EP0230852A1 - Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter - Google Patents

Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter Download PDF

Info

Publication number
EP0230852A1
EP0230852A1 EP86730206A EP86730206A EP0230852A1 EP 0230852 A1 EP0230852 A1 EP 0230852A1 EP 86730206 A EP86730206 A EP 86730206A EP 86730206 A EP86730206 A EP 86730206A EP 0230852 A1 EP0230852 A1 EP 0230852A1
Authority
EP
European Patent Office
Prior art keywords
pressure
drive device
hydraulic
hydraulic drive
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86730206A
Other languages
English (en)
French (fr)
Other versions
EP0230852B1 (de
Inventor
Horst Eggert
Wolfgang Jacobsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86730206T priority Critical patent/ATE47770T1/de
Publication of EP0230852A1 publication Critical patent/EP0230852A1/de
Application granted granted Critical
Publication of EP0230852B1 publication Critical patent/EP0230852B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H33/34Power arrangements internal to the switch for operating the driving mechanism using fluid actuator hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H2033/306Power arrangements internal to the switch for operating the driving mechanism using fluid actuator monitoring the pressure of the working fluid, e.g. for protection measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/022Details particular to three-phase circuit breakers

Definitions

  • the invention relates to a hydraulic drive device for an electric pressure gas switch, the piston-cylinder systems of which can be pressurized by a hydropneumatic pressure accumulator, with a hydraulic pump feeding several pressure accumulators, controlled by pressure switches, and with a gas monitoring device for the pressure accumulators.
  • gas monitoring takes place directly, i.e. H. the position of a piston movable in the pressure accumulator is detected and evaluated directly, for example by mechanical aids.
  • Direct gas monitoring requires these mechanical aids several times according to the number of pressure accumulators used.
  • the mechanical aids enable the accumulator-specific generation of one or more gas loss signals.
  • Such pressure accumulator-specific gas loss signals can also be generated in other known hydraulic drive devices by using indirect gas monitoring.
  • the gas content of a pressure accumulator is detected indirectly via the pressure of the hydraulic fluid when the piston has reached a certain stop position. This position can be determined by a stop, so that the hydraulic pump quasi after reaching this position incompressible medium works. As a result, the hydraulic pressure rises steeply and leads to the output of the signal from a pressure switch which is assigned to the pressure accumulator.
  • the invention has for its object to perform indirect gas monitoring instead of direct gas monitoring for a hydraulic drive device of the type mentioned when feeding several pressure accumulators by a hydraulic pump.
  • At least one threshold value sensor which detects the feed pressure of the hydraulic pump as part of the gas monitoring device and by a sequential supply of the pressure accumulators controlled on the one hand by the gas monitoring device and on the other hand by the pressure monitors.
  • the threshold switch can be arranged in a main feed line common to all pressure accumulators, so that only a single threshold value switch has to be provided for gas monitoring of all existing pressure accumulators. Above a predetermined hydraulic nominal pressure, this threshold switch emits a gas loss signal, which can be converted into an optical or acoustic warning signal, for example, or which interrupts the function of the hydraulic pump and, if appropriate, the drive devices as a blocking signal.
  • the chronological sequence of the pressure accumulator supply can be effected in that each pressure accumulator is supplied via its own solenoid valve.
  • One of the pressure switches can be arranged between the pressure accumulator and the solenoid valve in the feed line of the pressure accumulator, which, for example, opens the associated solenoid valve and switches the hydraulic pump on when the pressure in the feed line of the pressure accumulator falls below a minimum pressure.
  • the pressure switch can lock the solenoid valves of other pressure accumulators in their closed position, so that the hydraulic oil is only pumped into the associated pressure accumulator.
  • an associated self-holding device can advantageously be switched on, which maintains the switching state regardless of the signal from the controlling pressure switch and is only interrupted again after the hydraulic nominal pressure has been reached as a function of a pump run-on time and the hydraulic pump is thus switched off. This interruption can close the associated solenoid valve and unlock the solenoid valves of the other pressure accumulators.
  • each pressure switch controls a contactor which, as a mass component, is of simple mechanical construction, is inexpensive and relatively insensitive to interference.
  • the chronologically unambiguous sequence of the feeding can be ensured particularly simply by the fact that the contactors have different excitation times. For example, the contactor with the fastest excitation time opens the associated solenoid valve so that the associated pressure accumulator can be filled first, while all other solenoid valves remain in their closed position.
  • each contactor contains a latching contact, a valve contact, a pump contact and a signaling contact as a make contact and a locking contact for each additional solenoid valve as a break contact.
  • the signaling contacts of the contactors can be connected in parallel and control the signal with the threshold switch in series. It is possible that the signaling contacts of the contactors and the threshold switch form the indirect gas monitor. In this case too, the threshold switch can be a simple pressure switch.
  • the pressure monitors 14, 24, 34 monitor the functional pressure PF of the pressure accumulators 12, 22, 32 and, depending on this, switch the hydraulic pump 2 on and off.
  • the threshold switch detects the fault pressure PS, which is above a predetermined hydraulic nominal pressure. It supplies a signal when the fault pressure PS occurs in the main feed line.
  • FIG. 1 schematically represent high-pressure lines.
  • the hydraulic oil circuit is closed by pressureless lines, which are shown as thin lines.
  • the hydraulic oil from the piston-cylinder system 11, 21, 31 is returned to an oil tank 4 through these pressureless lines, which in turn then feeds the hydraulic pump 2.
  • the pressure switch 24 responds. Then the solenoid valve 25 is opened and the solenoid valves 15 and 35 are electrically locked in their closed position. At the same time, the hydraulic pump 2 is switched on. If the pressure accumulator 22 reaches the required nominal pressure, the solenoid valve 25 is closed again after a certain follow-up time and the hydraulic pump 2 is switched off.
  • a microswitch MS shown in FIG. 2 and controlled by the pump shaft by means of a cam disk, is used, which, after reaching a nominal pressure value, enables the switch-off signal to take effect with a delay.
  • the threshold switch 3 responds and emits the gas loss signal.
  • This signal can lead to a visual or acoustic message. It can also serve as a blocking signal for switching off the hydraulic pump 2. Since at the time of the gas loss report only the pressure accumulator 22 was fed by the hydraulic pump 2, the gas loss report that has occurred is clearly assigned to this one pressure accumulator 22.
  • the steep pressure increase is triggered by a stop 16, 26, 36 which mechanically limits the movement of a piston 17, 27, 37 and which can only be reached by the piston under operating conditions if the amount of gas is insufficient.
  • the pump works solely against the quasi incompressible hydraulic oil.
  • the circuit arrangement shown in Fig. 2 comprises several parts, namely the gas monitoring, the pressure-dependent valve control, the follow-up circuit and the pump control.
  • a pressure monitor contact D2 of the pressure monitor 24 responds and goes into the closed position shown in FIG. 2. This energizes a contactor K2 and switches its contacts from the rest positions shown to the working positions. A self-holding contact KS2 is closed. Furthermore, a valve contact KMV2 closes, so that a valve control device MV2 opens the solenoid valve 25. At the same time, a pump contact KP2 closes, so that the hydraulic pump 2 is switched on and fills the pressure accumulator 22.
  • the pressure switch contact D2 switches over.
  • the contactor K2 remains energized by a self-holding device closed via the self-holding contact KS2, so that the hydraulic pump 2 continues to run. If the hydraulic pressure rises steeply above its nominal value during this follow-up time, a pressure switch contact DS, which in the example shown is the contact of the threshold switch 3, closes, as a result of which a gas loss signal is emitted via a signal device S2.
  • the dashed line between the motor of the hydraulic pump 2 and the signaling device S1, S2, S3 indicates that a signal can lead to another functional lock of the hydraulic pump 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

Bei einer hydraulischen Antriebsvorrichtung für einen elektrischen Druckgasschalter sind die Kolben-Zylinder-Systeme (11, 21, 31) je von einem hydropneumatischen Druckspeicher (12, 22, 32) druckbeaufschlagbar. Die Antriebsvorrichtung ist mit einer mehrere Druckspeicher (12, 22, 32) speisenden, von Druckwächtern (14, 24, 34) gesteuerten Hydraulikpumpe (2) und mit einer Gasüberwachungseinrichtung für die Druckspeicher (12, 22, 32) versehen. Zur Lösung der Aufgabe, bei Speisung mehrerer Druckspeicher (12, 22, 32) durch eine Hydraulikpumpe (2) anstelle der direkten Gasüberwachung eine indirekte Gasüberwachung durchzuführen, ist erfindungsgemäß mindestens ein den Speisedruck der Hydraulikpumpe (2) erfassender Schwellwertschalter (3) als Teil der Gasüberwachungseinrichtung vorgesehen. Durch die vorhandene zeitlich nacheinander erfolgende, von der Gasüberwachungseinrichtung einerseits und den Druckwächtern (14, 24, 34) andererseits gesteuerte Speisung der Druckspeicher (12, 22, 32) ist eine druckspeicherspezifische Zuordnung des vom Schwellwertschalter (3) abgegebenen Gasverlustsignals möglich.

Description

  • Die Erfindung bezieht sich auf eine hydraulische Antriebs­vorrichtung für einen elektrischen Druckgasschalter, dessen Kolben-Zylinder-Systeme je von einem hydropneumatischen Druckspeicher druckbeaufschlagbar sind, mit einer mehrere Druckspeicher speisenden, von Druckwächtern gesteuerten Hydraulikpumpe und mit einer Gasüberwachungseinrichtung für die Druckspeicher.
  • Bei einer derartigen bekannten hydraulischen Antriebsvorrichtung erfolgt die Gasüberwachung direkt, d. h. die Stellung eines im Druckspeicher beweglichen Kolbens wird direkt beispielsweise durch mechanische Hilfsmittel erfaßt und ausgewertet. Die direkte Gasüberwachung erfordert diese mechanischen Hilfsmittel mehrfach entsprechend der Anzahl der verwendeten Druckspeicher. Die mechanischen Hilfsmittel ermöglichen eine druckspeicher­spezifische Erzeugung eines oder mehrerer Gasverlustsignale.
  • Solche druckspeicherspezifischen Gasverlustsignale können bei anderen bekannten hydraulischen Antriebsvorrichtungen auch durch Anwendung einer indirekten Gasüberwachung erzeugt werden.
  • Der Gasinhalt eines Druckspeichers wird dabei indirekt über den Druck der Hydraulikflüssigkeit erfaßt, wenn der Kolben eine bestimmte Anschlagstellung erreicht hat. Diese Stellung kann von einem Anschlag festgelegt sein, so daß die Hydraulik­pumpe nach Erreichen dieser Stellung gegen ein quasi inkompressibles Medium arbeitet. Dadurch steigt der Hydraulikdruck steil an und führt zu einer Abgabe des Signals eines Druckwächters, der dem Druckspeicher zugeordnet ist.
  • Speist eine Hydraulikpumpe mehrere Druckspeicher und tritt beispielsweise ein Gasverlust in einem der Druckspeicher auf, so verteilt sich der steile Druckaufbau in diesem Druckspeicher ohne weiteres auf alle von der Hydraulikpumpe gespeisten Druckspeicher, so daß eine druckspeicherspezifische Zuordnung einer auftretenden Gasverlustmeldung nicht möglich ist. Deshalb wird beim Bekannten die indirekte Gasüberwachung dann angewendet, wenn eine Hydraulikpumpe für jeden Druckspeicher vorhanden ist.
  • Der Erfindung liegt die Aufgabe zugrunde, für eine hydraulische Antriebsvorrichtung der eingangs genannten Art bei Speisung mehrerer Druckspeicher durch eine Hydraulikpumpe anstelle der direkten Gasüberwachung eine indirekte Gasüberwachung durchzuführen.
  • Diese Aufgabe wird nach der Erfindung gelöst durch mindestens einen den Speisedruck der Hydraulikpumpe erfassenden Schwellwertschalter als Teil der Gasüberwachungseinrichtung und durch eine zeitlich nacheinander erfolgende, von der Gasüberwachungseinrichtung einerseits und den Druckwächtern andererseits gesteuerte Speisung der Druckspeicher.
  • Durch Anwendung der Erfindung werden die funktionellen Vorteile der direkten Gasüberwachung mit denen der indirekten kombiniert.
  • Der Bedarf an Hydraulikpumpen ist vergleichsweise gering. Die feste zeitliche Zuordnung jedes Druckspeichers zu der ihn speisenden Hydraulikpumpe gewährleistet für jede auftretende Gasverlustmeldung zugleich die funktionelle und damit bauliche Zuordnung von Fehlerquelle und Fehlzustand. So lassen sich beispielsweise konstruktive Ausführungen schaffen, die mechanisch einfach und robust sind, weil ein großer Aufwand mechanischer Hilfseinrichtungen entbehrlich ist. Insbesondere ist der Aufwand bei der Gasabdichtung gering gehalten. Es ergibt sich eine vergleichsweise hohe Störunanfälligkeit und Wartungsfreundlichkeit.
  • Bei einer vorteilhaften Ausführungsform der Erfindung kann der Schwellwertschalter in einer allen Druckspeichern gemeinsamen Hauptspeiseleitung angeordnet sein, damit nur ein einziger Schwellwertschalter zur Gasüberwachung aller vorhandenen Druckspeicher vorgesehen werden muß. Oberhalb eines vorgegebenen Hydrauliknenndruckes gibt dieser Schwell­wertschalter ein Gasverlustsignal ab, das beispielweise in ein optisches oder akustisches Warnsignal umgesetzt werden kann oder als Sperrsignal die Funktion der Hydraulikpumpe und gegebenenfalls der Antriebsvorrichtungen unterbricht.
  • Die zeitliche Abfolge der Druckspeicherspeisung kann bei einer weiteren Ausführungsform der Erfindung dadurch bewirkt werden, daß jeder Druckspeicher über ein eigenes Magnetventil gespeist wird. Zwischen Druckspeicher und Magnetventil kann in der Speiseleitung des Druckspeichers je einer der Druckwächter angeordnet sein, der beispiels­weise beim Unterschreiten eines Mindestdruckes in der Speiseleitung des Druckspeichers das zugehörige Magnetventil öffnet und die Hydraulikpumpe einschaltet. Zugleich kann der Druckwächter die Magnetventile anderer Druckspeicher in ihrer Schließstellung verriegeln, so daß das Hydrauliköl ausschließlich in den zugehörigen Druckspeicher gefördert wird.
  • Beim Öffnen eines der Magnetventile kann vorteilhaft eine zugeordnete Selbsthalteeinrichtung eingeschaltet werden, die den Schaltzustand unabhängig vom Signal des steuernden Druckwächters aufrechterhält und erst nach Erreichen des Hydrauliknenndruckes in Abhängigkeit von einer Pumpen­nachlaufzeit wieder unterbrochen wird und damit die Hydraulikpumpe abgeschaltet. Diese Unterbrechung kann das zugeordnete Magnetventil schließen und die Magnetventile der anderen Druckspeicher entriegeln.
  • Bei einer besonders vorteilhaften und einfachen Ausführungsform der Erfindung steuert jeder Druckwächter ein Schütz, das als Massenbauelement mechanisch einfach aufgebaut, preisgünstig und relativ störunempfindlich ist. Die zeitlich eindeutige Reihenfolge der Speisung kann besonders einfach dadurch sichergestellt werden, daß die Schütze unterschiedliche Erregungszeiten haben. Hierbei öffnet beispielsweise das Schütz mit der schnellsten Erregungszeit das zugehörige Magnetventil, so daß der zugehörige Druckspeicher zuerst gefüllt werden kann, während alle anderen Magnetventile in ihrer Schließstellung bleiben.
  • Zur Erzielung einer einfachen Schaltungsanordnung ist es vorteilhaft, wenn jedes Schütz einen Selbsthalte­kontakt, einen Ventilkontakt, einen Pumpenkontakt und einen Meldekontakt als Schließer sowie einen Verriegelungs­kontakt für jedes weitere Magnetventil als Öffner enthält.
  • Dabei können die Meldekontakte der Schütze parallel geschaltet sein und mit dem Schwellwertschalter in Reihe liegend das Signal steuern. Es ist möglich, daß die Meldekontakt der Schütze und des Schwellwertschalters die indirekt wirkende Gasüberwachung bilden. Auch in diesem Fall kann der Schwellwertschalter ein einfacher Druckwächter sein.
  • Anhand zweier Figuren ist der prinzipielle Aufbau eines Ausführungsbeispiels der Erfindung und die Wirkungsweise erläutert.
    • Fig. 1 zeigt ein Prinzipschaltbild für den Steuerkreis einer erfindungsgemäßen hydraulischen Antriebsvorrichtung für einen Druckgasschalter.
    • Fig. 2 zeigt einen zugehörigen elektrischen Schaltplan für die Steuerung der hydraulischen Antriebsvorrichtung nach Fig. 1.
  • In der Figur 1 sind drei Kolben-Zylinder-Systeme 11, 21 31 zur Betätigung der Schaltstellen eines dreipoligen elektrischen Druckgasschalters, z. B. SF₆-Schalters, dargestellt, die jeweils von einem hydraulischen Druckspeicher 12, 22, 32 gesteuert werden. In den Speiseleitungen 13, 23, 33 befinden sich Druckwächter 14, 24, 34 und Magnetventile 15, 25, 35. In der allen Druckspeichern 12, 22, 32 gemeinsamen Hauptspeiseleitung 1 ist eine Hydraulikpumpe 2 und ein Schwellwertschalter 3 angeordnet.
  • Die Druckwächter 14, 24, 34 überwachen den Funktionsdruck PF der Druckspeicher 12, 22, 32 und schalten davon abhängig die Hydraulikpumpe 2 ein und aus. Der Schwell­wertschalter erfaßt den Störungsdruck PS, der oberhalb eines vorgegebenen Hydrauliknenndruckes liegt. Er liefert ein Signal, wenn in der Haupt-Speiseleitung der Störungsdruck PS auftritt.
  • Die in Fig. 1 stark ausgezogenen Linien stellen schematisch Hochdruckleitungen dar. Der Hydraulikölkreislauf wird geschlossen durch drucklose Leitungen, die als dünn ausgezogene Linien dargestellt sind. Durch diese drucklosen Leitungen wird das Hydrauliköl aus dem Kolben-Zylinder-­System 11, 21, 31 in einen Ölbehälter 4 rückgeführt, der seinerseits dann die Hydraulikpumpe 2 speist.
  • Wenn z. B. in der Speiseleitung 23 der erforderliche Mindestdruck unterschritten wird, spricht der Druckwächter 24 an. Daraufhin wird das Magnetventil 25 geöffnet und die Magnetventile 15 und 35 in ihrer Schließstellung elektrisch verriegelt. Gleichzeitig wird die Hydraulikpumpe 2 eingeschaltet. Erreicht der Druckspeicher 22 den erforder­lichen Nenndruck, werden nach einer bestimmten Nachlaufzeit das Magnetventil 25 wieder geschlossen und die Hydraulik­pumpe 2 abgeschaltet. Hierzu dient ein in der Figur 2 dargestellter, von der Pumpenwelle mittels Nockenscheibe gesteuerter Mikroschalter MS, der nach Erreichen eines Drucknennwertes das Abschaltsignal verzögert wirksam werden läßt. Steigt während dieser Nachlaufzeit der Hydraulikdruck über den vorgesehenen Nenndruck an, und zwar steil, das ist dann der Fall, wenn sich im Druckspeicher 22 nicht ausreichend Gas befindet, so spricht der Schwellwertschalter 3 an und gibt das Gasverlustsignal ab. Dieses Signal kann zu einer optischen oder akustischen Meldung führen. Es kann auch als Sperrsignal zur Abschaltung der Hydraulikpumpe 2 dienen. Da zum Zeitpunkt der Gasverlustmeldung nur der Druckspeicher 22 von der Hydraulikpumpe 2 gespeist wurde, ist die aufgetretene Gasverlustmeldung eindeutig diesem einen Druckspeicher 22 zugeordnet.
  • Der steile Druckanstieg wird durch einen die Bewegung eines Kolbens 17, 27, 37 mechanisch begrenzenden Anschlag 16, 26, 36 ausgelöst, der nur bei nicht ausreichender Gasmenge unter Betriebsbedingungen vom Kolben erreicht werden kann. Die Pumpe arbeitet in diesem Fall allein gegen das quasi inkompressible Hydrauliköl.
  • Die in Fig. 2 dargestellte Schaltungsanordnung umfaßt mehrere Teile, und zwar die Gasüberwachung, die druckabhängige Ventilsteuerung, die Nachlaufschaltung und die Pumpensteuerung.
  • Sinkt beispielsweise der Funktionsdruck PF des Druck­speichers 22 unter seine untere Grenze, so spricht ein Druckwächterkontakt D2 des Druckwächters 24 an und geht in die in Figur 2 dargestellte Schließstellung. Dadurch wird ein Schütz K2 erregt und dessen Kontakte aus den darge­stellten Ruhelagen in die Arbeitsstellungen geschaltet. Ein Selbsthaltekontakt KS2 wird geschlossen. Ferner schließt ein Ventilkontakt KMV2, so daß eine Ventilsteuereinrichtung MV2 das Magnetventil 25 öffnet. Gleichzeitig schließt ein Pumpenkontakt KP2, so daß die Hydraulikpumpe 2 eingeschaltet wird und den Druckspeicher 22 füllt.
  • Zugleich werden Verriegelungskontakte KV12 und KV32 geöffnet. Dadurch sind die Schütze K1 und K3 stromlos, d. h. die zugehörigen Kontakte in ihrer Ruhelage und die Magnetventile 15 und 35 geschlossen.
  • Wenn der Hydraulikdruck im Druckspeicher 22 seinen vorgegebenen Nennwert erreicht hat, schaltet der Druckwächterkontakt D2 um. Durch eine über den Selbsthaltekontakt KS2 geschlossene Selbsthalteeinrichtung bleibt das Schütz K2 erregt, so daß die Hydraulikpumpe 2 weiter läuft. Steigt während dieser Nachlaufzeit der Hydraulikdruck über seinen Nennwert steil an, so schließt ein Druckwächterkontakt DS, der im ausgeführten Beispiel der Kontakt des Schwellwertschalters 3 ist, wodurch ein Gasverlustsignal über eine Signaleinrichtung S2 abgesetzt wird.
  • Die gestrichelte Linie zwischen dem Motor der Hydraulikpumpe 2 und der Signaleinrichtung S1, S2, S3 gibt zu erkennen, daß ein Signal zu einere Funktionssperre der Hydraulikpumpe 2 führen kann.
  • Steigt der Hydraulikdruck während der Pumpennachlaufzeit nicht nennenswert über den Nenndruck an, so führt das Schließen des Mikroschalters MS zum Kurzschließen des Schützes K2, wodurch die Selbsthaltung aufgehoben wird.
  • Bei der erstmaligen Füllung der Druckspeicher 12, 22, 32 sind alle Druckwächter D1, D2, D3 geschlossen. Allerdings wird dann dasjenige Schütz zuerst erregt, das die kürzeste Erregungszeit hat. Auch in diesem Betriebsfall ist eine eindeutige zeitliche Abfolge der Druckspeicherspeisung sicher gewährleistet.

Claims (12)

1. Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter, dessen Kolben-Zylinder-Systeme je von einem hydropneumatischen Druckspeicher druckbeaufschlagbar sind, mit einer mehrere Druckspeicher speisenden, von Druckwächtern gesteuerten Hydraulikpumpe und mit einer Gasüberwachungseinrichtung für die Druckspeicher, gekennzeichnet durch mindestens einen den Speisedruck der Hydraulikpumpe (2) erfassenden Schwellwertschalter (3) als Teil der Gasüberwachungs­einrichtung und durch eine zeitlich nacheinander erfolgende, von der Gasüberwachungseinrichtung einerseits und den Druckwächtern (14, 24, 34) andererseits gesteuerte Speisung der Druckspeicher (12, 22, 32).
2. Hydraulische Antriebsvorrichtung nach Anspruch 1,
dadurch gekennzeichnet, daß der Schwellwertschalter (3) in einer allen Druckspeichern (12, 22, 32) gemeinsamen Hauptspeiseleitung (1) angeordnet ist und oberhalb eines vorgegebenen Hydrauliknenndruckes ein Gasverlustsignal abgibt.
3. Hydraulische Antriebsvorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß jeder Druckspeicher (12, 22, 32) über ein eigenes Magnetventil (15, 25, 35) gespeist wird und zwischen Druckspeicher (12, 22, 32) und Magnetventil (15, 25, 35) je einer der Druckwächter (14, 24, 34) in der Speiseleitung (12, 22, 32) des Druckspeichers (12, 22, 32) angeordnet ist.
4. Hydraulische Antriebsvorrichtung nach Anspruch 3,
dadurch gekennzeichnet, daß der eine Druckwächter (14, 24, 34) beim Unterschreiten eines Mindestdrucks in der Speiseleitung (13, 23, 33) des Druckspeichers das zugehörige Magnetventil (15, 25, 35) öffnet, die Magnetventile (15, 25, 35) anderer Druckspeicher (12, 22, 32) in ihrer Schließstellung verriegelt und die Hydraulikpumpe (2) einschaltet.
5. Hydraulische Antriebsvorrichtung nach Anspruch 4,
dadurch gekennzeichnet, daß beim Öffnen eines der Magnetventile (15, 25, 35) eine zugeordnete Selbsthalteeinrichtung eingeschaltet wird, die erst nach Erreichen des Hydrauliknenndruckes in Abhängigkeit von einer Pumpennachlaufzeit wieder unterbrochen wird und damit die Hydraulikpumpe (2) abschaltet.
6. Hydraulische Antriebsvorrichtung nach Anspruch 5,
dadurch gekennzeichnet, daß die Unterbrechung der Selbsthalteeinrichtung das zugeordnete Magnetventil (15, 25, 35) schließt und die Magnetventile (15, 25, 35) der anderen Druckspeicher (12, 22, 32) entriegelt.
7. Hydraulische Antriebsvorrichtung nach Anspruch 1,
dadurch gekennzeichnet, daß jeder Druckwächter (14, 24, 34) ein Schütz (K1, K2, K3) steuert.
8. Hydraulische Antriebsvorrichtung nach Anspruch 7,
dadurch gekennzeichnet, daß die Schütze (K1, K2, K3) unterschiedliche Erregungszeiten haben.
9. Hydraulische Antriebsvorrichtung nach Anspruch 7,
dadurch gekennzeichnet, daß jedes Schütz (K1, K2, K3) einen Selbsthaltekontakt (KS1, KS2, KS3), Ventilkontakt (KMV1, KMV2, KMV3), einen Pumpenkontakt (KP1, KP2, KP3) und einen Meldekontakt (KM1, KM2, KM3) je als Schließer sowie einen Verriegelungskontakt (KV21, KV31, KV12, KV32, KV13, KV23) für jedes weitere Magnetventil (15, 25, 35) als Öffner enthält.
10. Hydraulische Antriebsvorrichtung nach Anspruch 9,
dadurch gekennzeichnet, daß die Meldekontakte (KM1, KM2, KM3) der Schütze (K1, K2, K3) parallel geschaltet und mit dem Schwellwertschalter (3) in Reihe liegend das Signal steuern.
11. Hydraulische Antriebsvorrichtung nach den Ansprüchen 1 und 9, dadurch gekennzeichnet,
daß die Meldekontakte (KM1, KM2, KM3) der Schütze (K1, K2, K3) und der Schwellwertschalter (3) die indirekt wirkende Gasüberwachungseinrichtung bilden.
12. Hydraulische Antriebsvorrichtung nach Anspruch 1,
dadurch gekennzeichnet, daß der Schwellwertschalter (3) ein Druckwächter ist.
EP86730206A 1985-12-20 1986-12-05 Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter Expired EP0230852B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86730206T ATE47770T1 (de) 1985-12-20 1986-12-05 Hydraulische antriebsvorrichtung fuer einen elektrischen druckgasschalter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853545782 DE3545782A1 (de) 1985-12-20 1985-12-20 Hydraulische antriebsvorrichtung fuer einen elektrischen druckgasschalter
DE3545782 1985-12-20

Publications (2)

Publication Number Publication Date
EP0230852A1 true EP0230852A1 (de) 1987-08-05
EP0230852B1 EP0230852B1 (de) 1989-11-02

Family

ID=6289392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86730206A Expired EP0230852B1 (de) 1985-12-20 1986-12-05 Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter

Country Status (6)

Country Link
US (1) US4730092A (de)
EP (1) EP0230852B1 (de)
JP (1) JPS62157626A (de)
AT (1) ATE47770T1 (de)
DE (2) DE3545782A1 (de)
IN (1) IN165463B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001303A1 (de) * 1990-07-12 1992-01-23 Siemens Aktiengesellschaft Verfahren zum betrieb eines leistungsschalters
DE102010052481A1 (de) * 2010-11-26 2012-05-31 Abb Technology Ag Antriebssteuerung für Hochspannungsschaltgeräte

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709988A1 (de) * 1987-03-26 1988-10-06 Bbc Brown Boveri & Cie Hydraulischer oder pneumatischer antrieb zur betaetigung des beweglichen schaltkontaktes eines mittel- und/oder hochspannungs-leistungsschalters
US5128906A (en) * 1991-06-06 1992-07-07 Conoco Inc. Deep penetrating shear-wave seismic vibratory source for use in marine environments
IT1307425B1 (it) * 1999-04-29 2001-11-06 Sme Elettronica S P A Dispositivo di alimentazione del gruppo idraulico di servoassistenzaallo sterzo di un veicolo.
GB0811562D0 (en) * 2008-06-24 2008-07-30 Aes Eng Ltd Mechanical seal support system
US20160228670A1 (en) * 2013-09-11 2016-08-11 Advanced Inhalation Therapies (Ait) Ltd. System for nitric oxide inhalation
CN105605033B (zh) * 2014-11-24 2018-05-01 徐工集团工程机械股份有限公司 自给式压力补偿系统及其压力监控方法
CN107120327B (zh) * 2017-03-22 2019-01-22 河南平高电气股份有限公司 断路器及其液压联动式操动机构
WO2020193505A1 (de) * 2019-03-27 2020-10-01 Siemens Aktiengesellschaft Schnelles schaltelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050079A (en) * 1960-03-10 1962-08-21 Gen Electric Hydraulic operating system
DE1221709B (de) * 1961-05-19 1966-07-28 Continental Elektronidustrie A Einrichtung zum Schutz von oelhydraulischen Antrieben fuer elektrische Leistungsschalter
DE1525857A1 (de) * 1966-12-09 1969-12-04 Siemens Ag Hydropneumatischer Speicher
DE7736316U1 (de) * 1977-11-04 1979-11-22 Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) Anordnung zur Überwachung der Gasmengen von hydropneumatischen Speichern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526243A (en) * 1968-12-03 1970-09-01 Allis Chalmers Mfg Co Fluidic control circuit for operating gas blast circuit breaker
CH539940A (de) * 1971-06-04 1973-07-31 Siemens Ag Elektrischer Hochspannungs-Leistungsschalter
DE2543107C3 (de) * 1975-09-25 1978-07-20 Siemens Ag, 1000 Berlin Und 8000 Muenchen Einrichtung zur Antriebssteuerung für hydraulisch betätigte Hochspannungs-Leistungsschalter
DE3404513A1 (de) * 1983-03-01 1984-09-06 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Antrieb fuer einen hochspannungsleistungsschalter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050079A (en) * 1960-03-10 1962-08-21 Gen Electric Hydraulic operating system
DE1221709B (de) * 1961-05-19 1966-07-28 Continental Elektronidustrie A Einrichtung zum Schutz von oelhydraulischen Antrieben fuer elektrische Leistungsschalter
DE1525857A1 (de) * 1966-12-09 1969-12-04 Siemens Ag Hydropneumatischer Speicher
DE7736316U1 (de) * 1977-11-04 1979-11-22 Bbc Ag Brown, Boveri & Cie, Baden, Aargau (Schweiz) Anordnung zur Überwachung der Gasmengen von hydropneumatischen Speichern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIEMENS ZEITSCHRIFT, Band 43, Nr. 4, April 1969, Seiten 285-287, Erlangen, DE; O. KOPRIVA et al.: "Leistungsschalter H 801-E für 110 bis 145kV mit elektrohydraulischem Antrieb" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001303A1 (de) * 1990-07-12 1992-01-23 Siemens Aktiengesellschaft Verfahren zum betrieb eines leistungsschalters
DE102010052481A1 (de) * 2010-11-26 2012-05-31 Abb Technology Ag Antriebssteuerung für Hochspannungsschaltgeräte
DE102010052481B4 (de) 2010-11-26 2023-07-06 Hitachi Energy Switzerland Ag Hochspannungsschaltgerät

Also Published As

Publication number Publication date
US4730092A (en) 1988-03-08
DE3666747D1 (en) 1989-12-07
IN165463B (de) 1989-10-28
EP0230852B1 (de) 1989-11-02
JPS62157626A (ja) 1987-07-13
ATE47770T1 (de) 1989-11-15
DE3545782A1 (de) 1987-06-25

Similar Documents

Publication Publication Date Title
DE102005024686B4 (de) Stellungsregler
EP0230852B1 (de) Hydraulische Antriebsvorrichtung für einen elektrischen Druckgasschalter
EP1434707B1 (de) Federspeicherzylinder
DE2848358C2 (de) Störungsüberwachungsanordnung für eine Doppelventil-Einheit in einer pneumatischen Schaltung
DE102014206717B4 (de) Druckspeichereinrichtung für ein Kraftfahrzeug-Kraftstoff-Einspritzsystem, sowie Verfahren zum Betrieb einer derartigen Druckspeichereinrichtung
WO2012079667A1 (de) Speichermodul für einen hydraulischen federspeicherantrieb
EP0152958A2 (de) Führerbremsventil
WO2011060876A1 (de) Krustenbrechvorrichtung
EP0113844B1 (de) Steuereinrichtung für elektropneumatische Druckluftbremsen von Schienenfahrzeugen
DE102008002758B4 (de) Relaisschaltung
DE10236923A1 (de) Federspeicherzylinder
EP0132695B1 (de) Steuerventil für Druckluftbremsen von Schienenfahrzeugen
CH655882A5 (de) Sicherheitsabschaltvorrichtung an einer zahnradschleifmaschine.
EP0341530B1 (de) Steuervorrichtung für pneumatische Systeme, insbesondere Pneumatik-Zylinder an Arbeits- und Fertigungs-Maschinen oder -Anlagen
EP0884486B1 (de) Elektrohydraulische Spannvorrichtung
DE2524781A1 (de) Minderdrucksicherung fuer pneumatisch betriebene anlagen
EP1203161B1 (de) Pressensicherheitsventil
DE2810707C2 (de) Elektro-mechanische Zweihand-Sicherheitsschaltung
DE2509033A1 (de) Sicherheitsventil
EP0253315A1 (de) Filterpresse
WO2009132610A1 (de) System sowie verfahren zur diagnose des technischen betriebszustandes eines leistungsschalters
DE2163080C3 (de) Elektrische Sicherheitssteuerung für Pressen, Stanzen u.dgl
DE4032732A1 (de) Sicherheitsvorrichtung eines industrie-roboters
EP3154073A1 (de) Schütz mit einer elektromagnetischen betätigbaren, bistabilen schaltanordnung
DE102016003481A1 (de) Verfahren zur Funktionsüberprüfung eines elektrohydraulischen Lenksystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870826

17Q First examination report despatched

Effective date: 19890104

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19891102

REF Corresponds to:

Ref document number: 47770

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3666747

Country of ref document: DE

Date of ref document: 19891207

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910322

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911219

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911231

Ref country code: CH

Effective date: 19911231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920225

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19921205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86730206.9

Effective date: 19930709