EP0228925B1 - Automatisches Flugkörperlenksystem und Flugkörper mit einem solchen System - Google Patents

Automatisches Flugkörperlenksystem und Flugkörper mit einem solchen System Download PDF

Info

Publication number
EP0228925B1
EP0228925B1 EP86402491A EP86402491A EP0228925B1 EP 0228925 B1 EP0228925 B1 EP 0228925B1 EP 86402491 A EP86402491 A EP 86402491A EP 86402491 A EP86402491 A EP 86402491A EP 0228925 B1 EP0228925 B1 EP 0228925B1
Authority
EP
European Patent Office
Prior art keywords
missile
targets
target
antenna
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86402491A
Other languages
English (en)
French (fr)
Other versions
EP0228925A1 (de
Inventor
Michel Leveque
Jean-Paul Guivarch
Alain Appriou
François Le Chevalier
Régis Barthelemy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0228925A1 publication Critical patent/EP0228925A1/de
Application granted granted Critical
Publication of EP0228925B1 publication Critical patent/EP0228925B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2226Homing guidance systems comparing the observed data with stored target data, e.g. target configuration data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2246Active homing systems, i.e. comprising both a transmitter and a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2286Homing guidance systems characterised by the type of waves using radio waves

Definitions

  • the present invention relates to a system for the automatic guidance of a missile, of the active electromagnetic seeker type. Although not exclusively, it is particularly suitable for air-sea or sea-sea missiles.
  • Active electromagnetic seeker devices are already known which allow the automatic guiding of a missile towards a target, in particular a marine target. These known seekers use two measurement channels exploiting signals from a mechanical scanning antenna, in order to deliver to the missile a deviation signal allowing it to control its trajectory towards a detected target.
  • This phase of automatic tracking of the target is generally preceded by a search phase allowing the seeker to detect the echo (s) present in his research domain and possibly to make a quick choice of these echoes, depending on simple criteria, such as for example the amplitude or the width thereof.
  • this search phase no guidance order is sent to the missile, so this phase must be short (in general, less than 1 second), which therefore does not allow a parallel and permanent analysis of all the echoes. present in the research area and therefore a fine classification of these echoes and potential targets.
  • This known system is intended for a direct flight missile towards a target.
  • the guidance of the missiles by known active electromagnetic seeker is done by enslavement of the missile on a given target. Once said missile is enslaved on said target, it can no longer be directed towards another target without the risk of miss, on the one hand, the target towards which the missile was aimed in the first place since it is deliberately diverted to be directed at the last moment on another and, on the other hand, the last target indicated, because this one will have been appointed too late by the seeker.
  • the object of the present invention is to improve the active seeker in order to allow them to finely analyze a field of targets, possibly including decoys and jammers, and to choose the most priority target.
  • the system for guiding a missile of the type recalled above is characterized in that said observation means are of the antenna type with electronic scanning and in that said calculation means are arranged to act on the direction commands of said missile to slide said field of action relative to said geographical region in order to delay the exit, out of the field of observation, of said targets reaching the lateral limits thereof and thus to be able to benefit from sufficient time to make a final choice between said targets.
  • the system according to the present invention allows to benefit from an optimal time (despite the speed often high missile) to detect and classify targets by comparison with the recorded electronic images and to direct the missile towards the highest priority target.
  • the document DE-A-2 949 453 relates to a method of improving the precision of missile guidance, implementing an antenna with electronic scanning and the exploitation of prerecorded electronic images of potential targets. This document also relates to direct missile guidance.
  • said calculation means are arranged to perform a pre-classification of the targets in order of importance.
  • This preclassification can for example be carried out by means of the amplitude of the echoes returned by said targets and it makes it possible to determine the positions only of the most important targets.
  • the latter comprises a microwave transmitter controlled by said calculation means and supplying said antenna via a circulator. , which, moreover, sends to said calculation means the signals received from said targets by said antenna. It is also advantageous for the exploration of said antenna to be controlled by said calculation means.
  • the control of the exploration of said antenna is preferably of the pseudo-random type, which makes it possible to overcome certain jammers.
  • the system according to the invention For each antenna position, the system according to the invention emits a microwave signal (a narrow pulse for example) and then it digitizes the amplitude of the return signal after detection, and possibly integration. At this level, it is advantageous to precede the digitizing stage with a logarithmic amplifier, in order to reduce the number of bits required, taking into account the desired dynamics.
  • a microwave signal a narrow pulse for example
  • the system therefore continuously manufactures radar maps, by quantifying the amplitude of the signal received from each elementary area.
  • a digital processing such as that described in the patents FR-A-2 402 971 and FR-A-2 494 870, then allows, scanning after scanning, to establish tracks characterized by their energy and corresponding to a maximum possible evolution targets from scan to scan.
  • the signal received around the tracks thus created is used more finely: the autocorrelation functions of the amplitude responses obtained in successive elementary zones and compared according to mathematical laws are calculated with characteristic functions obtained by learning, in particular at either from real targets, or from measurements made on models and extrapolated, or even by methods based on a mathematical modeling of targets.
  • impulse responses from real targets are recorded, possibly according to different presentations (in attitude) and said impulse responses are subsequently subjected to autocorrelation treatments comparable to those which will be carried out by the seeker.
  • the results of this processing constitute the prerecorded electronic images.
  • a classification of targets and decoys, according to their probability of being the designated target, is thus carried out.
  • the fact of having at all times a maximum of analyzed and memorized information for the entire research field promotes the localization of the target chosen at the output of the interference sphere. This is particularly advantageous in the case where a jammer is triggered after the seeker is sent.
  • the prerecorded electronic images correspond to several different attitudes of said targets with respect to the missile.
  • the guidance system according to the invention not only identifies the targets, but knows their relative angular position relative to the missile. Instead of guiding the missile towards the brightest point of the priority target, it can therefore direct the missile to a more vulnerable point of impact.
  • This favorable point of impact can be chosen by an internal decision program of the guidance system according to the invention or by display before the firing of said missile.
  • this point of impact is determined to be the barycenter of a plurality of bright points (not necessarily the brightest) of said target, the coefficients assigned to each of these being predetermined according to said attitude.
  • Figure 1 is a schematic plan view illustrating the operation of the guidance system according to the present invention.
  • FIG. 2 gives the block diagram of the guidance system according to the present invention.
  • FIG. 3 gives the block diagram of the computer for the guidance system according to the present invention.
  • FIG. 4 illustrates the exploration of the range of action of the missile by the electronic scanning antenna.
  • the missile 1 is provided with a guidance system 2 and directional controls 3, for example aerodynamic fins, capable of being controlled by said guidance system 2 to act on the direction of advance F of said missile.
  • directional controls for example aerodynamic fins, capable of being controlled by said guidance system 2 to act on the direction of advance F of said missile.
  • the guidance system 2 comprises observation means, constituted by an antenna 4 with electronic scanning, and calculation means 5, intended for the processing of the information delivered by the antenna 4 and for monitoring steering controls 3.
  • the antenna 4 explores a portion of space limited, laterally, by two divergent lines L1 and L2 corresponding to the amplitude of exploration (scanning) A of said antenna. Since, moreover, said means for observing missile 1 have a maximum range depending on their own characteristics, it follows that the field of action D of said missile at a given instant is at most a sector delimited by lines L1 and L2 and by the portion of circle P centered on the instantaneous position of the missile and whose radius corresponds to said maximum range. However, due to its maneuverability limits, missile 1 cannot immediately reach the portions of lines L1 and L2 which are assigned to it. close, so that said field of action D is further amputated, just in front of said missile, of a zone d which is delimited by the lines L1 and L2 and by curves l1 and l2 and inside which it is not possible to drive the missile.
  • the area of action D thereof consists of the portion of sector delimited by lines L1, L2, l1, l2 and P.
  • the lines L1, L2, l1 and l2 move with the missile, so that the geographical area on which the field of action is superimposed is constantly changing.
  • the action area D of missile 1 is sufficiently large to include the targets t1, t2, t3 and t4 (the target t5 having already left the area D), whereas for position II of said missile, the domain D has been limited to the point that only the target t3 remains inside of it, the targets t1 and t4 being released laterally through the lines L1 and L2 and the target t2 then being in the domain d .
  • the main object of the present invention is to guide the missile 1 so that the targets ti remain as long as possible within the field of action D, so that the guidance system 2 can benefit from the optimal time to perform the operations allowing it to classify said targets in order of importance, for at all times, leave only the target (s) which are not the most important (or priority) and leave guide finally missile 1 towards the most important target.
  • the embodiment, shown in FIG. 2, of the guidance system 2 according to the invention comprises an antenna 4 with electronic scanning transmitting and receiving the microwave signals intended to detect the targets ti, as well as a computer 5 and a transmitter 6 of said signals.
  • the computer 5 controls the antenna 4 thanks to the link 7 and the transmitter 6 thanks to the link 8.
  • the transmitter 6, working for example in X or Ku band, can be of the pulse transmitter type (magnetron) or of the pulse compression system.
  • the signals it emits can be coherent or not.
  • the signals from the transmitter 6 are sent to the antenna 4 via a circulator-limiter 9 and a link 10.
  • the signals received by the antenna 4 are sent by the latter.
  • said circulator-limiter 9 through said link 10.
  • the guidance system 2 comprises a local oscillator 11 making it possible to transpose the microwave signals received by the antenna 4 into medium frequency signals, via a mixer 12. These medium frequency signals are transmitted to a receiver 13 which filters it, detects it and amplifies it.
  • the receiver 13 may include an amplifier with automatic control gain.
  • said amplifier is of the logarithmic type so that one can have a large instantaneous dynamic (greater than 70 dB).
  • the analog video signals from the receiver 13 are transmitted to an analog-digital converter 14, which transforms them into digital signals.
  • the converter 14 is fast (of the flash type with a sampling frequency greater than 20 MHz) and delivers a signal coded with at least six bits.
  • This extractor 15 can be made up of a wired fast processing unit (adders, comparators, logic gates, etc.) and a dynamic memory with fast access.
  • the computer 5 manages the entire system and uses the data stored by the extractor 15, with which it is connected by the bus 16, in order to carry out the tracking and classification operations in accordance with the invention . This results in orders transmitted to the missile 1 and in particular to the direction commands 3 via a digital bus 17 and commands intended for the electronic scanning antenna 4 (via the link 7).
  • the computer 5 also ensures via the bus 16 the dialogue with the missile during the initialization phase of the seeker. It can also control the operation of the transmitter (time of transmission), control of the type of transmission, etc.), via link 8.
  • the scanning of the domain action D is not done in the order of sectors from s1 to sp, but in a random fashion.
  • the computer 4 fictitiously subdivides each elementary sector sj, along the radius thereof, into a plurality q of adjacent elementary zones zj1 to zjq covering the whole of said sector sj.
  • the continual updating of the indices j and k as a function of the advance of the missile is automatically taken into account by the computer 5.
  • the computer 5 since the changes in direction of the missile are imposed on it by the system 2 (by l 'intermediary of the link 17 and of the direction commands 3) the computer 5 knows them and can continuously modify, in an appropriate manner, said indices j and k as a function of said changes of direction.
  • the computer 5 knows precisely the position of each target ti in its field of action D.
  • the computer 5 can make a preselection of the targets ti and, for the rest of the process, be interested for example only in targets whose amplitude of the echo exceeds a predetermined threshold, c that is to say to the biggest targets.
  • a predetermined threshold c that is to say to the biggest targets.
  • the computer 5 Since the computer 5 knows the position of each target ti at all times, it can follow the movements of said targets under the action of their own propulsion means. In fact, from one scan to the next carried out by the antenna 4, a moving target ti will pass from an elementary zone zjk to an elementary zone adjacent to or adjacent to it.
  • the computer 5 therefore follows, within its field of action 5, the displacement of the targets ti, as a function of its own advance and of its own changes of direction. It therefore knows, at all times, those of the targets ti which are about to leave its field of action D through the lines L1, L2, l1 and l2.
  • the computer 5 engages in classification operations of said targets ti. For this, it compares the echoes received by the antenna 4, that is to say the electronic images of said targets, with electronic images of potential targets recorded in the memory 20. These prerecorded images are classified in decreasing order of priority. .
  • the computer 5 not only knows the position of each target ti, but determines an order of priority in the destruction of said targets.
  • the computer 5 knows whether or not it can leave a target outside its area of action.
  • the position (II) of missile 1 corresponds to the fact that, in position (I), the guidance system 2 has determined, in addition to the positions of the targets t1, t2, t3, and t4, a order of priority according to which the target t3 has the highest priority.
  • system 2 allowed the targets t1, t2 and t4 to exit the area of action D.
  • position (III) in FIG. 1 illustrates the situation in which, in position (I) of the missile, system 2 has determined that the target with the highest priority is the target t4. Under these conditions, the system 2 modified the direction of advance of the missile 1 so that this target t4 remains in the field of action D thereof.
  • This position (III) of missile 1 also illustrates the case where, the computer 5 having already eliminated of its choice the targets t1 and t2 having the lowest priority, however has not yet definitively chosen between the targets t3 and t4. Consequently, the guidance system 2 communicated to the missile 1 a change of direction making it possible to maintain, at the same time, and for as long as possible, the targets t3 and t4 in the field of action D, in order to benefit the computer. 5 of an optimal time to make its final choice.
  • the guidance system goes into its final tracking phase, with for example a frequency of exploration by the antenna 4 greater than in the guidance phase .

Claims (9)

  1. Automatisches Flugkörperlenksystem (1) mit Richtungssteuereinrichtungen (3) zum Treffen eines aus mehreren Zielobjekten (t1 bis t5) gewählten Zielobjekts, die sich in einem geographischen Raum (Z) befinden, in dem sie sich bewegen, wobei das System (2)
    - Beobachtungseinrichtungen (4) zum Aufklären oder Erkunden eines Aktionsbereich (D), dessen seitliche Begrenzungen durch die Aufklärungsmöglichkeiten der Beobachtungseinrichtungen sowie durch die Manövrierfähigkeit des Flugkörpers festgelegt sind und dessen Tiefenbegrenzung höchstens gleich ist der maximalen Reichweite der Beobachtungseinrichtungen (4), von denen aufeinanderfolgend und dauerhaft die Gesamtheit mehrerer Elementarzonen (zjk) überwacht werden, in die der Teil des geographischen Raums künstlich unterteilt ist, der zu jedem Zeitpunkt vom Aktionsbereich abgedeckt wird,
    - Recheneinrichtungen (5) zum Verarbeiten der von den Beobachtungseinrichtungen gelieferten Daten sowie zur Bestimmung der Standorte der Zielobjekte, die zu jedem Zeitpunkt im Aktionsbereich liegen, und
    - Speichereinrichtungen (20) aufweisen, in denen potentiellen Ziele darstellende und nach abnehmender Vorrangigkeit geordnete elektronische Bilder bereits vorher eingegeben wurden,


    wobei die Recheneinrichtungen (5) die Einstufung der Zielobjekte, die in dem geographischen Raum liegen, durchführen, indem deren elektronischen Daten, die von den Beobachtungseinrichtungen (4) geliefert werden, mit den vorher in die Speichereinrichtungen (20) eingegebenen Daten verglichen werden, und die Recheneinrichtungen (5) letztlich auf die Richtungssteuereinrichtungen (3) des Flugkörpers (1) einwirken, den Flugkörpers auf das Zielobjekt der von der Einstufung bestimmten höchsten Vorrangigkeit zu leiten, dadurch gekennzeichnet, daß die Beobachtungseinrichtungen (4) ausgeführt sind als elektronische Strahlschwenkungsantenne und daß die Recheneinrichtungen (5) zum Einwirken auf die Richtungssteuereinrichtungen (3) des Flugkörpers veranlaßt werden, den Aktionsbereich gegenüber dem geographischen Raum verschiebbar zu machen, um das Verlassen der Zielobjekte aus dem Beobachtungsbereich, die die seitlichen Grenzen dieses Bereichs erreichen, zu verzögern und daß dadurch ausreichend Zeit genutzt werden kann, eine definitive Wahl zwischen den Zielobjekten zu treffen.
  2. System nach Anspruch 1, dadurch gekennzeichnet, daß vor der Bestimmung der von den Zielobjekten gefolgten Bahnen die Berechnungseinrichtungen veranlaßt werden, eine Voreinstufung der Zielobjekte nach der Folge ihrer Wichtigkeit vorzunehmen.
  3. System nach einem der vorhergehenden Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Berechnungseinrichtungen (5) die Steuerung der von der Antenne (4) durchzuführende Aufklärung veranlassen.
  4. System nach Anspruch 3, dadurch gekennzeichnet, daß die Steuerung der von der Antenne durchzuführenden Aufklärung pseudozufällig erfolgt.
  5. System nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zumindest für die potentiellen Zielobjekte höchster Vorrangigkeit die vorher eingegebenen elektronischen Daten mehreren unterschiedlichen Fluglagen der Zielobjekte gegenüber dem Flugkörper entsprechen.
  6. System nach Anspruch 5, dadurch gekennzeichnet, daß die endgültige Einschlagstelle des Flugkörpers auf das vorrangige Zielobjekt abweichend von dessen leuchtendster Stelle gewählt wird.
  7. System nach Anspruch 6, dadurch gekennzeichnet, daß die endgültige Einschlegstelle des Flugkörpers auf das vorrangige Zielobjekt als der Massenmittelpunkt mehrerer leuchtender Stellen des Zielobjekts festgelegt wird, wobei die jeder dieser leuchtenden Stellen zugewiesenen Koeffizienten in Abhängigkeit von der Fluglage vorbestimmt sind.
  8. System nach einem der vorhergehenden Ansprüche 1 bis 7, gekennzeichnet durch einen hyperfrequenten Sender (6), der von den Recheneinrichtungen (5) gesteuert wird und über einen Zirkulator (9) die Antenne (4) steuert, der dabei die von den Zielobjekton über die Antenne empfangenen Signale an die Recheneinrichtungen (5) adressiert.
  9. Flugkörper gekennzeichnet durch ein in den vorstehenden Ansprüchen 1 bis 8 angegebenes Flugkörperlenksystem.
EP86402491A 1985-11-18 1986-11-07 Automatisches Flugkörperlenksystem und Flugkörper mit einem solchen System Expired - Lifetime EP0228925B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8517009 1985-11-18
FR8517009A FR2590359B1 (fr) 1985-11-18 1985-11-18 Systeme pour le guidage automatique d'un missile et missile pourvu d'un tel systeme

Publications (2)

Publication Number Publication Date
EP0228925A1 EP0228925A1 (de) 1987-07-15
EP0228925B1 true EP0228925B1 (de) 1992-01-15

Family

ID=9324911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402491A Expired - Lifetime EP0228925B1 (de) 1985-11-18 1986-11-07 Automatisches Flugkörperlenksystem und Flugkörper mit einem solchen System

Country Status (8)

Country Link
US (1) US4735379A (de)
EP (1) EP0228925B1 (de)
JP (1) JP2521679B2 (de)
CA (1) CA1262953A (de)
DE (1) DE3683476D1 (de)
ES (1) ES2029453T3 (de)
FR (1) FR2590359B1 (de)
IL (1) IL80630A (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061930A (en) * 1990-06-12 1991-10-29 Westinghouse Electric Corp. Multi-mode missile seeker system
US5307071A (en) * 1992-04-17 1994-04-26 Hughes Aircraft Company Low noise frequency synthesizer using half integer dividers and analog gain compensation
IL112436A0 (en) * 1995-01-24 1995-12-08 Israel State System and method for target recognition
US10382145B2 (en) * 2017-07-13 2019-08-13 Benjamin J. Egg System and method for improving wireless data links
FR3124855B1 (fr) * 2021-07-01 2023-10-06 Thales Sa Dispositif autodirecteur pour missile.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021801A (en) * 1971-03-03 1977-05-03 The United States Of America As Represented By The Secretary Of The Air Force Single bit doppler processor for guidance missile system
US3974328A (en) * 1971-07-23 1976-08-10 Martin Marietta Corporation Line scan area signature detection system
US3779492A (en) * 1971-10-18 1973-12-18 Grumman Aerospace Corp Automatic target recognition system
US4108400A (en) * 1976-08-02 1978-08-22 The United States Of America As Represented By The Secretary Of The Navy Dual mode guidance system
US4136343A (en) * 1977-05-02 1979-01-23 Martin Marietta Corporation Multiple source tracking system
FR2400781A1 (fr) * 1977-06-24 1979-03-16 Radant Etudes Antenne hyperfrequence, plate, non dispersive, a balayage electronique
FR2402971A1 (fr) * 1977-09-09 1979-04-06 Onera (Off Nat Aerospatiale) Extracteur syntactique de signaux evolutifs et procede d'extraction
DE2943312C2 (de) * 1979-10-26 1981-10-22 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg Verfahren zur Zielselektion
FR2469808A1 (fr) * 1979-11-13 1981-05-22 Etude Radiant Sarl Dispositif de balayage electronique dans le plan de polarisation
DE2949453C2 (de) * 1979-12-08 1982-02-04 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Erhöhung der Trefferwirkung von Flugkörpern, Flugkörperwirkteilen und Geschossen
FR2494870B1 (fr) * 1980-11-26 1986-11-21 Onera (Off Nat Aerospatiale) Procede et systeme de poursuite de cibles mobiles

Also Published As

Publication number Publication date
JP2521679B2 (ja) 1996-08-07
FR2590359B1 (fr) 1988-02-12
CA1262953A (fr) 1989-11-14
DE3683476D1 (de) 1992-02-27
ES2029453T3 (es) 1992-08-16
US4735379A (en) 1988-04-05
IL80630A (en) 1992-08-18
FR2590359A1 (fr) 1987-05-22
EP0228925A1 (de) 1987-07-15
IL80630A0 (en) 1987-02-27
JPS62119397A (ja) 1987-05-30

Similar Documents

Publication Publication Date Title
FR2696011A1 (fr) Procédé et dispositif de réglage du seuil de détection d'un radar.
FR2718252A1 (fr) Procédé de poursuite de mobiles.
FR2709834A1 (fr) Procédé et dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule.
FR3010799A1 (fr) Systeme de detection et de localisation d'objets immerges flottant entre deux eaux tels que des mines a orins et procede associe
EP0718639B1 (de) Verfahren und Vorrichtung zum Erkennen von Objekten, welche in einem Gebiet verteilt sind
EP0872742B1 (de) Verfahren und Vorrichtung zur Verarbeitung von aus einer Volumenstruktur übertragenen oder gebeugten Signalen reflektierter Wellen zur Erkundung oder Analyse der Struktur
WO2006008227A1 (fr) Procede de tfac par segmentation statistique et normalisation
FR2852401A1 (fr) Ensemble de poursuite de radar
EP0228925B1 (de) Automatisches Flugkörperlenksystem und Flugkörper mit einem solchen System
FR2647540A1 (fr) Dispositif de ralliement de missile
EP0480832B1 (de) Optische Verfahren und Vorrichtung für hochakkurate Topographie
EP3239656B1 (de) Optimierungsverfahren der erkennung von zielen im meer, und radar an bord eines fluggeräts zur umsetzung dieses verfahrens
FR2939207A1 (fr) Procede de filtrage cinematique temporel multidimensionnel de plots radar, de tour d'antenne a tour d'antenne
EP3567399B1 (de) Ortungsverfahren von zielen, insbesondere maritimen, und radar zur umsetzung dieses verfahrens
EP0825453B1 (de) Verfahren und Anordnung zur Bearbeitung von Signalen, welche durch ein Volumenstruktur reflektierte oder übertragene Wellen darstellen, um eine Forschung und Analyse der Struktur auszuführen
EP0718638B1 (de) Verfahren zum Entdecken von Gegenständen in der Bodenfläche oder zum Bestimmen der Ausbreitungsmerkmale einer akustischen Welle im Boden und Vorrichtung dafür
FR2548347A1 (fr) Procede de production d'un signal d'allumage et dispositif de detection et d'allumage a plusieurs detecteurs
FR2689249A1 (fr) Procédé et appareil radar de déception.
FR2665954A1 (fr) Procede de commande de mise a feu d'une mine, et mine pourvue d'un dispositif de declenchement fonctionnant selon ce procede.
FR2626678A1 (fr) Radar, notamment pour la correction de tir d'artillerie
FR2726360A1 (fr) Procede d'elaboration d'un ordre d'allumage automatique pour un piege antichar et allumeur pour la mise en oeuvre du procede
FR2681434A1 (fr) Procede et appareil pour afficher et classer des echos radar et favoriser cette classification.
FR2879302A1 (fr) Radar et systeme d'arme anti-helicopteres
FR2529660A2 (fr) Procede de formation d'une cible fictive, modifiee suivant le terrain, dans un appareil pour l'entrainement au pointage de cibles
EP3654057A1 (de) Optimierungsverfahren zum ausrichten einer antenne eines flugzeug-radarsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17P Request for examination filed

Effective date: 19870619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEROSPATIALE SOCIETE NATIONALE INDUSTRIELLE SOCIET

17Q First examination report despatched

Effective date: 19890127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3683476

Country of ref document: DE

Date of ref document: 19920227

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2029453

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86402491.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031028

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031030

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031031

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031112

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031118

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041107

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041108