EP0226721A1 - Schaltbare bipolare Stromquelle - Google Patents

Schaltbare bipolare Stromquelle Download PDF

Info

Publication number
EP0226721A1
EP0226721A1 EP86112708A EP86112708A EP0226721A1 EP 0226721 A1 EP0226721 A1 EP 0226721A1 EP 86112708 A EP86112708 A EP 86112708A EP 86112708 A EP86112708 A EP 86112708A EP 0226721 A1 EP0226721 A1 EP 0226721A1
Authority
EP
European Patent Office
Prior art keywords
transistors
current source
output
transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86112708A
Other languages
English (en)
French (fr)
Other versions
EP0226721B1 (de
Inventor
Jochen Dipl.-Ing. Reisinger
Franz Dipl.-Ing. Dielacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86112708T priority Critical patent/ATE82808T1/de
Publication of EP0226721A1 publication Critical patent/EP0226721A1/de
Application granted granted Critical
Publication of EP0226721B1 publication Critical patent/EP0226721B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the invention relates to a bipolar current source according to the preamble of patent claim 1.
  • the invention is based on the object of specifying a reference current source which can be switched in polarity and whose reference current is adjustable.
  • Embodiments of the inventive concept are characterized in the subclaims.
  • the circuit according to the invention is supplied by a voltage lying between two terminals VDD and VSS of a supply voltage source.
  • the circuit contains a first current mirror with metal oxide semiconductor transistors of the n-channel type and a second current mirror with metal oxide Hall conductor transistors of the p-channel type, which are connected in series and whose output transistors are controlled alternately via transistor switches.
  • a current Io is fed into the first current mirror via a terminal SE.
  • This first current mirror contains the input transistor MN1, which is connected as a diode, the mirror transistor MN2 and the output transistor MN3. While the gates of the transistors MN1 and MN2 are connected directly to one another and to the input terminal SE, the output circuit of a transistor MP3 lies between the gate of the transistor MN3.
  • the connections of the transistors MN1, MN2 and MN3 serving as source are connected to the terminal VSS of the supply voltage source.
  • the output circuit of a transistor MN4 is located in front of the gate of the transistor MN3 and the terminal VSS of the supply voltage source.
  • the output circuits of transistors MP1 and MP2 of the second current mirror are in series with the output circuits of transistors MN2 and MN3.
  • the gate of transistor MP1 is directly connected to the junction of the output circuits Transistors MN2 and MP1 and connected to the gate of transistor MP2 via the output circuit of a transistor MN5.
  • the connections of the transistors of the second current mirror which serve as the source are connected to the terminal VDD of the supply voltage source.
  • the gate of transistor MP2 is also connected to terminal VDD across the output circuit of transistor MP4.
  • the terminal SA for the current output of the circuit is located at the connection point of the output circuits of the two output transistors MN3 and MP2.
  • the transistors MN4 and MN5 are in the exemplary embodiment of the n-channel type and the transistors MP3 and MP4 of the p-channel type; the gates of the latter four transistors are connected to one another at a terminal VZ.
  • the current Io flowing into the circuit via the terminal SE is first reflected by the transistor MN1 connected as a diode into the mirror transistor MN2 and thus also flows through the input transistor of the second current mirror MP1.
  • the transistors MN4 and MN5 are now blocked and the transistors MP3 and MP4 are switched to the conductive state or vice versa. It is essential to the invention that the output transistors of the two current mirrors can be switched off, in particular alternately, for which purpose other switch arrangements or other transistor types can also be used.
  • the transistor MP3 conducts and the transistor MP4 blocks.
  • the input current Io is then mirrored into the transistor MN3 in accordance with the transmission ratio of the first current mirror, ie essentially in accordance with the ratio of channel width to channel length of the transistor MN3 with respect to the transistor MN1.
  • the through the transistors MN2 and Current flowing in MP1 has no influence on the output current of the circuit, since transistor MN5 blocks and transistor MP4 conducts at negative potential at terminal VZ, so that output transistor MP2 of the second current mirror is blocked.
  • the situation is exactly the opposite, i.e. the transistor MP3 blocks and the transistor MN4 conducts, so that the output transistor MN3 safely blocks.
  • the input current Io is first mirrored into the transistor MN2 according to the conversion ratio of the transistors MN2 to MN1 of the first current mirror.
  • This current which then also flows through the transistor MP1, is calculated in accordance with the transmission ratio of the second current mirror, i.e. mirrored into transistor MP2 according to the ratio of transistors MP2 to MP1.
  • the reference current flowing into output terminal SA is either negative or positive.
  • FIG. 2 shows another embodiment of the input circuit of the switchable bipolar current source according to FIG. 1.
  • the output circuit of the transistor MN1 is connected to the terminal serving as drain via a resistor R with a terminal GND for connecting a reference potential.
  • the connection of this transistor serving as the source lies at the pole VSS of the supply voltage source.
  • the gate of transistor MN1 and thus the gate of transistor MN2 and a connection of the output circuit of transistor MP3 is at the output of an operational amplifier OP, the inverting input of which is connected to a terminal VREF Connection of a reference potential and its non-inverting input is connected to the connection point of the output circuit of the transistor MN1 and the resistor R.
  • the rest of the circuit is then designed according to the invention in accordance with FIG. 1.
  • the input current Io to be mirrored and flowing through the transistor MN1 is decoupled from the output of the operational amplifier OP via the amplifier via the transistor MN1 to the input of the operational amplifier and is thus kept constant.
  • the transistors of the current mirrors can be designed, for example, according to the cascode principle or according to the Wilson or Improved Wilson principle.
  • FIG. 3 shows a circuit operating according to the cascode principle with an input circuit according to FIG. 2.
  • the transistors MN1, MN2 and MP1 according to FIG. 1 are connected in series by two transistors N11 and N12, N21 and N22 as well as P11 and P12 replaced.
  • Gate and drain connections of transistors N12, P11 and P12 are each connected to one another.
  • the transistors N11 and N12 are driven with an input circuit according to FIG. 2.
  • the output transistors MN3 and MP2 according to FIG. 1 are replaced by the parallel connection of three, each of two transistors connected in series.
  • the drain connections connected to a common node form the circuit output and are connected to the terminals 5A sets.
  • the jointly controlled gates of N11 and N12 are connected to the gates of N31, N33 and N35 via the output circuit of MP3.
  • the gate of P12 is connected to the gates of P22, P24 and P26 via the output circuit of MN5.
  • the transistors N12, N22, N32, N34, N36 on the one hand and P11, P21, P23 and P25 on the other hand each have common gate control.
  • FIG. 3 can be operated with only one switch combination MN4, MN5, MP3, MP4 according to FIG. 1, which acts on only one gate circuit in each case.
  • the series connection of the resistors RN and RG lying between the drain connections of N21 and P12 brings about a symmetrization of the circuit, ie the same operating points or the same drain-source voltages of the current mirror transistors when the load is connected from the terminal SA to the reference terminal GND. Then the connection point between RN and RG is virtually at the reference potential.
  • the reference output current can be increased in accordance with the changed transmission ratio of the current mirror with the same dimensioning of the transistors. If one chooses the ohmic load to be switched by the terminal SA against the reference terminal GND according to the translation of the current level smaller than the resistance R, then the voltage drops across the load and R are equal.
  • FIG. 4 shows an exemplary embodiment according to the invention of a circuit working according to the Improved Wilson principle with an input circuit according to FIG. 2.
  • a circuit according to this principle enables the same drain-source voltages of the transistors by one versus one Wilson current source additional transistor connected as a diode.
  • the circuit according to FIG. 4 results from the circuit according to FIG. 3 with the changes listed below, the reference symbols of the current source transistors having been changed.
  • the drain-gate connections of N12 and P11 (FIG. 3) are omitted for N2 and P1 (FIG. 4), but drain-gate connections are made for N22, N32, N34, N36, P21, P23 and P25 (FIG. 3) Connections are provided so that the elements N4, N6, N8, N10, P5, P7 and P9 (FIG. 4) result.
  • the not yet switched gate circuit of the output transistors is provided with switching transistors MN41, MN51, MP31 and MP41 which can be controlled by terminal VZ. which in this order correspond to the transistors MN4, MN5, MP3 and MP4 for the other gate circuit.
  • the series connection of the output circuits of two transistors P3 and P4 and a resistor RG are connected from the terminal VDD to the reference terminal GND.
  • the drain and gate of P3 are connected to each other and to the gate of P1 and the gate of P4 is connected to the gate of P2.
  • This arrangement serves to symmetrize the circuit in order to ensure the same operating points for all transistors.
  • the resistors RN and RP and R and an ohmic load to be switched by the terminal SA against the reference potential also belong, in accordance with the explanations given in FIG. 3, to ensure the same operating points for the transistors.
  • circuits according to the invention shown in FIGS. 1 to 4 as exemplary embodiments contain metal oxide semiconductor transistors, the letters N or P of the reference symbols relating to the channel type.
  • a circuit construction with metal oxide semiconductor transistors of another type is encompassed by the teaching of the invention.
  • this circuit can also be implemented with the aid of bipolar transistors.
  • there is the possibility of increasing the output reference current with simple means in that further metal oxide transistors are connected in parallel with the output transistors, taking into account the channel type, or the essentially current-determining ratio of channel width Channel length is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Abstract

Die schaltbare bipolare Stromquelle enthält die Kombination zweier hintereinander geschalteter konventioneller Stromspiegel (MN1, MN2, MN3; MP1, MP2), die vom entgegengesetzten Typ sind und deren Ausgangstransistoren (MN3, MP2) über Transistorschalter (MN4, MP3, MP4, MN5) wechselweise angesteuert werden, so daß am Ausgang (SA) abhängig vom Schaltzustand (VZ) ein positiver oder negativer Referenzstrom zur Verfügung steht.

Description

  • Die Erfindung betrifft eine bipolare Stromquelle nach dem Oberbegriff des Patentanspruchs 1.
  • Stromquellen, die einen positiven oder negativen Ausgangs­strom liefern können, sind bekannt und beispielsweise in dem Buch "Halbleiter-Schaltungstechnik" von U. Tietze, Ch. Schenk, Springer-Verlag, Berlin, Heidelberg, New York, 1980, Seite 54 folgende beschrieben. Eine dort angegebene Stromquelle liefert einen Ausgangsstrom, der proportional zu einer an­gelegten Eingangsspannung ist. Für einen Anwendungsfall, der entweder einen positiven oder negativen Referenzstrom er­fordert, ist eine Lösung mit einer Stromquelle für den posi­tiven und einer Stromquelle für den negativen Referenzstrom mit nachfolgender Multiplexschaltung üblich.
  • Der Erfindung liegt die Aufgabe zugrunde, eine in der Polari­tät umschaltbare Referenzstromquelle anzugeben, deren Referenz­strom einstellbar ist.
  • Diese Aufgabe wird bei einer bipolaren Stromquelle der ein­gangs genannten Art erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst.
  • Ausgestaltungen des Erfindungsgedankens sind in Unteran­sprüchen gekennzeichnet.
  • Die Erfindung wird im folgenden anhand von in den Figuren der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Gleiche Elemente sind mit gleichen Bezugszeichen versehen.
  • Es zeigt:
    • Fig. 1 ein Schaltbild einer erfindungsgemäßen schaltbaren bipolaren Stromquelle,
    • Fig. 2 ein Ausführungsbeispiel einer Eingangsschaltung für eine erfindungsgemäße schaltbare bipolare Strom­quelle,
    • Fig. 3 ein Schaltbild einer nach dem Kaskode-Prinzip arbeitenden erfindungsgemäßen Stromquelle.
    • Fig. 4 ein Schaltbild einer nach dem Improved-Wilson-Prin­zip arbeitenden erfindungsgemäßen Stromquelle.
  • Gemäß Fig. 1 wird die erfindungsgemäße Schaltung von einer zwischen zwei Klemmen VDD und VSS einer Speisespannungs­quelle liegenden Spannung versorgt. Die Schaltung enthält einen ersten Stromspiegel mit Metalloxid-Halbleitertransi­storen vom n-Kanal-Typ und einen zweiten Stromspiegel mit Metalloxid-Hallbleitertransistoren vom p-Kanal-Typ, die hintereinander geschaltet sind und deren Ausgangstransistoren über Transistorschalter wechselweise angesteuert werden. In den ersten Stromspiegel wird über eine Klemme SE ein Strom Io eingespeist. Dieser erste Stromspiegel enthält den Eingangstransistor MN1, der als Diode geschaltet ist, den Spiegeltransistor MN2 und den Ausgangstransistor MN3. Während die Gates der Transistoren MN1 und MN2 direkt miteinander und mit der Eingangsklemme SE ver-bunden sind, liegt zwischen dem Gate des Transistors MN3 der Ausgangskreis eines Transistors MP3. Die als Source dienenden Anschlüsse der Transistoren MN1, MN2 und MN3 sind mit der Klemme VSS der Speisespannungsquelle verbunden. Zusätzlich liegt vor dem Gate des Transistors MN3 und der Klemme VSS der Speise­spannungsquelle der Ausgangskreis eines Transistors MN4.
  • In Serie zu den Ausgangskreisen der Transistoren MN2 und MN3 liegen die Ausgangskreise der Transistoren MP1 und MP2 des zweiten Stromspiegels. Das Gate des Transistors MP1 ist direkt mit dem Verbindungspunkt der Ausgangskreise der Transistoren MN2 und MP1 und über den Ausgangskreis eines Transistors MN5 mit dem Gate des Transistors MP2 verbunden. Die als Source dienenden Anschlüsse der Transistoren des zweiten Stromspiegels sind mit der Klemme VDD der Speise­spannungsquelle verbunden. Das Gate des Transistors MP2 liegt über dem Ausgangskreis eines Transistors MP4 ebenfalls an der Klemme VDD. Am Verbindungspunkt der Ausgangskreise der beiden Ausgangstransistoren MN3 und MP2 liegt die Klemme SA für den Stromausgang der Schaltung. Die Transistoren MN4 und MN5 sind im Ausfhrungsbeispiel vom n-Kanal-Typ und die Transistoren MP3 und MP4 vom p-Kanal-Typ; die Gates dieser letztgenannten vier Transistoren sind miteinander an einer Klemme VZ angeschlossen.
  • Der über die Klemme SE in die Schaltung fließende Strom Io wird vom als Diode geschalteten Transistor MN1 zunächst in den Spiegeltransistor MN2 gespiegelt und fließt damit auch durch den Eingangstransistor des zweiten Stromspiegels MP1. Abhängig vom Vorzeichen eines an der Klemme VZ liegenden Potentials werden nun entweder die Transistoren MN4 und MN5 gesperrt und die Transistoren MP3 und MP4 in den leitenden Zustand geschaltet oder paarweise umgekehrt. Erfindungs­wesentlich ist, daß die Ausgangstransistoren der beiden Stromspiegel abschaltbar sind, insbesondere wechselweise, wozu auch andere Schalteranordnungen oder andere Transi­stortypen dienen können.
  • Bei einem negativen Potential an der Klemme VZ leitet der Transistor MP3 und der Transistor MP4 sperrt. Der Eingangs­strom Io wird dann entsprechend dem Übersetzungsverhältnis des ersten Stromspiegels, d.h. im wesentlichen entsprechend dem Verhältnis von Kanalweite zu Kanallänge des Transistors MN3 bezogen auf den Transistor MN1 in den Transistor MN3 gespiegelt. Der gleichzeitig durch die Transistoren MN2 und MP1 fließende Strom hat auf den Ausgangsstrom der Schaltung keinen Einfluß, da bei negativem Potential an der Klemme VZ der Transistor MN5 sperrt und der Transistor MP4 leitet, so daß der Ausgangstransistor MP2 des zweiten Stromspiegels ge­sperrt wird.
  • Bei einem positiven Potential an der Klemme VZ sind die Verhältnisse genau umgekehrt, d.h. der Transistor MP3 sperrt und der Transistor MN4 leitet, so daß der Ausgangstransis­tor MN3 sicher sperrt. Da andererseits in diesem Fall der Transistor MN5 leitet und der Transistor MP4 gesperrt ist, wird der Eingangsstrom Io zunächst gemäß dem Übersetzungs­verhältnis der Transistoren MN2 zu MN1 des ersten Strom­spiegels in den Transistor MN2 gespiegelt. Dieser dann eben­falls durch den Transistor MP1 fließende Strom wird gemäß dem Übersetzungsverhältnis des zweiten Stromspiegels, d.h. gemäß dem Übersetzungsverhältnis der Transistoren MP2 zu MP1 in den Transistor MP2 gespiegelt. Abhängig vom Potential der Klemme VZ ist damit der in die Ausgangsklemme SA fließende Referenz­strom entweder negativ oder positiv.
  • In Fig. 2 ist eine andere Ausgestaltung der Eingangs­schaltung der erfindungsgemäßen schaltbaren bipolaren Strom­quelle nach Fig. 1 angegeben. Der Ausgangskreis des Transis­tors MN1 ist mit dem als Drain dienenden Anschluß über einen Widerstand R mit einer Klemme GND zum Anschluß eines Be­zugspotentials verbunden. Der als Source dienende Anschluß dieses Transistors liegt am Pol VSS der Versorgungsspannungs­quelle. Das Gate des Transistors MN1 und damit das Gate des Transistors MN2 und ein Anschluß des Ausgangskreises des Transistors MP3 liegt am Ausgang eines Operationsverstärkers OP, dessen invertierender Eingang mit einer Klemme VREF zum Anschluß eines Referenzpotentials und dessen nichtinver­tierender Eingang mit dem Verbindungspunkt des Ausgangs­kreises des Transistors MN1 und des Widerstandes R verbunden ist. Die übrige Schaltung ist dann erfindungsgemäß ent­sprechend Fig. 1 ausgeführt. Gemäß dem an der Klemme VREF liegenden Referenzpotential wird der zu spiegelnde, durch den Transistor MN1 fließende Eingangsstrom Io vom Ausgang des Operationsverstärkers OP über den sverstärkers über den Transistor MN1 auf den Eingang des Operationsverstärkers gegengekoppelt und somit konstant gehalten.
  • Eine andere Ausgestaltung einer erfindungsgemäßen Schaltung ist vorgesehen, wenn der Innenwiderstand der Stromquellen erhöht werden soll. Dazu können die Transistoren der Strom­spiegel beispielsweise nach dem Kaskode-Prinzip oder nach dem Wilson- oder Improved-Wilson-Prinzip ausgebildet sein.
  • Fig. 3 zeigt eine nach dem Kaskode-Prinzip arbeitende Schaltung mit einer Eingangsschaltung gemäß Fig. 2. In ihr sind die Transistoren MN1,MN2 und MP1 gemäß Fig. 1 durch die Reihenschaltung jeweils zweier Transistoren N11 und N12, N21 und N22 sowie P11 und P12 ersetzt.
  • Gate- und Drainanschlüsse der Transistoren N12, P11 und P12 sind jeweils miteinander verbunden. Die Ansteuerung der Transistoren N11 und N12 erfolgt mit einer Eingangsschaltung gemäß Fig. 2.
  • Die Ausgangstransistoren MN3 und MP2 gemäß Fig. 1 sind durch die Parallelschaltung von drei, jeweils aus zwei in Reihe geschalteten Transistoren ersetzt. Die auf einen gemeinsamen Knotenpunkt geschalteten Drainanschlüsse bil­den den Schaltungsausgang und sind an die Klemmen 5A ge­ legt. Die gemeinsam angesteuerten Gates von N11 und N12 sind über den Ausgangskreis von MP3 an die Gates von N31, N33 und N35 angeschlossen. Ebenso ist das Gate von P12 über den Ausgangskreis von MN5 mit den Gates von P22, P24 und P26 verbunden. Jeweils gemeinsame Gateansteuerung be­sitzen die Transistoren N12, N22, N32, N34, N36 einer­seits und P11, P21, P23 und P25 andererseits. Erfindungsgemäß läßt sich die Kaskode-Schaltung gemäßt Fig. 3 mit nur einer Schalterkombination MN4, MN5, MP3, MP4 gemäß Fig. 1, die auf jeweils nur einen Gatekreis wirkt, betreiben. Die zwischen den Drainanschlüssen von N21 und P12 liegende Reihenschaltung der Widerstände RN und RG bewirkt eine Symmetrierung der Schaltung, d.h. gleiche Arbeitspunkte bzw. gleiche Drain-Source-Spannungen der Stromspiegeltransistoren, wenn die Last von der Klemme SA gegen die Bezugsklemme GND geschaltet wird. Dann liegt der Verbindungspunkt von RN mit RG virtuell auf dem Bezugspotential.
  • Durch Parallelschalten mehrerer Ausgangskreise läßt sich bei gleicher Dimmensionierung der Transistoren der Refe­renz-Ausgangsstrom entsprechend dem geänderten Übersetzungs­verhältnis des Stromspiegels vergrößern. Wählt man die von der Klemme SA gegen die Bezugsklemme GND zu schaltende ohmsche Last entsprechend der Übersetzung des Stromspie­gels kleiner als den Widerstand R, dann sind die Spannungs­abfälle über der Last und R gleich groß.
  • Fig. 4 zeigt ein erfindungsgemäßes Ausführungsbeispiel einer nach dem Improved-Wilson-Prinzip arbeitenden Schal­tung mit einer Eingangsschaltung gemäß Fig. 2. Eine Schal­tung nach diesem Prinzip ermöglicht gleiche Drain-Source-­Spannungen der Transistoren durch einen gegenüber einer Wilson-Stromquelle zusätzlichen, als Diode geschalteten Transistor.
  • Die Schaltung gemäß Fig. 4 ergibt sich mit nachstehend aufgeführten Veränderungen aus der Schaltung gemäß Fig. 3, wobei die Bezugszeichen der Stromquellentransistoren ge­ändert wurden. Die Drain-Gate-Verbindungen von N12 und P11 (Fig. 3) entfallen für N2 und P1 (Fig. 4) dafür werden bei N22, N32, N34, N36, P21, P23 und P25 (Fig. 3) Drain-­Gate-Verbindungen vorgesehen, so daß sich die Elemente N4, N6, N8, N10, P5, P7 und P9 (Fig. 4) ergeben. Zusätz­lich wird jeweils der noch nicht geschaltete Gatekreis der Ausgangstransistoren mit von der Klemme VZ steuerba­ren Schalttransistoren MN41, MN51, MP31 und MP41 versehen. die in dieser Reihenfolge jeweils den Transistoren MN4, MN5, MP3 und MP4 für den jeweils anderen Gatekreis ent­sprechen.
  • Zusätzlich ist von der Klemme VDD gegen die Bezugsklemme GND die Reihenschaltung der Ausgangskreise zweier Tran­sistoren P3 und P4 sowie ein Widerstand RG geschaltet. Drain und Gate von P3 sind miteinander und mit dem Gate von P1 und das Gate von P4 ist mit dem Gate von P2 ver­bunden. Diese Anordnung dient zur Symmetrierung der Schaltung, um gleiche Arbeitspunkte für alle Transistoren zu gewährleisten. Ebenfalls gehören die Widerstände RN und RP sowie R und eine von der Klemme SA gegen das Be­zugspotential zu schaltenden ohmsche Last entsprechend den Ausführungen zu Fig. 3 zur Sicherung gleicher Ar­beitspunkte für die Transistoren.
  • Die gemäß den Figuren 1 bis 4 als Ausführungsbeipsiele ange­führten erfindungsgemäßen Schaltungen enthalten Metalloxid-­Halbleitertransistoren, wobei die Buchstaben N oder P der Bezugszeichen den Kanal-Typ angehen. Ein Schaltungsaufbau mit Metalloxid-Halbleitertransistoren anderen Typ wird von der Lehre der Erfindung umfaßt. Ebensogut läßt sich diese Schaltung jedoch mit Hilfe von bipolaren Transistoren realisieren. Speziell in der Ausführung mit Metalloxid-­Halbleiter-Transistoren ergibt sich die Möglichkeit, den Ausgangs- Referenzstrom mit einfachen Mitteln zu vergrößern, indem weitere Metalloxid-Transistoren den Ausgangstransi­storen unter Beachtung des Kanaltyps parallel geschaltet werden oder das im wesentlichen den Strom bestimmende Verhältnis von Kanalweite zu Kanallänge vergrößert wird.

Claims (13)

1. Bipolare Stromquelle mit einer Speisespannungsquel­le (VDD, VSS), einem ersten Stromspiegel (MN1, MN2, MN3; N11, N12, N21, N22, N31 bis N36; N1 bis N10) mit Tran­sistoren eines Typs und einem zweiten Stromspiegel (MP1, MP2; P11, P12, P21 bis P26; P1 bis P10) mit Transisto­ren vomanderen Typ, die eine Eingangs- und Ausgangstran­sistoranordnung (MN1, MP1; N11, N12, P11, P12; N1, N2, P1, P2; MN3, MP2; N31 bis N36, P21 bis P26; N5 bis N10, P5 bis P10) enthalten, dadurch gekenn­zeichnet, daß die Stromspiegel (MN1 bis MN3, MP1, MP2; N11, N12, N21, N22, N31 bis N36, P11, P12, P21 bis P26; N1 bis N10, P1 bis P10) hintereinander ge­schaltet sind und ihre Ausgangstransistorenordnung (MN3, MP2; N31 bis N36, P21 bis P26; N5 bis N10, P5 bis P10) abschaltbar ist.
2. Bipolare Stromquelle nach Anspruch 1, dadurch gekennzeichnet, daß der erste Stromspiegel (MN1 bis MN3; N11, N12, N21, N22, N31 bis N36; N1 bis N10) eine Spiegeltransistoranordnung (MN2; N21, N22; N3, N4) enthält, die mit ihrem Ausgangskreis in Serie zum Aus­gangskreis der Eingangstransistoranordnung (MP1; P11, P12; P1, P2) des zweiten Stromspiegels (MP1, MP2; P11, P12, P21 bis P26; P1 bis P10) liegt.
3. Bipolare Stromquelle nach Anspruch 1 oder 2, da­durch gekennzeichnet, daß Ein­gangstransistoren (MN1, MP1; N12, P11, P12; N4, P2, P3) der Eingangstransistoranordnung (MN1, MP1; N11, N12, P11, P12; N1, N2, P1 bis P4) als Dioden geschaltet sind.
4. Bipolare Stromquelle nach Anspruch 1 oder 2, da­durch gekennzeichnet, daß ein Eingangstransistor (MN1; N11; N1) der Eingangstransistor­anordnung des ersten Stromspiegels (MN1 bis MN3; N11, N12, N21, N22, N31 bis N36; N1 bis N10) mit seinem Aus­gangskreis über einen Widerstand (R) mit einem Bezugs­potential (GND) und mit seinem Steuereingang mit dem Ausgangs eines Operationsverstärkers (OP) verbunden ist, an dessen invertierenden Eingangs (-) ein Referenz­potential (VREF) und an dessen nichtinvertierenden Ein­gang (+) das Potential des Verbindungspunktes des Wi­derstandes (R) mit dem Ausgangskreis des Eingangstran­sistors (MN1, N11; N1) liegt, und daß mindestens ein Eingangstransistor (MP1; P12; P2) der Eingangstransistor­anordnung des zweiten Stromspiegels (MP1, MP2; P11, P12, P21 bis P26; P1 bis P10) als Diode geschaltet ist.
5. Bipolare Stromquelle nach Anspruch 1 bis 4, da­durch gekennzeichnet, daß die Transistoren der Stromspiegel als Kaskode-Transistor­stufen (N11, N12, N21, N22, N31 bis N36, P11, P12, P21 bis P26) ausgebildet sind.
6. Bipolare Stromquelle nach Anspruch 1 bis 4, da­durch gekennzeichnet, daß die Transistoren der Stromspiegel als Wilson-Stromquelle ausgebildet sind.
7. Bipolare Stromquelle nach Anspruch 1 bis 4, da­durch gekennzeichnet, daß die Transistoren der Stromspiegel als Improved-Wilson-­Stromquelle (N1 bis N12, P1 bis P12) ausgebildet sind.
8. Bipolare Stromquelle nach Anspruch 1 bis 7, da­durch gekennzeichnet, daß den Steueranschlüsse der Ausgangstransistoranordnung (MN3, MP2; N5 bis N10, P5 bis P10) jeweils der Ausgangskreis eines Transistors (MP3, MN5; MP3, MP31, MN5, MN51) vor­geschaltet und den Steueranschlüssen und den speise­spannungsseitigen Ausgangsanschlüssen der Ausgangs­transistoranordnung (MN3, MP2; N5 bis N10, P5 bis P10) jeweils der Ausgangskreis eines Transistors (MN4, MP4; MN4, MN41, MP4, MP41) parallel geschaltet ist.
9. Bipolare Stromquelle nach Anspruch 1 bis 8, da­durch gekennzeichnet, daß die vorgeschalteten Transistoren (MP3, MN5; MP3, MP31, MN5, MN51) vom entgegengesetzten Typ und die parallelge­schalteten (MN4, MP4; MN4, MN41, MP4, MP41) vom glei­chen Typ wie die zugehörigen Ausgangstransistoren (MN3, MP2; N5 bis N10, P5 bis P10) sind und ihre Steueran­schlüsse mit einer gemeinsamen Steuerklemme (VZ) verbun­den sind.
10. Bipolare Stromquelle nach Anspruch 1 bis 9, da­durch gekennzeichnet, daß in je­dem Stromapiegel jeweils nur ein Zweig der Steueran­schlüsse der Ausgangstransistoranordnung (N31 bis N36, P21 bis P26; N5 bis N10, P5 bis P10; Fig. 3) gemäß den Ansprüchen 8 und 9 ausgestaltet ist.
11. Bipolare Stromquelle nach Anspruch 1 bis 10, da­durch gekennzeichnet, daß die Spie­geltransistoranordnung (MN2; N21, N22; N3, N4) des ersten Stromspiegels (MN1 bis MN3; N11, N12, N31 bis N36; N1 bis N10) mit der Eingangstransistoranordnung (MP1; P11, P12, P1, P2) des zweiten Stromspiegels (MP1, MP2; P11, P12, P21 bis P26; P1 bis P10) über wenigstens einen, ins­besondere zwei gleiche Widerstände verbunden ist.
12. Bipolare Stromquelle nach Anspruch 1 bis 11, da­durch gekennzeichnet, daß die Transistoren der Stromspiegel im gleichen Arbeitspunkt betrieben werden.
13. Bipolare Stromquelle nach Anspruch 1 bis 12, ge­kennzeichnet durch Ausbildung mit komple­mentären Metalloxid-Halbleitertransistoren.
EP86112708A 1985-09-30 1986-09-15 Schaltbare bipolare Stromquelle Expired - Lifetime EP0226721B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86112708T ATE82808T1 (de) 1985-09-30 1986-09-15 Schaltbare bipolare stromquelle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3534830 1985-09-30
DE3534830 1985-09-30

Publications (2)

Publication Number Publication Date
EP0226721A1 true EP0226721A1 (de) 1987-07-01
EP0226721B1 EP0226721B1 (de) 1992-11-25

Family

ID=6282347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86112708A Expired - Lifetime EP0226721B1 (de) 1985-09-30 1986-09-15 Schaltbare bipolare Stromquelle

Country Status (5)

Country Link
US (1) US4740743A (de)
EP (1) EP0226721B1 (de)
JP (1) JP2646443B2 (de)
AT (1) ATE82808T1 (de)
DE (1) DE3687161D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373471A1 (de) * 1988-12-16 1990-06-20 STMicroelectronics S.r.l. Stromquellenschaltung mit Komplementärstromspiegeln
EP0570820A2 (de) * 1992-05-20 1993-11-24 Siemens Aktiengesellschaft Schaltbare Stromquellenschaltung und Verwendung einer solchen in einer Phasendetektoranordnung
EP0613072A1 (de) * 1993-02-12 1994-08-31 Koninklijke Philips Electronics N.V. Integrierte Schaltung mit einem Kaskadestromspiegel
EP0627820A2 (de) * 1993-06-02 1994-12-07 Motorola, Inc. Ladungspumpenschaltung mit programmierbarem Pumpenstrom und System
EP0642072A1 (de) * 1993-09-03 1995-03-08 Siemens Aktiengesellschaft Stromspiegel

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765841B2 (ja) * 1987-11-27 1998-06-18 株式会社日立製作所 半導体装置
US4825099A (en) * 1987-12-04 1989-04-25 Ford Microelectronics Feedback-controlled current output driver having reduced current surge
US5525897A (en) * 1988-05-24 1996-06-11 Dallas Semiconductor Corporation Transistor circuit for use in a voltage to current converter circuit
US5266887A (en) * 1988-05-24 1993-11-30 Dallas Semiconductor Corp. Bidirectional voltage to current converter
GB2225910A (en) * 1988-12-08 1990-06-13 Philips Electronic Associated Processing sampled analogue electrical signals
FR2641388B1 (fr) * 1988-12-30 1991-03-15 Radiotechnique Compelec Circuit integre comprenant un generateur de courant commutable
WO1991018338A1 (en) * 1990-05-17 1991-11-28 International Business Machines Corporation Switchable current source
USRE42250E1 (en) 1994-12-29 2011-03-29 Stmicroelectronics, Inc. Delay circuit and method
US5936451A (en) * 1994-12-29 1999-08-10 Stmicroeletronics, Inc. Delay circuit and method
KR100218306B1 (ko) * 1996-06-27 1999-09-01 구본준 전류/전압 변환기와 이를 이용하는 센스 증폭기 및 센싱방법
CN100514250C (zh) * 2000-07-05 2009-07-15 盛群半导体股份有限公司 大电流比例的电流输出电路
DE10065379A1 (de) * 2000-12-27 2002-07-18 Infineon Technologies Ag Stromspiegelschaltung
JP4662698B2 (ja) * 2003-06-25 2011-03-30 ルネサスエレクトロニクス株式会社 電流源回路、並びに電流設定方法
JP2005100345A (ja) * 2003-08-28 2005-04-14 Rohm Co Ltd 電流制御回路,半導体装置及び撮像装置
DE102008014425B4 (de) * 2008-03-13 2012-03-29 Atmel Automotive Gmbh Treiberschaltung mit einem Dämpfungsnetzwerk unter Verwendung eines Stromspiegels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611171A (en) * 1969-12-11 1971-10-05 Ibm Integrated circuit video amplifier
US3976896A (en) * 1974-10-29 1976-08-24 The Solartron Electronic Group Limited Reference voltage sources
JPS6095620A (ja) * 1983-10-04 1985-05-29 アメリカン テレフオン アンド テレグラフ カンパニー 電流スイツチ用電子回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143026A (en) * 1980-04-10 1981-11-07 Fujitsu Ltd Symmetrical type constant current circuit
JPH0656935B2 (ja) * 1982-04-24 1994-07-27 日本電装株式会社 定電流制御回路
JPS5990412A (ja) * 1982-11-15 1984-05-24 Nec Corp 双方向性定電流駆動回路
US4583037A (en) * 1984-08-23 1986-04-15 At&T Bell Laboratories High swing CMOS cascode current mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611171A (en) * 1969-12-11 1971-10-05 Ibm Integrated circuit video amplifier
US3976896A (en) * 1974-10-29 1976-08-24 The Solartron Electronic Group Limited Reference voltage sources
JPS6095620A (ja) * 1983-10-04 1985-05-29 アメリカン テレフオン アンド テレグラフ カンパニー 電流スイツチ用電子回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELECTRONIC LETTERS, Band 12, Nr. 15, 22. Juli 1976, Seiten 389,390, Herts, GB; B.L. HART et al.: "D.C. matching errors in the Wilson current source" *
PATENTS ABSTRACTS OF JAPAN, Band 8, Nr. 33, 14. Februar 1984, Seite 2 P 254; & JP-A-58 186 817 (NIPPON DENSO K.K.) 31-10-1983 *
RCA REVIEW, Band 39, Nr. 2, Juni 1978, Seiten 250-258, Princeton, US; O.H. SCHADE, Jr.: "Advances in BiMOS integrated circuits" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373471A1 (de) * 1988-12-16 1990-06-20 STMicroelectronics S.r.l. Stromquellenschaltung mit Komplementärstromspiegeln
EP0570820A2 (de) * 1992-05-20 1993-11-24 Siemens Aktiengesellschaft Schaltbare Stromquellenschaltung und Verwendung einer solchen in einer Phasendetektoranordnung
EP0570820A3 (en) * 1992-05-20 1993-12-15 Siemens Ag Switchable current source circuit and the use of such a circuit in a phase detector
EP0613072A1 (de) * 1993-02-12 1994-08-31 Koninklijke Philips Electronics N.V. Integrierte Schaltung mit einem Kaskadestromspiegel
EP0627820A2 (de) * 1993-06-02 1994-12-07 Motorola, Inc. Ladungspumpenschaltung mit programmierbarem Pumpenstrom und System
EP0627820A3 (de) * 1993-06-02 1994-12-14 Motorola, Inc. Ladungspumpenschaltung mit programmierbarem Pumpenstrom und System
EP0642072A1 (de) * 1993-09-03 1995-03-08 Siemens Aktiengesellschaft Stromspiegel

Also Published As

Publication number Publication date
JPS6279514A (ja) 1987-04-11
EP0226721B1 (de) 1992-11-25
US4740743A (en) 1988-04-26
ATE82808T1 (de) 1992-12-15
DE3687161D1 (de) 1993-01-07
JP2646443B2 (ja) 1997-08-27

Similar Documents

Publication Publication Date Title
EP0226721B1 (de) Schaltbare bipolare Stromquelle
DE2802189C3 (de) Gegentakt-Verstärkerschaltung
DE3416268C2 (de) Stromverstärkungseinrichtung
DE112013001609B4 (de) Bidirektionaler Schalter mit in Reihe geschalteten N-Kanal-Mos-Elementen parallel mit in Reihe geschalteten P-Kanal-Mos-Elementen
DE102009058793B4 (de) Digital-Analog-Konverter mit Schaltkreisarchitekturen, um Schalterverluste zu beseitigen
DE3736380C2 (de) Verstärker
DE10152888A1 (de) Integrierter Analogmultiplexer
DE3318537A1 (de) Schnell arbeitender analog-digital-konverter
EP0048820A2 (de) Binäre MOS-Parallel-Komparatoren
EP0217223B1 (de) Digital-Analog-Umsetzer mit Temperaturkompensation
DE3008280A1 (de) Komplementaerer verstaerker
DE4444623A1 (de) Schaltungsanordnung zur Laststromregelung eines Leistungs-MOSFET
DE2438255C3 (de) Stromverstärker
DE2720525B2 (de) Mischschaltung
DE19533768C1 (de) Stromtreiberschaltung mit Querstromregelung
DE19503036C1 (de) Differenzverstärker
EP0523266B1 (de) Integrierbarer Stromspiegel
EP0389654A1 (de) Integrierbare Verstärkerschaltung
DE10335067B4 (de) Operationsverstärker
DE102004022991B3 (de) Abtast-Differenzverstärker und Abtast-Verstärker
EP0544143A2 (de) Integrierte Komparatorschaltung
EP0024549A1 (de) TTL-Pegelumsetzer zur Ansteuerung von Feldeffekttransistoren
EP0822656B1 (de) Schaltungsanordnung mit einem Operationsverstärker
EP0936525A1 (de) Diodenschaltung mit idealer Diodenkennlinie
EP0899880B1 (de) Pegelwandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19871218

17Q First examination report despatched

Effective date: 19890803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921125

REF Corresponds to:

Ref document number: 82808

Country of ref document: AT

Date of ref document: 19921215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3687161

Country of ref document: DE

Date of ref document: 19930107

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

Ref country code: LI

Effective date: 19930930

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EAL Se: european patent in force in sweden

Ref document number: 86112708.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980826

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980909

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980921

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000401

EUG Se: european patent has lapsed

Ref document number: 86112708.2

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000401

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050905

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051115

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060914

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20