EP0228925B1 - Système pour le guidage automatique d'un missile et missile pourvu d'un tel système - Google Patents

Système pour le guidage automatique d'un missile et missile pourvu d'un tel système Download PDF

Info

Publication number
EP0228925B1
EP0228925B1 EP86402491A EP86402491A EP0228925B1 EP 0228925 B1 EP0228925 B1 EP 0228925B1 EP 86402491 A EP86402491 A EP 86402491A EP 86402491 A EP86402491 A EP 86402491A EP 0228925 B1 EP0228925 B1 EP 0228925B1
Authority
EP
European Patent Office
Prior art keywords
missile
targets
target
antenna
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86402491A
Other languages
German (de)
English (en)
Other versions
EP0228925A1 (fr
Inventor
Michel Leveque
Jean-Paul Guivarch
Alain Appriou
François Le Chevalier
Régis Barthelemy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0228925A1 publication Critical patent/EP0228925A1/fr
Application granted granted Critical
Publication of EP0228925B1 publication Critical patent/EP0228925B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2226Homing guidance systems comparing the observed data with stored target data, e.g. target configuration data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2246Active homing systems, i.e. comprising both a transmitter and a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2286Homing guidance systems characterised by the type of waves using radio waves

Definitions

  • the present invention relates to a system for the automatic guidance of a missile, of the active electromagnetic seeker type. Although not exclusively, it is particularly suitable for air-sea or sea-sea missiles.
  • Active electromagnetic seeker devices are already known which allow the automatic guiding of a missile towards a target, in particular a marine target. These known seekers use two measurement channels exploiting signals from a mechanical scanning antenna, in order to deliver to the missile a deviation signal allowing it to control its trajectory towards a detected target.
  • This phase of automatic tracking of the target is generally preceded by a search phase allowing the seeker to detect the echo (s) present in his research domain and possibly to make a quick choice of these echoes, depending on simple criteria, such as for example the amplitude or the width thereof.
  • this search phase no guidance order is sent to the missile, so this phase must be short (in general, less than 1 second), which therefore does not allow a parallel and permanent analysis of all the echoes. present in the research area and therefore a fine classification of these echoes and potential targets.
  • This known system is intended for a direct flight missile towards a target.
  • the guidance of the missiles by known active electromagnetic seeker is done by enslavement of the missile on a given target. Once said missile is enslaved on said target, it can no longer be directed towards another target without the risk of miss, on the one hand, the target towards which the missile was aimed in the first place since it is deliberately diverted to be directed at the last moment on another and, on the other hand, the last target indicated, because this one will have been appointed too late by the seeker.
  • the object of the present invention is to improve the active seeker in order to allow them to finely analyze a field of targets, possibly including decoys and jammers, and to choose the most priority target.
  • the system for guiding a missile of the type recalled above is characterized in that said observation means are of the antenna type with electronic scanning and in that said calculation means are arranged to act on the direction commands of said missile to slide said field of action relative to said geographical region in order to delay the exit, out of the field of observation, of said targets reaching the lateral limits thereof and thus to be able to benefit from sufficient time to make a final choice between said targets.
  • the system according to the present invention allows to benefit from an optimal time (despite the speed often high missile) to detect and classify targets by comparison with the recorded electronic images and to direct the missile towards the highest priority target.
  • the document DE-A-2 949 453 relates to a method of improving the precision of missile guidance, implementing an antenna with electronic scanning and the exploitation of prerecorded electronic images of potential targets. This document also relates to direct missile guidance.
  • said calculation means are arranged to perform a pre-classification of the targets in order of importance.
  • This preclassification can for example be carried out by means of the amplitude of the echoes returned by said targets and it makes it possible to determine the positions only of the most important targets.
  • the latter comprises a microwave transmitter controlled by said calculation means and supplying said antenna via a circulator. , which, moreover, sends to said calculation means the signals received from said targets by said antenna. It is also advantageous for the exploration of said antenna to be controlled by said calculation means.
  • the control of the exploration of said antenna is preferably of the pseudo-random type, which makes it possible to overcome certain jammers.
  • the system according to the invention For each antenna position, the system according to the invention emits a microwave signal (a narrow pulse for example) and then it digitizes the amplitude of the return signal after detection, and possibly integration. At this level, it is advantageous to precede the digitizing stage with a logarithmic amplifier, in order to reduce the number of bits required, taking into account the desired dynamics.
  • a microwave signal a narrow pulse for example
  • the system therefore continuously manufactures radar maps, by quantifying the amplitude of the signal received from each elementary area.
  • a digital processing such as that described in the patents FR-A-2 402 971 and FR-A-2 494 870, then allows, scanning after scanning, to establish tracks characterized by their energy and corresponding to a maximum possible evolution targets from scan to scan.
  • the signal received around the tracks thus created is used more finely: the autocorrelation functions of the amplitude responses obtained in successive elementary zones and compared according to mathematical laws are calculated with characteristic functions obtained by learning, in particular at either from real targets, or from measurements made on models and extrapolated, or even by methods based on a mathematical modeling of targets.
  • impulse responses from real targets are recorded, possibly according to different presentations (in attitude) and said impulse responses are subsequently subjected to autocorrelation treatments comparable to those which will be carried out by the seeker.
  • the results of this processing constitute the prerecorded electronic images.
  • a classification of targets and decoys, according to their probability of being the designated target, is thus carried out.
  • the fact of having at all times a maximum of analyzed and memorized information for the entire research field promotes the localization of the target chosen at the output of the interference sphere. This is particularly advantageous in the case where a jammer is triggered after the seeker is sent.
  • the prerecorded electronic images correspond to several different attitudes of said targets with respect to the missile.
  • the guidance system according to the invention not only identifies the targets, but knows their relative angular position relative to the missile. Instead of guiding the missile towards the brightest point of the priority target, it can therefore direct the missile to a more vulnerable point of impact.
  • This favorable point of impact can be chosen by an internal decision program of the guidance system according to the invention or by display before the firing of said missile.
  • this point of impact is determined to be the barycenter of a plurality of bright points (not necessarily the brightest) of said target, the coefficients assigned to each of these being predetermined according to said attitude.
  • Figure 1 is a schematic plan view illustrating the operation of the guidance system according to the present invention.
  • FIG. 2 gives the block diagram of the guidance system according to the present invention.
  • FIG. 3 gives the block diagram of the computer for the guidance system according to the present invention.
  • FIG. 4 illustrates the exploration of the range of action of the missile by the electronic scanning antenna.
  • the missile 1 is provided with a guidance system 2 and directional controls 3, for example aerodynamic fins, capable of being controlled by said guidance system 2 to act on the direction of advance F of said missile.
  • directional controls for example aerodynamic fins, capable of being controlled by said guidance system 2 to act on the direction of advance F of said missile.
  • the guidance system 2 comprises observation means, constituted by an antenna 4 with electronic scanning, and calculation means 5, intended for the processing of the information delivered by the antenna 4 and for monitoring steering controls 3.
  • the antenna 4 explores a portion of space limited, laterally, by two divergent lines L1 and L2 corresponding to the amplitude of exploration (scanning) A of said antenna. Since, moreover, said means for observing missile 1 have a maximum range depending on their own characteristics, it follows that the field of action D of said missile at a given instant is at most a sector delimited by lines L1 and L2 and by the portion of circle P centered on the instantaneous position of the missile and whose radius corresponds to said maximum range. However, due to its maneuverability limits, missile 1 cannot immediately reach the portions of lines L1 and L2 which are assigned to it. close, so that said field of action D is further amputated, just in front of said missile, of a zone d which is delimited by the lines L1 and L2 and by curves l1 and l2 and inside which it is not possible to drive the missile.
  • the area of action D thereof consists of the portion of sector delimited by lines L1, L2, l1, l2 and P.
  • the lines L1, L2, l1 and l2 move with the missile, so that the geographical area on which the field of action is superimposed is constantly changing.
  • the action area D of missile 1 is sufficiently large to include the targets t1, t2, t3 and t4 (the target t5 having already left the area D), whereas for position II of said missile, the domain D has been limited to the point that only the target t3 remains inside of it, the targets t1 and t4 being released laterally through the lines L1 and L2 and the target t2 then being in the domain d .
  • the main object of the present invention is to guide the missile 1 so that the targets ti remain as long as possible within the field of action D, so that the guidance system 2 can benefit from the optimal time to perform the operations allowing it to classify said targets in order of importance, for at all times, leave only the target (s) which are not the most important (or priority) and leave guide finally missile 1 towards the most important target.
  • the embodiment, shown in FIG. 2, of the guidance system 2 according to the invention comprises an antenna 4 with electronic scanning transmitting and receiving the microwave signals intended to detect the targets ti, as well as a computer 5 and a transmitter 6 of said signals.
  • the computer 5 controls the antenna 4 thanks to the link 7 and the transmitter 6 thanks to the link 8.
  • the transmitter 6, working for example in X or Ku band, can be of the pulse transmitter type (magnetron) or of the pulse compression system.
  • the signals it emits can be coherent or not.
  • the signals from the transmitter 6 are sent to the antenna 4 via a circulator-limiter 9 and a link 10.
  • the signals received by the antenna 4 are sent by the latter.
  • said circulator-limiter 9 through said link 10.
  • the guidance system 2 comprises a local oscillator 11 making it possible to transpose the microwave signals received by the antenna 4 into medium frequency signals, via a mixer 12. These medium frequency signals are transmitted to a receiver 13 which filters it, detects it and amplifies it.
  • the receiver 13 may include an amplifier with automatic control gain.
  • said amplifier is of the logarithmic type so that one can have a large instantaneous dynamic (greater than 70 dB).
  • the analog video signals from the receiver 13 are transmitted to an analog-digital converter 14, which transforms them into digital signals.
  • the converter 14 is fast (of the flash type with a sampling frequency greater than 20 MHz) and delivers a signal coded with at least six bits.
  • This extractor 15 can be made up of a wired fast processing unit (adders, comparators, logic gates, etc.) and a dynamic memory with fast access.
  • the computer 5 manages the entire system and uses the data stored by the extractor 15, with which it is connected by the bus 16, in order to carry out the tracking and classification operations in accordance with the invention . This results in orders transmitted to the missile 1 and in particular to the direction commands 3 via a digital bus 17 and commands intended for the electronic scanning antenna 4 (via the link 7).
  • the computer 5 also ensures via the bus 16 the dialogue with the missile during the initialization phase of the seeker. It can also control the operation of the transmitter (time of transmission), control of the type of transmission, etc.), via link 8.
  • the scanning of the domain action D is not done in the order of sectors from s1 to sp, but in a random fashion.
  • the computer 4 fictitiously subdivides each elementary sector sj, along the radius thereof, into a plurality q of adjacent elementary zones zj1 to zjq covering the whole of said sector sj.
  • the continual updating of the indices j and k as a function of the advance of the missile is automatically taken into account by the computer 5.
  • the computer 5 since the changes in direction of the missile are imposed on it by the system 2 (by l 'intermediary of the link 17 and of the direction commands 3) the computer 5 knows them and can continuously modify, in an appropriate manner, said indices j and k as a function of said changes of direction.
  • the computer 5 knows precisely the position of each target ti in its field of action D.
  • the computer 5 can make a preselection of the targets ti and, for the rest of the process, be interested for example only in targets whose amplitude of the echo exceeds a predetermined threshold, c that is to say to the biggest targets.
  • a predetermined threshold c that is to say to the biggest targets.
  • the computer 5 Since the computer 5 knows the position of each target ti at all times, it can follow the movements of said targets under the action of their own propulsion means. In fact, from one scan to the next carried out by the antenna 4, a moving target ti will pass from an elementary zone zjk to an elementary zone adjacent to or adjacent to it.
  • the computer 5 therefore follows, within its field of action 5, the displacement of the targets ti, as a function of its own advance and of its own changes of direction. It therefore knows, at all times, those of the targets ti which are about to leave its field of action D through the lines L1, L2, l1 and l2.
  • the computer 5 engages in classification operations of said targets ti. For this, it compares the echoes received by the antenna 4, that is to say the electronic images of said targets, with electronic images of potential targets recorded in the memory 20. These prerecorded images are classified in decreasing order of priority. .
  • the computer 5 not only knows the position of each target ti, but determines an order of priority in the destruction of said targets.
  • the computer 5 knows whether or not it can leave a target outside its area of action.
  • the position (II) of missile 1 corresponds to the fact that, in position (I), the guidance system 2 has determined, in addition to the positions of the targets t1, t2, t3, and t4, a order of priority according to which the target t3 has the highest priority.
  • system 2 allowed the targets t1, t2 and t4 to exit the area of action D.
  • position (III) in FIG. 1 illustrates the situation in which, in position (I) of the missile, system 2 has determined that the target with the highest priority is the target t4. Under these conditions, the system 2 modified the direction of advance of the missile 1 so that this target t4 remains in the field of action D thereof.
  • This position (III) of missile 1 also illustrates the case where, the computer 5 having already eliminated of its choice the targets t1 and t2 having the lowest priority, however has not yet definitively chosen between the targets t3 and t4. Consequently, the guidance system 2 communicated to the missile 1 a change of direction making it possible to maintain, at the same time, and for as long as possible, the targets t3 and t4 in the field of action D, in order to benefit the computer. 5 of an optimal time to make its final choice.
  • the guidance system goes into its final tracking phase, with for example a frequency of exploration by the antenna 4 greater than in the guidance phase .

Description

  • La présente invention concerne un système pour le guidage automatique d'un missile, du type autodirecteur électromagnétique actif. Quoique non exclusivement, elle est particulièrement appropriée aux missiles air-mer ou mer-mer.
  • On connaît déjà des autodirecteurs électromagnétiques actifs permettant le guidage automatique d'un missile en direction d'une cible, notamment marine. Ces autodirecteurs connus utilisent deux voies de mesure exploitant des signaux issus d'une antenne à balayage mécanique, afin de délivrer au missile un signal d'écartométrie lui permettant d'asservir sa trajectoire en direction d'une cible détectée. Cette phase de poursuite automatique de la cible est en général précédée d'une phase de recherche permettant à l'autodirecteur de détecter le ou les échos présents dans son domaine de recherche et éventuellement d'effectuer un choix rapide de ces échos, en fonction de critères simples, tels que par exemple l'amplitude ou la largeur de ceux-ci. Pendant cette phase de recherche, aucun ordre de guidage n'est envoyé au missile, de sorte que cette phase doit être courte (en général, inférieure à 1 seconde), ce qui ne permet donc pas une analyse parallèle et permanente de tous les échos présents dans le domaine de recherche et donc une classification fine de ces échos et des cibles potentielles.
  • Par exemple, par le document DE-B-2 943 312, on connaît un système de guidage d'un missile pourvu de commandes de direction et destiné à atteindre une cible choisie parmi plusieurs cibles se trouvant dans une région géographique où elles peuvent se déplacer, ce système comportant :
    • des moyens d'observation pour explorer un domaine d'action dont les limites latérales sont déterminées par les possibilités d'exploration desdits moyens d'observation et par les possibilités de manoeuvres dudit missile et dont la limite en profondeur est au plus égale à la portée maximale desdits moyens d'observation, lesdits moyens d'observation explorant successivement et en permanence la totalité d'une pluralité de zones élémentaires subdivisant fictivement la partie de ladite région géographique recouverte à chaque instant par ledit domaine d'action ;
    • des moyens de calcul pour le traitement des informations délivrées par lesdits moyens d'observation et pour la détermination des positions des cibles se trouvant à chaque instant dans ledit domaine d'action ;
    • des moyens de mémoire dans lesquels sont préenregistrées des images électroniques représentatives des cibles potentielles classées par ordre de priorité décroissante, lesdits moyens de calcul effectuant en continu la classification des cibles se trouvant dans ladite région géographique en comparant les informations électroniques de celles-ci fournies par lesdits moyens d'observation avec lesdites informations préenregistrées dans lesdits moyens de mémoire et lesdits moyens de calcul agissant finalement sur lesdites commandes de direction du missile pour guider ledit missile vers la cible de plus grande priorité déterminée par ladite classification.
  • Ce système connu est destiné à un missile à vol direct en direction d'une cible.
  • Ainsi, le guidage des missiles par les autodirecteurs électromagnétiques actifs connus se fait par asservissement du missile sur une cible donnée. Une fois que ledit missile est asservi sur ladite cible, il ne peut plus être dirigé vers une autre cible sans qu'apparaisse le risque de manquer, d'une part, la cible vers laquelle était dirigé en premier lieu le missile puisqu'il en est volontairement détourné pour être dirigé au dernier moment sur une autre et, d'autre part, la dernière cible indiquée, car celle-ci aura été désignée trop tardivement par l'autodirecteur.
  • La présente invention a pour objet de perfectionner les autodirecteurs actifs afin de leur permettre d'analyser finement un champ de cibles, comportant éventuellement des leurres et des brouilleurs, et de choisir la cible la plus prioritaire.
  • A cette fin, selon l'invention, le système pour le guidage d'un missile du type rappelé ci-dessus est caractérisé en ce que lesdits moyens d'observation sont du type à antenne à balayage électronique et en ce que lesdits moyens de calcul sont agencés pour agir sur les commandes de direction dudit missile pour faire glisser ledit domaine d'action par rapport à ladite région géographique afin de retarder la sortie, hors du domaine d'observation, desdites cibles atteignant les limites latérales de celui-ci et ainsi de pouvoir bénéficier du temps suffisant pour effectuer un choix définitif entre lesdites cibles.
  • Ainsi, grâce à la cadence élevée du balayage d'une antenne électronique et au retard apporté à la sortie des cibles hors du domaine d'observation, le système conforme à la présente invention permet de bénéficier d'un temps optimal (malgré la vitesse souvent élevée du missile) pour procéder à la détection et à la classification fine des cibles par comparaison avec les images électroniques enregistrées et de diriger le missile vers la cible la plus prioritaire.
  • On remarquera que le document DE-A-2 949 453 concerne un procédé d'amélioration de la précision du guidage de missiles, mettant en oeuvre une antenne à balayage électronique et l'exploitation d'images électroniques préenregistrées de cibles potentielles. Ce document concerne également le guidage direct de missile.
  • De préférence, afin d'alléger au maximum le travail de calcul, préalablement à la détermination des trajectoires suivies par les cibles, lesdits moyens de calcul sont agencés pour effectuer une préclassification des cibles par ordre d'importance. Cette préclassification peut par exemple être réalisée au moyen de l'amplitude des échos renvoyés par lesdites cibles et elle permet de ne déterminer les positions que des cibles les plus importantes.
  • Afin de n'établir qu'une seule liaison hyperfréquence entre ladite antenne et le reste du système de guidage, il est avantageux que ce dernier comporte un émetteur hyperfréquence commandé par lesdits moyens de calcul et alimentant ladite antenne par l'intermédiaire d'un circulateur, qui, par ailleurs, adresse auxdits moyens de calcul les signaux reçus desdites cibles par ladite antenne. Il est également avantageux que l'exploration de ladite antenne soit commandée par lesdits moyens de calcul.
  • L'antenne à balayage électronique peut être du type décrit dans les brevets FR-A-2 400 781, FR-A-2 494 870 et EP-A-0 039 702. Elle peut être :
    • soit du type monoplan,
    • soit du type monoplan, mais comportant en plus un dispositif mécanique de découplage de la position de l'antenne en site des mouvements du missile,
    • soit du type à deux plans permettant de découpler électroniquement le faisceau des mouvements du missile en site.
  • La commande de l'exploration de ladite antenne est de préférence du type pseudo-aléatoire, ce qui permet de s'affranchir de certains brouilleurs.
  • Pour chaque position d'antenne, le système selon l'invention émet un signal hyperfréquence (une impulsion étroite par exemple) et ensuite il numérise l'amplitude du signal de retour après détection, et éventuellement intégration. A ce niveau, il est avantageux de faire précéder l'étage numérisateur d'un amplificateur logarithmique, afin de réduire le nombre de bits nécessaires, compte tenu de la dynamique souhaitée.
  • Le système procède donc en permanence à la confection de cartes radar, en quantifiant l'amplitude du signal reçu de chaque zone élémentaire.
  • Un traitement numérique, tel que celui décrit dans les brevets FR-A-2 402 971 et FR-A-2 494 870, permet alors, balayage après balayage, d'établir des pistes caractérisées par leur énergie et correspondant à une évolution maximale possible des cibles d'un balayage à l'autre.
  • En parallèle, le signal reçu autour des pistes ainsi créées est exploité plus finement : on calcule les fonctions d'autocorrélation des réponses en amplitude obtenues dans des zones élémentaires successives et comparées suivant des lois mathématiques, à des fonctions caractéristiques obtenues par apprentissage, notamment à partir, soit de cibles réelles, soit de mesures faites sur maquettes et extrapolées, ou bien encore par des méthodes reposant sur une modélisation mathématique des cibles.
  • A cet effet, par exemple, avec un radar présentant des caractéristiques (fréquence, résolution, distance etc...) identiques ou aussi proches que possible de celles desdits moyens d'observation du missile, on enregistre des réponses impulsionnelles de cibles réelles, éventuellement suivant différentes présentations (en attitude) et on fait subir ultérieurement auxdites réponses impulsionnelles des traitements d'autocorrélation comparables à ceux qui seront effectués par l'autodirecteur. Les résultats de ce traitement constituent les images électroniques préenregistrées.
  • Pour obtenir ces images, on peut également reconstituer lesdites cibles sous forme de maquettes à échelle réduite et on effectue des mesures du type mentionné ci-dessus en chambre anéchoïde à fréquence transposée (dans le rapport de réduction des maquettes).
  • Une classification des cibles et des leurres, suivant leur probabilité d'être la cible désignée, est ainsi effectuée.
  • Le type de balayage continu réalisé par l'invention, associé au guidage multicible, présente de nombreux avantages par rapport aux autodirecteurs connus à ce jour, à savoir :
    • la sensibilité de détection des échos est meilleure, car l'antenne revient en permanence dans toutes les directions du domaine de recherche, permettant ainsi une intégration plus longue des signaux. Ceci est particulièrement avantageux dans le cas de cibles marines, car le spectre de fluctuation de ces dernières s'étend à des valeurs très basses (quelques dixièmes de Hertz) ;
    • l'analyse et la classification parallèle et continue de tous les échos du domaine permet de n'en négliger aucun à priori, tout en disposant de temps d'analyse importants (ce qui est utile compte tenu du spectre de fluctuation évoqué ci-dessus). Ceci est particulièrement avantageux dans le cas de tirs à grande distance, pour lesquels les erreurs sur la désignation d'objectif d'une part, et les imprécisions du vol inertiel d'autre part, font que la cible désignée peut être située de façon aléatoire dans tout le domaine du recherche affiché ;
    • face aux brouilleurs et à leur système d'écoute associé, le fait que l'éclairage de la cible soit intermittent, peut retarder et même empêcher la réponse d'un brouilleur.
  • Par ailleurs, le fait de disposer à tout instant d'un maximum d'informations analysées et mémorisées pour tout le domaine de recherche favorisent la localisation de la cible choisie en sortie de sphère de brouillage. Ceci est particulièrement avantageux dans le cas où un brouilleur se déclenche après la mise en émission de l'autodirecteur.
  • De plus, la présente invention apporte des simplifications au niveau de la réalisation de l'autodirectuer, à savoir :
    • une seule voie de réception,
    • suppression des détecteurs de position et des systèmes mécaniques de découplage de l'antenne,
    • suppression des joints tournants hyperfréquence.
  • De préférence, au moins en ce qui concerne les cibles potentielles les plus prioritaires, les images électroniques préenregistrées correspondent à plusieurs attitudes différentes desdites cibles par rapport au missile. Ainsi, le système de guidage selon l'invention, non seulement identifie les cibles, mais connaît leur position angulaire relative par rapport au missile. Il peut donc, au lieu de guider le missile vers le point le plus brillant de la cible prioritaire, conduire ledit missile vers un point d'impact plus vulnérable de celle-ci. Ce point d'impact favorable peut être choisi par un programme de décision interne du système de guidage selon l'invention ou par affichage avant le tir dudit missile.
  • Par exemple, ce point d'impact est déterminé comme étant le barycentre d'une pluralité de points brillants (pas forcément les plus brillants) de ladite cible, les coefficients affectés à chacun de ceux-ci étant prédéterminés en fonction de ladite attitude.
  • Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée.
  • La figure 1 est une vue en plan schématique illustrant le fonctionnement du système de guidage conforme à la présente invention.
  • La figure 2 donne le schéma synoptique du système de guidage conforme à la présente invention.
  • La figure 3 donne le schéma synoptique du calculateur pour le système de guidage conforme à la présente invention.
  • La figure 4 illustre l'exploration du domaine d'action du missile par l'antenne à balayage électronique.
  • Sur la figure 1, on a représenté de façon très schématique un missile 1 destiné à atteindre une cible ti (avec i = 1,2,3,....,n) choisie parmi plusieurs cibles t₁, t₂, t₃, t₄, t₅,... se trouvant dans une zone géographique Z, dans laquelle elles peuvent éventuellement se déplacer.
  • Le missile 1 est pourvu d'un système de guidage 2 et de commandes de direction 3, par exemple des ailerons aérodynamiques, susceptibles d'être contrôlées par ledit système de guidage 2 pour agir sur la direction d'avance F dudit missile.
  • Comme on le verra par la suite, le système de guidage 2 comporte des moyens d'observation, constitués par une antenne 4 à balayage électronique, et des moyens de calcul 5, destinés au traitement des informations délivrées par l'antenne 4 et au contrôle des commandes de direction 3.
  • L'antenne 4 explore une portion d'espace limitée, latéralement, par deux lignes divergentes L1 et L2 correspondant à l'amplitude d'exploration (balayage) A de ladite antenne. Puisque, de plus, lesdits moyens d'observation du missile 1 ont une portée maximale dépendant de leurs cractéristiques propres, il en résulte que le domaine d'action D dudit missile à un instant donné est au maximum un secteur délimité par les lignes L1 et L2 et par la portion de cercle P centré sur la position instantanée du missile et dont le rayon correspond à ladite portée maximale. Cependant, du fait de ses limites de manoeuvrabilité, le missile 1 ne peut immédiatement atteindre les portions des lignes L1 et L2 qui lui sont proches, de sorte que ledit domaine d'action D est de plus amputé, juste devant ledit missile, d'une zone d qui est déli- mitée par les lignes L1 et L2 et par des courbes l1 et l2 et à l'intérieure de laquelle il n'est pas possible de conduire le missile.
  • Ainsi, à un instant donné du vol du missile 1, le domaine d'action D de celui-ci est constitué de la portion de secteur délimitée par les lignes L1,L2,l1,l2 et P.
  • Bien entendu, au fur et à mesure que le missile 1 avance, les lignes L1,L2,l1 et l2 se déplacent avec le missile, de sorte que la zone géographique à laquelle est superposé le domaine d'action se modifie sans cesse. Sur la figure 1, on a montré que dans la position (I) le domaine d'action D du missile 1 est suffisamment vaste pour englober les cibles t1,t2,t3 et t4 (la cible t5 étant déjà sortie du domaine D), alors que pour la position II dudit missile, le domaine D s'est restreint au point que seule la cible t3 reste à l'intérieur de celui-ci, les cibles t1 et t4 étant sorties latéralement à travers les lignes L1 et L2 et la cible t2 se trouvant alors dans le domaine d.
  • On remarquera que la sortie desdites cibles intervient systématiquement au cours de l'avance du missile 1, même dans le cas où lesdites cibles sont fixes. Lorsque les cibles sont mobiles et se déplacent dans la zone Z, il va de soi que leur sortie du domaine D peut être avancée ou retardée suivant les trajectoires qu'elles suivent.
  • L'objet principal de la présente invention est de guider le missile 1 de façon que les cibles ti restent le plus longtemps possible à l'intérieur du domaine d'action D, de façon que le système de guidage 2 puisse bénéficier du temps optimal pour effectuer les opérations lui permettant de classer lesdites cibles par ordre d'importance, pour à chaque instant, ne laisser sortir du domaine d'action D que la ou les cibles qui ne sont pas les plus importantes (ou prioritaires) et guider finalement le missile 1 vers la cible la plus importante.
  • Le mode de réalisation, montré par la figure 2, du système de guidage 2 selon l'invention comporte une antenne 4 à balayage électronique émettant et recevant les signaux à hyperfréquence destinés à déceler les cibles ti, ainsi qu'un calculateur 5 et un émetteur 6 desdits signaux. Le calculateur 5 commande l'antenne 4 grâce à la liaison 7 et l'émetteur 6 grâce à la liaison 8. L'émetteur 6, travaillant par exemple en bande X ou Ku, peut être du type émetteur à impulsion (magnétron) ou du système à compression d'impulsions. Les signaux qu'il émet peuvent être cohérents ou non.
  • Les signaux de l'émetteur 6 sont adressés à l'antenne 4 par l'intermédiaire d'un circulateur-limiteur 9 et d'une liaison 10. En sens inverse, les signaux reçus par l'antenne 4 sont adressés par celle-ci audit circulateur-limiteur 9 à travers ladite liaison 10. On dispose ainsi d'une liaison hyperfréquence 10 unique entre l'antenne 4 et ledit circulateur-limiteur 9.
  • Par ailleurs, le système de guidage 2 comporte un oscillateur local 11 permettant d'effectuer la transposition des signaux hyperfréquence reçus par l'antenne 4 en signaux de moyenne fréquence, par l'intermédiaire d'un mélangeur 12. Ces signaux de moyenne fréquence sont transmises à un récepteur 13 qui lui les filtre, les détecte et les amplifie. A cet effet, le récepteur 13 peut comporter un amplificateur avec contrôle automatique de gain. Cependant, il est préférable que ledit amplificateur soit du type logarithmique afin que l'on puisse disposer d'une dynamique instantanée importante (supérieure à 70 dB).
  • Les signaux analogiques vidéo provenant du récepteur 13 sont transmis à un convertisseur analogique-numérique 14, qui les transforme en signaux numériques. De préférence, le convertisseur 14 est rapide (du type flash avec une fréquence d'échantillonnage supérieure à 20 MHz) et délivre un signal codé avec au moins six bits.
  • Ces signaux numériques sont transmis à un extracteur radar 15, qui les mémorise après avoir effectué un prétraitement (moyennage, comparaison à des seuils,...). Cet extracteur 15 peut être constitué d'une unité de traitement rapide cablée (additionneurs, comparateurs, portes logiques,...) et d'une mémoire dynamique à accès rapide.
  • Le calculateur 5 assure la gestion de l'ensemble du système et il exploite les données mémorisées par l'extracteur 15, avec lequel il est relié par le bus 16, afin d'effectuer les opérations de pistage et de classification conformes à l'invention. Il en résulte des ordres transmis au missile 1 et notamment aux commandes de direction 3 par l'intermédiaire d'un bus numérique 17 et des commandes destinées à l'antenne à balayage électronique 4 (par la liaison 7). Le calculateur 5 assure aussi par l'intermédiaire du bus 16 le dialogue avec le missile pendant la phase d'initialisation de l' autodirecteur. Il peut par ailleurs contrôler le fonctionnement de l'émitteur (instant de mise en émission), commande du type d'émission, etc...), par la liaison 8.
  • Dans le mode de réalisation montré par la figure 3, le calculateur 5 comporte une unité centrale 18, par exemple constituée par un microprocesseur de gestion à 16 ou 32 bits, qui, par l'intermédiaire d'une ligne bus 19 est en liaison avec :
    • une mémoire 20, par exemple morte, contenant le logiciel et des images électroniques préenregistrées de cibles potentielles ;
    • une mémoire de travail 21, par exemple vive, pour le stockage temporaire des données ;
    • une unité arithmétique et logique rapide 22 ;
    • un circuit d'interface 23 pour le bus 17 ;
    • un circuit d'entrée-sortie 24 pour les liaisons 7 et 8 internes au système 2 ; et
    • un circuit d'interface 25 avec le bus extracteur 16 reliant le calculateur 5 à l'extracteur 15.
  • Comme le montre la figure 4, à un instant donné, le calculateur 5 commande l'antenne 4 pour que celle-ci explore un secteur élémentaire sj du domaine d'action D, choisi parmi une pluralité p de secteurs élémentaires adjacents s1 à sp (avec j = 1,2,3,...p) recouvrant la totalité dudit domaine d'action D. De préférence, afin d'éviter autant que possible le brouillage de l'exploration de l'antenne 4, le balayage du domaine d'action D ne se fait pas dans l'ordre des secteurs de s1 vers sp, mais de façon aléatoire.
  • Par ailleurs, le calculateur 4 subdivise fictivement chaque secteur élémentaire sj, le long du rayon de celui-ci, en une pluralité q de zones élémentaires adjacentes zj1 à zjq recouvrant la totalité dudit secteur sj.
  • Ainsi, le domaine d'action D est subdivisé fictivement en une pluralité pxq de zones élémentaires zjk (avec k = 1,2,3,...,q) explorées successivement, suivant des séquences imposées le calculateur 5, par ladite antenne 4.
  • L'antenne 4, commandée par le calculateur 5 par la liaison 7 et alimentée par l'émetteur 6 par la liaison 10, reçoit en retour l'écho des cibles ti et, par la chaîne 9,10,12,13,14,15 et 16, cet écho est adressé au calculateur 5, qui sait ainsi dans quelle zone élémentaire zjk se trouve chaque cible ti.
  • Bien entendu, il est indispensable qu'à chaque instant le calculateur 5 modifie les indices j et k des zones élémentaires zjk pour tenir compte de l'avance (flèche F) et des éventuels changement de direction dudit missile 1.
  • L'actualisation continuelle des indices j et k en fonction de l'avance du missile est prise automatiquement en compte par le calculateur 5. De plus, comme les changements de direction du missile sont imposés à celui-ci par le système 2 (par l'intermédiaire de la liaison 17 et des commandes de direction 3) le calculateur 5 les connaît et peut modifier en continu, de façon appropriée, lesdits indices j et k en fonction desdits changements de direction.
  • Ainsi, à chaque instant le calculateur 5 connaît avec précision la position de chaque cible ti dans son domaine d'action D.
  • A ce stade de l'exploration, le calculateur 5 peut faire une présélection des cibles ti et, pour la suite du processus, ne s'intéresser par exemple qu'aux cibles dont l'amplitude de l'écho dépasse un seuil prédéterminé, c'est-à-dire aux plus grosses cibles. Ainsi, sur la figure 1 par exemple, on a supposé qu'en position (I) le système de guidage 2 a laissé volontairement sortir la cible t5 de son domaine d'action D (à travers la ligne L2), parce que l'amplitude de l'écho de cette cible t5, déterminée pour une position du missile 1 antérieure à la position (I) (et non représentée), s'était révélée inférieure audit seuil prédéterminé.
  • Puisque le calculateur 5 connaît à chaque instant la position de chaque cible ti, il peut suivre les déplacements desdites cibles sous l'action de leurs propres moyens de propulsion. En effet, d'un balayage au suivant effectué par l'antenne 4, une cible mobile ti passera d'une zone élémentaire zjk à une zone élémentaire adjacente ou voisine de celle-ci.
  • Le calculateur 5 suit donc, à l'intérieur de son domaine d'action 5, le déplacement des cibles ti, en fonction de sa propre avance et de ses propres changements de direction. Il connaît donc, à chaque instant, celles des cibles ti qui sont sur le point de sortir de son domaine d'action D à travers les lignes L1,L2,l1 et l2.
  • Simultanément aux opérations de détermination de position décrites ci-dessus, le calculateur 5 se livre à des opérations de classification desdites cibles ti. Pour cela, il compare les échos reçus par l'antenne 4, c'est-à-dire les images électroniques desdites cibles, à des images électroniques de cibles potentielles enregistrées dans la mémoire 20. Ces images préenregistrées sont classées par ordre de priorité décroissante.
  • Ainsi, à chaque instant, le calculateur 5 non seulement connaît la position de chaque cible ti, mais détermine un ordre de priorité dans la destruction desdites cibles.
  • Par suite, le calculateur 5 sait s'il peut ou non laisser sortir une cible de son domaine d'action. Par exemple, sur la figure 1, la position (II) du missile 1 correspond au fait que, en position (I), le système de guidage 2 a déterminé, outre les positions des cibles t1,t2,t3, et t4, un ordre de priorité selon lequel la cible t3 est la plus prioritaire. En passant de la position (I) à la position (II), le système 2 a laissé sortir les cibles t1, t2 et t4 hors du domaine d'action D.
  • En revanche, la position (III) de la figure 1 illustre la situation dans laquelle, en position (I) du missile, le système 2 a déterminé que la cible la plus prioritaire était la cible t4. Dans ces conditions, le système 2 a modifié la direction d'avance du missile 1 pour que cette cible t4 reste dans le domaine d'action D de celui-ci.
  • Cette position (III) du missile 1 illustre également le cas où, le calculateur 5 ayant déjà éliminé de son choix les cibles t1 et t2 les moins prioritaires, n'a cependant pas encore définitivement choisi entre les cibles t3 et t4. Par suite, le système de guidage 2 a communiqué au missile 1 un changement de direction permettant de maintenir, à la fois, et le plus longtemps possible, les cibles t3 et t4 dans le domaine d'action D, afin de faire bénéficier le calculateur 5 d'un temps optimal pour effectuer son choix définitif.
  • Lorsque la cible la plus prioritaire est déterminée définitivement, le système de guidage selon l'invention passe en phase de poursuite finale de celle-ci, avec par exemple une fréquence d'exploration par l'antenne 4 plus grande qu'en phase de guidage.
  • Dans le cas favorable où, grâce à la comparaison des images électroniques de la cible la plus prioritaire avec les images électroniques préenregistrées, il est possible de déterminer l'attitude de cette cible par rapport au missile, on peut choisir un point d'impact différent du point le plus brillant de la cible, par exemple selon des critères tels que ceux mentionnés ci-dessus.

Claims (9)

  1. Système de guidage d'un missile (1) pourvu de commandes de direction (3) et destiné à atteindre une cible choisie parmi plusieurs cibles (t1 à t5) se trouvant dans une région géographique (Z) où elles peuvent se déplacer, ce système (2) comportant :
    - des moyens d'observation (4) pour explorer un domaine d'action (D) dont les limites latérales sont déterminées par les possibilités d'exploration desdits moyens d'observation et par les possibilités de manoeuvres dudit missile et dont la limite en profondeur est au plus égale à la portée maximale desdits moyens d'observation, lesdits moyens d'observations (4) explorant successivement et en permanence la totalité d'une pluralité de zones élémentaires (zjk) subdivisant fictivement la partie de ladite région géographique recouverte à chaque instant par ledit domaine d'action ;
    - des moyens de calcul (5) pour le traitement des informations délivrées par lesdits moyens d'observation et pour la détermination des positions des cibles se trouvant à chaque instant dans ledit domaine d'action ;
    - des moyens de mémoire (20) dans lesquels sont préenregistrées des images électroniques représentatives des cibles potentielles classées par ordre de priorité décroissante,
    lesdits moyens de calcul (5) effectuant en continu la classification des cibles se trouvant dans ladite région géographique en comparant les informations électroniques de celles-ci fournies par lesdits moyens d'observation (4) avec lesdites informations préenregistrées dans lesdits moyens de mémoire (20) et lesdits moyens de calcul (5) agissant finalement sur lesdites commandes de direction (3) du missile (1) pour guider ledit missile vers la cible de plus grande priorité déterminée par ladite classification,
    caractérisé en ce que lesdits moyens d'observation (4) sont du type à antenne à balayage électronique et en ce que lesdits moyens de calcul (5) sont agencés pour agir sur les commandes de direction (3) dudit missile pour faire glisser ledit domaine d'action par rapport à ladite région géographique afin de retarder la sortie, hors du domaine d'observation, desdites cibles atteignant les limites latérales de celui-ci et ainsi de pouvoir bénéficier du temps suffisant pour effectuer un choix définitif entre lesdites cibles.
  2. Système selon la revendication 1,
    caractérisé en ce que, préalablement à la détermination des trajectoires suivies par les cibles, lesdits moyens de calcul sont agencés pour effectuer une préclassification des cibles par ordre d'importance.
  3. Système selon l'une des revendications 1 ou 2,
    caractérisé en ce que lesdits moyens de calcul (5) sont agencés pour commander l'exploration de ladite antenne (4).
  4. Système selon la revendication 3,
    caractérisé en ce que la commande de l'exploration de ladite antenne est du type pseudo-aléatoire.
  5. Système selon l'une des revendications 1 à 4,
    caractérisé en ce que, au moins pour les cibles potentielles les plus prioritaires, les informations électroniques préenregistrées correspondent à plusieurs attitudes différentes desdites cibles par rapport au missile.
  6. Système selon la revendication 5,
    caractérisé en ce que le point d'impact final du missile sur la cible prioritaire est choisi différent du point de celle-ci le plus brillant.
  7. Système selon la revendication 6,
    caractérisé en ce que le point d'impact final du missile sur la cible prioritaire est défini comme le barycentre d'une pluralité de points brillants de ladite cible, les coefficients affectés à chacun de ces points brillants étant prédéterminés en fonction de ladite attitude.
  8. Système selon l'une quelconque des revendications 1 à 7,
    caractérisé en ce qu'il comporte un émetteur hyperfréquence (6) commandé par lesdits moyens de calcul (5) et alimentant ladite antenne (4) par l'intermédiaire d'un circulateur (9), qui, par ailleurs, adresse auxdits moyens de calcul (5) les signaux reçus desdites cibles par ladite antenne.
  9. Missile,
    caractérisé en ce qu'il comporte un système de guidage spécifié sous l'une quelconque des revendications 1 à 8.
EP86402491A 1985-11-18 1986-11-07 Système pour le guidage automatique d'un missile et missile pourvu d'un tel système Expired - Lifetime EP0228925B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8517009 1985-11-18
FR8517009A FR2590359B1 (fr) 1985-11-18 1985-11-18 Systeme pour le guidage automatique d'un missile et missile pourvu d'un tel systeme

Publications (2)

Publication Number Publication Date
EP0228925A1 EP0228925A1 (fr) 1987-07-15
EP0228925B1 true EP0228925B1 (fr) 1992-01-15

Family

ID=9324911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402491A Expired - Lifetime EP0228925B1 (fr) 1985-11-18 1986-11-07 Système pour le guidage automatique d'un missile et missile pourvu d'un tel système

Country Status (8)

Country Link
US (1) US4735379A (fr)
EP (1) EP0228925B1 (fr)
JP (1) JP2521679B2 (fr)
CA (1) CA1262953A (fr)
DE (1) DE3683476D1 (fr)
ES (1) ES2029453T3 (fr)
FR (1) FR2590359B1 (fr)
IL (1) IL80630A (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061930A (en) * 1990-06-12 1991-10-29 Westinghouse Electric Corp. Multi-mode missile seeker system
US5307071A (en) * 1992-04-17 1994-04-26 Hughes Aircraft Company Low noise frequency synthesizer using half integer dividers and analog gain compensation
IL112436A0 (en) * 1995-01-24 1995-12-08 Israel State System and method for target recognition
US10382145B2 (en) * 2017-07-13 2019-08-13 Benjamin J. Egg System and method for improving wireless data links
FR3124855B1 (fr) * 2021-07-01 2023-10-06 Thales Sa Dispositif autodirecteur pour missile.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021801A (en) * 1971-03-03 1977-05-03 The United States Of America As Represented By The Secretary Of The Air Force Single bit doppler processor for guidance missile system
US3974328A (en) * 1971-07-23 1976-08-10 Martin Marietta Corporation Line scan area signature detection system
US3779492A (en) * 1971-10-18 1973-12-18 Grumman Aerospace Corp Automatic target recognition system
US4108400A (en) * 1976-08-02 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Dual mode guidance system
US4136343A (en) * 1977-05-02 1979-01-23 Martin Marietta Corporation Multiple source tracking system
FR2400781A1 (fr) * 1977-06-24 1979-03-16 Radant Etudes Antenne hyperfrequence, plate, non dispersive, a balayage electronique
FR2402971A1 (fr) * 1977-09-09 1979-04-06 Onera (Off Nat Aerospatiale) Extracteur syntactique de signaux evolutifs et procede d'extraction
DE2943312C2 (de) * 1979-10-26 1981-10-22 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg Verfahren zur Zielselektion
FR2469808A1 (fr) * 1979-11-13 1981-05-22 Etude Radiant Sarl Dispositif de balayage electronique dans le plan de polarisation
DE2949453C2 (de) * 1979-12-08 1982-02-04 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Erhöhung der Trefferwirkung von Flugkörpern, Flugkörperwirkteilen und Geschossen
FR2494870B1 (fr) * 1980-11-26 1986-11-21 Onera (Off Nat Aerospatiale) Procede et systeme de poursuite de cibles mobiles

Also Published As

Publication number Publication date
JPS62119397A (ja) 1987-05-30
DE3683476D1 (de) 1992-02-27
FR2590359B1 (fr) 1988-02-12
US4735379A (en) 1988-04-05
JP2521679B2 (ja) 1996-08-07
CA1262953A (fr) 1989-11-14
ES2029453T3 (es) 1992-08-16
EP0228925A1 (fr) 1987-07-15
IL80630A (en) 1992-08-18
FR2590359A1 (fr) 1987-05-22
IL80630A0 (en) 1987-02-27

Similar Documents

Publication Publication Date Title
FR2696011A1 (fr) Procédé et dispositif de réglage du seuil de détection d'un radar.
FR2718252A1 (fr) Procédé de poursuite de mobiles.
FR2709834A1 (fr) Procédé et dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule.
FR3010799A1 (fr) Systeme de detection et de localisation d'objets immerges flottant entre deux eaux tels que des mines a orins et procede associe
EP0718639B1 (fr) Procédé de détection d'objets répartis dans une zone de terrain et dispositif mettant en oeuvre un tel procédé
EP0872742B1 (fr) Procédé et dispositif pour le traitement de signaux représentatifs d'ondes réfléchies, transmises ou réfractées par une structure volumique en vue d'effectuer une exploration et une analyse de cette structure
WO2006008227A1 (fr) Procede de tfac par segmentation statistique et normalisation
FR2852401A1 (fr) Ensemble de poursuite de radar
EP0228925B1 (fr) Système pour le guidage automatique d'un missile et missile pourvu d'un tel système
FR2647540A1 (fr) Dispositif de ralliement de missile
EP0480832B1 (fr) Procédé et dispositif optique pour la topographie de haute précision
EP3239656B1 (fr) Procédé d'optimisation de la détection de cibles marines et radar aéroporté mettant en oeuvre un tel procédé
FR2939207A1 (fr) Procede de filtrage cinematique temporel multidimensionnel de plots radar, de tour d'antenne a tour d'antenne
EP3567399B1 (fr) Procede de pistage de cibles, notamment maritimes, et radar mettant en oeuvre un tel procede
EP0825453B1 (fr) Procédé et dispositif pour le traitement de signaux représentatifs d'ondes réfléchies ou transmises par une structure volumique en vue d'effectuer une exploration et une analyse de cette structure
EP0718638B1 (fr) Procédé de détection d'objets répartis dans une zone de terrain ou de détermination des caractéristiques de propagation d'une onde acoustique dans le sol et dispositif mettant en oeuvre de tels procédés
FR2642529A1 (fr) Procede et dispositif de mesure de la position d'un vehicule
FR2548347A1 (fr) Procede de production d'un signal d'allumage et dispositif de detection et d'allumage a plusieurs detecteurs
FR2689249A1 (fr) Procédé et appareil radar de déception.
FR2665954A1 (fr) Procede de commande de mise a feu d'une mine, et mine pourvue d'un dispositif de declenchement fonctionnant selon ce procede.
FR2626678A1 (fr) Radar, notamment pour la correction de tir d'artillerie
FR2726360A1 (fr) Procede d'elaboration d'un ordre d'allumage automatique pour un piege antichar et allumeur pour la mise en oeuvre du procede
FR2681434A1 (fr) Procede et appareil pour afficher et classer des echos radar et favoriser cette classification.
FR2879302A1 (fr) Radar et systeme d'arme anti-helicopteres
FR2529660A2 (fr) Procede de formation d'une cible fictive, modifiee suivant le terrain, dans un appareil pour l'entrainement au pointage de cibles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17P Request for examination filed

Effective date: 19870619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEROSPATIALE SOCIETE NATIONALE INDUSTRIELLE SOCIET

17Q First examination report despatched

Effective date: 19890127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3683476

Country of ref document: DE

Date of ref document: 19920227

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029453

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86402491.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031028

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031030

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031031

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031112

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031118

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041107

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041108