EP0236444B1 - Wasserhaltiges, vorgekeimtes saatgut in gelkapseln - Google Patents

Wasserhaltiges, vorgekeimtes saatgut in gelkapseln Download PDF

Info

Publication number
EP0236444B1
EP0236444B1 EP86905626A EP86905626A EP0236444B1 EP 0236444 B1 EP0236444 B1 EP 0236444B1 EP 86905626 A EP86905626 A EP 86905626A EP 86905626 A EP86905626 A EP 86905626A EP 0236444 B1 EP0236444 B1 EP 0236444B1
Authority
EP
European Patent Office
Prior art keywords
seeds
seed
group
capsule
member selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86905626A
Other languages
English (en)
French (fr)
Other versions
EP0236444A4 (de
EP0236444A1 (de
Inventor
Charles Nelsen
Steven Strickland
Roxanne Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Plant Genetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plant Genetics Inc filed Critical Plant Genetics Inc
Priority to AT86905626T priority Critical patent/ATE61902T1/de
Publication of EP0236444A1 publication Critical patent/EP0236444A1/de
Publication of EP0236444A4 publication Critical patent/EP0236444A4/de
Application granted granted Critical
Publication of EP0236444B1 publication Critical patent/EP0236444B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor

Definitions

  • This invention relates generally to the filed of agriculture and crop production and more specifically to a method for preparation of singulated hydrated seeds comprising encapsulating in a capsule at least one ungerminated seed, said capsule formed from a hydrated, polymer gel.
  • EP-A-141 373 It is known in the prior art according to EP-A-141 373 a method for encapsulating in a capsule, formed from a hydrated, polymer gel, an ungerminated seed. An osmotic growth inhibitor to control germination is introduced before or during the gelling process. The hydrated, encapsulated seed is delivered to an environment for growth and development. The encapsulated seed is directly delivered to the growth medium where germination takes place.
  • Pregermination of botanic seed is a seed treatment by which early seed germination events up to, and sometimes including, radicle emergence are initiated under optimal conditions.
  • the results of this pregermination treatment are that treated seeds often emerge more quickly and to a higher percentage than untreated or raw seeds under less than ideal environmental conditions (see M. Rivas, F.V. Sandstrom, and R.L. Edwards, "Germination and Crop Development of Hot Pepper after Seed Priming," HortScience, 19 : 279-281, 1984; D.J. Cantliffe, J.M. Fischer, and T.A.
  • At least two methods of delivering pregerminated seeds are known: hydration and redrying of raw seeds, and fluid drilling techniques.
  • seeds are hydrated in a solution of water alone, or water containing an osmoticum such as salt or polyethylene glycol for periods of time ranging from twenty-four hours to several days (see, A.A. Kahn, "Preconditioning, Germination and Performance of Seeds," p. 283-316, in “The Physiology and Biochemistry of Seed Dormancy and Germination,” edited by A.A. Kahn, North-Holland Publishing Co., Amsterdam and New York (1977)).
  • the seeds are removed from the pregermination solution and dried under various conditions.
  • the pregerminated seeds are sown in the field or greenhouse in the same fashion as are untreated raw seeds.
  • This method of pregermination and delivery has several drawbacks.
  • the delicate hydrated seeds must be manipulated several times. This may lead to seed damage resulting in a reduced seed lot germination. This problem is greatly increased if any radicle emergence occurs prior to redrying.
  • the redrying process results in additional costs for increased handling, equipment, and energy inputs.
  • the redrying process introduces the need for the primed seeds to be rehydrated when placed into any growth medium. This additional step could result in delayed emergence or increased susceptibility to soil pathogens.
  • the second previously known method for delivering pregerminated seeds is fluid drilling.
  • seeds are first either pregerminated in water or an osmoticum as described above. Then, the seeds are added to a fluid drilling matrix such as Laponite in water or Agrigel in water. Finally, wet slurry of the seeds in a fluid drilling matrix is then delivered to the growing area.
  • a fluid drilling matrix such as Laponite in water or Agrigel in water.
  • wet slurry of the seeds in a fluid drilling matrix is then delivered to the growing area.
  • the basis for this invention lies in a method for providing for seed pregermination after encapsulation. This is accomplished by using a hydrated polymer gel as the encapsulant. The free water contained within the capsule is capable of participating in the pregermination process.
  • This unique method of pregermination in a gel capsule has the follwuing advantages. It avoids the step of re-drying the seeds. Encapsulation in a hydrated polymer also allows singulation in a seed-sized capsule or pellet that can be precision drilled, eliminating one drawback of the fluid drilling method. Finally, encapsulation and pregermination can be controlled to prevent seed radicle emergence prior to planting. The instant technique also affords the possibility of safely handling the seeds, even after the radicle has emerged.
  • this method of encapsulation and pregermination allows for the timely and effective delivery of a large number of useful additives which include but are not limited to fungicides, insecticides, nematicides, fertilizers, growth promoting agents, growth regulators and beneficial microorganisms, including but not limited to bacteria, fungi, nematodes, and actinomycetes.
  • useful additives include but are not limited to fungicides, insecticides, nematicides, fertilizers, growth promoting agents, growth regulators and beneficial microorganisms, including but not limited to bacteria, fungi, nematodes, and actinomycetes.
  • an objective of this invention is to enable pregermination of botanic seeds in a hydrated, polymer gel capsule which results in more rapid and more uniform emergence of a greater percentage of seedlings from any growth medium.
  • Another objective of this invention is to enable the delivery of hydrated, pregerminated seeds to eliminate the need to dry and then to rehydrate the seeds in the growth medium.
  • a further objective of this invention is to provide singulated, pregerminated seeds to permit precision delivery of pregerminated seed to any growth medium.
  • a still further objective of this invention is to enable the delivery of pregerminated seeds in hydrated gel capsules along with a wide range of useful chemical and biological additives to further improve the performance of the seeds under a wide range of abiotic and biotic conditions.
  • a final objective of this invention is to control radicle emergence of pregerminated, hydrated seed, and also, to protect from damage any emerged radicles.
  • a further method proposes the steps: maintaining said seed in a hydrated condition such that free water is available within the capsule to initiate seed germination; maintaining said seed capsules at germination temperatures; and delivering said hydrated, pregerminated seed capsules to an environment for growth and development. Further features are mentioned in the subclaims.
  • seed or “botanic seed” will be used to mean any plant propagule which contains embryonic tissue which, under the appropriate conditions, will result in the growth and development of a plant body.
  • These include zygotic seeds, parthenogenic seeds, somatic embryos, and other plant propagules such as potato seed pieces, beet seeds (fruits), cereal seeds (caryopses), etc., which will result in plant growth.
  • pregermination will be used in a generic sense to mean any method to begin the biochemical and physiological processes of seed germination before planting of the seeds. Other terms which are also used for this process include priming, osmoconditioning, vigorizing, chitting, etc.
  • compositions are provided for the hydration, addition of beneficial adjuvants and pregermination of botanic seed by encapsulation in a gel.
  • Any botanic seed as defined in the definitions section has the potential to be pregerminated in a gel capsule.
  • the seeds can be encapsulated in accordance with the present invention in any of numerous media which provide an appropriate encapsulation matrix, hereafter termed "gel".
  • a gel should allow embryo respiration by permitting diffusion of gases.
  • the gel should provide a capsule strong enough to resist external abrasion and adverse forces, yet be pliable enough to allow the growth of the embryo and its germination at the appropriate time. It may be desirable to use various gels in combination, either as a mixture or in layers, to achieve the desired results.
  • the gel selected should also be able to retain a considerable amount of "free water” which is able to participate in the physiological processes of pregermination. Free water should be available as 50-99.6% of the mass of the capsule, preferably 70-99.6% of the capsule mass.
  • Gels which have been found useful for encapsulating meristematic tissue include sodium alginate, guar gum, carrageenan with locust bean gum, and sodium alginate with gelatin.
  • Other suitable gels include, but are not limited to:
  • a gel chosen for encapsulation would usually include the following characteristics (although it will be recognized by those skilled in the art that the invention may be practiced in other modes):
  • Additives which have been found to be useful for encapsulation with pregerminated seeds include pesticides, fertilizers, energy sources, growth promoters, growth regulators, safeners, and microorganisms.
  • a sodium alginate solution for example, will form a gel when the gel is added to a complexing agent.
  • Calcium chloride (CaCl2) is generally used, however, lanthanum chloride, ferric chloride, cobaltous chloride, calcium nitrate, calcium hydroxide and copper sulfate are also acceptable, as generally are other compounds with multivalent cations.
  • a chosen gel will have a range of concentrations usable in working the invention.
  • a concentration should be chosen to optimize ease of handling, gelling time, strength of gel and coating thickness around the meristematic tissue.
  • the sodium alginate may be prepared in a concentration of 1 to 10% w(in grams)/v(in milliliters) in water, more usually 1.5 to 5% and ideally from 1.5 to 3%.
  • the seeds to be encapsulated may then be added to the sodium alginate solution at a concentration of 1 to 50 seeds per milliliter, more usually from 5 to 20 seeds per milliliter. This concentration will vary as the appropriate size of seed varies with species, source and stage of development.
  • the seeds can be singulated or dispersed in gel solution which is then added dropwise to the complexing agent.
  • the gel solution and complexing agent may be mixed by any of numerous techniques known to the art. These may include droplet formation and agent addition as a one step process by a vibrating nozzle which ejects a gel droplet from one source and coats the droplet with complexing agent from another.
  • the calcium chloride (or other complexing agent) may be made up in solution at a concentration of 1 to 1,000 millimolar, more usually 20 to 500 millimolar and ideally from 50 to 100 millimolar. Other complexing agents will have different preferred concentration ranges.
  • the time for gel formation and the temperature of the gelling solutions are interrelated parameters, for selected concentrations of gel and complexing agent.
  • the temperature should be chosen so as to avoid damage to the seed, usually in the range of 1 to 50°C, more usually 10 to 40°C, and preferably at 20 to 30°C
  • a particular value may be chosen to give the shortest possible gelling time consistent with complete gel formation. Typically, the gel will form immediately, but the full complexation takes longer.
  • a solution of sodium alginate at a concentration of 2.0 grams per 100 milliliters H2O, calcium chloride solution concentration of 100 millimolar and 25°C reaction temperature adequate gelling is obtained in 5 to 120 minutes, more often 10 to 90 minutes and is usually sufficiently complete in 20 to 30 minutes.
  • the gel characteristics described above are modifiable for each gel, but are determined generally by the concentration parameters and chemical properties of the gel.
  • a complexing agent applied to the seeds, will cause a gel to form around the seed when the seeds are added to the gel agent.
  • Calcium chloride (CaCl2) is an example of a complexing agent which can be applied to the seeds and will cause a polymerized gel capsule to form around the seeds when the seeds are introduced to a gel agent such as sodium alginate solution.
  • each seed when treated with a complexing agent, becomes a nucleus for the gel polymerization reaction.
  • this system of encapsulation results in singulation and centering of each seed within a capsule.
  • Calcium chloride (CaCl2) is the complexing agent generally used, however, ferric chloride, calcium nitrate, superphosphate fertilizer, and pesticides such as benefin are also acceptable, as are other compounds generally with multivalent cations.
  • a chosen gel will have a range of concentrations usable in working the invention.
  • a concentration should be chosen to optimize ease of handling, gelling time, strength of gel and coating thickness around the seed. If the gel is too concentrated, the solution may be too viscous to allow stirring and will therefore make it difficult to immerse the treated seed into the gel solution.
  • the sodium alginate for example, can be prepared in a concentration of 0.2 to 5% w(in grams)/v(in milliliters) in water, more usually 0.4 to 2.5% and preferably from 0.6 to 1%.
  • Pesticides for example, can be added to sodium alginate in concentrations up to 99.4% of the alginate solution. More usually, pesticide concentrations will be from .002 to .300 milliliters formulated pesticide (2 ⁇ 10 ⁇ 4 to .30 grams active ingredient) per milliliter.
  • Fertilizers for example, can be added at a concentration of 0.1 to 1,000 milligrams per milliliter sodium alginate.
  • Microorganisms for example, can be added at a concentration of 1 to 1012 microorganisms per milliliter.
  • Carbon sources can be added at a concentration of 1 to 500 milligrams per milliliter of sodium alginate solution, more usually 5 to 100 milligrams per milliliter.
  • the complexing agent-treated seeds can then be added to the dispersed additives in gel solution. Agitation of the gel solution is usually desired to enhance the rapid immersion of the treated seeds into the gel solution and to prevent clumping of the forming gel capsules.
  • the calcium chloride (or other complexing agent) can be made up in solution at a concentration of .05 M to 6.2 M (or, a saturated or supersaturated solution), more usually 0.3 M to 6.2 M, and ideally from 0.6 M to 2.0 M. Other complexing agents will have different preferred concentration ranges.
  • the seeds can then be treated with the calcium chloride (or other complexing agent) solution by soaking, spraying, dipping, pouring or any of several other methods which will deposit an amount of the complexing agent on the seeds.
  • the time in solution may be from 1 second to 24 hours, more usually 1 minute to 1 hour, and ideally from 2 to 10 minutes.
  • the CaCl2 (or other complexing agent) may be added to the seeds in a solid form.
  • Anhydrous CaCl2 for example, may be applied to the seeds using sticking agents such as paraffin oil.
  • the time for gel formation and the temperature of the gelling solutions are interrelated parameters, for selected concentrations of gel and complexing agent.
  • the temperature should be chosen so as to avoid damage to the seed, usually in the range of 1 to 50°C, more usually 10 to 40°C, and preferably at 20 to 30°C.
  • a particular value can be chosen to give the shortest possible gelling time consistent with complete gel formation. Typically, the gel will form immediately, but the full complexation takes longer.
  • a solution of sodium alginate at a concentration of 0.6 grams per 100 milliliters H2O, calcium chloride solution concentration of 1 M and room temperature (22°C) adequate gelling is obtained in 5 to 120 minutes, more often 10 to 90 minutes, and is usually sufficiently complete in 15 to 20 minutes.
  • the gel characteristics described above are modifiable for each gel, but are determined generally by the concentration parameters and chemical properties of the gel.
  • This gel encapsulation procedure is designed to maintain a high level of free water within the capsule.
  • the external surface of the capsule is formed by a chemical reaction between the gel and complexing agent.
  • the interior of the capsule remains wet, having a water content in excess of fifty percent, preferably between seventy and ninety-nine and sixth-tenth percent. This water is immediately available to the seed tissue within the capsule, water imbibition constituting an important first step in pregermination.
  • seed pregermination can be initiated in either one of 2 ways. Once encapsulated, seeds will immediately begin the process of imbibition and germination. In the first method of pregermination, this process is allowed to occur for a specific period of time from zero to 7 days, more often 1 to 4 days and usually 1 to 3 days.
  • the temperature for the pregermination treatment should be within the physiological range for seed germination, generally between 10 and 30°C and more commonly 15 to 25°C.
  • an osmotic agent in an aqueous solution of sufficient concentration to inhibit root and shoot growth is diffused into the capsules.
  • the osmotic agent must be of sufficiently small molecular weight such that it will diffuse into the gel capsule (and out upon planting). Osmotic agents with high molecular weights will cause the water to move out of the capsule and cause the capsule to shrink and collapse around the seeds.
  • a typically useful nut not exclusive osmotic agent is a monovalent salt. Many monovalent salts are useful, particularly those that can also serve as a plant fertilizer such as potassium nitrate (KNO3).
  • Potassium nitrate readily diffuses into gel capsules and inhibits germination at concentrations between 0.3 and 1.0 molar, more often 0.4 to 0.6 molar and usually 0.4 to 0.5 molar.
  • the salt is diffused into the capsule by stirring a volume of capsules in a larger volume of salt solution for sufficient time. Stirring times for a 0.4 molar solution range from one to three hours and for a 0.5 molar solution from 0.5 to one hour, depending on seed type and capsule size. Small molecular weight organic molecules can also serve as an osmoticum. Mannitol at 0.6 M to 1.4 M will serve to control root emergence.
  • the osmotic agent is placed into the gel matrix and into the complexing agent (if one is required) before capsule formation.
  • the presence of the osmotic agent from the time of capsule formation does not stop seed imbibition or the biochemical processes of germination, but does inhibit cell expansion (for example, Heydecker, W, and Coolbear, P., 1977, Seed Science and Technology 5: 353-425, see page 391).
  • These capsules are then held at or near an optimal temperature for germination to begin for one to several days, depending on seed type. Both methods of pregermination succeed in obtaining faster emergence relative to raw seed from a soil matrix.
  • Tomato seeds variety UC82 (obtained from Garner Seed Co., Woodland, CA) were encapsulated using the first described method for encapsulation. Tomato seeds were placed singly, in a 2% alginate solution (2 grams LF-60 alginate in 100 ml H2O) dropping from a separatory funnel and encapsulated by complexing the alginate in a 100 mM solution of CaCl2.2H2O. After storage for 3 days at 24°C, capsules were stirred for 3 hours in a 0.4 molar KNO3 solution (1: 4, capsule volume: salt solution). One hundred capsules and one hundred raw seeds were planted in a commercial greenhouse mix in a cool greenhouse and seedling emergence was monitored.
  • 2% alginate solution (2 grams LF-60 alginate in 100 ml H2O) dropping from a separatory funnel and encapsulated by complexing the alginate in a 100 mM solution of CaCl2.2H2O. After storage for 3 days at 24°C, capsules were stir
  • Non-sterilized field soil can contain numerous saprophytic and pathogenic microorganisms that can affect and reduce seed germination.
  • An experiment similar to Example A.1. was performed except pregerminated, encapsulated seeds and raw seeds were planted in field soil in the greenhouse, rather than a greenhouse mix. Ten days after planting, 81% of the pregerminated, encapsulated seeds had emerged and none of the raw seeds had emerged. Twenty-five days after emergence, 90% of the seedlings from pregerminated, encapsulated seeds had emerged, while 45% of the raw seeds had emerged.
  • Pregermination in the capsule can also be achieved by adding the osmotic agent at the time of capsule formation as described in the second method for pregermination in gel capsules and holding the capsules at an appropriate temperature for one to several days.
  • Tomato seeds were encapsulated as described in Example A.1. except 0.4 M KNO3 was included at the time of encapsulation. These capsules were held at 24°C for 7 days. Additionally, seeds were encapsulated as described in Example A.1. for comparison. One hundred capsules of each treatment and 100 raw seeds were planted in a commercial greenhouse mix in the greenhouse and seedling emergence was monitored.
  • Emergence values at 14 days after planting were 95, 93, and 95%.
  • Tomato seeds were encapsulated and pregerminated as described in Example A.1.
  • One hundred capsules and one hundred raw seeds were planted in a field prepared in a manner similar to commercial, California tomato fields and emergence was monitored.
  • Five days after planting and irrigation 49% of the seedlings from the pregerminated, encapsulated seeds had emerged, while no raw seeds had emerged.
  • Eighteen days after planting 73% of the pregerminated, encapsulated seeds had emerged and only 56% of the raw seeds had emerged. This test was planted 5 times over 5 consecutive weeks with similar relative performance in all 5 tests.
  • Raw seeds which have been pregerminated and redried for handling, will often emerge faster than untreated, raw seeds. Pregerminated, encapsulated seeds will emerge even faster than pregerminated, raw seeds.
  • Tomato seeds were pregerminated, and encapsulated as described in Example A.1. except the KNO3 was added 2 days after capsule formation. Raw seeds were pregerminated by imbibing the seeds in an aerated 0.4 M KNO3 solution for 3 days (as described in the section labeled "Background of the Invention") then dried by exposing the drained seeds to room temperature air for 24 hours. One hundred of each of these two treatments and one hundred untreated, raw seeds were planted in the greenhouse in a commercial greenhouse mix and emergence was monitored.
  • Tomato seeds were encapsulated as described above for the second encapsulation method. Tomato seeds were soaked in 1 molar CaCl2.2H2O solution for 10 minutes, then dropped, singly into a stirring solution of 0.6% sodium alginate (0.6 grams LF-60 alginate in 100 milliliters of water). After 20 minutes, the capsules were sieved and washed with distilled water and pregerminated by holding for 2 days at 27°C. One hundred twenty-five of these and one hundred twenty-five raw seeds were planted in a cool greenhouse in field soil and emergence was monitored. Five days after planting, 31% of the pregerminated, encapsulated seeds had emerged and 10% of the raw seeds had emerged. Fourteen days after planting, both treatments had emerged to 59%.
  • Tomato seeds were pregerminated and encapsulated as described in Example A.1. except the KNO3 was added 2 days after capsule formation.
  • One-half of the capsules included the fungicide metalaxyl (Ciba Geigy, Greensboro, NC) at a rate equivalent to recommended seed treatment rates (0.6 gm metalaxyl/kg seed 2.0 ug metalaxyl/capsule).
  • Raw seeds were also treated with an equivalent rate of metalaxyl or left untreated as a check.
  • One hundred sixty capsules or seeds of each of the 4 treatments were planted in autoclaved field soil.
  • Samples of the ornamental flower seed Salvia (Park Seed, Greenwood, SC, variety Hotline) were pregerminated and encapsulated as described for tomato in Example B except the KNO3 was added immediately following capsule formation and capsules were held at 16°C for 14 days.
  • One hundred of the pregerminated, encapsulated seeds and one hundred raw seeds were planted in the greenhouse in a commercial greenhouse mix and emergence was monitored.
  • Nine days after planting 54% of the pregerminated, encapsulated seeds had emerged while only 17% of the raw seeds had emerged.
  • 73% of the pregerminated, encapsulated seeds had emerged and 74% of the raw seeds had emerged.
  • Tobacco seeds (variety TR Madole) were encapsulated as described in example A1, treated with 0.5 M KNO3 for 30 min 2 days after capsule formation and stored an additional 5 days at 24°C. Two days before planting, the salt was removed from 1/2 of the capsules by washing in deionized water for 1 hour to allow germination to occur. At planting (7 days after capsule formation) seeds in these capsules had undergone radicle emergence. Eighty each of capsules with radicle-emerged seeds, capsules with non-radicle-emerged seeds, and raw seeds were planted in a greenhouse mix in a cool greenhouse and seedling emergence was monitored. The encapsulation process protected the emerged radicles and these seeds emerged faster than did either of the other 2 treatments (Table 4).

Claims (47)

1. Verfahren zur Herstellung pillierten und wasserhaltigen Saatguts, wobei wenigstens ein ungekeimtes pflanzliches Samenkorn in eine aus wasserhaltigem, polymerem Gel gebildete Kapsel inkapsuliert wird, dadurch gekennzeichnet,
daß man in den Saatgutkapseln einen Feuchtegehalt aufrechterhält, welcher eine ausreichende Menge freien Wassers zur Einleitung des Keimvorgangs gewährleistet,
die Saatgutkapseln den Keimvorgang ermöglichenden Bedingungen unterwirft, so daß bereits innerhalb der Kapseln ein Vorkeimen stattfinden kann,
nach der Inkapsulierung einen osmotisch wirkenden Wachstumsinhibitor in die wasserhaltigen Saatgutkapseln eingebringt,
und die auf diese Weise vorgekeimten wasserhaltigen Saatgutkapseln in eine weiteres Wachstum und Fortentwicklung ermöglichende Umgebung ausbringt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Wassergehalt der Saatgutkapseln vom Zeitpunkt der Inkapsulierung an bis zum Ausbringen auf einem Wert zwischen 70 und 99,6 Gewichtsprozenten hält.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Saatgutkapseln über einen Zeitraum zwischen null und sieben Tagen Bedingungen unterwirft, welche den Keimvorgang ermöglichen.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man einen osmotisch wirksamen Wachstumsinhibitor mit einem niedrigen Molekulargewicht verwendet.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man einen Samen bzw. pflanzlichen Embryo verwendet, welcher durch zygotischen, parthenogenetischen oder somatischen Generationswechsels entstanden ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Kartoffel-, Beta-Rüben- oder Getreidesamen verwendet.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Keimvorgang u.a. durch zwischen 10 und 40°C liegende Umgebungstemperaturen ermöglicht.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als osmotisch wirksamen Wachstumsinhibitor Natriumchlorid, Kaliumnitrat und/oder Mannit verwendet.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in einem zusätzlichen Verfahrensschritt vor der Inkapsulierung dem wasserhaltigen, polymeren Gel wenigstens ein vorteilhaftes Additiv zufügt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Kupfersulfat, Thiram, Captan, Benomyl, Metalaxyl, Carbofuran, Acephat, Malathion, pronamid und/oder Ethyldipropylthiocarbamat verwendet.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Stickstoff, Phosphor, Kalium, Schwefel, Calcium, Magnesium, Aminosäuren und/oder Mikronährstoffe verwendet.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Zucker, Kohlenhydrate und/oder Adenosintriphosphat verwendet.
13. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Pseudomonaden, B. thuringiensis, Mycorrhiza, Rhizobien, B. subtilis und/oder Actinomyceten verwendet.
14. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Giberellinsäure, Cytokinine, Naphthalinessigsäure, Indolbutter- und/oder Indolessigsäure verwendet.
15. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Denitrifikationshemmstoffe, Eisen-Chelatbildner, Pheromone, Enzyme, Antidots gegen pestizide und/oder Stabilisatoren verwendet.
16. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß man als Additiv Mittel zur Verbesserung der Bodenstruktur und Wasserführung, Dispergenzien, Netzmittel und/oder pH-aktive Verbindungen verwendet.
17. Verfahren zum Ausbringen pillierten und wasserhaltigen Saatguts in eine Wachstum und Fortentwicklung ermöglichende Umgebung, wobei wenigstens ein ungekeimtes pflanzliches Samenkorn in eine aus wasserhaltigem, polymerem und einen osmotisch wirksamen Wachstumsinhibitor enthaltendem Gel gebildete Kapsel inkapsuliert wird, dadurch gekennzeichnet, daß man einen Feuchtegehalt in den Saatgutkapseln aufrechterhält, welcher eine ausreichende Menge freien Wassers zur Einleitung des Keimvorgangs gewährleistet,
die Saatgutkapseln Temperaturen aussetzt, welche den Keimvorgang ermöglichen,
und die so vorgekeimten, wasserhaltigen Saatgutkapseln in eine weiteres Wachstum und Fortentwicklung ermöglichende Umgebung ausbringt.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man den Wassergehalt der Saatgutkapseln vom Zeitpunkt der Inkapsulierung an bis zum Ausbringen auf einem Wert zwischen 70 und 99,6 Gewichtsprozenten hält.
19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man den Samen zusammen mit einem osmotisch wirksamen Wachstumsinhibitor inkapsuliert, um eine Hemmung des Zellwachstums im Samenkorn bei gleichzeitigem Aufquellen des Samens zu ermöglichen.
20. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man die Saatgutkapseln über einen Zeitraum zwischen null und sieben Tagen Bedingungen unterwirft, welche den Keimvorgang ermöglichen.
21. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man einen osmotisch wirksamen Wachstumsinhibitor mit einem niedrigen Molekulargewicht verwendet.
22. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man einen Samen bzw. pflanzlichen Embryo verwendet, welcher durch zygotischen, parthenogenetischen oder somatischen Generationswechsels entstanden ist.
23. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man Kartoffel-, Beta-Rüben- oder Getreidesamen verwendet.
24. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man den Keimvorgang u.a. durch zwischen 10 und 40°C liegende Umgebungstemperaturen ermöglicht.
25. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß man als osmotisch wirksamen Wachstumsinhibitor Natriumchlorid, Kaliumnitrat und/oder Mannit verwendet.
26. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß daß man in einem zusätzlichen Verfahrensschritt vor der Inkapsulierung dem wasserhaltigen, polymeren Gel wenigstens ein vorteilhaftes Additiv zufügt.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Kupfersulfat, Thiram, Captan, Benomyl, Metalaxyl, Carbofuran, Acephat, Malathion, Pronamid und/oder Ethyldipropylthiocarbamat verwendet.
28. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Stickstoff, Phosphor, Kalium, Schwefel, Calcium, Magnesium, Aminosäuren und/oder Mikronährstoffe verwendet.
29. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Zucker, Kohlenhydrate und/oder Adenosintriphosphat verwendet.
30. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Pseudomonaden, B. thuringiensis, Mycorrhiza, Rhizobien, B. subtilis und/oder Actinomyceten verwendet.
31. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Giberellinsäure, Cytokinine, Naphthalinessigsäure, Indolbutter- und/oder Indolessigsäure verwendet.
32. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Denitrifikationshemmstoffe, Eisen-Chelatbildner, Pheromone, Enzyme, Antidots gegen Pestizide und/oder Stabilisatoren verwendet.
33. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man als Additiv Mittel zur Verbesserung der Bodenstruktur und Wasserführung, Dispergenzien, Netzmittel und/oder pH-aktive Verbindungen verwendet.
34. Vorgekeimte pflanzliche Samenkörner, die in einem wasserhaltigen polymeren Gel zusammen mit einem osmotisch wirksamen Wachstumsinhibitor unter Bildung einer Saatgutkapsel inkapsuliert sind.
35. Saatgutkapsel nach Anspruch 34, gekennzeichnet durch einen Wassergehalt zwischen 70 und 99,6 Gewichtsprozenten.
36. Saatgutkapsel nach Anspruch 34, dadurch gekennzeichnet, daß sie einen osmotisch wirksamen Wachstumsinhibitor mit niedrigem Molekulargewicht enthält.
37. Saatgutkapsel nach Anspruch 34, dadurch gekennzeichnet, daß sie vorgekeimte Samenkörner bzw. pflanzliche Embryos enthalten, welche durch zygotischen, parthenogenetischen oder somatischen Generationswechsels entstanden sind.
38. Saatgutkapsel nach Anspruch 34, dadurch gekennzeichnet, daß sie vorgekeimte Kartoffel-, Beta-Rüben- oder Getreidesamen enthält.
39. Saatgutkapsel nach Anspruch 34, dadurch gekennzeichnet, daß sie als osmotisch wirksamen Wachstumsinhibitor Natriumchlorid, Kaliumnitrat und/oder Mannit enthält.
40. Saatgutkapsel nach Anspruch 34, dadurch gekennzeichnet, daß die Kapsel zusätzlich ein vorteilhaftes Additiv enthält.
41. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Kupfersulfat, Thiram, Captan, Benomyl, Metalaxyl, Carbofuran, Acephat, Malathion, Pronamid und/oder Ethyldipropylthiocarbamat enthält.
42. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Stickstoff, Phosphor, Kalium, Schwefel, Calcium, Magnesium, Aminosäuren und/oder Mikronährstoffe enthält.
43. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Zucker, Kohlenhydrate und/oder Adenosintriphosphat enthält.
44. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv pseudomonaden, B. thuringiensis, Mycorrhiza, Rhizobien, B. subtilis und/oder Actinomyceten enthält.
45. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Giberellinsäure, Cytokinine, Naphthalinessigsäure, Indolbutter- und/oder Indolessigsäure enthält.
46. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Denitrifikationshemmstoffe, Eisen-Chelatbildner, Pheromone, Enzyme, Antidots gegen pestizide und/oder Stabilisatoren enthält.
47. Saatgutkapsel nach Anspruch 40, dadurch gekennzeichnet, daß sie als vorteilhaftes Additiv Mittel zur Verbesserung der Bodenstruktur und Wasserführung, Dispergenzien, Netzmittel und/oder pH-aktive Verbindungen enthält.
EP86905626A 1985-09-09 1986-09-05 Wasserhaltiges, vorgekeimtes saatgut in gelkapseln Expired - Lifetime EP0236444B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86905626T ATE61902T1 (de) 1985-09-09 1986-09-05 Wasserhaltiges, vorgekeimtes saatgut in gelkapseln.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US773604 1985-09-09
US06/773,604 US4780987A (en) 1983-10-25 1985-09-09 Method for the preparation of hydrated, pregerminated seeds in gel capsules

Publications (3)

Publication Number Publication Date
EP0236444A1 EP0236444A1 (de) 1987-09-16
EP0236444A4 EP0236444A4 (de) 1988-02-15
EP0236444B1 true EP0236444B1 (de) 1991-03-27

Family

ID=25098781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905626A Expired - Lifetime EP0236444B1 (de) 1985-09-09 1986-09-05 Wasserhaltiges, vorgekeimtes saatgut in gelkapseln

Country Status (9)

Country Link
US (1) US4780987A (de)
EP (1) EP0236444B1 (de)
JP (1) JPS63500911A (de)
KR (1) KR870700278A (de)
CN (1) CN86106145A (de)
AU (1) AU608743B2 (de)
CA (1) CA1282609C (de)
NZ (1) NZ217493A (de)
WO (1) WO1987001258A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002702A1 (de) 2007-06-16 2008-12-17 Peter Bruno Verfahren zum Vorkeimen von Saatgut

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199901A (ja) * 1988-02-03 1989-08-11 Mitsui Petrochem Ind Ltd 種苗・球根類の貯蔵方法
JP2553147B2 (ja) * 1988-05-02 1996-11-13 麒麟麦酒株式会社 糖類の徐放性粒子、その製造法および利用
US5150394A (en) * 1989-12-05 1992-09-22 University Of Massachusetts Medical School Dual-energy system for quantitative radiographic imaging
US5127186A (en) * 1990-07-02 1992-07-07 Advanced Biotechnology, Inc. Encapsulated earthworm cocoons
US5427593A (en) * 1990-10-26 1995-06-27 Weyerhaeuser Company Analogs of botanic seed
US5236469A (en) * 1990-10-26 1993-08-17 Weyerhaeuser Company Oxygenated analogs of botanic seed
US5129180A (en) * 1990-12-07 1992-07-14 Landec Labs, Inc. Temperature sensitive seed germination control
CA2150489C (en) * 1994-06-10 2000-12-12 Takeo Tsujimoto Method of improving seed germination
US5572827A (en) * 1995-05-05 1996-11-12 Ball Horticultural Company Method for applying hydrogel coatings to embryonic plants
JP3265918B2 (ja) * 1995-06-15 2002-03-18 矢崎総業株式会社 乾燥したゲル被覆種子の復元方法
JP3125847B2 (ja) * 1995-06-15 2001-01-22 矢崎総業株式会社 ゲル被覆種子のゲル層易崩壊処理方法
JP3191907B2 (ja) * 1995-07-07 2001-07-23 矢崎総業株式会社 ゲル被覆種子の播種方法
JP3125848B2 (ja) * 1995-07-14 2001-01-22 矢崎総業株式会社 ゲル被覆種子の保存方法
JPH09121617A (ja) * 1995-10-30 1997-05-13 Yazaki Corp 発芽促進材及び植物種子の播種方法
US5794550A (en) * 1996-09-24 1998-08-18 Chadwick; Galen John Implantation of a fixed water/nutrient gel
US6119395A (en) * 1997-02-03 2000-09-19 Weyerhaeuser Company End seals for manufacturing seed
DE69723240T2 (de) * 1997-06-27 2004-05-27 Agritecno Yazaki Co., Ltd., Himeji Verfahren zum Umhüllen keimender Samen mit einem Gel
US6453608B1 (en) * 1997-10-31 2002-09-24 Monsanto Company Gellan gum seed coating
DE69903734T2 (de) * 1998-06-12 2003-07-17 Silvagen Inc Verfahren zur herstellung und anschliessender (ex vitro) aussaat und vermehrung von vorgekeimten pflanzlichen somatischen embryos
US6946295B2 (en) 1998-06-12 2005-09-20 Cellfor, Inc. Process for ex vitro sowing and germination of plant somatic embryos
AU776443B2 (en) * 1999-04-15 2004-09-09 Arborgen Inc. Enhancing germination of plant somatic embryos by priming
US6689609B1 (en) 1999-04-15 2004-02-10 Cellfor Inc. Enhancing germination of plant somatic embryos by priming
US6572809B1 (en) * 1999-04-23 2003-06-03 Agritecno Yazaki Co., Ltd. Gel coating method and apparatus
US6557298B2 (en) 2000-09-15 2003-05-06 Monsanto Technology, Llc Treatment of seeds with coatings containing hydrogel
EP1247436A1 (de) * 2001-04-02 2002-10-09 Incotec International B.V. Polymerbeschichtungen für Saaten oder Embryos
GB0128134D0 (en) * 2001-11-23 2002-01-16 Syngenta Participations Ag A product for use in agriculture or horticulture
US7168205B2 (en) 2001-12-05 2007-01-30 Weyerhaeuser Co. Seed coat for manufactured seeds
JP2004242636A (ja) * 2003-02-17 2004-09-02 Agritecno Yazaki Kk ゲル被覆種子類似物およびサツマイモの定植方法
US7228658B2 (en) * 2003-08-27 2007-06-12 Weyerhaeuser Company Method of attaching an end seal to manufactured seeds
US7555865B2 (en) * 2003-11-25 2009-07-07 Weyerhaeuser Nr Company Method and system of manufacturing artificial seed coats
US20050108929A1 (en) * 2003-11-25 2005-05-26 Edwin Hirahara Method and system for creating manufactured seeds
CA2486289C (en) * 2003-11-25 2008-01-08 Weyerhaeuser Company Combination end seal and restraint
US20050108935A1 (en) * 2003-11-25 2005-05-26 Edwin Hirahara Method and system of manufacturing artificial seed coats
CA2484533C (en) * 2003-11-25 2008-12-02 Weyerhaeuser Company Systems and method of embryo delivery for manufactured seeds
CA2486311C (en) 2003-11-26 2008-08-12 Weyerhaeuser Company Vacuum pick-up device with mechanically assisted release
US7356965B2 (en) * 2003-12-11 2008-04-15 Weyerhaeuser Co. Multi-embryo manufactured seed
US7591287B2 (en) * 2003-12-18 2009-09-22 Weyerhaeuser Nr Company System and method for filling a seedcoat with a liquid to a selected level
US7568309B2 (en) * 2004-06-30 2009-08-04 Weyerhaeuser Nr Company Method and system for producing manufactured seeds
CA2518279A1 (en) * 2004-09-27 2006-03-27 Weyerhaeuser Company Manufactured seed having a live end seal coating
CA2518166C (en) * 2004-09-27 2012-02-21 Weyerhaeuser Company Manufactured seed having a live end seal
US7547488B2 (en) * 2004-12-15 2009-06-16 Weyerhaeuser Nr Company Oriented strand board panel having improved strand alignment and a method for making the same
ITRM20050308A1 (it) * 2005-06-14 2006-12-15 Consiglio Nazionale Ricerche Metodo per incrementare la sopravvivenza di ceppi batterici del genere rhizobium.
US7654037B2 (en) * 2005-06-30 2010-02-02 Weyerhaeuser Nr Company Method to improve plant somatic embryo germination from manufactured seed
JP5117579B2 (ja) * 2008-01-25 2013-01-16 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコ製品に有用な易破壊性カプセルを製造するプロセス
BRPI0800365A2 (pt) * 2008-03-06 2009-10-27 Sakata Seed Sudamerica Ltda cápsula, método para preparar uma cápsula, método de embalamento de material biológico de origem vegetal em cápsula, métodos de cultivo de cultura e uso de cápsula
AU2014212003C1 (en) 2013-02-04 2020-07-16 Seres Therapeutics, Inc. Compositions and methods for inhibition of pathogenic bacterial growth
US20160073574A1 (en) * 2013-04-29 2016-03-17 Robust Seed Technology A&F Aktiebolag Improved method for seed priming
EP2996462A4 (de) * 2013-05-13 2017-01-11 Owens, Luther, Vernon Hydratisierungsverfahren für pflanzen und zusammensetzung
CN110036719A (zh) * 2013-07-08 2019-07-23 罗地亚经营管理公司 植物的生长促进
BR102014027072A2 (pt) 2013-10-31 2016-09-13 Fmc Corp revestimento de alginato para tratamento de toletes
RU2564891C1 (ru) * 2014-05-27 2015-10-10 Александр Александрович Кролевец Способ получения нанокапсул цитокининов
RU2565260C1 (ru) * 2014-05-29 2015-10-20 Государственное научное учреждение Поволжский научно-исследовательский институт производства и переработки мясомолочной продукции Российской академии сельскохозяйственных наук Способ регулирования роста растений
CN104186059B (zh) * 2014-07-22 2016-08-31 杭州博邦种子有限公司 一种马铃薯种薯的冷藏催芽方法
US11032968B2 (en) 2015-04-01 2021-06-15 Blue Marble Scientific, Llc Device for delivering plant seeds
CN104938084A (zh) * 2015-06-27 2015-09-30 蚌埠市双墩农业生物科技开发有限责任公司 一种土豆高发芽率催芽处理方法
CN104938090B (zh) * 2015-06-27 2017-01-25 蚌埠市双墩农业生物科技开发有限责任公司 一种提高蚕豆种子发芽率的方法
CN105123018B (zh) * 2015-07-30 2017-07-25 黎怀玲 红豆杉种子的催芽方法
CN105659966B (zh) * 2016-01-07 2018-08-28 湖北省农科院中药材研究所 一种独活种子的催芽方法
CN105723891A (zh) * 2016-02-25 2016-07-06 沧州市农林科学院 玉米一穴双株排种器及带有该排种器的起垄覆膜机
CN106069020A (zh) * 2016-06-17 2016-11-09 吴优 一种有机谷子的种植方法
CN106069018A (zh) * 2016-06-17 2016-11-09 吴优 一种富硒小米的种植方法
CN107567762B (zh) * 2017-10-19 2022-06-24 上海茗晟食品有限公司 一种以含植物种子的凝胶包覆珍珠粉圆及种子萌发方法
CN107744116A (zh) * 2017-10-19 2018-03-02 刘泽洋 一种珍珠粉圆包埋植物种子及萌发的方法
US11589497B1 (en) * 2020-03-10 2023-02-28 Dustin W. Thurston Method for planting agricultural products

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671985A (en) * 1948-10-23 1954-03-16 Processed Seeds Inc Herbicide-resistant coated seed
US4245432A (en) * 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4251952A (en) * 1979-08-06 1981-02-24 Sandoz Ltd. Plant seed coating
US4583320A (en) * 1982-10-12 1986-04-22 Plant Genetics, Inc. Delivery system for meristematic tissue
US4562663A (en) * 1982-10-12 1986-01-07 Plant Genetics, Inc. Analogs of botanic seed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002702A1 (de) 2007-06-16 2008-12-17 Peter Bruno Verfahren zum Vorkeimen von Saatgut
DE102007027758A1 (de) * 2007-06-16 2008-12-18 Bruno Peter Verfahren zum Vorkeimen von Saatgut
DE102007027758B4 (de) * 2007-06-16 2011-02-10 Bruno Peter Verfahren zum Vorkeimen von Saatgut

Also Published As

Publication number Publication date
KR870700278A (ko) 1987-12-28
JPS63500911A (ja) 1988-04-07
AU6339486A (en) 1987-03-24
CA1282609C (en) 1991-04-09
NZ217493A (en) 1990-12-21
AU608743B2 (en) 1991-04-18
EP0236444A4 (de) 1988-02-15
WO1987001258A1 (en) 1987-03-12
US4780987A (en) 1988-11-01
CN86106145A (zh) 1987-06-03
EP0236444A1 (de) 1987-09-16

Similar Documents

Publication Publication Date Title
EP0236444B1 (de) Wasserhaltiges, vorgekeimtes saatgut in gelkapseln
AU591235B2 (en) Desiccated analogs of botanic seed
US4583320A (en) Delivery system for meristematic tissue
US4779376A (en) Delivery system for seeds
EP0107141B2 (de) Verfahren zur vegetativen Vermehrung von Pflanzen und Analog für einen natürlichen botanischen Samen zur Ausführung des Verfahrens
JP2009518391A (ja) 修飾された、活性成分を含有するペレット/カプセル
EP1096849B1 (de) Verfahren zur herstellung und anschliessender (ex vivo) aussaat und vermehrung von vorgekeimten pflanzlichen somatischen embryos
JPH0246240A (ja) 人工種子
Pill et al. Emergence and shoot growth of cosmos and marigold from paclobutrazol-treated seed
Thomas Seed treatments and techniques to improve germination
Heydecker et al. More rapid and uniform germination of Cyclamen persicum L.
Pill et al. Matric and osmotic priming of Echinacea purpurea (L.) Moench seeds
CN1172578C (zh) 转基因棉花种子纯度鉴定方法
KR20230024099A (ko) 염화칼슘 및 알긴산 나트륨 처리를 통해 복숭아의 개화를 지연시키는 방법
US20230165183A1 (en) Methods and compositions for improved seed growth
Rabeh et al. Primitive effects of culture system, sorbitol and salicylic acid on growth of tissue culture derived date palm plants (Phoenix dactylifera L.) Amri cv. during acclimatization stage
Copeland et al. Seed enhancements
CA2369751C (en) Enhancing germination of plant somatic embryos by priming
Nikhila et al. Rooting dynamics of gerbera in jiffy bags: A hormonal perspective
Ghate et al. Growth of pepper seeds planted with gel chemical mixture
JPH119015A (ja) 催芽種子を有する乾燥ゲル培地
Manonmani et al. FLUID DRILLING
JPS63317011A (ja) 稲の湛水土壌中直播用被覆種子
JP2006067967A (ja) ゲル被覆種子の播種前処理時の保管方法
JPH0889025A (ja) ゲル被覆種子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19880215

17Q First examination report despatched

Effective date: 19891204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 61902

Country of ref document: AT

Date of ref document: 19910415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3678427

Country of ref document: DE

Date of ref document: 19910502

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920907

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920929

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921028

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921103

Year of fee payment: 7

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930905

Ref country code: GB

Effective date: 19930905

Ref country code: AT

Effective date: 19930905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930930

Ref country code: CH

Effective date: 19930930

Ref country code: BE

Effective date: 19930930

BERE Be: lapsed

Owner name: PLANT GENETICS INC.

Effective date: 19930930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930905

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86905626.7

Effective date: 19940410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050905