EP0224536A1 - Procede et dispositif pour determiner la couleur et le degre de turbidite d'un fluide - Google Patents

Procede et dispositif pour determiner la couleur et le degre de turbidite d'un fluide

Info

Publication number
EP0224536A1
EP0224536A1 EP19860903421 EP86903421A EP0224536A1 EP 0224536 A1 EP0224536 A1 EP 0224536A1 EP 19860903421 EP19860903421 EP 19860903421 EP 86903421 A EP86903421 A EP 86903421A EP 0224536 A1 EP0224536 A1 EP 0224536A1
Authority
EP
European Patent Office
Prior art keywords
light
fluid
projecting
collecting
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19860903421
Other languages
German (de)
English (en)
Inventor
Guy Roger Jean Paul
Patrick Claude Viltart
Michel René LEQUIME
Claude Maquaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANSPORTS PETROLIERS PAR PIPELINE - TRAPIL Ste
Original Assignee
TRANSPORTS PETROLIERS PAR PIPELINE - TRAPIL Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRANSPORTS PETROLIERS PAR PIPELINE - TRAPIL Ste filed Critical TRANSPORTS PETROLIERS PAR PIPELINE - TRAPIL Ste
Publication of EP0224536A1 publication Critical patent/EP0224536A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Definitions

  • the present invention relates to a method and a device for determining the color and the degree of turbidity of a fluid confined by a wall, for example that of an enclosure or a pipeline (piping, pipeline, channel, tank, container, etc. at atmospheric pressure or under pressure).
  • the invention applies in particular to the control of the transport by pipeline of liquid petroleum products such as ordinary petrol or super fuel, diesel, domestic fuel, etc.
  • the same pipe can be used to transport successively one or the other of these products. It is therefore interesting to be able to determine what is the color of the product or of the mixture of products which passes at a given instant in a given section of pipeline.
  • the present invention makes it possible to carry out the operations remotely, without sampling, in a sealed and secure manner (detector element comprising neither electrical energy, nor hot spot), by determining from chromatic components, the diffusion at 90 ° and the transmission in order to measure the color, turbidity and opacity of the product.
  • the invention relates to a method for determining the color and the degree of turbidity of a fluid confined by a wall, for example that of an enclosure or a pipe, consisting in projecting a beam of light into the fluid.
  • white collect the beam after crossing the fluid, ensure the chromatic dispersion of the light to form a spectrum comprising a plurality of components, and measure the light intensity of each of said components to determine the color of the fluid, characterized in that said light white includes radiation in the near infrared range and, in order to determine the degree of turbidity of the fluid, the light intensity of the components of said spectrum relating to this radiation is measured.
  • this detection therefore provides information on the homogeneity and the cleanliness of the fluid. transported.
  • the measurement of the attenuation for this radiation, in the axis of the light beam will determine the turbidity of the product.
  • the white light projected in the fuid indeed includes components in the near infrared.
  • the measurement of the light transmitted along the axis of the beam does not make it possible to distinguish a cloudy fluid from a fluid opaque to the light radiation used: in both cases, notes a strong decrease in transmitted light.
  • the cloudy fluid is capable of diffusing a large amount of light laterally. Also, according to the invention, the rate of light scattered laterally in the fluid is also measured.
  • the invention also relates to a device for determining the color and the degree of turbidity of a fluid, confined by a wall, for example that of an enclosure or of a pipe, comprising a white light source, means for projecting a beam of light in the fluid, from said source, means for collecting the beam after crossing the fluid, means for chromatic dispersion of the light to form a spectrum comprising a plurality of components; and means for measuring the light intensity of each of said components and determining the color of the fluid, characterized in that said means for projecting a beam of white light includes means for projecting radiation into the near infrared.
  • this device comprises means for collecting the light scattered laterally in the fluid and means for measuring this light.
  • said means for projecting and collecting light comprise a probe immersed in the fluid and comprising: a recess traversing and bathed in the fluid, which is delimited by at least two opposite parallel walls and a third wall perpendicular to the preceding ones, means for projecting a light beam from one of said parallel walls and towards the opposite wall, means provided on said opposite wall for reflecting said beam parallel to itself, means for collecting the reflected beam, which are adjacent to said projection means, and means for collecting the scattered light, which are arranged on said third perpendicular wall.
  • FIG. 1 is a schematic view of a device according to the invention
  • Figure 2 is a detail view, in longitudinal section, of a measuring sunde according to the invention, located in a pipe
  • Figure 3 is a schematic view of a container containing two liquids and equipped with a probe according to the invention.
  • Figure 1 In Figure 1 is shown, in cross section, a pipe 1 which can be traversed by a liquid whose color and turbidity is desired to be controlled at any time.
  • a white light source 2 (arc lamp under xenon atmosphere for example) is associated with an optic 3 making it possible to focus the "white light" beam on the input end 4a of a first optical fiber 4.
  • This first optical fiber 4 enters the pipe 1 and opens inside a probe 10 implanted in the pipe 1 in a sealed manner.
  • the probe 10 has a passage 21 bathed in the liquid.
  • the exit end 4b of the first optical fiber 4 is associated with an optic 5 arranged in the probe 10 to send, through a window 22, a beam of white light into the liquid located in the passage 21, in the direction of a reflecting member 6.
  • This reflecting member is also placed in the probe 10: it is preferably in the form of a cube corner, which makes it possible to obtain relatively large positioning tolerances for the optical components.
  • the reflecting member 6 returns, by total reflection on two of its walls, the beam of light, offset with respect to the incident beam and in the opposite direction, through the liquid and then through the window 22. It will be noted that, if the use a pair of mirrors can actually be envisaged to fulfill the function played by the cube corner, the relative positioning of these two mirrors will be very delicate. The cube corner therefore very advantageously eliminates this positioning problem.
  • An optic 7 disposed on the path of the reflected beam makes it possible to focus the latter on the input end 8a of a second optical fiber 8; this inlet end 8a is arranged inside the probe 10 in the vicinity of the outlet end 4b of the first optical fiber 4.
  • the second optical fiber 8 leaves the pipe 1 to take the light outside that -this.
  • the assembly defined by the optics 5 and 7, the porthole 22 and the reflecting member 6 constitutes a first optical system disposed in the probe 10.
  • the output end 8b of the second optical fiber 8 is associated with an optic 9, a member 11 (a prism for example) for chromatic dispersion of light to form a linear spectrum, an optic 12 and a multipoint linear detector 13 allowing to analyze this linear spectrum.
  • the multipoint linear detector 13 is including a camera-line detector.
  • the information delivered by the multipoint linear detector 13 is sent to a computer 15 through an electronic interface 14 mainly comprising an analog-digital converter and a programmable clock.
  • the white light source 13 may include, against its receiving face of the light spectrum, a degraded attenuator 16 making it possible to correct the differences in light output of the system between blue and red. Indeed, due to this inhomogeneity of transmission, due in particular to the emission characteristics of the white light source
  • the transmission is four to five times greater in red than in blue.
  • the device according to the invention makes it possible to recognize at any time the color of the product circulating in the pipe 1.
  • the light having passed through the product has a spectrum representative of its color, the latter
  • the color recognition makes it possible to identify the nature of the product or of the mixture of products circulating in the pipeline.
  • the device according to the invention allows not only to determine the color of the product circulating in line 1, but also to determine the possible turbidity thereof, and in particular to distinguish a cloudy product from a product opaque to the light radiation used.
  • This light is sent into a third optical fiber 19 associated with a light measuring instrument 20 (avalanche photodiode or photomultiplier, for example).
  • the assembly defined by the window 18 and the optics 17 constitutes a second optical system, disposed in the probe 10.
  • the coefficient T of transmission in the near infrared (0.75 to 0.85 ⁇ m) was measured by means of the second optical fiber, and the flux D of light scattered at 90 ° by means of the third optical fiber.
  • the products tested fell into two categories:
  • T transmission alone cannot therefore be a criterion for differentiating a cloudy product from an opaque product.
  • the third fiber transmitting light scattered at 90 °, is therefore necessary to distinguish a cloudy product from an opaque product.
  • the measurement of the possible attenuation for this radiation, in the axis of the beam will be a measure representative of the turbidity of these products: the observed attenuation cannot indeed correspond than a scattering of light.
  • the use of third optical fiber and the second optical system will therefore not be necessary.
  • the fibers may have great lengths, which makes it possible to carry out the processing of information at a point distant from the measurement point, and therefore under conditions of safety and comfort that are easier to obtain than at the site of the measurement itself.
  • FIG. 2 In Figure 2 is shown, in cross section, a pipe 31 of circular section.
  • This pipe 31 is provided with a lateral opening, in the form of a nozzle formed by a cylindrical sleeve 32 arranged perpendicular to the longitudinal axis of this pipe 31.
  • the cylindrical sleeve 32 ends in a flange 33.
  • a base 34 serving as a cover makes it possible to close the lateral opening of the pipe and is fixed in leaktight manner to the flange 33.
  • a measurement probe 30 is fixed in leaktight manner and by means of screws, to the base 34.
  • the measurement probe 30 mainly comprises a hollow cylindrical body 35, with an outside diameter slightly smaller than the inside diameter of the cylindrical sleeve 32, disposed in this sleeve and fixed in leaktight manner to the base 34.
  • the end of the probe body 35 opposite the base 34 carries two end caps of optical fiber 36, 37 juxtaposed and arranged parallel to the longitudinal axis of the probe body 35.
  • two lenses 38, 39, and in front of them a window 40 sealingly closing the probe body 35.
  • a flat 41 intended to receive a plate.
  • 42 generally in the form of a plate.
  • the plate 42 extends inside the pipe 31, beyond the probe body 35, and it carries at its corresponding end a probe head 43.
  • the probe head 43 is equipped with a reflecting member under the shape of a cube corner prism 44, the diagonal face of which faces the porthole 40.
  • the respective walls of the porthole 40 and the prism 44 disposed facing each other define, with the wall portion of the plate 42 located between them, and perpendicular to these walls, a recess or passage 45 traversed by a fluid which flows in the pipe. 31.
  • the free face of the plate 42 carries an end piece of optical fiber 46 which is parallel to the two end pieces 36, 37 housed in the probe body 35.
  • the end piece 46 is optically coupled with the passage 45 by a lens 47, a prism in the corner of a 90 ° deflection cube, and a porthole 49 which opens tightly into the passage 45.
  • the probe 30 ′ is connected to a data acquisition system, of the type described in relation to FIG. 1, by means of three optical fibers 50, 51, 52. These fibers are, at the outside of the probe 30, protected by an appropriate sheath. 53, this sheath opening into the probe body 35 by means of a sealed passage 54 fixed to the base 34 of the probe 30.
  • the optical fibers 50, 51 are respectively connected to the end caps of fibers 36, 37 of the probe body 35.
  • the optical fiber 52 by virtue of a channel 55 which places the interior of the probe body 35 and the plate 42 in leaktight communication, joins the end fitting 46 of the plate 42.
  • FIG. 3 illustrates the use of a measurement probe 60 to determine the variations in level of the interface 61 between fluids 62, 63 of different color and density, which lie one below the other in a container 64.
  • the mixture of fluids is supplied via a line 65, the upper fluid 62 being taken off through a pipe 66 associated with a pump 67 and the lower fluid 63 discharged through a pipe 68 associated with a valve 69.
  • the probe 60 is immersed in the container 64 and connected to a data acquisition system of the type of that of FIG. 1 by means of optical fibers 70.
  • the optical fibers 70 pass through the free surface of the fluid to exit the container 64.
  • color detected by the probe 60 indicates the fluid in which it bathes.
  • the change in color indicates that the interface 61 is opposite the probe 60.
  • the probe according to the invention is a one-piece assembly grouping together the means for projecting a beam of light into the fluid and the means for collecting the light. Such a probe can thus be inserted very easily into any enclosure or pipe.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Procédé et dispositif pour déterminer la couleur et le degré de turbidité d'un fluide, consistant à projeter dans le fluide un faisceau de lumière blanche (4); recueillir le faisceau (8) après traversée du fluide; assurer la dispersion chromatique de la lumière (11) pour former un spectre comprenant une pluralité de composantes; et mesurer l'intensité lumineuse de chacune desdites composantes pour déterminer la couleur du fluide (13 à 16). Selon l'invention, la lumière blanche inclut un rayonnement dans le domaine du proche infra-rouge et, afin de déterminer le degré de turbidité du fluide, on mesure l'intensité lumineuse des composantes dudit spectre relatives à ce rayonnement (19). Application notamment au contrôle du transport par oléoduc de produits pétroliers liquides.

Description

Procédé et dispositif pour déterminer la couleur et le degré de turbidité d'un fluide.
La présente invention concerne un procédé et un dispositif pour déterminer la couleur et le degré de turbidité d'un fluide confiné par une paroi, par exemple celle d'une enceinte ou d'une canalisation (tuyauterie, pipeline, canal, réservoir, récipient, etc.. à la pression atmosphérique ou sous pression).
L'invention s'applique notamment au contrôle du transport par oléoduc de produits pétroliers liquides tels qu'essence ordinaire ou super carburant, gazole, fuel domestique, etc.. La même canalisation peut servir à transporter successivement l'un ou l'autre de ces produits. Il est donc intéressant de pouvoir déterminer quelle est la couleur du produit ou du mélange de produits qui passe à un instant donné dans une section donnée de canalisation. La présente invention permet de réaliser les opérations à distance, sans prélèvement, de façon étanche et en sécurité (élément détecteur ne comportant ni énergie électrique, ni point chaud), par détermination dès composantes- chromatiques, de la diffusion à 90° et de la transmission afin de mesurer la couleur, la turbidité et l'opacité du produit.
L'invention concerne à cet effet un procédé pour déterminer la couleur et le degré de turbidité d'un fluide confiné par une paroi, par exemple celle d'une enceinte ou d'une canalisation, consistant à projeter dans le fluide un faisceau de lumière blanche, recueillir le faisceau après traversée du fluide, assurer la dispersion chromatique de la lumière pour former un spectre comprenant une pluralité de composantes, et mesurer l'intensité lumineuse de chacune desdites composantes pour déterminer la couleur du fluide, caractérisé en ce que ladite lumière blanche inclut un rayonnement dans le domaine du proche infra-rouge et, afin de déterminer le degré de turbidité du fluide, on mesure l'intensité lumineuse des composantes dudit spectre relatives à ce rayonnement. Il est ainsi possible, selon l'invention, de détecter la turbidité éventuelle d'un fluide, qui est révélatrice de la présence de particules ou de bulles dans le fluide : cette détection fournit donc une information sur l'homogénéité et la propreté du fluide transporté. Dans le cas par exemple des produits pétroliers qui sont -à quelques exceptions près- transparents à un rayonnement dans le proche infra-rouge (longueur d'onde comprise entre 0,75 et 0,85 μm), la mesure de l'atténuation pour ce rayonnement, dans l'axe du faisceau lumineux, permettra de déterminer la turbidité du produit. La lumière blanche projetée dans le fuide inclut en effet des composantes dans le proche infra-rouge.
Par contre, la mesure de la lumière transmise selon l'axe du faisceau, notamment dans le domaine de l'infrarouge proche, ne permet pas de distinguer un fluide trouble d'un fluide opaque au rayonnement lumineux utilisé : dans les deux cas, on constate une forte diminution de la lumière transmise. En revanche, seul le fluide trouble est capable de diffuser latéralement une importante quantité de lumière. Aussi, selon l'invention, on mesure en outre le taux de lumière diffusée latéralement dans le fluide.
De cette façon, il est possible de délecter avec certitude la turbidité du produit et de distinguer un fluide trouble d'un fluide opaque.
L'invention concerne aussi un dispositif pour déterminer la couleur et le degré de turbidité d'un fluide, confiné par une paroi, par exemple celle d'une enceinte ou d'une canalisation, comprenant une source de lumière blanche, des moyens pour projeter un faisceau de lumière dans le fluide, à partir de ladite source, des moyens pour recueillir le faisceau après traversée du fluide, des moyens de dispersion chromatique de la lumière pour former un spectre comprenant une pluralité de composantes ; et des moyens pour mesurer l'intensité lumineuse de chacune desdites composantes et déterminer la couleur du fluide, caractérisé en ce que lesdits moyens pour projeter un faisceau de lumière blanche incluent des moyens pour projeter un rayonnement dans le proche infra-rouge.
Avantageusement, ce dispositif comprend des moyens pour recueillir la lumière diffusée latéralement dans le fluide et des moyens pour mesurer cette lumière.
Avantageusement, lesdits moyens pour projeter et recueillir la lumière comprennent une sonde immergée dans le fluide et comportant: un évidement traversant et baigné par le fluide, qui est délimité par au moins deux parois opposées parallèles et une troisième paroi perpendiculaire aux précédentes, des moyens pour projeter un faisceau lumineux à partir de l'une desdites parois parallèles et en direction de la paroi opposée, des moyens prévus sur ladite paroi opposée pour réfléchir ledit faisceau parallèlement à lui-même, des moyens pour recueillir le faisceau réfléchi, qui sont adjacents auxdits moyens de projection, et des moyens pour recueillir la lumière diffusée, qui sont disposés sur ladite troisième paroi perpendiculaire.
D'autres détails et avantages de l'invention apparaîtront au cours de la description qui suit, d'une forme de réalisation préférée de l'invention, en regard des dessins annexés sur lesquels : la figure 1 est une vue schématique d'un dispositif selon l'invention ; la figure 2 est une vue de détail, en coupe longitudinale, d'une sunde de mesure selon l'invention, implantée dans une canalisation ; la figure 3 est une vue schématique d'un récipient contenant deux liquides et équipé d'une sonde selon l'invention.
Sur la figure 1 est représentée, en section transversale, une canalisation 1 pouvant être parcourue par un liquide dont on souhaite contrôler la couleur et la turbiditité à tout instant.
Une source de lumière blanche 2 (lampe à arc sous atmosphère xénon par exemple) est associée à une optique 3 permettant de focaliser le faisceau de"lumière blanche sur l'extrémité d'entrée 4a d'une première fibre optique 4. Cette première fibre optique 4 pénètre dans la canalisation 1 et débouche à l'intérieur d'une sonde 10 implantée dans la canalisation 1 de façon étanche.
La sonde 10 présente un passage 21 baigné par le liquide. L'extrémité de sortie 4b de la première fibre optique 4 est associée à une optique 5 disposée dans la sonde 10 pour envoyer, à travers un hublot 22, un faisceaude lumière blanche dans le liquide se trouvant dans le passage 21, en direction d'un organe réfléchissant 6. Cet organe réfléchissant est également disposé dans la sonde 10 : il se présente de préférence sous la forme d'un coin de cube, lequel permet d'obtenir des tolérances de positionnement relativement importantes pour les composants optiques.
L'organe réfléchissant 6 renvoie, par réflexion totaie sur deux de ses parois, le faisceau de lumière, décalé par rapport au faisceau incident et en sens inverse, au travers du liquide puis du hublot 22. On remarquera, que, si l'utilisation d'une paire de miroirs peut effectivement être envis'agée pour remplir la fonction jouée par le coin de cube, le positionnement relatif de ces deux miroirs sera fort délicat. Le coin de cube élimine donc de façon très avantageuse ce problème de positionnement.
Une optique 7 disposée sur le trajet du faisceau réfléchi permet de focaliser celui-ci sur l'extrémité d'entrée 8a d'une deuxième fibre optique 8 ; cette extrémité d'entrée 8a est disposée à l'intérieur de la sonde 10 au voisinage de l'extrémité de sortie 4b de la première fibre optique 4. La deuxième fibre optique 8 sort de la canalisation 1 pour emmener la lumière en dehors de celle-ci. L'ensemble défini par les optiques 5 et 7, le hublot 22 et l'organe réfléchissant 6 constitue un premier système optique disposé dans la sonde 10.
L'extrémité de sortie 8b de la deuxième fibre optique 8 est associée à une optique 9, un organe 11 (un prisme par exemple) de dispersion chromatique de la lumière pour former un spectre linéaire, une optique 12 et un détecteur linéaire multipoint 13 permettant d'analyser ce spectre linéaire. Le détecteur linéaire multipoints 13 est notamment un détecteur caméra-ligne.
Les informations délivrées par le détecteur linéaire multipoints 13 sont envoyées vers un calculateur 15 au travers d'un interface électronique 14 comprenant principalement un convertisseur analogique-numérique et une horloge programmable.
Avantageusement, le détecteur linéaire multipoints
13 peut comporter, contre sa face réceptrice du spectre de la lumière, un atténuateur dégradé 16 permettant de corriger les différences de rendement lumineux du système entre le bleu et le rouge. En effet, en raison de cette inhomogénéité de transmission, due en particulier aux caractéristiques d'émission de la source de lumière blanche
2, à l'atténuation spectrale des première et deuxième fibres optiques 4 et 8 à la sensibilité du détecteur linéaire multipoints 13, la transmission est quatre à cinq fois plus grande dans le rouge que dans le bleu.
En utilisant un atténuateur dégradé 16 ayant par exemple un coefficient de transmission de 100 % dans le bleu (λ = 0,4 μ m) et de 20 % dans le rouge (λ = 0,8 μ m), les différences de rendement seront sensiblement corrigées et la répétabilité de la mesure améliorée.
Le dispositif selon l'invention permet de reconnaître à tout instant la couleur du produit circulant dans la canalisation 1. En effet, la lumière ayant traversé le produit a un spectre représentatif de sa couleur, celle-ci
étant aisément déterminée grâce au détecteur linéaire multipoint 13 et aux moyens de traitement constitués par l'interface électronique 14 et par le calculateur 15. La reconnaissance de la couleur permet d'identifier la nature du produit ou du mélange de produits circulant dans la canalisation.
On s'affranchira de la turbidité éventuelle du produit en jouant sur le temps d'intégration du détecteur linéaire multipoint 13, grâce à l'horloge programmable de l'interface électronique 14. De façon très avantageuse, le dispositif selon l'invention permet non seulement de déterminer la couleur du produit circulant dans la canalisation 1, mais aussi de déterminer la turbidité éventuelle de celui-ci, et notamment de distinguer un produit trouble d'un produit opaque au rayonnement lumineux utilisé.
A cet effet, un hublot 18 associé à une optique 17 et disposé à l'intérieur de la sonde 10, au droit du passage 21 baigné par le liquide, permet de recueillir la lumière dans une direction sensiblement perpendiculaire à l'axe du faisceau de lumière incident introduit dans la canalisation par la première fibre Optique 4. Cette lumière est envoyée dans une troisième fibre optique 19 associée à un instrument de mesure de la lumière 20 (photodiode à avalanche ou photomultiplicateur, par exemple). L'ensemble défini par le hublot 18 et l'optique 17, constitue un second système optique, disposé dans la sonde 10.
Des essais en laboratoire effectués au moyen de ce dispositif à trois fibres optiques ont permis de mettre en évidence la nécessité de disposer de la troisième fibre optique pour distinguer un produit trouble d'un produit opaque au rayonnement lumineux utilisé.
Pour différents produits, il a été mesuré le coefficient T de transmission dans le proche infrarouge (0,75 à 0,85 μm) au moyen de la deuxième fibre optique, et le flux D de lumière diffusée à 90° au moyen de la troisième fibre optique. Les produits testés étaient de deux catégories :
- des produits troubles obtenus par addition d'eau dans différents produits pétroliers (c'est-à-dire des produits transparents dans le proche infra-rouge), et brassage par un système à turbine ;
- des produits opaques obtenus par addition de pétrole brut dans ces mêmes produits pétroliers.
Les essais ont concerné trois produits pétroliers :
- le naphta, produit incolore
- le gas-oil, produit jaune
- le fuel domestique, produit rouge
Les résultats d'essais concernant les deux premiers produits sont indiqués ci-dessous : Ceau : concentration volumique en eau (à titre indicatif) en %
Cbrut : concentration volumique en brut en %
T : transmission dans le proche infrarouge en %
D : diffusion à 90° exprimée en mV, tension de sortie du photomultiplicateur utilisé.
A. Produits troubles :
A.1. - Eau dans un produit incolore (naphta)
C T D eau
0,00 100 7 0,01 95 40
0,10 80 60
0,50 20 55
1,00 4 60
A.2. - Eau dans un produit jaune (gas-oil) Ceau T D
0,00 100 8
0,01 51 40
0,05 11 40
0,10 0,04 30 B. Produits opaques :
B.1. - Brut dans un produit incolore (naphta)
Cbrut T D
0 100 7 0,1 60 6
0,5 6 5
1,0 0,2 5
B.2. - Brut dans un produit jaune (gas-oil)
Cbrut T D 0 100 7
0,1 90 5
0,2 64 5
0,5 32 8
1,0 13 4
D'après les résultats ci-dessus, il apparaît que la transmisssion T dans le proche infrarouge décroît lorsque :
- la turbidité du produit s'accroît (concentration en eau augmentant) ;
- l'opacité du produit s'accroît (concentration en brut augmentant) .
La mesure seule de la transmission T ne peut donc être un critère pour différencier un produit trouble d'un produit opaque.
Par contre, il apparaît une différence minimale d'un facteur d'ordre 4 entre la lumière D diffusée à 90° par un produit opaque (D maximale = 8) et par un produit trouble (D minimale = 30) .
La troisième fibre, transmettant la lumière diffusée à 90°, est donc nécessaire pour distinguer un produit trouble d'un produit opaque.
Dans le cas particulier des produits transparents dans le proche infrarouge, la mesure de l'atténuation éventuelle pour ce rayonnement, dans l'axe du faisceau, sera une mesure représentative de la turbidité de ces produits : l'atténuation observée ne pourra en effet correspondre qu'à une diffusion de de la lumière. Pour ce type de produits, l'emploi de la troisième fibre optique et du second système optique ne sera donc pas nécessaire.
On remarquera que l'ensemble des mesures est effectué à partir d'une sonde ne comportant pas d'énergie électrique ni point chaud et pouvant, en conséquence, être installée en atmosphère explosible ou explosive (définies, par exemple, par les normes AFNOR NFC 23.514 ou CENELEC 50014). Les fibres peuvent avoir de grandes longueurs, ce qui permet d'effectuer le traitement des informations en un point éloigné du point de mesure, et par conséquent dans des conditions de sécurité et de confort plus facilesà obtenir que sur le lieu même de la mesure.
Sur la figure 2 est représentée, en coupe transversale, une canalisation 31 de section circulaire. Cette canalisation 31 est pourvue d'une ouverture latérale, sous la forme d'un piquage constitué par un manchon cylindrique 32 disposé perpendiculairement à l'axe longitudinal de cette canalisation 31. Le manchon cylindrique 32 se termine par une bride 33. Une embase 34 servant de couvercle permet de fermer l'ouverture latérale de la canalisation et est fixée de façon étanche sur la bride 33. Par ailleurs, une sonde de mesure 30 est fixée de façon étanche et au moyen de vis, sur l'embase 34. La sonde de mesure 30 comprend principalement un corps 35 cylindrique creux, de diamètre extérieur légèrement inférieur au diamètre intérieur du manchon cylindrique 32, disposé dans ce manchon et fixé de façon étanche à l'embase 34. l 'extrémité du corps de sonde 35 opposée à l'embase 34 porte deux embouts d'extrémité de fibre optique 36, 37 juxtaposés et disposés parallèlement à l'axe longitudinal du corps de sonde 35. Devant les embouts d'extrémité de fibre 36, 37 sont disposées deux lentilles 38, 39, et devant celles-ci un hublut 40 fermant de façon étanche le corps de sonde 35.
Sur la paroi latérale extérieure du corps de sonde 35 est pratiqué un méplat 41 destiné à recevoir une platine 42 en forme générale de plaque. La platine 42 se prolonge à l'intérieur de la canalisation 31, au-delà du corps de sonde 35, et elle porte à son extrémité correspondante une tête de sonde 43. La tête de sonde 43 est équipée d'un organe réfléchissant sous la forme d'un prisme en coin de cube 44, dont la face diagonale fait face au hublot 40.
Les parois respectives du hublot 40 et du prisme 44 disposées en regard définissent, avec la portion de paroi de la platine 42 située entre eux, et perpendiculairement à ces parois, un évidement ou passage 45 traversé par un fluide qui s'écoule dans la canalisation 31.
La face libre de la platine 42 porte un embout d'extrémité de fibre optique 46 qui est parallèle aux deux embouts 36, 37 logés dans le corps de sonde 35. L'embout d'extrémité 46 est couplé optiquement avec le passage 45 par une lentille 47, un prisme en coin de cube de renvoi à 90°, et un hublot 49 qui débouche de façon étanche dans le passage 45.
La sonde 30', telle que définie précédemment, est reliée à un système d'acquisition de données, du type de celui décrit en relation avec la figure 1, au moyen de trois fibres optiques 50, 51, 52. Ces fibres sont, à l'extérieur de la sonde 30, protégées par une gaine approprié-. 53, cette gaine débouchant dans le corps de sonde 35 au moyen d'une traversée étanche 54 fixée sur l'embase 34 de la sonde 30. Les fibres optiques 50, 51 sont reliées respectivement aux embouts d'extrémité de fibres 36, 37 du corps de sonde 35. La fibre optique 52, grâce à un canal 55 mettant en communication étanche l'intérieur du corps de sonde 35 et la platine 42, rejoint l'embout d'extrémité 46 de la pLatine 42.
La figure 3 illustre l'utilisation d'une sonde de mesure 60 pour déterminer les variations de niveau de l'interface 61 entre des fluides 62, 63 de couleur et de densité différentes, qui reposent l'un au-dessous de l'autre dans un récipient 64. Le mélange de fluides est amené par une conduite 65, le fluide supérieur 62 étant prélevé par une conduite 66 associée à une pompe 67 et le fluide inférieur 63 évacué par une conduite 68 associée à une vanne 69.
La sonde 60 est immergée dans le récipient 64 etreliée à un système d'acquisition de données du type de celui de la figure 1 au moyen de fibres optiques 70. Les fibres optiques 70 traversent la surface libre du fluide pour sortir du récipient 64. La couleur détectée par la sonde 60 indique le fluide dans lequel baigne celle-ci. Le changement de couleur signale que l'interface 61 est en regard de la sonde 60.
On remarquera que la sonde selon l'invention, décrite en référence à la figure 2, est un ensemble monobloc regroupant les moyens pour projeter un faisceau de lumière dans le fluide et les moyens pour recueillir la lumière. Une telle sonde peut ainsi être insérée très aisément dans toute enceinte ou canalisation.
Des essais effectués par la Demanderesse ont permis de mettre en évidence la résistance mécanique de la sonde : il été observé que celle-ci résistait de façon satisfaisante à une pression de 150 bars régnant dans une canalisation sous pression.

Claims

REVENDICATIONS
1.- Procédé pour déterminer la couleur et le degré de turbidité d'un fluide confiné par une paroi, par exemple celle d'une enceinte ou d'une canalisation, consistant à :
- projeter dans le fluide un faisceau de lumière blanche ;
- recueillir le faisceau après traversée du fluide ;
- assurer la dispersion chromatique de la lumière pour former un spectre comprenant une pluralité de composantés ; et
- mesurer l'intensité lumineuse de chacune desdites composantes pour déterminer la couleur du fluide, caractérisé en ce que ladite lumière blanche inclut un rayonnement dans le domaine du proche infra-rouge et, afin de déterminer le degré de turbidité du fluide, on mesure l'intensité lumineuse des composantes dudit spectre relatives à ce rayonnement.
2.- Procédé uelun la revendication 1, dans lequel on mesure le taux de lumière diffusée latéralement dans le fluide.
3.- Application du procédé selon la revendication 1 ou la revendication 2, caractérisée en ce qu'il est mis en oeuvre pour assurer la discrimination entre des fluides différents circulant séquentiellement dans une conduite.
4.- Application du procédé selon la revendication 1 ou la revendication 2, caractérisée en ce que celui-ci est mis en oeuvre pour déterminer les variations de niveau de l'interface entre des fluides de couleur différente (62, 63) contenus dans un récipient.
5.- Dispositif pour déterminer la couleur et le degré de turbidité d'un fluide confiné par une paroi, par exemple celle d'une enceinte ou d'une canalisation, comprenant :
- une source de lumière blanche, - des moyens pour projeter un faisceau de lumière dans le fluide, à partir de ladite source, - des moyens pour recueillir le faisceau après traversée du fluide ;
- des moyens de dispersion chromatique de la lumière pour former un spectre comprenant une pluralité de composantes ; et
- des moyens pour mesurer l'intensité lumineuse de chacune desdites composantes et déterminer la couleur du fluide ; caractérisé en ce que lesdits moyens (2 à 5) pour projeter un faisceau de lumière blanche incluent des moyens pour projeter un rayonnement dans le proche infra-rouge.
6.- Dispositif selon la revendication 5, qui comprend des moyens (17 à 19) pour recueillir la lumière diffusée latéralement dans le fluide et des moyens (20) pour mesurer cette lumière.
7.- Dispositif selon la revendication 5, dans lequel lesdits moyens pour projeter et recueillir la lumière comprennent une sonde (30) immergée dans le fluide et comportant : - un évidement (45) traversant et baigné par le fluide, qui est délimité par au moins deux parois opposées parallèles et une troisième paroi perpendiculaire aux précédentes ;
- des moyens (38, 40) pour projeter un faisceau lumineux à partir de l'une desdites parois parallèles et en direction de la paroi opposée ;
- des moyens (44) prévus sur ladite paroi opposée pour réfléchir Ledit faisceau parallèlement à lui-même ;
- des moyens (39, 40) pour recueillir le faisceau réfléchi, qui sont adjacents auxdits moyens de projection
(38, 40) :
- des moyens (47 à 49) pour recueillir la lumière diffusée, qui sont disposés sur ladite troisième paroi perpendiculaire.
8.- Dispositif selon la revendication 7, dans lequel lesdits moyens pour réfléchir le faisceau lumineux comprennent un coin de cube (44) en un matériau transparent.
9.- Dispositif selon la revendication 7 ou la revendication 8, dans lequel les moyens pour recueillir la lumière diffusée comprennent des moyens (48) pour réfléchir la lumière diffusée, parallèlement audit faisceau de lumière.
10.- Dispositif selon l'une quelconque des revendications 5 à 9, dans lequel ladite source de lumière (2), lesdits moyens de dispersiun chromatique (9, 11) et lesdits moyens (20) de mesure de la lumière diffusée sont disposés à distance de ladite enceinte (1) et sont reliés respectivement auxdits moyens (5, 22) pour projeter un faisceau et aux moyens (7, 22 et 17, 18) pour recueillir la lumière, par l'intermédiaire d'au moins une fibre optique ( 4 , 8, 19).
11.- Dispositif selon la revendication 10, dans lequel ladite enceinte (31) comprend une ouverture d'introduction de la sonde, qui est fermée par un couvercle (34)., la sonde (30) étant fixée sur ledit couvercle (34) et chaque fibre optique (50à 52) traversant celui-ci de façon étanche.
EP19860903421 1985-06-06 1986-06-04 Procede et dispositif pour determiner la couleur et le degre de turbidite d'un fluide Withdrawn EP0224536A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8508550 1985-06-06
FR8508550A FR2583164B1 (fr) 1985-06-06 1985-06-06 Procede et dispositif pour determiner la couleur et la turbidite d'un fluide

Publications (1)

Publication Number Publication Date
EP0224536A1 true EP0224536A1 (fr) 1987-06-10

Family

ID=9319939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860903421 Withdrawn EP0224536A1 (fr) 1985-06-06 1986-06-04 Procede et dispositif pour determiner la couleur et le degre de turbidite d'un fluide

Country Status (3)

Country Link
EP (1) EP0224536A1 (fr)
FR (1) FR2583164B1 (fr)
WO (1) WO1986007454A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637083B1 (fr) * 1988-09-28 1990-11-30 Bertin & Cie Procede et dispositif de determination du ph et de la concentration cellulaire dans un milieu de culture de cellules
GB8906554D0 (en) * 1989-03-22 1989-05-04 Harley Phillip E Optical system for detector device
IT1264931B1 (it) * 1993-07-14 1996-10-17 Arcangelo Ventura Dispositivo per il controllo della qualita' di acque depurate particolarmente per impianti biologici di depurazione e simili
FR2763129B1 (fr) * 1997-05-06 1999-07-02 Bertin & Cie Dispositif a fibres optiques de detection automatique de substances etrangeres dans un liquide
DE19948587A1 (de) * 1999-10-08 2001-04-12 Dade Behring Marburg Gmbh Spektralphotometrische und nephelometrische Detektionseinheit
FR2922304B1 (fr) 2007-10-12 2009-11-20 Sp3H Dispositif de spectrometrie pour l'analyse d'un fluide
FR2922303B1 (fr) 2007-10-12 2010-05-07 Sp3H Dispositif de spectrometrie pour l'analyse d'un fluide
FR2922306B1 (fr) * 2007-10-12 2009-11-20 Sp3H Dispositif de spectrometrie pour l'analyse d'un fluide
DE102008010446A1 (de) * 2008-02-21 2009-09-10 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren und optische Sensoranordnung zum Erfassen einer Messgröße eines Mediums, insbesondere zur Trübungsmessung
FR3137451A1 (fr) * 2022-06-30 2024-01-05 Indatech Embout d’immersion et sonde RAMAN associée

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544798A (en) * 1968-04-16 1970-12-01 Bowser Inc Radiation sensitive device for detecting interface between fluids
CH544145A (de) * 1971-07-23 1973-11-15 Mueller Hans Vorrichtung zur Überwachung des Organismenwachstums in Fermentationsgefässen
FR2206001A5 (fr) * 1972-11-07 1974-05-31 Schlumberger Compteurs
GB1557465A (en) * 1977-01-20 1979-12-12 Atomic Energy Authority Uk Transmissometer
GB1602969A (en) * 1977-08-26 1981-11-18 Standard Telephones Cables Ltd Oil-in-water detection system
DE2757197A1 (de) * 1977-12-22 1979-06-28 Zeiss Carl Fa Verfahren und einrichtung zur erkennung von durch truebung der probenloesung hervorgerufenen stoerungen in der absorptions-photometrie
FR2467397A1 (fr) * 1979-10-10 1981-04-17 Morand Christian Procede et dispositif d'analyse par fibres optiques
JPS57101744A (en) * 1980-12-17 1982-06-24 Mitsubishi Electric Corp Optical concentration meter
JPS58103645A (ja) * 1981-12-16 1983-06-20 Matsushita Electric Ind Co Ltd 濁度測定装置
JPS5919839A (ja) * 1982-07-26 1984-02-01 Hiroyasu Funakubo 液体クロマトグラフイ−における検出成分処理方法
JPS59178339A (ja) * 1983-03-29 1984-10-09 Toshiba Corp 吸光度測定装置
JPS59216042A (ja) * 1983-05-24 1984-12-06 Tokyu Car Corp タンクロ−リの油種検知装置
DE3339950A1 (de) * 1983-11-04 1985-05-15 Hartmann & Braun Ag, 6000 Frankfurt Fotometer zur kontinuierlichen analyse eines mediums (gas oder fluessigkeit)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8607454A1 *

Also Published As

Publication number Publication date
WO1986007454A1 (fr) 1986-12-18
FR2583164B1 (fr) 1988-10-14
FR2583164A1 (fr) 1986-12-12

Similar Documents

Publication Publication Date Title
FR2587118A1 (fr) Appareil optique pour la realisation d'analyses immunologiques
US20090216419A1 (en) Methods and Apparatus for Optical Monitoring of Fluid
FR2549224A1 (fr) Mesure par des moyens optiques de parametres d'un fluide
FR2587119A1 (fr) Appareil optique servant a effectuer des analyses
US20110267603A1 (en) Fluid Monitoring Apparatus and Methods
CH623419A5 (fr)
CN108603832A (zh) 用于分析位于产品室中的待分析物品的设备
EP0224536A1 (fr) Procede et dispositif pour determiner la couleur et le degre de turbidite d'un fluide
JPH0625733B2 (ja) 光学的サンプリングを行うためのプローブ、及び光学的サンプリング方法、並びに光反射光学プローブ素子
EP0654661B1 (fr) Détecteur d'intensité lumineuse diffusée par des films de milieux colloidaux
WO2003012409A1 (fr) Dispositif d'analyse par fluorescence induite par laser et appareil de separation avec un tel dispositif
WO2014082957A1 (fr) Sonde pour mesures optiques en milieu turbide, et systeme de mesure optique mettant en oeuvre cette sonde
EP4090941A1 (fr) Dispositif électro-optique de mesures en flux
Qi et al. Quantitative analysis of Raman signal enhancement from aqueous samples in liquid core optical fibers
EP1395809B1 (fr) Refractometre et methode de mesure de l'indice de refraction
EP0822408B1 (fr) Capteur tubulaire à onde évanescente pour spectroscopie d'absorption moléculaire
US20040075827A1 (en) Method and apparatus for measuring the refractive index of at least two samples
Bello et al. Near Infrared Absorption Spectroscopy in Microfluidic Devices with Selectable Pathlength
EP0064110B1 (fr) Appareil de photométrie par diffusion
FR2725788A1 (fr) Refractometre a fibre optique realise en optique guidee
CA2290674A1 (fr) Appareil de mesure de l'evolution des caracteristiques optiques d'un milieu liquide ou gazeux en circulation
EP0316413B1 (fr) Dispositif pour la determination d'au moins la concentration de particules solides en suspension dans un fluide
FR3067458A1 (fr) Systeme spectrophotometre
WO2010037817A1 (fr) Systeme optique anti-reflexion et a large acces pour la mesure d'indicatrices de diffusion de milieux fluides
FR2719903A1 (fr) Procédé et dispositif d'analyse de la composition d'un liquide à l'aide d'un spectrophotomètre à plages de détection multiples.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880819

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VILTART, PATRICK CLAUDE

Inventor name: PAUL, GUY ROGER JEAN

Inventor name: LEQUIME, MICHEL RENE

Inventor name: MAQUAIRE, CLAUDE