EP0228456A1 - Ionophores et membranes selectives aux ions contenant lesdits ionophores - Google Patents
Ionophores et membranes selectives aux ions contenant lesdits ionophoresInfo
- Publication number
- EP0228456A1 EP0228456A1 EP19860904584 EP86904584A EP0228456A1 EP 0228456 A1 EP0228456 A1 EP 0228456A1 EP 19860904584 EP19860904584 EP 19860904584 EP 86904584 A EP86904584 A EP 86904584A EP 0228456 A1 EP0228456 A1 EP 0228456A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- membrane
- electrode
- ion
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 204
- 230000000236 ionophoric effect Effects 0.000 title claims abstract description 44
- 239000002555 ionophore Substances 0.000 title claims abstract description 43
- 230000000694 effects Effects 0.000 claims abstract description 39
- 150000002500 ions Chemical class 0.000 claims description 129
- 102000004190 Enzymes Human genes 0.000 claims description 63
- 108090000790 Enzymes Proteins 0.000 claims description 62
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical group O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 51
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 38
- 125000000217 alkyl group Chemical group 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 31
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical group CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 28
- JSGHQDAEHDRLOI-UHFFFAOYSA-N oxomalononitrile Chemical compound N#CC(=O)C#N JSGHQDAEHDRLOI-UHFFFAOYSA-N 0.000 claims description 28
- 229960000278 theophylline Drugs 0.000 claims description 26
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000004800 polyvinyl chloride Substances 0.000 claims description 24
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 22
- 229940109239 creatinine Drugs 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 17
- 239000004014 plasticizer Substances 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000004033 plastic Substances 0.000 claims description 16
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Chemical group CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 claims description 15
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Chemical group CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 claims description 15
- 229960001948 caffeine Drugs 0.000 claims description 15
- 125000000468 ketone group Chemical group 0.000 claims description 14
- 125000003545 alkoxy group Chemical group 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 11
- 150000002367 halogens Chemical class 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- CXVOIIMJZFREMM-UHFFFAOYSA-N 1-(2-nitrophenoxy)octane Chemical compound CCCCCCCCOC1=CC=CC=C1[N+]([O-])=O CXVOIIMJZFREMM-UHFFFAOYSA-N 0.000 claims description 9
- 229940079593 drug Drugs 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 229920002301 cellulose acetate Polymers 0.000 claims description 6
- 229910052757 nitrogen Chemical group 0.000 claims description 6
- 150000008378 aryl ethers Chemical class 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 239000000460 chlorine Substances 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011118 polyvinyl acetate Substances 0.000 claims description 4
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 229920002379 silicone rubber Polymers 0.000 claims description 4
- 239000004945 silicone rubber Substances 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000005498 phthalate group Chemical class 0.000 claims description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 13
- 125000004433 nitrogen atom Chemical group N* 0.000 claims 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 3
- 150000001408 amides Chemical class 0.000 claims 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims 3
- 125000006575 electron-withdrawing group Chemical group 0.000 claims 3
- 239000011737 fluorine Substances 0.000 claims 3
- 229920001169 thermoplastic Polymers 0.000 claims 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims 2
- 125000004429 atom Chemical group 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 68
- 239000000243 solution Substances 0.000 description 63
- 229940088598 enzyme Drugs 0.000 description 54
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 42
- -1 ion silicate Chemical class 0.000 description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 25
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 24
- 239000004202 carbamide Substances 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 21
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 20
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 19
- 239000008103 glucose Substances 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 19
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 230000004044 response Effects 0.000 description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 13
- MVOYJPOZRLFTCP-UHFFFAOYSA-N 1-methyl-7H-xanthine Chemical compound O=C1N(C)C(=O)NC2=C1NC=N2 MVOYJPOZRLFTCP-UHFFFAOYSA-N 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 239000000427 antigen Substances 0.000 description 12
- 102000036639 antigens Human genes 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 12
- 108010046334 Urease Proteins 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- 239000012925 reference material Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 238000000807 solvent casting Methods 0.000 description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 9
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 9
- 239000013060 biological fluid Substances 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 9
- 239000011591 potassium Substances 0.000 description 9
- 108010082126 Alanine transaminase Proteins 0.000 description 8
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 8
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 239000000020 Nitrocellulose Substances 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 8
- 238000003618 dip coating Methods 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 229920001220 nitrocellulos Polymers 0.000 description 8
- 229940079938 nitrocellulose Drugs 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 229910001414 potassium ion Inorganic materials 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 7
- 102000016938 Catalase Human genes 0.000 description 7
- 108010053835 Catalase Proteins 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 7
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 7
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 150000001638 boron Chemical class 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 238000001139 pH measurement Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 150000003626 triacylglycerols Chemical class 0.000 description 7
- 229940116269 uric acid Drugs 0.000 description 7
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 6
- PFWLFWPASULGAN-UHFFFAOYSA-N 7-Methylxanthine Natural products N1C(=O)NC(=O)C2=C1N=CN2C PFWLFWPASULGAN-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004366 Glucose oxidase Substances 0.000 description 6
- 108010015776 Glucose oxidase Proteins 0.000 description 6
- 102000005548 Hexokinase Human genes 0.000 description 6
- 108700040460 Hexokinases Proteins 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012491 analyte Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 229940116332 glucose oxidase Drugs 0.000 description 6
- 235000019420 glucose oxidase Nutrition 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 5
- 239000004367 Lipase Substances 0.000 description 5
- 102000004882 Lipase Human genes 0.000 description 5
- 108090001060 Lipase Proteins 0.000 description 5
- 238000013494 PH determination Methods 0.000 description 5
- 229910021607 Silver chloride Inorganic materials 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 229960005309 estradiol Drugs 0.000 description 5
- 229930182833 estradiol Natural products 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 229940040461 lipase Drugs 0.000 description 5
- 235000019421 lipase Nutrition 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 5
- 238000002791 soaking Methods 0.000 description 5
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 4
- 102000004420 Creatine Kinase Human genes 0.000 description 4
- 108010042126 Creatine kinase Proteins 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- 108010067973 Valinomycin Proteins 0.000 description 4
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 4
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 4
- 230000009137 competitive binding Effects 0.000 description 4
- FCFNRCROJUBPLU-UHFFFAOYSA-N compound M126 Natural products CC(C)C1NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC(=O)C(C(C)C)NC(=O)C(C)OC(=O)C(C(C)C)NC(=O)C(C(C)C)OC1=O FCFNRCROJUBPLU-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229940093499 ethyl acetate Drugs 0.000 description 4
- 229960001269 glycine hydrochloride Drugs 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- FCFNRCROJUBPLU-DNDCDFAISA-N valinomycin Chemical group CC(C)[C@@H]1NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC(=O)[C@H](C(C)C)NC(=O)[C@H](C)OC(=O)[C@@H](C(C)C)NC(=O)[C@@H](C(C)C)OC1=O FCFNRCROJUBPLU-DNDCDFAISA-N 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010093096 Immobilized Enzymes Proteins 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- 108010092464 Urate Oxidase Proteins 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000000984 immunochemical effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 239000012088 reference solution Substances 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- QUNWUDVFRNGTCO-UHFFFAOYSA-N 1,7-dimethylxanthine Chemical compound N1C(=O)N(C)C(=O)C2=C1N=CN2C QUNWUDVFRNGTCO-UHFFFAOYSA-N 0.000 description 2
- CQNGAZMLFIMLQN-UHFFFAOYSA-N 2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-amine Chemical compound O1CCOCCOCCOCCOC2=CC(N)=CC=C21 CQNGAZMLFIMLQN-UHFFFAOYSA-N 0.000 description 2
- PLAZTCDQAHEYBI-UHFFFAOYSA-N 2-nitrotoluene Chemical compound CC1=CC=CC=C1[N+]([O-])=O PLAZTCDQAHEYBI-UHFFFAOYSA-N 0.000 description 2
- RTGHRDFWYQHVFW-UHFFFAOYSA-N 3-oxoadipic acid Chemical compound OC(=O)CCC(=O)CC(O)=O RTGHRDFWYQHVFW-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 2
- RMIXHJPMNBXMBU-QIIXEHPYSA-N Nonactin Chemical compound C[C@H]([C@H]1CC[C@H](O1)C[C@@H](OC(=O)[C@@H](C)[C@@H]1CC[C@@H](O1)C[C@@H](C)OC(=O)[C@H](C)[C@H]1CC[C@H](O1)C[C@H](C)OC(=O)[C@H]1C)C)C(=O)O[C@H](C)C[C@H]2CC[C@@H]1O2 RMIXHJPMNBXMBU-QIIXEHPYSA-N 0.000 description 2
- RMIXHJPMNBXMBU-UHFFFAOYSA-N Nonactin Natural products CC1C(=O)OC(C)CC(O2)CCC2C(C)C(=O)OC(C)CC(O2)CCC2C(C)C(=O)OC(C)CC(O2)CCC2C(C)C(=O)OC(C)CC2CCC1O2 RMIXHJPMNBXMBU-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- FNEPSTUXZLEUCK-UHFFFAOYSA-N benzo-15-crown-5 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C21 FNEPSTUXZLEUCK-UHFFFAOYSA-N 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 2
- 150000003983 crown ethers Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- DOWFOZZKCXFCOH-UHFFFAOYSA-N ethyl 3-nitro-4-octadecoxybenzoate Chemical compound CCCCCCCCCCCCCCCCCCOC1=CC=C(C(=O)OCC)C=C1[N+]([O-])=O DOWFOZZKCXFCOH-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002828 nitro derivatives Chemical class 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 230000010627 oxidative phosphorylation Effects 0.000 description 2
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- SWZDQOUHBYYPJD-UHFFFAOYSA-N tridodecylamine Chemical compound CCCCCCCCCCCCN(CCCCCCCCCCCC)CCCCCCCCCCCC SWZDQOUHBYYPJD-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- ABBKPLOTPTWJQC-UHFFFAOYSA-N (1-methyl-2,6-dioxo-3h-purin-7-yl)methyl 2,2-dimethylpropanoate Chemical compound O=C1N(C)C(=O)NC2=C1N(COC(=O)C(C)(C)C)C=N2 ABBKPLOTPTWJQC-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- PVLNHYPAZWPHDM-UHFFFAOYSA-N (4-chlorophenyl)boron Chemical compound [B]C1=CC=C(Cl)C=C1 PVLNHYPAZWPHDM-UHFFFAOYSA-N 0.000 description 1
- WSULSMOGMLRGKU-UHFFFAOYSA-N 1-bromooctadecane Chemical compound CCCCCCCCCCCCCCCCCCBr WSULSMOGMLRGKU-UHFFFAOYSA-N 0.000 description 1
- DRKFWQDBPGTSOO-UHFFFAOYSA-N 1-methyl-2-nitro-4-propan-2-ylbenzene Chemical compound CC(C)C1=CC=C(C)C([N+]([O-])=O)=C1 DRKFWQDBPGTSOO-UHFFFAOYSA-N 0.000 description 1
- IUDGNRWYNOEIKF-UHFFFAOYSA-N 11-bromo-undecanoic acid Chemical compound OC(=O)CCCCCCCCCCBr IUDGNRWYNOEIKF-UHFFFAOYSA-N 0.000 description 1
- NHUWVMSJSKNFHL-UHFFFAOYSA-N 11-bromoundecanamide Chemical compound NC(=O)CCCCCCCCCCBr NHUWVMSJSKNFHL-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- OAJNZFCPJVBYHB-UHFFFAOYSA-N 2,5,8,11-tetraoxabicyclo[10.4.0]hexadeca-1(16),12,14-triene Chemical class O1CCOCCOCCOC2=CC=CC=C21 OAJNZFCPJVBYHB-UHFFFAOYSA-N 0.000 description 1
- ZITBHNVGLSVXEF-UHFFFAOYSA-N 2-[2-(16-methylheptadecoxy)ethoxy]ethanol Chemical compound CC(C)CCCCCCCCCCCCCCCOCCOCCO ZITBHNVGLSVXEF-UHFFFAOYSA-N 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- NXWPOAQQKBBSFS-UHFFFAOYSA-N 2-aminoacetic acid;hydrochloride Chemical compound Cl.NCC(O)=O.NCC(O)=O NXWPOAQQKBBSFS-UHFFFAOYSA-N 0.000 description 1
- LSTYSKBGKSOOFE-UHFFFAOYSA-N 3-[[amino(chloro)phosphoryl]-(2-oxo-1,3-oxazolidin-3-yl)amino]-1,3-oxazolidin-2-one Chemical compound C1COC(=O)N1N(P(Cl)(=O)N)N1CCOC1=O LSTYSKBGKSOOFE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- 238000007375 Jaffe assay Methods 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930191564 Monensin Natural products 0.000 description 1
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KMTMVXCFWHJTEX-CCAGOZQPSA-N bis[(Z)-18,18-dibromooctadec-9-enyl] hydrogen phosphate Chemical compound C(CCC/C=C\CCCCCCCC(Br)Br)CCCCOP(=O)(OCCCCCCCC/C=C\CCCCCCCC(Br)Br)O KMTMVXCFWHJTEX-CCAGOZQPSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- OQDFUBYKRDYKBL-UHFFFAOYSA-N butyl-[2-oxo-2-(1-phenoxypropan-2-ylamino)ethyl]azanium;chloride Chemical compound [Cl-].CCCC[NH2+]CC(=O)NC(C)COC1=CC=CC=C1 OQDFUBYKRDYKBL-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002026 chloroform extract Substances 0.000 description 1
- GGRHYQCXXYLUTL-UHFFFAOYSA-N chloromethyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OCCl GGRHYQCXXYLUTL-UHFFFAOYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 229960003624 creatine Drugs 0.000 description 1
- 239000006046 creatine Substances 0.000 description 1
- 108010029444 creatinine deiminase Proteins 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- HAKMAMKAFTZXOZ-UHFFFAOYSA-N dioctoxyphosphorylbenzene Chemical compound CCCCCCCCOP(=O)(OCCCCCCCC)C1=CC=CC=C1 HAKMAMKAFTZXOZ-UHFFFAOYSA-N 0.000 description 1
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- NIPNPMUJWJSXTE-UHFFFAOYSA-N ethyl 3-amino-4-octadecoxybenzoate Chemical compound CCCCCCCCCCCCCCCCCCOC1=CC=C(C(=O)OCC)C=C1N NIPNPMUJWJSXTE-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229940068517 fruit extracts Drugs 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960005358 monensin Drugs 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- UYDLBVPAAFVANX-UHFFFAOYSA-N octylphenoxy polyethoxyethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCO)C=C1 UYDLBVPAAFVANX-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000013324 preserved food Nutrition 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- BDJXVNRFAQSMAA-UHFFFAOYSA-N quinhydrone Chemical compound OC1=CC=C(O)C=C1.O=C1C=CC(=O)C=C1 BDJXVNRFAQSMAA-UHFFFAOYSA-N 0.000 description 1
- 229940052881 quinhydrone Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- RDZTWEVXRGYCFV-UHFFFAOYSA-M sodium 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonate Chemical compound [Na+].OCCN1CCN(CCS([O-])(=O)=O)CC1 RDZTWEVXRGYCFV-UHFFFAOYSA-M 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- XOIQMTLWECTKJL-FBZUZRIGSA-M sodium;(2s,3r,4s)-4-[(2s,5r,7s,8r,9s)-2-[(2r,5s)-5-ethyl-5-[(2r,3s,5r)-5-[(2s,3s,5r,6r)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]oxolan-2-yl]-7-hydroxy-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-3-methoxy-2-methylpentanoate Chemical compound [Na+].C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C([O-])=O)O2 XOIQMTLWECTKJL-FBZUZRIGSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D323/00—Heterocyclic compounds containing more than two oxygen atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/022—Boron compounds without C-boron linkages
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
Definitions
- Ion-selective electrodes respond preferentially or selectively to a particular ionic species in a liquid. They are often used in potentiometric measurement of the activity of an ion in a liquid sample. Potentiometric measurement determines the difference in electrical potential between two electrodes which, in contact with a liquid, form an electrochemical cell. The half cell potential of one electrode - the reference electrode - is essentially constant and that of the other electrode the indicator electrode - varies with the ionic activity of the liquid being analyzed. The electrical potential across the electrodes is proportional to the logarithm of the activity of ions in solution to which the ion-selective electrode responds. The Nernst equation describes the logarithmic relationship.
- the difference in electrical potential can be determined using a potentiometric measuring device, such as an electrometer.
- a potentiometric measuring device such as an electrometer.
- ion-selective electrodes include, for example, conventional glass electrodes for pH determinations which are widely used in laboratories. Glass electrodes are based on alkali ion silicate compositions. Electrodes for the determination of pH can be made of lithium silicates or borosilicate glass which is permeable to hydrogen ions (H + ) but not to anions or to other cations. If a thin layer of a glass selectively permeable to H + is positioned between two solutions of different H + concentrations, H + ions will move across the glass from the solution of high concentration to that of low H + concentration.
- ion-selective electrode uses liquid ion exchangers and is supported by inert polymers, such as cellulose acetate, or in polyvinyl chloride films.
- inert polymers such as cellulose acetate, or in polyvinyl chloride films.
- An important example of this type of electrode is a Ca 2+ -responsive electrode which is based on calcium salts of diesters of oil-soluble phosphoric acids.
- 3,438,886; and 3,445,365 describe ion-sensitive electrodes which have membranes made of a porous inert substance filled with an ion-exchange organic liquid, which are selectively responsive to divalent cations (e.g., Ca 2+ , Mg 2+ ).
- divalent cations e.g., Ca 2+ , Mg 2+ .
- Neutral carrier-based sensors for both monovalent and divalent cations are similar to ionexchanger-based electrodes. Both can involve ion-exchange sites, especially negative mobile sites resulting from mediators or negative fixed sites arising from hydrolysis of support materials.
- Neutral carriers which can be cyclic or open-chain, are generally hydrophobic complex formers with cations. Such compounds result in selective extraction, and therefore selective permeability, for K + , Na + and Ca 2+ , which would not otherwise dissolve in the membrane phase as simple inorganic salts.
- An example of such a carrier is valinomycin, which can be used in electrodes selectively responsive to K + .
- Electrodes for the determination of the H content of a liquid sample have been described by others. They commonly contain a plastic membrane which has an ion-selective component (an ionophore) and a solvent/plasticizer compound in which the ion-selective component can be dissolved.
- an ion-selective component an ionophore
- a solvent/plasticizer compound in which the ion-selective component can be dissolved.
- hydrogen ionophores such as lipophilic derivatives of uncouplers of oxidative phosphorylation and lipophilic tertiary amines have been used.
- ionophores are based on uncouplers of oxidative phosphorylation in mitochondria.
- An example is described by Finkelstein. Biochimica Biophysica Acta, 205: 1-6 (1970).
- Weak-acid uncouplers of phosphorylation such as 2,4-dinitrophenol and m-chlorophenylhydrazone mesoxalonitrile, act as H + ion carriers. They are, however, unsuitable as components of membranes incorporated into ion-selective electrodes because of their finite water solubilities (i.e., they would not remain membrane bound and would leach out of the membrane).
- Brown et al. describe a pH sensor claimed to be suitable for chronic intravascular implantation.
- the pH-sensitive element is a thin film of an elastomeric polymer which is made ion permselective through the addition of a hydrophobic, lipophilic specific H + -ion carrier.
- the carrier used is p-octadecyloxy-m-chlorophenylhydrazone mesoxalonitrile (OCPH, which is a higher molecular weight homolog of the weak-acid uncoupler m-chlorophenylhydrazone mesoxalonitrile).
- Battaglia et al. describe a dry-operative ion-selective electrode for use in determining ion content of liquids.
- the electrode is said to be comprised of a dry internal reference electrode in contact with a hydrophobic ion-selective membrane.
- the internal reference electrode is a dried metal/metal-salt reference half cell or a dried redox couple reference electrode and is wetted upon application of a liquid sample.
- the ion-selective membrane includes an ion carrier (e.g., valinomycin) which is dissolved in a carrier solvent dispersed in a hydrophobic binder.
- Paul and Babaoglu describe a device for determining ion activity of a liquid sample.
- the device is described as having an ion-selective membrane which is coated over an internal reference element (made of an electrolyte-containing layer, a metal salt and a metal layer) and a support.
- the two electrodes of the device are said to be solid and, preferably, dried.
- the electrodes which are a component of the device preferably include at least one ionselective electrode in which the internal reference electrode has several layers.
- the layers include a metal layer, a layer of an insoluble salt of the metai and an electrolyte-containing layer which is preferably dried.
- the claimed device includes solid electrodes.
- ion-selective electrodes available for the measurement of the ion content of a liquid. These ionselective electrodes, however, have limitations. These limitations include the requirement for membranes comprised of specially designed polymer matrices; utilization of ionophores which require pre-neutralization with base to improve membrane sensitivity and reduce response time; the need for storage under well-controlled conditions; and loss of sensitivity and reliability during storage.
- ion-selective electrodes now available for pH determination require relatively large samples (i.e., 1.0 ml. or more) for accurate operation and are made of glass, which is costly and cannot be incorporated into an electrode suitable for automatic processing of samples of very small size.
- the technique of differential potentiometric measurement depends on potential differences arising between two identical electrochemical half-cells immersed in solutions of different activity separated by a salt bridge.
- the two half-cells together comprise a concentration cell.
- the activity of one half-cell (a 1 ) is fixed (reference) while that of the other (a 2 ) (sample) is variable such that the emf of the concentration cell may be defined as:
- E 2 E° lna 2 3.
- E 1 emf of reference half-cell
- E 2 emf of sample half-cell
- T absolute temperature
- °K n charge on the ion
- biosensors or enzyme electrodes which include a biological catalyst (e.g., immobilized enzymes, cells, layers of tissue) coupled to an electrode sensitive to a product or co-substrate of the biologically catalyzed reaction.
- concentration of enzymes or of substrates can be determined using differential measurement techniques. For example, many enzyme reactions result in the production of an acid or a base. I ⁇ nization of the acid or base in turn results in liberation or uptake of H + and a change in the pH of the solution. The measured change in H + concentration or pH can be the basis for a stoichiometric determination of the concentration of substances (e.g., glucose, urea, etc.) which liberate or take up hydrogen ions.
- substances e.g., glucose, urea, etc.
- each half-cell would contain a pH electrode.
- the hydrogen ion activity of the a 1 half-cell would be fixed and that of a 2 (sample) would vary depending on the pH of the sample.
- the emf measured across the cell by means of an electrometer could then be used to calculate the hydrogen ion activity of a 2 .
- the enzyme would be placed in either one or both half-cells and the sample would be added to both half-cells or the sample would be added to one-half cell and a calibrator would be added to the other half-cell.
- Nilsson and co-workers describe the development of enzyme electrodes in which hydrogen ion glass electrodes are used to make enzyme-pH electrodes for the determination of glucose, urea and penicillin in solutions.
- the enzymes used for the determination are glucose oxidase, urease and pehicillinase, respectively.
- Mosca and co-workers also describe the determination of glucose by means of differential pH measurements.
- the technique is based on the measurement of the change in pH produced by the hexokinase catalyzed reaction between glucose and ATP. They describe two systems said to be useful for determining the difference in pH between two 1-ml. aqueous samples.
- the concentration of glucose is calculated from the measured change in pH by means of an equation derived by the authors.
- Luzzana describes a method and apparatus for the determination of substances, such as glucose, urea and enzymes in biological solutions (e.g., blood, serum, urine).
- the method uses differential pH measurement in which two glass pH electrodes are placed in separate solutions; the change of pH in the solutions after reagents are added is determined; and the concentration of the substance of interest is calculated from the observed pH change.
- the apparatus is comprised of a sample cuvette; a cell having two glass capillary electrodes; a means for measuring pH at the two electrodes; and an electronic means for calculating the concentration of the substance from the pH measurements.
- Immunosensors are comprised of a sample cuvette; a cell having two glass capillary electrodes; a means for measuring pH at the two electrodes; and an electronic means for calculating the concentration of the substance from the pH measurements.
- Electrochemical immunosensors may be described as either potentiometric or amperometric. Potentiometric immunosensors may be used to measure either antibodies or antigens. They may be described as either direct or indirect and can be either membranes or solid electrodes.
- An example of a direct potentiometric immunosensor for the determination of an antigen is described by Yamamoto, et al.
- An antibody, anti-hCG is immobilized on a titanium wire.
- the anti-hCG electrode and a reference electrode are placed in a buffer solution.
- the antigen, hCG is added and as the antigen binds to the immobilized antibody, the potential difference between the two electrodes changes until equilibrium is attained.
- the equilibrium potential difference is directly proportional to the concentration of the antigen. Yamamoto, et al., Clinical Chemistry, 26: 1569-1572 (1980).
- the exact nature of the potentiometric response is not fully understood, but it is generally acknowledged to involve a surface charge neutralization or redistribution.
- Keating and Rechnitz Another example of a direct potentiometric immunosensor for the determination of an antibody is described by Keating and Rechnitz. This type of immunosensor responds to specific antibodies through modulation of a background potential, fixed by a marker ion, in such a manner that the potential change is proportional to the concentration of antibody.
- An immunosensor for the determination of digoxin antibody is described wherein digoxin is coupled to the marker ion carrier molecule benzo 15-crown-5. The resulting conjugate is incorporated into a polyvinylchloride membrane. Keating, M.Y. and Rechnitz, G., Analytical Chemistry, 56: 801-806 (1984).
- Indirect potentiometric immunosensors are enzyme linked and are analogous to other enzyme immunoassay methods except that the electrochemical sensor is used to measure the product of the enzymesubstrate reaction. Both homogeneous and heterogeneous potentiometric enzyme immunoassays have been described. For example, Boitieux and coworkers describe a heterogeneous potentiometric enzymelinked immunoassay for the determination of estradiol. Boitieux et al., Clinical Chemica Acta, 113: 175-182 (1981). The antibody to estradiol is immobilized onto a porous gelatin membrane. The membrane is incubated with peroxidase-labelled estradiol and free estradiol.
- the membrane After washing, the membrane is fixed onto an iodide sensitive electrode.
- the peroxidase activity is determined in the presence of hydrogen peroxide and iodide ion.
- the iodide selective electrode potential is a function of the estradiol concentration.
- a homogenous potentiometric enzyme immunoassay for human IgG has been described by Fonong and Rechnitz. The method is based on the inhibition, by IgG, of CO 2 production by beta-ketoadipic acid catalyzed by chloroperoxidase enzyme conjugated to IgG antibody. Fonong and Rechnitz, G., Analytical Chemistry, 56: 2586-2590 (1984).
- the enzyme-IgG conjugate is incubated with a sample containing the antigen (IgG) before reaction with the enzyme substrate, the observed rate of CO 2 liberation, measured with a potentiometric CO 2 gas-sensing electrode, will be decreased.
- the decrease in activity is proportional to the concentration of IgG in the sample.
- Amperometric enzyme immunosensors are analogous to the potentiometric immunosensors except that an amperometric sensor, usually an oxygen electrode, is used to measure enzyme activity. For example, Aizawa, Morioko and Suzuki have described an amperometric immunosensor for the determination of the tumor antigen alpha-fetoprotein (AFP).
- Anti-AFP is covalently immobilized on a porous membrane.
- the membrane is incubated with catalaselabelled AFP and free AFP. After competitive binding the membrane is examined for catalase activity by amperometric measurement of oxygen after addition of hydrogen peroxide.
- Boitieux and co-workers describe an amperometric enzyme immunoassay for the determination of hepatitis B surface antigen. Boitieux et al., Clinical Chemistry, 25: 318-321 (1979).
- a limitation of enzyme-linked amperometric sensors is the necessity of synthesizing the enzyme conjugates and the high cost of currently available amperometric sensors such as oxygen electrodes.
- the present invention is a sensor for the potentiometric determination of the ion content or activity of a sample and the concentration of other components of a sample through the use of ionselective electrodes.
- Ionophores for use in ionselective membranes of such sensors are also the subject of the invention.
- the sensor is especially suited for rapid determination of the hydrogen ion content or pH of biological fluids; the concentration of other ions in biological fluids; and, through differential pH measurements or immunoassay techniques, the concentration of other components (e.g., glucose, urea, triglycerides, uric acid, enzymes such as aspartate amino transferase (AST), alanine amino transferase (ALT), amylase, creatine kinase (CK), alkaline phosphatase and drugs) of biological fluids. It is particularly useful for automated handling or processing.
- AST aspartate amino transferase
- ALT alanine amino transferase
- CK creatine kinase
- drugs alkaline phosphatase and drugs
- the sensor is comprised of ion-selective electrodes which are held in a frame and have porous material (e.g., microporous polyethylene such as that manufactured by Porex Technologies Corp.) between them.
- the porous material provides a means for ionic flow between the electrodes once a sample is applied at the electrodes.
- the ion-selective electrodes are comprised of a membrane which is selectively permeable to the ion or other substance whose concentration is to be determined and a reference electrode. The membrane does not require preconditioning before use.
- the selectively permeable membrane is comprised of an ion-selective compound (or ionophore) and a thermoplastic resin or a plastic material, which can all be dissolved in an organic solvent. In addition, it can also include a plasticizer.
- the ion-selective component for a sensor which can be used, for example, to measure hydrogen ion activity of a sample is a compound having the following general formula:
- R 1 , R 2 and R 3 are independently selected and each can be: 1) a halogen; 2) an alkyl group having from 4-18 carbon atoms; 3) a halogen-substituted alkyl group; 4) an alkoxy group; 5) a halogensubstituted alkoxy group; 6) an acid group represented by -CO 2 R 4 wherein R 4 is alkyl having 1-18 carbons; or 7) a keto group represented by -COR 5 wherein R 5 is selected from the groups defined for R 4 ; or hydrogen.
- the membrane comprises an organic plastic matrix, polyvinyl chloride (PVC), which contains the ionselective compound 2-octadecyloxy-5-carbethoxyphenylhydrazone mesoxalonitrile.
- PVC polyvinyl chloride
- the ion-selective compound, the PVC and a plasticizer, which in this embodiment is 2-nitrophenyloctylether, are all soluble in the solvent tetrahydrofuran (THF).
- THF solvent tetrahydrofuran
- the membrane comprises about 10-40% PVC by weight, and its thickness is greater than 1 mil.
- the membrane is made of about 20-35% PVC by weight and is about 3-15 mils thick.
- the membrane which is described can be used as a component of the ion-selective electrode of the present invention. It can also be incorporated into the sensor claimed in United States Serial No. 750,525, filed on June 27, 1985 and the sensor claimed in continuation-in-part application of United States Serial No. 750,525, Attorney's Docket No. IC84-2A, filed concurrently herewith. In addition, it can be incorporated into commercially available electrode bodies.
- the sensor of this invention also has an internal reference element or material which includes a known concentration of the sample component whose concentration is to be determined.
- Figure 1 is a perspective view of the top of a sensor having ion-selective electrodes and a handle which has a magnetic stripe in which data is recorded.
- Figure 2 is a perspective view of the bottom of a sensor having ion-selective electrodes and a handle which has a magnetic stripe in which data is recorded.
- Figure 3 is a perspective view showing the individual components of a sensor which can be used to determine the hydrogen ion activity (pH) of a sample or the concentration of other ions in a sample.
- Figure 4 presents schematic representations of ion selective electrode configurations.
- Figure 5 shows an ion-selective membrane of this invention inserted into a commercially available barrel-type electrode.
- Figure 6 is a perspective view showing the individual components of a sensor which can be used to determine the activity or concentration of a component of a sample by a differential measurement technique.
- the sensor which is the subject of this invention is used for the potentiometric determination of the ion content of a sample or the concentration of other components of a sample. It is particularly useful in the rapid determination of the hydrogen ion activity (or pH) of or concentration of other ions in a biological fluid (e.g., blood) and in measuring concentrations of other components (e.g., glucose, urea, triglycerides, uric acid, enzymes, such as aspartate amino transferase (AST), alanine amino transferase (ALT), amylase, creatinine kinase (CK), alkaline phosphatase and drugs) in biological fluids. Ionophores selective for sample components and incorporated into ion-selective membranes of such sensors are also the subject of this invention. The sensor can now be further described with reference to the figures.
- FIGS 1 through 3 show a sensor having ion-selective electrodes and a handle having a magnetic stripe in which data are recorded.
- the sensor represented in these figures can be used to determine the hydrogen ion content or pH of a sample or the concentration of other ions in a sample.
- These figures will now be referred to in describing a sensor to be used for the determination of hydrogen ion content of a sample. It is to be understood, however, that the sensor can be used for determination of other ions or other components as well.
- the sensor 30 is comprised of ion-selective electrodes which are held in a frame or body 10 which has upper section 12 and lower section 14.
- the sensor 30 has a handle 5 bearing a magnetic stripe 8 on its lower surface.
- Upper section 12 of frame 10 has four openings 4 and three grooves 6, which are positioned between the openings.
- Lower section 14 of frame 10 has four openings 7 and three grooves (not shown) positioned between the openings.
- Upper section 12 and lower section 14 are in such a relationship that openings 4 and openings 7 are aligned and grooves 6 in the upper section and the grooves in the lower section are aligned.
- openings 4 and 7 form four openings 11 and grooves 6 of the upper section and the grooves in the lower section define spaces between three of the openings 11.
- Upper section 12 has small holes 15 located between openings 4.
- Holes 15 allow the passage of air.
- the ion-selective electrodes are located within the openings 11 and are connected by a porous material 17 which is cylindrical or rod shaped and provides a means for ionic flow between the electrodes upon the application of a sample at the electrodes.
- the cylindrical or rod-shaped porous material 17 is located in the spaces between openings 11.
- Upper section 12 and lower section 14 are sealed, for example by being ultrasonically welded under pressure, such that there is no leakage of sample or solutions onto porous material 17 or between or into the two sections of frame or body 10.
- sensor 30 has four positions at which ion-selective electrodes can be located. Although there will generally be an ion-selective electrode at each of these positions, these can be used in various combinations depending on the analytical information desired. Two, three or all four electrodes can be used. Accordingly, the position of grooves 6 in upper section 12 and the grooves in lower section 14 will vary as needed for the analysis being carried out. For example, grooves 6 in the upper section 12 can be positioned as shown in Figure 3; the grooves in lower section 14 will be positioned so that spaces will be defined between the three electrodes, as described above, when upper section 12 and lower section 14 are joined.
- two grooves 6 can be positioned in parallel to one another in upper section 12 and the grooves in lower section 14 positioned correspondingly.
- Porous rods 17 can be hydrophilic and conductive or hydrophobic and nonconductive. The use of conductive or nonconductive material between a pair of electrodes is determined by the analyses to be carried out. The various combinations of membranes are best described by example.
- Positions a and b have known concentrations of the ion to be determined and position c has the sample, which has an unknown concentration of the ion of interest.
- the emf developed between the solutions in a and b can be used to calibrate the sensor; the slope value is then used to determine the concentration of the sample from the emf developed between the solutions in b and c.
- concentrations of ions in a and b are known, it is possible, using predetermined slope values, to calculate what the potential difference between a and b should be and to compare this value with the measured potential difference or to calculate a concentration for a and determine how this varies from the known value.
- the solution in a would then be used as a control.
- the a, b, c configuration can also be used in such a manner that replicate samples can be analyzed. This is represented in Figure 4b. In this case the same sample is placed in positions a and c and reference solution in b. Using a predetermined slope value, it is possible to determine simultaneously two values for the same sample.
- a and d can be membranes selective for one analyte and b and c can be membranes selective for another analyte.
- Useful combinations might be sodium/potassium, pH/calcium, glucose/urea and urea/creatinine.
- predetermined calibration data are required.
- An enzyme/substrate sensor can be constructed as represented in Figure 4d.
- a,b,c and d can all be the same membrane; for example, they can all be for determination of pH.
- a and d would contain, in addition to the pH membrane, an immobilized enzyme.
- an unknown analyte sample concentration is added to both c and d; a known concentration of the same analyte is added to a and b.
- the enzymes in a and d act on the substrate and produce a pH change proportional to the concentration of the analyte in the sample. If it is assumed that all the membranes are identical, the emf developed between a and b (the reference solution) can be used to calibrate the electrodes. The calibration data obtained for a and b may then be used to calculate the sample concentration in c and d.
- An enzyme/substrate sensor can be constructed as represented in Figure 4k.
- a, b and ⁇ can all be the same membrane; for example, they can all be for determination of pH.
- a, b and c would contain, in addition to the pH membrane, an immobilized substrate.
- the substrate concentrations in a and b are different; the concentration of substrate in c can be the same as in a or b or can be different.
- An unknown analyte enzyme sample concentration of an enzyme to be measured is added to both c and d; a known concentration of the enzyme to be measured is added to a and b.
- the enzymes in a, b and c act on the substrate in a, b and c and produce a pH change proportional to the concentration of the enzyme in the sample. If it is assumed that all the membranes are identical, the emf developed between a and b (the reference solution) can be used to calibrate the electrodes. The calibration data obtained for a and b may then be used to calculate the enzyme sample concentration in c.
- Examples of substrates which can be immobilized in an enzyme/substrate sensor such as that represented in Figure 4k are amino acids, such as L-alanine and L-aspartate, creatine and starch. These can be used, respectively, for the determination in a sample of alanine aminotransferase, aspartate aminotransferase, creatine kinase and amylase. As described in Example 8, an enzyme/ substrate such as that represented in Figure 4k can also be used to determine the creatinine concentration of a sample. If one were using a kinetic rate method, this methodology, in effect, allows one to "calibrate out" any temperature effects on the enzymatic reaction rates. In the case of an endpoint or equilibrium measurement, effects of temperature in the Nernst equation could be normalized.
- amino acids such as L-alanine and L-aspartate, creatine and starch. These can be used, respectively, for the determination in a sample of alanine aminotransferase, aspartate aminotrans
- the porous rods 17 between the electrodes can be conductive or nonconductive; the use of conductive or nonconductive material between a pair of electrodes is determined by the analysis to be carried out.
- the porous material can be of a microporous plastic such as nylon, polypropylene, polyethylene, polyvinylidene fluoride, ethylene-vinyl acetate, styrene-acrylonitrile or polytetrafluoroethylene.
- the porous material can also be cellulosic in nature such as rolled filter paper or longitudinal fiber bundles.
- the porous material consists of crylindrically-shaped pieces of ultrahigh molecular weight microporous polyethylene (POREX Technologies, Fairburn, GA). This material is by nature hydrophobic such that it will not wet with water.
- the porous material can be rendered hydrophilic by soaking it in a solution (about 0.1% to 0.6% by volume) of a surfactant.
- nonionic surfactants such as the octylphenoxypolyethoxyethanol family of surfactants which includes Triton X-100 (Rohm & Haas Co.), polyoxyethylene ethers such as Brij 35, polyoxyethylene sorbitan derivatives such as Tween 20, fluoraliphatic polymeric esters such as 3M's Fluorad FC-171 and surfactants such as Sherex Chemical Co.'s Arosurf 66 PE-12.
- Anionic and ⁇ ationic surfactants can also be used.
- the porous material without wetting agent or surfactant is nonconductive. The absence of porous material between two electrodes results, of course, in nonconductivity.
- the ion-selective electrodes are comprised of an ion-selective membrane 18 and a reference electrode 22 which is a silver/silver chloride material.
- the ion-selective membrane 18 is made of an ionselective compound (an ionophore), a thermoplastic resin and a plasticizer, all of which are soluble in an organic solvent. It is held in place in the ion-selective electrode by a retainer means, such as retainer ring 24. There is, thus, a mechanical seal between the retainer means and the lower section of the sensor body such that there can be no leakage from the membrane.
- the ion-selective membranes incorporated in it do not require preconditioning (e . g . , soaking in a solution of the ion to be measured) before the sensor can be used.
- preconditioning e . g . , soaking in a solution of the ion to be measured
- the ion-selective compound which is incorporated into the membrane has the general formula:
- R 1 , R 2 and R 3 represent components of the compound which can be the same or different.
- R 1 , R 2 and R 3 can be: 1) a halogen; 2) an alkyl group having 4-18 carbon atoms; 3) a halogen-substituted alkyl group; 4) an alkoxy group; 5) a halogensubstituted alkoxy group; 6) an acid group represented by -CO 2 R 4 wherein R 4 is an alkyl having 1-18 carbon atoms; or 7) a keto group represented by -COR 5 wherein R 5 is selected from the groups defined for R 5 ; or g) hydrogen.
- Derivatives of this general formula which are particularly preferred as components of the hydrogen-ion-sensing membrane include: a. 2-trifluoromethyl-4-octadecyloxyphenylhydrazone mesoxalonitrile
- Membranes in which the ion-selective compound is carbethoxyphenylhydrazone mesoxalonitrile are particularly useful in that they exhibit response times of one minute or less; yield stable potentials and exhibit slopes on the order of 57-59 mv per decade change in hydrogen ion concentration and do not require any preconditioning. It is not clear why such membranes have excellent performance characteristics. However, it might be attributable to the presence of an electron-withdrawing ester group meta to the anilino group and its proton, which is apparently more acidic and, therefore, more easily exchanged.
- the ion-selective membrane 18 of this invention also comprises a plastic or a thermoplastic resin and, optionally, a plasticizer.
- the plastic used can be any plastic which can be used to form a film by solvent casting.
- the plastic can be polyvinyl chloride, polyvinyl acetate, silicone rubber or cellulose acetate.
- This membrane component serves the purpose of providing support and form to the membrane, and acts as a matrix into which the ion-selective compound is incorporated. In addition, it serves as a barrier to water because it is a hydrophobic material.
- the thermoplastic resin used in the membrane is polyvinyl chloride. Others which can be used include: cellulose acetate, polyvinyl acetate and silicone rubber.
- the plasticizer which is an optional component of the membrane, can be any nonvolatile material suitable for the general purpose of facilitating the compounding or production of the membrane formulation and improving the membrane's flexibility. It also contributes to the dissolution of the ionophore. It can be, for example, one or more of the following, used alone or in combination: phthalates; adipates; sebacates; aliphatic and aromatic ethers; aliphatic and aromatic phosphates; aliphatic and aromatic esters; and nitrated aliphatic and aromatic ethers. In one embodiment of this invention, the plasticizer is 2-nitrophenyloctylether.
- the components of the ion-selective membrane 18 can be present in varying amounts.
- the plastic used can comprise about 10-30% by weight of the membrane and in one embodiment is about 28% by weight.
- the ion-selective compound can be from about 1% to about 10% by weight of the membrane and in general will be about 3% to about 6% by weight.
- the plasticizer can be from about 50% to about 80% by weight of the membrane and generally comprises about 70% by weight.
- the ion-specific membrane 18 incorporated into the ion-selective electrodes of this invention will generally be of a thickness greater than 1 mil and preferably will be from about 3 to about 15 mils in thickness.
- the ion-specific membrane of this invention can be made by at least two different methods: solvent casting and dip coating. Solvent casting is illustrated in Example 2 and in general includes the following steps:
- FIG. 5 shows the Orionelectrode body 61 with the ion-selective membrane 62 of this invention, held in the electrode by means of an O-ring 63.
- a second O-ring prevents sample leakage around the membrane.
- the ion-selective membrane can also be formed by means of a dip coating or a continuous coating process method.
- a base material such as a nylon mesh or a polyester mesh (e.g., Pecap 355, Tetko, Inc., Elmsford, NY)) is placed in a solvent bath (e.g., ketone, such as 4 methyl-2 pentanone) and the air trapped within the mesh removed.
- ketone such as 4 methyl-2 pentanone
- This can be done, for example, ultrasonically using a Branson ultrasonic cleaner; treatment takes about 10-15 seconds.
- the mesh is placed in the membrane formulation; after it is removed, it is scraped to remove excess formulation.
- the mesh containing the formulation is then dried; this can be done, for example, at room temperature or in warm air (e.g., 35-50 °C).
- the internal reference material consists of a solution of the salt of the ion to be determined.
- the counter ion consists of chloride if the reference electrode is silver/silver chloride.
- a gelling agent such as agar or agarose can be used to fix the reference material in place.
- the reference material is a buffer solution.
- the pH reference material consists of 50 ml glycerol, 50 ml of an aqueous solution consisting of pH 7.4 phosphate-buffered saline (SIGMA Chemical Co., St. Louis, MO) and 2.0g of agar. The mixture is heated to dissolve the agar and then placed in the well behind the membrane.
- the mixture gels.
- the aqueous solution can be 50 ml of 0.2 M KCl; for the sodium and chloride sensors, the aqueous solution can be 0.2 M NaCl.
- the membrane would include an ionophore specific for potassium, such as valinomycin, a crown ether derivative of benzo-15-crown-5 or some other neutral carrier.
- the internal reference material would consist of a potassium chloride solution with or without a gelling agent.
- the membrane would include an ionophore for sodium, such as monensin, a crown ether derivative of benzo-12-crown-4 or some other sodium neutral carrier (e.g., as described by Simon et al., Analytical Chem., 51: 351-353 (1979)).
- the internal reference material would include sodium chloride.
- the membrane would include an ionophore for chloride such as the quaternary ammonium salt Aliquat 336.
- the internal reference material would include chloride ion.
- sensor 30 has a handle 5 which has a magnetic stripe 8.
- This stripe is very similar to the stripes commonly found on credit cards and bears data recorded onto the stripe at the time of manufacture.
- the data includes, for example, information on test type, expiration date of the test card and "housekeeping" data.
- An independent function of the magnetic stripe is to prevent reuse of the disposable test cards which are designed for single use only. This is accomplished by destroying the coded information as the test card is removed from the instrument. The error checking functions will reject the card if an attempt is made to reuse it.
- Figure 6 shows a sensor of the present invention which can be used to determine the activity or concentration of components of samples by means of a differential measurement technique.
- Components of biological fluids e.g., blood, serum, plasma, urine, saliva, cerebrospinal fluid
- components of biological fluids include, for example, glucose, urea, triglycerides, creatinine, lipase, uric acid and other enzymes (e.g., alanine aminotransferase (SGPT or ALT); alkaline phosphatase (ALP); creatinine kinase; aspartate aminotransferase (SGOT or AST)).
- the sensor 70 is comprised of ion-selective electrodes, which are held in a frame or body 40 which has an upper section 42 and a lower section 44.
- Upper section 42 of frame 40 has four openings 34 and three grooves 36, which are positioned between the openings.
- Lower section 44 of frame 40 has four openings 35 and three grooves positioned between the openings.
- Upper section 42 and lower section 44 are in such a relationship that openings 34 and openings 35 are aligned and grooves 36 of the upper section 42 and the grooves in the lower section 44 are aligned.
- openings 34 and openings 35 form openings 39 and grooves 36 of the upper section 42 and the grooves in the lower section 44 define spaces between three of the openings 39.
- Upper section 42 has small holes 43 located between openings 34. Holes 43 allow air to enter space 41.
- the ion-selective electrodes are located within the openings 39 and are connected by a porous material 46 which is cylindrical or rod shaped. Porous material 46 provides a means for ionic flow between the electrodes upon the application of a sample at the electrodes.
- the cylindrical or rod-shaped porous material 46 is located in the spaces 41 between openings 39.
- the porous material between the electrodes can be hydrophilic or hydrophobic; the type of analysis determines this characteristic. For example, if an enzyme substrate is to be measured using the sensor represented in Figure 6 and a reference sample is to be used, then the configuration could be as shown in Figure 4d.
- the ion-selective electrodes are comprised of a layer 48 having enzyme or substrate immobilized on it; an ion-selective membrane 50; a membrane 52 placed between the two; an internal reference material 54 and a reference electrode 56. There can be an additional membrane 58 in proximity with layer 48.
- the ion-selective membrane can be selective for H + or ammonium ions (NH 4 + ), as in the case of a urea electrode.
- the H + selective membrane is made as described above for the pH sensor.
- the ionophore is an ammonium-selective material such as nonactin.
- the ion-selective membrane is held in place in the ion-selective electrode by a retainer means, such as retainer ring 60.
- Layer 48 has at least one enzyme or substrate immobilized on it.
- Layer 48 can be, for example, a nitrocellulose membrane (e.g., type AE100, Schleicher and Schuell, Inc. Keene, NH) having a thickness of about 180 microns. It can also be made of nylon, cellulose, cellulose acetate, glass fiber or any porous material which can serve as a solid support for the immobilization of the enzyme or substrate.
- the enzyme or substrate can be immobilized by physical restraint (e.g., adsorption onto the solid phase) or by chemical restraint (e.g., covalent attachment or crosslinking).
- Layer 48 is separated from the ion-selective membrane 50 by means of a membrane 52, which is generally thin (e.g., less than 20 microns thick) and can be, for example, a dialysis membrane (e.g., Spectra Por 2, Spectrum Medical Industries, Inc., Los Angeles).
- Membrane 52 serves the purposes of, for example, preserving the activity of the immobilized enzyme of layer 48 by preventing the migration of components of the ion-selective membrane 50 into layer 48; migration might cause denaturation or inactivation of the enzyme.
- Membrane 58 is optional and its presence will be determined by what component of a sample is being measured and/or how that component is being measured.
- the function of membrane 58 is to aid in the physical restraint (immobilization) of the enzyme or substrate of layer 48 and/or to serve as a diffusional barrier to the substrate.
- membrane 58 will serve both purposes. If, however, an end point measurement is desired a diffusional barrier would not be required and membrane 58 is not needed.
- Membrane 58 can be made of regenerated cellulose (dialysis membrane) or other ultrafiltration or reverse osmosis membranous material which can serve as a diffusional barrier to the substrate.
- the internal reference material 54 is comprised of a buffer solution. In one embodiment, it is comprised of a filling solution of pH 7.4 phosphate buffered saline. In a preferred embodiment, it is a gel comprised of about 50 ml. pH 7.4 phosphate buffered saline, about 50 ml. glycerol and about 2.0 g agarose.
- Reference electrode 56 is an electrode with a fixed potential which exhibits no variation in liquid junction potential when the sample solution is varied or replaced by a calibrating solution. The main requirements for satisfactory reference electrode performance are reversibility (in the electrochemical sense), reproducibility and stability.
- reference electrode systems Three types of reference electrode systems are in current use: metal amalgams, such as the saturated calomel electrode (SEC); redox couples, such as a quinhydrone or ferri-ferrocyanide electrode; and metal/metal halide electrodes, such as the silver-silver chloride reference electrode.
- the reference electrode will generally be a silver/silver chloride button.
- the subject of this invention is illustrated by the following examples, which are not to be considered limiting in any way.
- Example 1 Preparation of the Hydrogen Ion Specific Compound 2-octadecyloxy-5-carbethoxyphenylhydrazone mesoxalonitrile
- the hydrogen ion specific compound 2-octadecyloxy-5-carbethoxyphenylhydrazone mesoxalonitrile is prepared in the following manner.
- ethyl-4octadecyloxy-3-nitrobenzoate is prepared according to the general procedure described in Organic Synthesis, Coll. vol. 3, pp 140-141.
- the following mixture is refluxed for 72 hours in a 1-liter-3-neck flask fitted with a mechanical stirrer:
- the nitrocompound is reduced to the amino derivative by catalytic hydrogenation.
- To 200 ml of hexane is added 10g of the above nitro compound along with 0.5g 10% palladium on carbon.
- the mixture is placed on a Parr hydrogenator, heated to 40°C under 60 psig of hydrogen and shaken in the machine for 18 hours.
- the reaction mixture is filtered through Celite filter aid medium (usually diatomaceous earth (Manville)) while hot (e.g., about 50°C), and the solution is treated with HCl gas to precipitate the hydrochloride salt of the amine in nearly quantitative yield (m.p. 141-145°).
- the hydrochloride salt of ethyl-4-octadecyloxy3-aminobenzoate is converted to the mesoxalonitrile derivative according to a modification of the procedure of Brown et al. (U.S. Patent No. 3,743,588).
- 8.5g (0.018 moles) of the above hydrochloride salt is dissolved in 1 liter of dimethyl formamide (DMF) with warming and brought to a temperature of about 0°.
- 3 ml of concentrated HCl is added to the cold solution, followed by 1.3g of sodium nitrite dissolved in 500 ml of DMF.
- the reaction mixture is stirred magnetically for 1 hour.
- Example 2 Solvent Casting of a PVC Membrane and Incorporation Into an Ion-Selective Electrode 1.5 ml of 2-nitrophenyloctylether (Fluka Chemical Corp., Hauppauge, NY, cat #73732) and 0.10g of the hydrogen ionophore (such as that prepared according to the method illustrated in Example 1) are dissolved in 10 ml of tetrahydrofuran. To this solution is added 0.6g of powdered polyvinyl chloride of very high molecular weight and of density of 1.385 g/cc (Aldrich Chemical Co., Milwaukee, WI , cat #18,261-3).
- the mixture is shaken (e.g., by vortexing) until the PVC is dissolved.
- the PVC solution is poured onto a 1/4" thick sheet of stress-relieved polypropylene and allowed to remain under conditions which result in the evaporation of the tetrahydrofuran. For example, evaporation can occur at room temperature under a fume hood so that the tetrahydrofuran is removed as it evaporates.
- the product formed is a plastic membrane in which the ionspecific compound is incorporated. Disks are cut from the membrane using a #7 cork borer (id 0.5in) and mounted in an Orion electrode body (Orion Research Inc., Cambridge, MA, cat #950015).
- the internal reference electrode is a silver/silver chloride reference electrode and the internal filling solution is pH 7.4 phosphate buffered saline (SIGMA Chemical Co., St. Louis, MO, cat #1000-3).
- a sensor as shown in Figure 6 is used for the determination of urea.
- a urea-selective sensor is made by incorporating a second membrane containing the enzyme urease in the ion-selective electrodes of the sensor, which can be either a pH or an ammonium ion- (NH + 4 ) membrane.
- Urease containing membranes are present in electrodes a, b and c shown in Figure 4f. The two membranes are separated by a third membrane (e.g., membrane 52 of Figure 6).
- Samples to be tested e.g., blood, plasma
- calibrant samples are added at the electrodes as shown in Figure 4e.
- a and B are wicks made of porous material and have been made conductive by the addition of a wetting agent, a, b, and c are ammonium ionselective electrodes. Two different calibrant samples are added at a and b, which have urease.
- Patient sample is added at c, which also has urease. Reactions catalyzed by urease occur at a, b and c. This allows the comparison of the patient sample with two calibrant samples, thus allowing for the calibration of the test card. The following reactions occur where urease is present:
- an ammonium selective membrane can be used to detect the change in ammonium ion (NH 4 + ) concentration or a pH selective membrane can be used to detect the increase in pH which occurs because of the production of OH-.
- a urease containing membrane is prepared as follows: A 5 mg/ml urease. (300 units/mg New England Enzyme Center, Boston, MA) solution is prepared in pH 7.4 phosphate buffered saline (Sigma Chemical Co., Cat. # 1000-3): other buffers found to be useful are 10 mmol/L sodium Hepes in 0.1 M NaCl (pH 7.4) and 10 mmol/L NaH 2 PO 4 10 mmol/L tris base in 0.1 M NaCl (Ph 7.4).
- a 47 mm diameter disk of 12 micron pore size nitrocellulose membrane (Schleicher & S ⁇ huell, Inc., Keene, NH, 03421 Grade AE 100) is soaked in 700 ul of the enzyme solution for 5 minutes at room temperature.
- the membrane is removed from the solution and the excess fluid scrapped off with a stirring rod.
- the membrane is placed on a hydrophobic surface (e.g., a sheet of polypropylene) and air dried at room temperature for 30 minutes.
- the membrane is stored in a closed container at 4°C. Disks are cut from the membrane and placed in the electrodes at a, b and c; see Figure 4f.
- Sample solution 25 micro liters
- calibrating solutions can be placed in a and b.
- the urease in a, b and c acts on the urea in the calibrants and sample liberating both ammonia and CO 2 .
- the increase in pH or ammonia is measured.
- a pH 7.5 buffer was prepared containing 40 mmol/L NaH 2 PO 4 , 40 mmol/L tris base and 100 mmol/L NaCl.
- Buffer solutions containing 5 mmol/L urea and 10 mmol/L urea were prepared. After approximately one minute a 25 mv difference was observed when the 5 mmol/L urea solution was placed in a and c and buffer containing no urea was placed in b.
- a 50 mv difference was observed with the 10 mmol/L solution of urea. No difference in emf was observed in the absence of urea. Similar behavior was observed when the pH membrane was replaced with an ammonium selective nonactin membrane.
- cells a, b and c each contain a membrane with immobilized glucose oxidase and catalase.
- the purpose of the catalase is to recycle the oxygen consumed in the oxidation of glucose, thereby extending the linear range within which glucose may be measured.
- the glucose oxidase/ ⁇ atalase membrane was prepared as follows: The previously described nitro cellulose membrane was soaked in 700 micro liters of a solution consisting of 5 mg/ml glucose oxidase (300 units/mg, Boehringer Mannhein) and 1 mg/ml. catalase (40,000 units/mg Sigma Cat.
- hexokinase/ATP as the enzyme system. Referring to Figure 4e, cells a, b and c each contain a membrane with immobilized hexokinase, ATP and a magnesium salt such as the chloride, acetate or sulfate.
- the hexokinase/ATP membrane was prepared as follows: The previously described nitrocelluloase membrane was soaked in 1.0ml of a solution consisting of 10g/L magnesium acetate, 50mg/ml ATP and 10 mg/ml hexokinase in a buffer consisting of 10% glycerol, 0.25% Triton X-100 and 0.005M triethanolamine pH 7.8. The concentration of glucose in the sample was found to be proportional to the potential difference developed between b and c.
- Example 5 Preparation of an Enzyme Electrode for the Measurement of Triglycerides Referring to Figure 4j, membranes containing enzyme, in this case lipase, are placed in cells a, b and c . The following reaction occurs where lipase is present:
- Triglycerides + H 2 O glycerol + fatty acids H +
- the membranes were prepared by soaking a nitrocellulose membrane in a 5 mg/ml. buffered solution of lipase (Sigma Chemical Co., Cat. # L4384). The decrease in pH which occurs upon addition of a sample containing triglycerides is detected with the pH electrode.
- an electrode specific for uric acid is prepared by soaking a nitrocellulose membrane in a solution of uricase (50 units/ml Sigma Chemical Co., Cat. # U1878) plus catalase (1 mg/ml 40,000 units/mg Sigma Chemical Co., Cat. # C-100).
- the enzyme membrane is placed in cells a, b and c.
- Example 7 Preparation of an Immunosensor for the Measurement of Theophylline
- the measurement of theophylline is based on differences in immunochemical reactivity between theophylline and caffeine.
- Caffeine differs from theophylline by a methyl group. Theophylline and caffeine have been coupled to a crown ether moiety and each conjugate has been incorporated into a PVC membrane.
- the theophylline membrane forms one half-cell while the caffeine membrane forms the other half-cell.
- the caffeine membrane serves as a reference electrode and separately, each membrane exhibits a response to potassium ion.
- each membrane is incorporated into a concentration cell and the same solution containing potassium ion is placed in each half-cell, the emf developed between the two halfcells is very close to zero millivolts.
- theophylline and caffeine conjugates exhibit identical behavior in the electrochemical sense, they differ greatly in their immunochemical reactivity towards theophylline antibody. This difference in immunochemical reactivity and identical ionophoric electrochemical reactivity, form the basis for a competitive binding differential potentiometric assay for theophylline.
- the arrangement of the sensor can be as represented in Figure 41.
- the sensor consists of theophylline crown ether conjugate membranes in cells a and d and caffeine crown ether conjugate membranes in cells b and c, separated by porous junctions A and C.
- the sample containing theophylline is added to c and d while a calibrant is added to a and b.
- the competitive binding aspects require the presence of theophylline antibody with a low cross reactivity towards caffeine.
- the antibody may be added to the sample and calibrant before analysis in the sensor or the antibody may be contained within the sensor cells such that competitive binding occurs within the sensor.
- the competition for antibody site is set up between theophylline immobilized in the membrane and theophylline in the sample:
- the low common mode potential allows for greater senstivity in the measurement of the signal voltage and therefore a more accurate and precise signal measurement is possible when the background or common mode voltage is less than the signal voltage.
- the potential difference between the theophylline and caffeine half-cells is nearly zero when treated with the same potassium ion-containing sample.
- a reference electrode such as an SCE or a silver-silver chloride reference electrode
- the potential difference with the same potassium ion solution increases to as much as 50 mv or more.
- the first step in the synthesis involves blocking the 7 position in 1-methyl xanthine.
- the procedure of Hu, Singh and Ullman, J. Am. Chem. Soc, 45: 1711-1713 (1980) was followed.
- To 700 ml of dry DMF in a 1-liter conical flask was added 3.2g (18.9 mmoles) of 98% 1-methylxanthine (Aldrich Chemical Co., cat. # 28,098-4), the mixture was stirred magnetically and warmed until dissolution occurred and then cooled to room temperature.
- the mono-protected 1-methyl-7-[(pivaloyloxy)methyl] xanthine was separated from the bis protected xanthine by crystallization from ethyl acetate. By this method! there was obtained 1.5g of the monoprotected xanthine (m.p. 204-206°).
- the ethylacetate filtrate from the isolation of the monoprotected xanthine, containing the bis-protected xanthine, was evaporated to dryness and refluxed with 20 ml of 2N sodium hydroxide for 18 hours. The reaction mixture was cooled and acidified with concentrated HCl and extracted with chloroform. Evaporation of the aqueous layer yielded 0.5g of 1-methylxanthine.
- the second step in the synthesis is the preparation of 4'-amino-benzo-15-crown-5 hydrochloride.
- a stirred solution of 30g (6.11 mmoles) of benzo-15-crown-5 (Parish Chemical Co., Orem, UT, cat. #I405) in 800 ml of 1:1 glacial acetic acid/ chloroform was added dropwise, over a period of 1 hour, a solution of 15 ml concentrated nitric acid dissolved in 50 ml of glacial acetic acid.
- the reaction mixture was stirred for one hour and then evaporated to dryness on a rotary evaporator.
- the reaction mixture was filtered and the filtrate evaporated to dryness and the residue dissloved in 200 ml of ethyl acetate.
- the solution was then treated with HCl gas to precipitate the hydrochloride salt of 4'-amino-benzo-15-crown-5. Yield 9.0g (58%).
- the third step in the synthesis is the preparation of 4'-benzo-15-crown-5- (11-bromoundecanoamide).
- 11-bromoundecanoic acid Aldrich Chemical Co., cat. #B8,280.4
- the crown ether was coupled to the protected 1-methylxanthine.
- DMF dimethylxanthine
- 1.0g (3.57 mmole) of 1-methyl-7-[(pivaloyloxy)methyl] xanthine was added to 50 ml of DMF in a 125 ml conical flask.
- the mixture was warmed (e.g., to about 80°C with stirring) until dissolution.
- the solution was cooled to room temperature and 0.76g (7.1 mmole) of anhydrous sodium carbonate was added followed by the addition of 1.90g (3.57 mmole) of the crown ether amide.
- the reaction mixture was stirred under nitrogen for 3 days.
- the DMF was removed by rotary evaporation and 100 ml of water was added and the mixture extracted 3 times with 50 ml of chloroform.
- the combined chloroform extracts were washed 1 time with 100 ml of saturated aqueous sodium chloride and dried over anhydrous sodium sulfate. Evaporation of the chloroform yielded a pale brown oil.
- the fifth step is the removal of the protecting group with aqueous base.
- To the above oil in a 250 ml round bottom flask was added 75 ml of 0.2M NaOH and 25 ml of methyl alcohol. The mixture was refluxed for 1 hour and cooled to room temperature. The solution was acidified with concentrated HCl with cooling in an ice/acetone bath.
- the precipitated product was recrystallized from ethyl alcoholwater to yield 1.2g (55%) of an off-white crystalline solid, m.p. 166-170°.
- the material was homogenous by hplc analysis
- the benz wn-4 derivative was prepared by a simila Preparation of A Dryg Specific Elec zr The Measurement of Theophylline Theophylline Membrane
- the components for the theo hy membrane consisted of: 0.005 g theophylline n etherconjugat e, 0. 02g potassium tetra( rophenyl) borate, 0.5 ml bis (2-ethylhexyl) s cate, 0.3 g high molecular weight PVC and 5 ml THF.
- the membrane can be formed by either solvent casting or dip coating as previously described.
- Caffeine Membrane The components for the caffeine membrane consisted of: 0.005 g caffeine-crown ether conjugate, 0.02 g potassium tetra(p-chlorophenyl) borate, 0.5 ml bis-(2-ethylhexyl) sebacate, 0.3 g high molecular weight PVC and 5 ml THF.
- the membrane can be formed by either solvent casting or dip coating as previously described.
- the potential difference returned to the base-line value within 30 to 60 s.
- the transient response to potassium is probably due to a local concentration of potassium ion near the membrane surface which disappears as the solution is mixed.
- 100 ul of a standard protein solution (Sigma Chemical Co., St. Louis, MO, Cat. # 540-10) consisting of 3.5 g/dl albumin and 3.0 g/dl globulin was added to the solution.
- the standard protein solution had no effect on the electrode potential.
- a sensor of this type can. be used in a competitive binding assay.
- the antibody which remains unbound in the sample is measured and provides an indirect measure of antigen present in the sample.
- the more antibody bound by the antigen in the sample the lower the resulting electrical signal because less antibody will be available for binding to the antigen immobilized in the sensor membrane; that is, antigen concentration will be inversely related to the magnitude of the signal.
- Example 8 Preparation of an Ion Selective Electrode for the Measurement of Creatinine Creatinine is an important indicator of renal function and its measurement in serum is a routinely performed blood test. Presently, in the clinical laboratory there are two ways of determining creatinine.
- the more widely used method is the Jaffe reaction, which is based on the production of a red colored complex between creatinine and picrate in alkaline solution. This method gives erroneous results in the presence of certain metabolites and drugs.
- the second method utilizes an enzyme. Although enzymic methods are highly specific, the expense and the time required to carry out a test restrict their routine use in clinical laboratories.
- the creatinium ion exchanger was prepared by mixing equimolar aqueous solutions of creatinine and sodium tetraphenylboron followed by the addition of a hydrochloric acid solution which results in precipitation of the complex salt creatininium tetraphenylboron.
- the salt was extracted into 2-nitrotoluene and this solution of the complex salt used as a liquid ion exchanger in an Orion 92 (Orion Research, Cambridge, MA) electrode equipped with Teflon membranes.
- the ion exchange material is in liquid form contained in a reservoir and continuously leaches through the membrane into the sample solution and therefore must be periodically replenished.
- the electrode was conditioned by soaking in 0.01 mol/L creatininium chloride for 24 hours before use.
- the response of the creatininium electrode at pH 3 was linear in the 10 -3 to 10 -1 mol/L range with a slope of 57 mv at 20°C. The slope decreased to 37 mv in the 10 -4 to 10 -3 mol/1 range.
- the present invention makes use of a plastic membrane in which the ion exchange material is immobilized.
- creatininium tetraphenyl boron was incorporated into a PVC membrane using 2-nitrotoluene as a plasticizer a slope of 44 mv was obtained between 10 -3 and 10 -1 mol/L creatininium chloride and decreased to 14 mv in the 10 -4 to 10 -3 mol/L range.
- the clinically important range for creatinine is 10 -4 to 10 -3 mol/L.
- the use of other nitrated plasticizers such as 2-nitro-p-cymene and
- 2-nitrophenyloctyl ether did not improve the sensitivity in the 10 -4 to 10 -3 mol/L range.
- a significantly improved response in the 10 -4 to 10 -3 mol/L range was obtained when a substituted tetraphenylboron salt was used having the general formula:
- a membrane was prepared consisting, of 0.02 g of creatininium tetra- (p-chlorphenyl) boron, 1.5 ml of 2-nitrophenyloctyl ether, 0.3 g of very high molecular weight PVC, and 5 ml of THF.
- the membrane was prepared either by solvent casting or by dip coating as previously described.
- the membrane yielded a slope of 55 mv between 10 -3 ml/L and 10 -1 mol/L creatininium chloride and 40 mv in the 10 -4 to 10 -3 mol/L range and did not require any preconditioning.
- the substituted tetraphenyl boron salts exhibited much higher sensitivity in the clinical range of concentration than the unsubstituted tetraphenyl boron salt.
- the performance of the various substituted tetraphenyl boron salts is summarized in Table 2.
- the unexpected increase in sensitivity of the substituted tetraphenyl boron salts over the unsubstituted tetraphenyl boron may be attributed to an increase in lipophili ⁇ ity and differences in the nature of the ionic exchange properties of the complexes formed with the substituted tetraphenyl boron salts.
- the pH of the solutions containing creatinine must be decreased to a pH of 3 or less by the addition of acid. This can be accomplished by dilution of the sample with an acid solution.
- significant dilution may adversely effect the sensitivity of the assay due to a decrease in the concentration of creatinine.
- each cell a, b and c contains a creatininium PVC membrane and a nitrocellulose membrane containing glycine hydrochloride.
- the serum sample is added to c and reference and calibrant solutions are added to a and b, respectively.
- the glycine hydrochloride converts the creatinine to creatininium hydrochloride which is detected by the membrane.
- the emf developed between a and b may be used to calibrate the sensor.
- the slope from a and b and the emf developed between b and c may then be used to determine the creatinine concentration in the sample.
- Preparation of Creatininium Tetraphenyl Boron Salts The creatininium tetraphenyl boron salts were prepared by mixing equimolar aqueous solutions of creatininium hydrochloride (Sigma Chemical Co., St. Louis, MO, Cat. # C-6257) and the corresponding sodium salt of the substituted tetraphenyl boron. The precipitated salts were collected by filtration, washed with water and dried.
- the sodium salts of the substituted tetraphenyl boron derivatives were prepared by the method of Cassoretto, McLafferty and Moore, Anal. Chem. Acta, 32:376-380 (1965) and involved the following steps:
- Example 9 Preparation of an Ion Selective Electrode for the Measurement of Sodium
- a membrane selective to sodium ions was prepared using the following proportions of components: 0.2g methylated monensin, 0.04g sodium tetra(p-chlorophenyl) borate, 2.0 ml 2-nitrophenyloctyl ether, 1.2g high molecular weight PVC, 12 ml tetrahydrofuran (THF) and 5 ml 4-methyl-2-pentanone.
- the membrane can be formed by either solvent casting or dip coating as previously described.
- the methylene chloride solution was dried over anhydrous sodium sulfate and evaporated to dryness. The residue was treated with 50 ml of hexane with warming in a 50° water bath. The hexane solution was cooled in a freezer for 1-2 hours followed by filtration to remove precipitated salts. The hexane solution was evaporated to dryness to yield 2.5-4.0 g of a light tan oil. The oil was used to prepare the sodium selective membrane.
- Electrode for the Measurement of Potassium A membrane selective to potassium ions was prepared using the following proportions of components: 0.2 g valinomycin, 0.04 g potassium tetraphenyl borate, 2.0 ml 2-nitrophenyloctyl ether, 1.2 g high molecular weight PVC, 10 ml THF and 5 ml 4-methyl-2-pentanone. The membrane can be formed by either solvent casting or dip coating as previously described.
- Example 11 Preparation of an Ion Selective Electrode for the Measurement of Chloride A membrane selective to chloride ions was prepared using the following proportions of components: 1.0 ml Aliquat 336 (Aldrich Chemical Co., Milwaukee, WI , Cat.
- the membrane can be formed by either solvent casting or dip coating as previously described.
- This invention has industrial utility in the determination of the ion content or concentration of other constituents of samples, in particular biological fluids such as blood, serum, plasma, urine, saliva and cerebrospinal fluid. It is particularly useful for the rapid determination of the ion activity of a biological sample, as well as the concentration of other sample components, such as glucose, urea, triglycerides, creatinine, uric acid, lipase, other enzymes and drugs. It is well suited for use in a clinical or research context because there is no need for preconditioning of the ion-selective membrane and because it provides results quickly. In addition, the invention can be used for the similar determination in other samples such as beverages, meats, canned and processed foods, fruit extracts, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Ionophores destinés à être utilisés dans des capteurs pour la détermination potentiométrique de la teneur en ions ou de l'activité des ions d'un échantillon et de la concentration d'autres composants d'un échantillon. Les membranes contenant lesdits ionophores sont également décrites.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75067185A | 1985-06-27 | 1985-06-27 | |
US750671 | 1985-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0228456A1 true EP0228456A1 (fr) | 1987-07-15 |
Family
ID=25018774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19860904584 Withdrawn EP0228456A1 (fr) | 1985-06-27 | 1986-06-25 | Ionophores et membranes selectives aux ions contenant lesdits ionophores |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0228456A1 (fr) |
JP (1) | JPH01501618A (fr) |
AU (1) | AU6000086A (fr) |
DK (1) | DK99187A (fr) |
WO (1) | WO1987000168A2 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK409188D0 (da) * | 1988-07-21 | 1988-07-21 | Radiometer As | Fremgangsmaade til maaling af en karakteristik i et fluidum |
AU706362B2 (en) * | 1995-05-17 | 1999-06-17 | Ambri Limited | Improvement in ionic reservoir through application of an electrical potential |
CA2221307A1 (fr) * | 1995-05-17 | 1996-11-21 | Australian Membrane And Biotechnology Research Institute | Amelioration d'un reservoir ionique par l'application d'un potentiel electrique |
AU1360297A (en) * | 1996-01-11 | 1997-08-01 | Australian Membrane And Biotechnology Research Institute | Ion channel sensor typing |
EP3388825A1 (fr) * | 2017-04-12 | 2018-10-17 | Medizinische Universität Innsbruck | Capteur potentiometrique pour la détermination quantitative de la concentration de sodium et la concentration de créatinine |
CN112384792B (zh) * | 2018-07-04 | 2023-05-30 | 雷迪奥米特医学公司 | 镁离子选择性pvc膜 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743588A (en) * | 1971-10-18 | 1973-07-03 | Gen Electric | Ion-specific membrane |
CS213944B1 (en) * | 1980-04-24 | 1982-04-09 | Jaromir Petranek | Calcium/ii/-selective polymeric diaphragm |
HU186777B (en) * | 1981-07-09 | 1985-09-30 | Magyar Tudomanyos Akademia | Process for producing complex-forming agents of crown-ether base and ionoselective membranelektrodes containing them |
EP0074198A1 (fr) * | 1981-08-21 | 1983-03-16 | EASTMAN KODAK COMPANY (a New Jersey corporation) | Membranes sélectives d'ions d'hydrogène et électrodes contenant de telles membranes |
EP0153885B1 (fr) * | 1984-01-24 | 1989-11-02 | Hokko Chemical Industry Co., Ltd | Complexes de tétraarylbore-ammonium et leur utilisation |
-
1986
- 1986-06-25 AU AU60000/86A patent/AU6000086A/en not_active Abandoned
- 1986-06-25 EP EP19860904584 patent/EP0228456A1/fr not_active Withdrawn
- 1986-06-25 WO PCT/US1986/001372 patent/WO1987000168A2/fr not_active Application Discontinuation
- 1986-06-25 JP JP50364686A patent/JPH01501618A/ja active Pending
-
1987
- 1987-02-26 DK DK099187A patent/DK99187A/da not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO8700168A2 * |
Also Published As
Publication number | Publication date |
---|---|
DK99187D0 (da) | 1987-02-26 |
WO1987000168A3 (fr) | 1989-04-20 |
AU6000086A (en) | 1987-01-30 |
WO1987000168A2 (fr) | 1987-01-15 |
DK99187A (da) | 1987-04-27 |
JPH01501618A (ja) | 1989-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4713165A (en) | Sensor having ion-selective electrodes | |
AU602868B2 (en) | Sensor having ion-selective electrodes | |
Solsky | Ion-selective electrodes | |
Eggenstein et al. | A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer | |
US6663756B2 (en) | Microchip-type oxygen gas sensor based on differential potentiometry | |
EP0551769B1 (fr) | Electrodes solides à sélectivité ionique à base de graphite avec membrane polymère | |
EP0115346A1 (fr) | Electrode de type de film liquide pour la sélection d'anions | |
Solsky et al. | Preparation and properties of an antibody-selective membrane electrode | |
US4199412A (en) | Halide ion-selective devices and method | |
US4853090A (en) | Lithium ion-selective compositions, electrodes and a method of use | |
EP0228456A1 (fr) | Ionophores et membranes selectives aux ions contenant lesdits ionophores | |
US4708776A (en) | Sodium ion selective electrode and method of use | |
US5350518A (en) | Magnesium electrode | |
AU662895B2 (en) | Sensor devices | |
JPS6097250A (ja) | 特定の酵素/イオン発生団対を使用する診断用電極膜 | |
EP0632889A1 (fr) | Electrode et composition a selectivite phosphate | |
Vlasov et al. | Analytical applications of pH-ISFETs | |
JP4662615B2 (ja) | 乾式操作型イオン選択性電極及び液体中のイオンの存在又は量の決定法 | |
EP0741796B1 (fr) | Dispositif de detection | |
CA3173125A1 (fr) | Capteur de reference jetable a usage unique | |
WO2000017385A1 (fr) | Systeme d'analyse enzymatique | |
Eppelsheim et al. | Potentiometric thick-film sensor for the determination of the neurotransmitter acetylcholine | |
JPS60171446A (ja) | イオン選択性層状半電池 | |
JPH0943191A (ja) | 塩素イオンセンサ | |
JPH0961396A (ja) | 陰イオン選択性電極 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19870708 |
|
D17D | Deferred search report published (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19910103 |