveau des Abgassammelrohres ab. Die erfindungsgemässe Dreh-Hubkolben-Maschine funktioniert so: Wenn der erste Auslass öffnet, strömt das Abgas in ein Abgassammelrohr, in welchem der Druck relatig hoch ist. Wenn der Druck im Abgassammelrohr ungefähr den halben Zylinderinnendruck nicht übersteigt, so wird trotzdem Schallgeschwindigkeit erreicht. Das heisst: Die Entleerung des Zylinders wird dadurch nicht verlangsamt, der Motor "spürt" den höheren Gegendruck nicht. Etwas später öffnet der Kolben einen zweiten Auslasskanal, welcher die Abgase in ein anderes Abgassammelrohr führt, in welchem der Druck niedriger ist. Wenn der Druck im Zylinder ungefähr den Druck im ersten Abgassammelrohr unterschreitet, wird der erste Auslassschlitz geschlossen. Bei der einfachsten Variante führt der zweite Auslasskanal via Schalldämpfer direkt ins Freie. Oder die Abgase werden zuerst durch weitere Auslassschlitze in zusätzliche verschiedene Abgassammelrohre mit verschiedenen Druckniveaus zu Turboladern geführt. Wegen der höheren Ausbeutung der Abgasenergie in der ersten Phase erhält der Turbo genügend Energie und benötigt daher nicht die gesamte Abgasmenge. Der Zylinder-Innendruck ist nun daher in der späten Phase des Auspuffens bedeutend tiefer als das komprimierte Einlassgas. Dies bewirkt bei einem Viertaktmotor auch während des Gaswechsels eine deutlich spürbare zusätzliche Leistung und eine Verbesserung des Wirkungsgrades. Beim Zweitakt-Motor erreicht man dadurch einen ungemein schnellen und wirkungsvollen Gaswechsel.In previous engines with an exhaust gas turbocharger, the exhaust process looks as follows: When the exhaust opens, the pressure in the cylinder is many times higher than in the exhaust manifold in front of the turbocharger. The exhaust gas flows out at the speed of sound and is expanded to the pressure level of the exhaust manifold. As a result, a lot of useful energy is lost in this first phase of the exhaust. Later the pressure in the cylinder drops to the level of the exhaust manifold. The rotary piston machine according to the invention works as follows: When the first outlet opens, the exhaust gas flows into an exhaust manifold, in which the pressure is relatively high. If the pressure in the exhaust manifold does not exceed approximately half the cylinder pressure, the speed of sound is still achieved. This means that the emptying of the cylinder is not slowed down, the engine does not "feel" the higher back pressure. A little later, the piston opens a second outlet channel, which leads the exhaust gases into another exhaust manifold, in which the pressure is lower. When the pressure in the cylinder is approximately below the pressure in the first exhaust manifold, the first exhaust port is closed. In the simplest variant, the second outlet duct leads directly to the outside via a silencer. Or the exhaust gases are first led through additional outlet slots into additional different exhaust manifolds with different pressure levels to turbochargers. Because of the higher exploitation of the exhaust gas energy in the In the first phase, the turbo receives enough energy and therefore does not require the entire amount of exhaust gas. The cylinder internal pressure is now significantly lower than the compressed intake gas in the late phase of the exhaust. With a four-stroke engine, this results in a noticeable additional performance and an improvement in efficiency even during the gas change. With the two-stroke engine you can achieve an extremely fast and effective gas change.
Ein deutlicher Vorteil ergibt das im obigen Beispiel erwähnte Auslasssystem auch für die "Zusammenarbeit" zwischen Motor und Turbo und für die Charakteristik der Leistungsabgabe des Motors: Der erste Auslass ist beispielsweise so konstruiert, dass bei Vollast und eher tiefer Drehzahl das Abgas, während der Öffnungszeit des ersten Auslasses, mit Schallgeschwindigkeit ausströmt. Nun erhöhen wir die Drehzahl: Die absolute Dauer der Öffnungszeit des ersten Auslasses verkürzt sich linear mit der Drehzahl. Dafür erhöht sich linear die Anzahl der Öffnungen pro Zeiteinheit. Folglich bleibt die Abgasmenge und Energie vom ersten Auslass für den Turbolader ungefähr konstant. Auf der Verdichterseite jedoch ergibt sich infolge der höheren Drehzahl des Motors ein erhöhter Luftbedarf. Daher sinkt der Aufladedruck. Das Drehmoment des Motors nimmt daher mit abnehmender Drehzahl zu. Dies ist genau das erwünschte Gegenteil einer typischen Turbo-Motor-Leistungscharakteristik. Es ist auch sinnvoll und realisierbar, die Einlasskanäle in einem analogen System zu konstruieren. Das folgende Beispiel ist vor allem für Ottomotoren sinnvoll:
Um die Zylinderfüllung und damit die Leistung verringern zu können - für Teillast -, verwendet man bei konventionellen Otto-Motoren Drosselklappen im Ansaugkanal. Das verschlechtert den Wirkungsgrad und stört beim 2-Takt-Motor den Gaswechsel. Beim Dreh-Hubkolben-Motor wird ungedrosselt angesaugt und die Füllung bei Teillast folgendermassen vermindert: Zu Beginn des Verdichtungstaktes entweicht ein Teil der angesaugten Luft durch Schlitze, welche durch Drosselklappen verschliessbar sind. Dadurch wird quasi der wirksame Hub verkürzt. N.B: Dieses Prinzip ist auch für die Variierung der Fördermenge von Pumpen und Verdichtern realisierbar.The exhaust system mentioned in the example above also provides a clear advantage for the "cooperation" between engine and turbo and for the characteristics of the engine's power output: The first exhaust is designed, for example, so that the exhaust gas during full load and rather low speed during the opening time of the first outlet, flows out at the speed of sound. Now we increase the speed: the absolute duration of the opening time of the first outlet is reduced linearly with the speed. For this, the number of openings per unit of time increases linearly. As a result, the amount of exhaust gas and energy from the first outlet for the turbocharger remains approximately constant. On the compressor side, however, there is an increased air requirement due to the higher speed of the engine. Therefore, the boost pressure drops. The engine torque therefore increases with decreasing speed. This is exactly the desired opposite of a typical turbo engine performance characteristic. It is also sensible and feasible to design the inlet channels in an analog system. The following example is particularly useful for gasoline engines:
In order to be able to reduce the cylinder charge and thus the power - for partial load - throttle valves are used in the intake duct in conventional Otto engines. This worsens the efficiency and disrupts the gas exchange in the 2-stroke engine. With the rotary piston engine, the intake is throttled and the filling is reduced as follows at partial load: At the beginning of the compression cycle, part of the intake air escapes through slots, which can be closed by throttle valves are. This effectively shortens the effective stroke. NB: This principle can also be implemented for varying the delivery rate of pumps and compressors.
Andere Anwendungen von zusätzlichen Schlitzen: Während des Verdichtens wird vorverdichtete Zusatzluft oder ein Brennstoff-Luft-Gemisch durch einen speziellen Einlassschlitz in den Arbeitsraum geblasen. Der Brennstoff oder ein Brennstoff-Luft-Gemisch wird der angesaugten Luft erst hinzugegeben, wenn der Auslass geschlossen ist. Dadurch wird verhindert, dass unverbrannter Treibstoff emittiert wird. Die Fähigkeit des Kolbens, Öffnungen bzw. Flächen in der zylinderwand abzudecken, kann auch dazu benützt werden, Ventile, Düsen, Zünder, Sensoren usw. vor der hohen Verbrennungstemperatur oder dem hohen Druck zu schützen.Other applications of additional slots: During compression, pre-compressed additional air or a fuel-air mixture is blown into the work area through a special inlet slot. The fuel or a fuel-air mixture is only added to the intake air when the outlet is closed. This prevents unburned fuel from being emitted. The ability of the piston to cover openings or areas in the cylinder wall can also be used to protect valves, nozzles, igniters, sensors, etc. from the high combustion temperature or pressure.
Claims (12)
- A piston engine or piston machine with a cylinder (1), with a first piston (2) being guided in the cylinder (1) in such a way that it executes a rotating motion around the cylinder axis and at the same time a reciprocating motion coaxial to the cylinder axis, and with a second piston (2) or a piston-like member (5) being guided in the cylinder (1) in such a way that it executes at least a rotating motion around the cylinder axis, the cylinder (1), the first piston (2) and the second piston (2) or the piston-like member (5) limiting a working chamber (7) and at least the edge line of the front (working) face turned to the working chamber (7) of the first piston (2) or of the second piston (2) or of the piston-like member (5) control one or more ports in the cylinder wall of the working chamber (7),
characterized
in that the two front (working) faces of the first and the second pistons (2) or of the first piston (2) and the piston-like member (5) are formed in such a way, that the edge lines thereof limiting these front (working) faces against the lateral surfaces of the pistons (2) or of the piston-like member (5) do not have the rotationally symmetrical geometry of a body of revolution in relation to the cylinder axis and that the two front (working) faces of the pistons (2) or of the piston-like member (5) which are limiting the working chamber (7), in relation to their form and position to each other, match together in such a way that the clearance volume of the working chamber (7) in the top dead center of the piston machine can be made as small as wished. - A piston engine or piston machine according to claim 1, characterized in that the front (working) face of the pistons (2) is formed in such a way that the radial force components, resulting from the pressure of the working fluid, compensate each other on the front face so that only an axial force results on the piston.
- A piston engine or piston machine according to claim 1 or 2, characterized in that at least one piston (2) is hollow and is arranged to serve with its inner surface as a cylinder for a therein enclosed inner piston (31) which is fixed on a central shaft (14) or axle reaching into the piston (2) or going through the piston (2) and thus this inner piston (31) being arranged to execute, with regard to the piston (2) enclosing it, a reciprocating motion, whereby this inner system is working as well as a piston engine or piston machine.
- A piston engine or piston machine according to claim 1, 2, or 3, characterized in that the motion of the piston (2) is arranged by means of at least one cam-like curved path (3) which supports itself on one or more guides comprising guiding elements such as, for example, rollers or gliders, and which executes a rotating reciprocating motion with regard to these guides, and in that the guiding elements (4) are connected together by rockers (16).
- A piston engine or piston machine according to claim 1, 2, 3, or 4, characterized in that several intake ports or several outlet ports or several intake and several outlet ports per working chamber exist in the cylinder wall, and in that these intake ports or in that these outlet ports are not opened or closed together at the same time.
- A piston engine or piston machine according to claim 1, 2, 3, 4 or 5, characterized in that the working fluid is put into rotation or swirled in the working chamber by the rotating motion of the front (working) faces and by the direction of the intake channel or intake channels (8) which has or have a tangential component with regard to the axis of the cylinder.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5 or 6, characterized in that the sychronization between the piston rotation and the reciprocating motion is variable by means of the part of the device, which arranges the rotating reciprocating motion of the piston (2) and which is directly or indirectly fixed on the cylinder (1), being turnable around the cylinder axis relative to the cylinder, or by the other part of this device fixed on the piston (2) being turnable around the rotation axis of the piston relative to the front (working) face of the piston.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5, 6 or 7, characterized in that the rotating motion of one of the pistons (2) is transferred to an other piston (2), to the piston-like member (5) and/or to the outside of the machine by means of a central shaft (14) which is coaxial to the cylinder axis, whereas the transmission of the torque from the piston (2) on the central shaft (14) results by means of rolling elements which transfer tangential forces and are rolling in case of the axial displacement as longitudinally displaceable homokinetic universal joints.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5, 6 or 7, characterized in that the transmission of the torque from the piston (2) on the central shaft (14) or the direct transmission of the torque between two neighbouring pistons results by means of one or several diaphragms or bellows or other spring-like elements which permit the axial longitudinal displacement by elastic deformation.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 10, characterized in that the piston-like member (5) is arranged to be a component of an electric motor or of an electric generator, whereas the other component of the electric motor or electric generator is directly or indirectly fixed to the cylinder.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5, 6, 7 or 10, characterized in that the rotating motion between pistons (2) or between a piston and a piston-like member (5) is transferred by means of profile-fit by the two adjacent front faces limiting the working chamber always meshing with each other.
- A piston engine or piston machine according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11, characterized in that the piston (2) bears upon a lubrication film which is situated in that range of the cylinder wall where there are no controllable ports, and in that, if the lubrication fluid must not get into the working chamber or into the ports, it is kept away by a scraper ring or other sealing elements from the working chamber or the ports.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87810206T ATE68556T1 (en) | 1986-04-04 | 1987-04-03 | ROTARY RECIPROCATING MACHINE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH131686 | 1986-04-04 | ||
CH1316/86 | 1986-10-01 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90100552.0 Division-Into | 1990-01-12 | ||
EP90100553.8 Division-Into | 1990-01-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0240467A1 EP0240467A1 (en) | 1987-10-07 |
EP0240467B1 true EP0240467B1 (en) | 1991-10-16 |
Family
ID=4207589
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87810206A Expired - Lifetime EP0240467B1 (en) | 1986-04-04 | 1987-04-03 | Rotating-reciprocating machine |
EP90100553A Expired - Lifetime EP0369991B1 (en) | 1986-04-04 | 1987-04-03 | Rotating and reciprocating piston engine |
EP90100552A Expired - Lifetime EP0369990B1 (en) | 1986-04-04 | 1987-04-03 | Rotating and reciprocating piston engine |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90100553A Expired - Lifetime EP0369991B1 (en) | 1986-04-04 | 1987-04-03 | Rotating and reciprocating piston engine |
EP90100552A Expired - Lifetime EP0369990B1 (en) | 1986-04-04 | 1987-04-03 | Rotating and reciprocating piston engine |
Country Status (10)
Country | Link |
---|---|
EP (3) | EP0240467B1 (en) |
JP (1) | JPH0794801B2 (en) |
KR (2) | KR960000436B1 (en) |
AT (3) | ATE68556T1 (en) |
AU (1) | AU7209387A (en) |
CA (1) | CA1308155C (en) |
DE (3) | DE3773724D1 (en) |
ES (3) | ES2048328T3 (en) |
GB (3) | GB2198788B (en) |
WO (1) | WO1987005964A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4926639A (en) * | 1989-01-24 | 1990-05-22 | Mitchell/Sterling Machines/Systems, Inc. | Sibling cycle piston and valving method |
GB8907984D0 (en) * | 1989-04-10 | 1989-05-24 | Szyler Jan | Rotary engine |
NL9000078A (en) * | 1990-01-11 | 1991-08-01 | Philips Nv | ENGINE COMPRESSOR UNIT. |
CA2121142C (en) * | 1991-10-15 | 2004-02-24 | Mansour Almassi | Internal combustion rotary piston engine |
GB9210139D0 (en) * | 1992-05-12 | 1992-06-24 | Fisher Hugh E | Piston and cylinder devices |
GB2280710A (en) * | 1993-08-04 | 1995-02-08 | Keith Andrew Maclaughan | Rotating and reciprocating piston i.c. engine. |
GB2287753B (en) * | 1994-03-22 | 1997-12-10 | Joanne Spinks | Two stroke engine |
DE4424319C1 (en) * | 1994-07-09 | 1996-02-22 | Harald Hofmann | Hot gas engine |
CZ219997A3 (en) * | 1997-07-11 | 1999-01-13 | Pavel Wenzel | External combustion engine |
EP0978932A1 (en) * | 1998-08-06 | 2000-02-09 | S.C. NDR Management S.r.l. | Device having a rotor and a stator |
WO2008154730A1 (en) * | 2007-06-18 | 2008-12-24 | Klassen James B | Energy transfer machine and method |
CN102753825B (en) * | 2009-07-02 | 2015-07-15 | 哈斯-蒙多米克斯公司 | Device and method for pumping flowable masses |
JP6679572B2 (en) | 2014-08-25 | 2020-04-15 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Removal of hydrogen sulfide and carbon dioxide from fluid streams |
WO2024178444A1 (en) | 2023-03-01 | 2024-09-06 | Friedl Rainhard | Rotary-stroke piston displacement machine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB282125A (en) * | 1926-07-19 | 1927-12-19 | Cecil Law | Improvements in or relating to two-stroke cycle internal combustion engines |
US2352396A (en) * | 1942-02-20 | 1944-06-27 | Kenneth R Maltby | Internal-combustion engine |
US2532106A (en) * | 1946-12-06 | 1950-11-28 | Korsgren Theodore Yngve | Multiple opposed piston engine |
US2473936A (en) * | 1947-10-18 | 1949-06-21 | Burrough Joe | Internal-combustion engine |
CH457070A (en) * | 1965-11-19 | 1968-05-31 | Polyprodukte Ag | Rotating drive |
DE2623234A1 (en) * | 1976-05-24 | 1977-12-01 | Alberto Kling | ELECTROMAGNETIC DRIVE DEVICE |
DE3038673A1 (en) * | 1980-10-14 | 1982-05-27 | Wilfried 3176 Meinersen Schwant | Crankshaft-less IC engine - has tandem pistons rotated via cam skirts, with ports through pistons and output via shaft connecting pistons |
FR2510181A1 (en) * | 1981-07-21 | 1983-01-28 | Bertin & Cie | THERMAL POWER ENERGY CONVERTER WITH STIRLING MOTOR AND INTEGRATED ELECTRIC GENERATOR |
-
1987
- 1987-04-03 EP EP87810206A patent/EP0240467B1/en not_active Expired - Lifetime
- 1987-04-03 DE DE8787810206T patent/DE3773724D1/en not_active Expired - Lifetime
- 1987-04-03 ES ES90100553T patent/ES2048328T3/en not_active Expired - Lifetime
- 1987-04-03 ES ES198787810206T patent/ES2026942T3/en not_active Expired - Lifetime
- 1987-04-03 ES ES90100552T patent/ES2048327T3/en not_active Expired - Lifetime
- 1987-04-03 DE DE90100552T patent/DE3788357D1/en not_active Expired - Fee Related
- 1987-04-03 WO PCT/CH1987/000038 patent/WO1987005964A1/en unknown
- 1987-04-03 JP JP62502150A patent/JPH0794801B2/en not_active Expired - Lifetime
- 1987-04-03 KR KR1019870701143A patent/KR960000436B1/en not_active IP Right Cessation
- 1987-04-03 DE DE90100553T patent/DE3788358D1/en not_active Expired - Fee Related
- 1987-04-03 GB GB8728277A patent/GB2198788B/en not_active Expired - Lifetime
- 1987-04-03 AT AT87810206T patent/ATE68556T1/en not_active IP Right Cessation
- 1987-04-03 EP EP90100553A patent/EP0369991B1/en not_active Expired - Lifetime
- 1987-04-03 AU AU72093/87A patent/AU7209387A/en not_active Abandoned
- 1987-04-03 KR KR1019950703974A patent/KR960000435B1/en not_active IP Right Cessation
- 1987-04-03 EP EP90100552A patent/EP0369990B1/en not_active Expired - Lifetime
-
1989
- 1989-12-19 GB GB8928577A patent/GB2226710B/en not_active Expired - Lifetime
- 1989-12-19 GB GB8928578A patent/GB2226612B/en not_active Expired - Lifetime
-
1990
- 1990-01-12 AT AT90100553T patent/ATE97992T1/en not_active IP Right Cessation
- 1990-01-12 AT AT90100552T patent/ATE97991T1/en not_active IP Right Cessation
- 1990-05-11 CA CA000615728A patent/CA1308155C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
GB2226612B (en) | 1990-12-05 |
GB2226710B (en) | 1990-12-05 |
ATE97991T1 (en) | 1993-12-15 |
CA1308155C (en) | 1992-09-29 |
GB2198788B (en) | 1990-12-05 |
GB8928577D0 (en) | 1990-02-21 |
ES2026942T3 (en) | 1992-05-16 |
KR880701314A (en) | 1988-07-26 |
AU7209387A (en) | 1987-10-20 |
GB2226710A (en) | 1990-07-04 |
DE3788357D1 (en) | 1994-01-13 |
DE3773724D1 (en) | 1991-11-21 |
JPH0794801B2 (en) | 1995-10-11 |
ES2048327T3 (en) | 1994-03-16 |
ES2048328T3 (en) | 1994-03-16 |
ATE68556T1 (en) | 1991-11-15 |
EP0369991A1 (en) | 1990-05-23 |
EP0369990B1 (en) | 1993-12-01 |
GB8728277D0 (en) | 1988-01-13 |
EP0240467A1 (en) | 1987-10-07 |
GB8928578D0 (en) | 1990-02-21 |
KR960000436B1 (en) | 1996-01-06 |
KR960000435B1 (en) | 1996-01-06 |
GB2198788A (en) | 1988-06-22 |
ATE97992T1 (en) | 1993-12-15 |
DE3788358D1 (en) | 1994-01-13 |
GB2226612A (en) | 1990-07-04 |
EP0369991B1 (en) | 1993-12-01 |
JPS63502916A (en) | 1988-10-27 |
WO1987005964A1 (en) | 1987-10-08 |
EP0369990A1 (en) | 1990-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0240467B1 (en) | Rotating-reciprocating machine | |
DE68914852T2 (en) | INTERNAL COMBUSTION ENGINE WITH TUBULAR ROTARY. | |
DE60100477T2 (en) | INTERNAL COMBUSTION ENGINE WITH CIRCULATING IMPACT | |
DE19624257C2 (en) | Rotary piston internal combustion engine | |
EP1548280B1 (en) | Piston compressor | |
WO1995034750A1 (en) | Internal-combustion engine, compressor or pump | |
DE69300818T2 (en) | DISPLACEMENT MACHINE, IN PARTICULAR, 4-STROKE ENGINE. | |
DE3019192A1 (en) | ASYMETRIC COUNTERPISTON ENGINE | |
EP0136565A2 (en) | Unit comprising a piston engine and a drive | |
WO1994015073A1 (en) | Internal combustion engine with two pistons per working chamber, especially a two-stroke engine with uniflow scavenging | |
DE3317431A1 (en) | Four-stroke rotary-piston engine | |
DE19545153C1 (en) | Internal combustion engine with a valve system for operation in two-stroke or four-stroke mode | |
DE3804411A1 (en) | Centre axis rotary engine of the rotating piston type | |
DE102009052960B4 (en) | Free-piston internal combustion engine | |
WO2009056295A1 (en) | Piston engine | |
DE908676C (en) | Rotary internal combustion engines with oscillating pistons | |
DE3335742A1 (en) | RECOVERY PISTON INTERNAL COMBUSTION ENGINE | |
DE4118938C2 (en) | Rotating oscillating piston engine | |
DE4403846C2 (en) | Valveless rotary cylinder four-stroke internal combustion engine with epitrochoid-controlled rotary piston | |
WO2009082993A1 (en) | Combustion engine comprising three connected cylinders | |
DE3435356C2 (en) | Internal combustion engine | |
DE69123855T2 (en) | ROTATIONAL SUSPENSION PISTON | |
DE102009018839B3 (en) | Operating engine i.e. internal combustion engine, has elliptical wheel coupled with cylindrical wheel, and another cylindrical wheel supported at camshaft in torque proof manner, where block is arranged at camshaft in torque proof manner | |
DE19914449C1 (en) | Oscillating piston combustion engine has oscillating pistons mounted on central axis enclosed by cylindrical housing with inwards projecting radial partition walls and cog controlled combustion space inlet and outlet openings | |
WO1986005545A1 (en) | Rotary piston machine with periodically variable rotation speeds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19880317 |
|
17Q | First examination report despatched |
Effective date: 19890914 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 68556 Country of ref document: AT Date of ref document: 19911115 Kind code of ref document: T |
|
XX | Miscellaneous (additional remarks) |
Free format text: TEILANMELDUNG 90100552.0 EINGEREICHT AM 03/04/87. |
|
REF | Corresponds to: |
Ref document number: 3773724 Country of ref document: DE Date of ref document: 19911121 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2026942 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87810206.0 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20010426 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010430 Year of fee payment: 15 Ref country code: FR Payment date: 20010430 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010605 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020510 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021231 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20021101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030404 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20030429 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030430 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040404 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040430 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040726 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030404 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |