EP0222786B1 - Cyclotron - Google Patents

Cyclotron Download PDF

Info

Publication number
EP0222786B1
EP0222786B1 EP86902291A EP86902291A EP0222786B1 EP 0222786 B1 EP0222786 B1 EP 0222786B1 EP 86902291 A EP86902291 A EP 86902291A EP 86902291 A EP86902291 A EP 86902291A EP 0222786 B1 EP0222786 B1 EP 0222786B1
Authority
EP
European Patent Office
Prior art keywords
hills
valleys
sectors
cyclotron
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86902291A
Other languages
German (de)
French (fr)
Other versions
EP0222786A1 (en
Inventor
Yves Jongen
Guido Ryckewaert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Catholique de Louvain UCL
Original Assignee
Universite Catholique de Louvain UCL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Catholique de Louvain UCL filed Critical Universite Catholique de Louvain UCL
Priority to AT86902291T priority Critical patent/ATE54531T1/en
Publication of EP0222786A1 publication Critical patent/EP0222786A1/en
Application granted granted Critical
Publication of EP0222786B1 publication Critical patent/EP0222786B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons

Definitions

  • the present invention relates to a conventional cyclotron of a new design which makes it possible to significantly reduce the energy requirements.
  • cyclotrons using superconductive coils superconductive cyclotrons
  • cyclotrons using non-superconductive coils conventional cyclotrons
  • Superconducting cyclotrons do not use electrical power to maintain the magnetic field necessary to accelerate particles.
  • the technology of superconducting coils and associated cryogenics remains complex and expensive.
  • these coils required liquid helium as the coolant.
  • the acceleration electrodes generally called “dice” are arranged in the air gap. Consequently, the power supplied to the cyclotron must be relatively high to establish the magnetic field in an air gap of increased size.
  • the vacuum box is very simple and inexpensive.
  • each separate sector is equipped with a pair of coils. These coils are of complex shape (sector-shaped) and, to free the free space between the sectors, they must be of minimum section.
  • a conventional cyclotron of the compact type corresponding to the preamble of claim 1 is known from French Patent Application FR-A-2 176 485.
  • the object of the present invention is to provide a new type of non-superconductive cyclotron where the electric power required to produce the magnetic field is much lower than in the above-mentioned conventional cyclotrons, namely the "compact" cyclotron and the separate sector cyclotron. ".
  • a cyclotron according to claim 1 comprising a new magnetic structure where there is a small air gap, which reduces the number of amps / revolution required, but also a pair of essentially circular coils and advantageously of large section, which reduces the current density and therefore the electrical power required to produce the number of amps / turn required.
  • Another object of the invention is to avoid in the new structure the mechanical complexity inherent in so-called "separate sector” cyclotrons.
  • This new structure specific to the conventional cyclotron according to the invention is characterized in that it comprises at least three sectors called “hills” where the air gap is reduced to a dimension close to that of the accelerated beam and where the magnetic flux is essentially concentrated. , separated by sector-shaped spacings called “valleys", where the air gap is very large (for example, but not limited to, where the air gap is of the order of 30 times that of the hills ), so that the magnetic flux is essentially zero and by a single pair of essentially circular coils essentially surrounding the "hills” and the “valleys", flux returns being advantageously arranged outside the coil opposite the "hills ", with a view to closing the magnetic circuit.
  • cyclotron Another advantageous characteristic of the cyclotron according to the invention is that the sectors called “hills” are rigidly assembled on two plates called “yoke” forming covers for the vacuum box and channeling the magnetic flux towards the aforementioned flux returns.
  • the cyclotron preferably comprises four sectors made of a conventional magnetic material.
  • a great advantage of the device according to the invention lies in the fact that the acceleration electrodes can be placed in the "valleys" and that, consequently, the air gap can be reduced to a minimum, that is to say at the location necessary for the circulation of the particles to be accelerated. This results in a notable saving in the energy consumed.
  • Another advantage of the cyclotron according to the design principle of the invention lies in the simplicity of the coils which provide the magnetic induction field.
  • the magnetic flux is concentrated in the "hills" where the air gap is minimum and essentially zero in the "valleys" where the air gap is large.
  • the structure has a symmetry of revolution, with flow returns advantageously arranged in alignment with each of the sectors, which completely eliminates the harmful asymmetries of the magnetic field associated with conventional designs.
  • the design of the cyclotron according to the invention makes it possible to house the vertical beam accelerator electrodes as well as the final stage of the power amplifier directly in the "valleys".
  • the electrode plate is inductively coupled to the cyclotron cavity. The stability of the system is only improved.
  • Conventional cyclotrons also use assemblies of the acceleration electrodes on a vertical beam resonating at half wavelength. These cavities are generally excited from a high frequency power generator, located at a certain distance.
  • Accessory devices such as the outlet conduits, the cyclotron support, the vacuum pumps, are mentioned by way of illustration but are not specific to the cyclotron according to the invention.
  • identical references represent identical or analogous elements.
  • the magnetic structure of the cyclotron has a symmetry with respect to the plane in which the particles are accelerated, called "median plane" 17, for example placed horizontally and with respect to an axis 26 perpendicular to this plane.
  • This magnetic structure consists of a number of elements made of ferromagnetic material (3, 5, 11, 13, 13 ') and a pair of coils made of a conductive material (21, 23).
  • the coils 21 and 23 are essentially circular in shape and are located in the annular space left between the sectors 13 and 13 'and the flow returns 11.
  • these coils have a large section, which results in a low current density. and therefore a low electrical power dissipated to produce the magnetic field.
  • the angular spaces 15 and 15 ', located respectively between the sectors 13 and 13', are called "valleys".
  • the air gap is important, that is to say of very large dimension compared to that of the air gap of the hills because it extends from the upper cylinder head 3 to the cylinder head lower 5. This air gap is, for example, on the order of 30 times greater than the air gap 19.
  • the magnetic flux in the valleys is essentially zero.
  • the central duct 25 is intended to receive, at least in part, the source of particles to be accelerated which are injected into the center of the device by means known per se.
  • the angle of a sector is advantageously of the order of 54 °.
  • a cyclotron according to the invention advantageously comprises the final stages of two high frequency power amplifiers 27 inductively coupled by a loop to the acceleration electrodes 28 with vertical beam 29, which are housed in the "valleys" between the sectors 13, 13 '.
  • the vacuum chamber (31) can advantageously be very simple. It consists of a ring of non-magnetic material, extending from the upper yoke 3 to the lower yoke 5 in the space left between the sectors 13, 13 'and the coils 21, 23.
  • the air gap in the hills is 3 cm and the magnetic field 1.8 T (18 kGs) , while in the valleys the air gap is 106 cm and the magnetic field 0.04 T (0.4 kGs).
  • the number of ampere turns required is 33,000 At per coil, which, with a current density of 50 A / cm 2 in the coils gives a consumed power of 7 kW for the cyclotron according to the invention against 100 kW for a normal cyclotron.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Non supraconductor cyclotrons. According to the invention such a cyclotron (1) comprises a magnetic circuit comprising at least three sectors (13, 13') called ''hills'', wherein the air-gap (19) is reduced to a size similar to that of the accelerated beam and wherein the magnetic flux is substantially concentrated, said hills being separated by spacings (15) configured like sectors called ''valleys'' wherein the air-gap is of a very large size so that the magnetic flux is essentially null and the magnetic circuit is further comprised of a single pair of coils (2), which are substantially circular and surrounding the hills (13, 13') and the valleys (15, 15'). This form of execution enables to achieve important energy savings, the power consumed being reduced for example from 100kW for a normal non supraconductor cyclotron to 7 kW in the form of execution according to the invention.

Description

La présente invention est relative à un cyclotron classique de conception nouvelle qui permet de réduire de manière sensible les besoins en énergie.The present invention relates to a conventional cyclotron of a new design which makes it possible to significantly reduce the energy requirements.

Les cyclotrons connus sont de deux types: les cyclotrons utilisant des bobinages supraconducteurs (cyclotrons supraconducteurs) et les cyclotrons utilisant des bobinages non supraconducteurs (cyclotrons classiques).There are two types of known cyclotrons: cyclotrons using superconductive coils (superconductive cyclotrons) and cyclotrons using non-superconductive coils (conventional cyclotrons).

Les cyclotrons supraconducteurs n'utilisent pas de puissance électrique pour entretenir le champ magnétique nécessaire à l'accélération des particules. Toutefois, la technologie des bobines supraconductrices et de la cryogénie associée restent complexes et coûteuses. De plus, ces bobines requirèrent de l'hélium liquide comme fluide réfrigérant. Ces considérations restreignent fortement l'usage des cyclotrons supraconducteurs.Superconducting cyclotrons do not use electrical power to maintain the magnetic field necessary to accelerate particles. However, the technology of superconducting coils and associated cryogenics remains complex and expensive. In addition, these coils required liquid helium as the coolant. These considerations strongly restrict the use of superconductive cyclotrons.

Par contre, dans le cas des cyclotrons classiques, une part importante de la puissance est utilisée pour produire et profiler le champ magnétique nécessaire à l'accélération des particules.On the other hand, in the case of conventional cyclotrons, a large part of the power is used to produce and profile the magnetic field necessary for the acceleration of the particles.

Il existe actuellement des cyclotrons classiques dits "compacts" qui ne comportent qu'un seul pôle. Dans ce cas, les électrodes d'accélération, généralement appelées "dés" sont disposées dans l'entrefer. Par conséquent, la puissance fournie au cyclotron doit être relativement élevée pour établir le champ magnétique dans un entrefer de taille accrue. En revanche, la boîte à vide est très simple et peu coûteuse.There are currently classic so-called "compact" cyclotrons which have only one pole. In this case, the acceleration electrodes, generally called "dice" are arranged in the air gap. Consequently, the power supplied to the cyclotron must be relatively high to establish the magnetic field in an air gap of increased size. On the other hand, the vacuum box is very simple and inexpensive.

On connaît également des cyclotrons classiques dits "à secteurs séparés", dans lesquels la structure magnétique est divisée en unités séparées, entièrement autonomes, en forme de secteurs. Dans les espaces libres laissés entre ces "secteurs séparés" on a installé les dispositifs d'accélération. Dès lors, l'entrefer des secteurs magnétiques peut être réduit et, par conséquent, le nombre d'ampères/tour requis pour produire le champ magnétique est moins important.Also known are so-called "separate sector" cyclotrons, in which the magnetic structure is divided into separate units, entirely autonomous, in the form of sectors. In the free spaces left between these "separate sectors" the acceleration devices have been installed. Consequently, the air gap of the magnetic sectors can be reduced and, consequently, the number of amps / turn required to produce the magnetic field is less important.

Toutefois, ces cyclotrons présentent une série d'inconvénients. Tout d'abord chaque secteur séparé est équipé d'une paire de bobines. Ces bobines sont de forme complexe (en forme de secteur) et, pour dégager l'espace libre entre les secteurs, elles doivent être de section minimale.However, these cyclotrons have a series of drawbacks. First of all, each separate sector is equipped with a pair of coils. These coils are of complex shape (sector-shaped) and, to free the free space between the sectors, they must be of minimum section.

Ceci entraîne que la densité de courant doit être élevée dans ces bobines et, en conséquence, la puissance électrique requise pour produire le champ magnétique reste élevée bien que le nombre d'ampères/tour soit plus faible.This means that the current density must be high in these coils and, consequently, the electric power required to produce the magnetic field remains high although the number of amps / revolution is lower.

Enfin, les secteurs étant mécaniquement indépendants, la conception mécanique du cyclotron en notamment de la boîte à vide est complexe et coûteuse.Finally, the sectors being mechanically independent, the mechanical design of the cyclotron, in particular of the vacuum box, is complex and expensive.

Un cyclotron classique du type compact correspondant au préambule de la revendication 1 est connu de la Demande de Brevet français FR-A-2 176 485.A conventional cyclotron of the compact type corresponding to the preamble of claim 1 is known from French Patent Application FR-A-2 176 485.

Le but de la présente invention est de fournir un nouveau type de cyclotron non supraconducteur où la puissance électrique requise pour produire le champ magnétique est beaucoup plus faible que dans les cyclotrons classiques précités à savoir le cyclotron "compact" et le cyclotron "à secteurs séparés".The object of the present invention is to provide a new type of non-superconductive cyclotron where the electric power required to produce the magnetic field is much lower than in the above-mentioned conventional cyclotrons, namely the "compact" cyclotron and the separate sector cyclotron. ".

Ce but peut être atteint par un cyclotron selon la revendication 1, comportant une structure magnétique nouvelle où l'on trouve un faible entrefer, ce qui réduit le nombre d'ampères/tour requis, mais aussi une paire de bobines essentiellement circulaires et avantageusement de section importante, ce qui permet de diminuer la densité de courant et donc la puissance électrique requise pour produire le nombre d'ampères/tour requis.This object can be achieved by a cyclotron according to claim 1, comprising a new magnetic structure where there is a small air gap, which reduces the number of amps / revolution required, but also a pair of essentially circular coils and advantageously of large section, which reduces the current density and therefore the electrical power required to produce the number of amps / turn required.

Un autre but de l'invention est d'éviter dans la nouvelle structure la complexité mécanique inhérente aux cyclotrons dits "à secteurs séparés".Another object of the invention is to avoid in the new structure the mechanical complexity inherent in so-called "separate sector" cyclotrons.

Cette nouvelle structure propre au cyclotron classique selon l'invention est caractérisée par ce qu'elle comporte au moins trois secteurs appelés "collines" où l'entrefer est réduit à une dimension voisine de celle du faisceau accéléré et où le flux magnétique est essentiellement concentré, séparés par des espacements en forme de secteur dénommés "vallées", où l'entrefer est de dimension très grande (par exemple, mais de façon non limitative, où l'entrefer est de l'ordre de 30 fois supérieur à celui des collines), pour que le flux magnétique soit essentiellement nul et par une seule paire de bobines essentiellement circulaires entourant essentiellement les "collines" et les "vallées", des retours de flux étant avantageusement disposés à l'extérieur de la bobine en face des "collines", en vue de la fermeture du circuit magnétique.This new structure specific to the conventional cyclotron according to the invention is characterized in that it comprises at least three sectors called "hills" where the air gap is reduced to a dimension close to that of the accelerated beam and where the magnetic flux is essentially concentrated. , separated by sector-shaped spacings called "valleys", where the air gap is very large (for example, but not limited to, where the air gap is of the order of 30 times that of the hills ), so that the magnetic flux is essentially zero and by a single pair of essentially circular coils essentially surrounding the "hills" and the "valleys", flux returns being advantageously arranged outside the coil opposite the "hills ", with a view to closing the magnetic circuit.

Une autre caractéristique avantageuse du cyclotron selon l'invention est que les secteurs appelés "collines" sont assemblés de façon rigide sur deux plaques appelées "culasse" formant couvercles pour la boîte à vide et canalisant le flux magnétique vers les retours de flux précités.Another advantageous characteristic of the cyclotron according to the invention is that the sectors called "hills" are rigidly assembled on two plates called "yoke" forming covers for the vacuum box and channeling the magnetic flux towards the aforementioned flux returns.

Selon l'invention, le cyclotron comporte de préférence quatre secteurs en un matériau magnétique classique.According to the invention, the cyclotron preferably comprises four sectors made of a conventional magnetic material.

Un grand avantage du dispositif selon l'invention réside dans le fait que les électrodes d'accélération peuvent être disposées dans les "vallées" et que, par conséquent, l'entrefer peut être réduit à un minimum, c'est-à-dire à l'emplacement nécessaire pour la circulation des particules à accélérer. Il en résulte une notable économie de l'énergie consommée.A great advantage of the device according to the invention lies in the fact that the acceleration electrodes can be placed in the "valleys" and that, consequently, the air gap can be reduced to a minimum, that is to say at the location necessary for the circulation of the particles to be accelerated. This results in a notable saving in the energy consumed.

Un autre avantage du cyclotron selon le principe de conception de l'invention, réside dans la simplicité des bobines qui fournissent le champ d'induction magnétique.Another advantage of the cyclotron according to the design principle of the invention lies in the simplicity of the coils which provide the magnetic induction field.

Des géométries présentant des similitudes ont déjà été décrites pour des cyclotrons supraconducteurs par les documents US-A-3 925 676; FR-A-2 234 733; IEEE Transactions on Nuclear Science Vol. NS-30 (1983) Aug., No. 4, Part 1, New York, USA p 2126-2128 E. Acerbi; et Nuclear Instruments & Methods in Physics Research, vol. 220 (1984) Febr., No. 1, Amsterdam, Netherlands, p 186-193 U. Trinks.Geometries with similarities have already been described for superconductive cyclotrons by documents US-A-3,925,676; FR-A-2 234 733; IEEE Transactions on Nuclear Science Vol. NS-30 (1983) Aug., No. 4, Part 1, New York, USA p 2126-2128 E. Acerbi; and Nuclear Instruments & Methods in Physics Research, vol. 220 (1984) Febr., No. 1, Amsterdam, Netherlands, p 186-193 U. Trinks.

Toutefois la similitude entre les cyclotrons supraconducteurs cités ci-dessus et le cyclotron non supraconducteur selon l'invention est limitée à la géométrie. Le fonctionnement magnétique est fondamentalement différent.However, the similarity between the superconductive cyclotrons mentioned above and the non-superconductive cyclotron according to the invention is limited to the geometry. Magnetic functioning is fundamentally different.

Pour obtenir un faible nombre d'ampères/tour dans le cyclotron selon l'invention, le flux magnétique est concentré dans les "collines" où l'entrefer est minimum et essentiellement nul dans les "vallées" où l'entrefer est grand.To obtain a low number of amps / revolution in the cyclotron according to the invention, the magnetic flux is concentrated in the "hills" where the air gap is minimum and essentially zero in the "valleys" where the air gap is large.

Dans les cyclotrons supraconducteurs de géométrie similaire, au contraire l'acier est complètement saturé et le flux magnétique est très élevé dans les "vallées" comme dans les "collines" (voir ref. Nuclear Instruments & Methods in Physics Research, vol. 220 (1984) Febr., No. 1, page 187, tableau 1) et l'effet recherchée à savoir réduire le nombre d'ampère tours n'est pas atteint.In superconducting cyclotrons of similar geometry, on the contrary the steel is completely saturated and the magnetic flux is very high in the "valleys" as in the "hills" (see ref. Nuclear Instruments & Methods in Physics Research, vol. 220 ( 1984) Febr., No. 1, page 187, table 1) and the desired effect of reducing the number of ampere turns is not achieved.

Par ailleurs, contrairement aux cyclotrons classiques existants, la structure a une symétrie de révolution, avec des retours de flux disposés avantageusement dans l'alignement de chacun des secteurs, ce qui élimine complètement les dissymétries néfastes du champ magnétique associées aux conceptions classiques.Furthermore, unlike existing conventional cyclotrons, the structure has a symmetry of revolution, with flow returns advantageously arranged in alignment with each of the sectors, which completely eliminates the harmful asymmetries of the magnetic field associated with conventional designs.

En outre, la conception du cyclotron selon l'invention permet de loger les électrodes accélératrices à poutre verticale ainsi que l'étage final de l'amplificateur de puissance directement dans les "vallées". Avantageusement, la plaque de l'électrode est couplée inductivement à la cavité du cyclotron. La stabilité du système n'en est qu'améliorée.In addition, the design of the cyclotron according to the invention makes it possible to house the vertical beam accelerator electrodes as well as the final stage of the power amplifier directly in the "valleys". Advantageously, the electrode plate is inductively coupled to the cyclotron cavity. The stability of the system is only improved.

Bien qu'un tel couplage inductif ait déjà été utilisé dans les cyclotrons classiques, il n'a jamais été utilisé pour résoudre les problèmes de charge variable dans les cyclotrons à haute intensité.Although such an inductive coupling has already been used in conventional cyclotrons, it has never been used to solve the problems of variable charge in high intensity cyclotrons.

Les cyclotrons classiques font également appel à des montages des électrodes d'accélération sur une poutre verticale résonnant à demi- longueur d'onde. Ces cavités sont généralement excitées à partir d'un générateur de puissance à haute fréquence, situé à une certaine distance.Conventional cyclotrons also use assemblies of the acceleration electrodes on a vertical beam resonating at half wavelength. These cavities are generally excited from a high frequency power generator, located at a certain distance.

Par ailleurs, dans le cas des cyclotrons classiques, si l'intensité du faisceau accéléré par le cyclotron est telle que la puissance d'accélération devient comparable à la puissance dissipée par effet Joule dans les cavités, l'impédance shunt apparente de la cavité est diminuée, et le système de couplage est désaccordé, entraînant l'apparition de puissance réfléchie sur la ligne de transmission. Cet effet peut être à l'origine d'instabilités dans le système interactif faisceau- tension accélératrice.Furthermore, in the case of conventional cyclotrons, if the intensity of the beam accelerated by the cyclotron is such that the acceleration power becomes comparable to the power dissipated by the Joule effect in the cavities, the apparent shunt impedance of the cavity is decreased, and the coupling system is out of tune, causing the appearance of reflected power on the transmission line. This effect can cause instabilities in the interactive beam-accelerating system.

D'autres détails et avantages apparaîtront plus clairement dans la description qui suit accompagnée dans figures dans lesquelles:

  • la figure 1 représente une coupe schématique selon le plan médian d'un cyclotron selon l'invention; et
  • la figure 2 représente une coupe selon la ligne II-II de la figure 1.
Other details and advantages will appear more clearly in the description which follows, accompanied in figures in which:
  • Figure 1 shows a schematic section along the median plane of a cyclotron according to the invention; and
  • FIG. 2 represents a section on line II-II of FIG. 1.

Il est bien évident que la présente description n'est donnée qu'à titre d'exemple et qu'elle ne vise pas à limiter la portée de la présente invention.It is obvious that the present description is given by way of example only and that it is not intended to limit the scope of the present invention.

Des dispositifs accessoires tels que les conduits de sortie, le support du cyclotron, les pompes à vide, sont mentionnés à titre d'illustration mais ne sont pas spécifiques au cyclotron selon l'invention. Dans les figures, des repères identiques représentent des éléments identiques ou analogues.Accessory devices such as the outlet conduits, the cyclotron support, the vacuum pumps, are mentioned by way of illustration but are not specific to the cyclotron according to the invention. In the figures, identical references represent identical or analogous elements.

La structure magnétique du cyclotron présente une symétrie par rapport au plan dans lequel les particules sont accélérées, dit "plan médian" 17, par exemple placé horizontalement et par rapport à un axe 26 perpendiculaire à ce plan.The magnetic structure of the cyclotron has a symmetry with respect to the plane in which the particles are accelerated, called "median plane" 17, for example placed horizontally and with respect to an axis 26 perpendicular to this plane.

Cette structure magnétique se compose d'un certain nombre d'éléments réalisés dans un matériau ferromagnétique (3, 5, 11, 13, 13') et d'une paire de bobines réalisées dans un matériau conducteur (21, 23).This magnetic structure consists of a number of elements made of ferromagnetic material (3, 5, 11, 13, 13 ') and a pair of coils made of a conductive material (21, 23).

La structure ferromagnétique se compose de:

  • 1) Deux plaques de base 3 et 5, appelées culasses, par exemple en forme de disques situées essentiellement de façon coaxiale par rapport à l'axe 26, parallèle et symétrique par rapport au plan médian 17, l'une étant au-dessus du plan médian, l'autre étant en-dessous de celui-ci.
  • 2) D'au moins trois secteurs supérieurs 13 et d'un nombre égal de secteurs inférieurs 13' situés l'un en face de l'autre symétriquement par rapport au plan médian 17, séparés par un entrefer 19 minimum, c'est-à-dire réduit à une dimension voisine de la dimension axiale du faisceau accéléré et juste suffisant pour le passage du faisceau de particules, le flux magnétique étant de cette manière essentiellement concentré à cet endroit. Les secteurs 13 et 13' sont fixés rigidement à la culasse supérieure 3 et inférieure 5 et sont appelés collines.
  • 3) D'au moins trois retours de flux 11 réunissent de façon rigide la culasse inférieure 3 et supérieure 5, situés à l'extérieur, en face des secteurs 13 et 13' et séparés de ceux-ci par un espace de forme annulaire dans lequel est située la paire de bobines 21, 23. Outre la fonction mécanique précitée, ces "retours de flux" 11 assurent le retour du flux magnétique tout en laissant accessibles les espaces angulaires 15 et 15' situés entre les collines.
The ferromagnetic structure consists of:
  • 1) Two base plates 3 and 5, called cylinder heads, for example in the form of discs situated essentially coaxially with respect to the axis 26, parallel and symmetrical with respect to the median plane 17, one being above the median plane, the other being below it.
  • 2) At least three upper sectors 13 and an equal number of lower sectors 13 'located one opposite the other symmetrically with respect to the median plane 17, separated by a minimum air gap 19, that is ie reduced to a dimension close to the axial dimension of the accelerated beam and just sufficient for the passage of the particle beam, the magnetic flux being in this way essentially concentrated at this location. The sectors 13 and 13 'are rigidly fixed to the upper 3 and lower 5 yoke and are called hills.
  • 3) At least three flow returns 11 rigidly join the lower 3 and upper 5 yoke, located outside, opposite the sectors 13 and 13 'and separated from these by an annular space in which is located the pair of coils 21, 23. In addition to the aforementioned mechanical function, these "flux returns" 11 ensure the return of the magnetic flux while leaving accessible the angular spaces 15 and 15 'located between the hills.

Les bobines 21 et 23 sont de forme essentiellement circulaires et sont localisées dans l'espace annulaire laissé entre les secteurs 13 et 13' et les retours de flux 11. Avantageusement, ces bobines ont une section importante, ce qui entraîne une faible densité de courant et donc une faible puissance électrique dissipée pour produire le champ magnétique.The coils 21 and 23 are essentially circular in shape and are located in the annular space left between the sectors 13 and 13 'and the flow returns 11. Advantageously, these coils have a large section, which results in a low current density. and therefore a low electrical power dissipated to produce the magnetic field.

Les espaces angulaires 15 et 15', situés respectivement entre les secteurs 13 et 13', sont appelés "vallées". L'entrefer y est important, c'est-à-dire de dimension très grande par rapport à celle de l'entrefer des collines car il s'étend de la culasse supérieure 3 à la culasse inférieure 5. Cet entrefer y est, par exemple, de l'ordre de 30 fois supérieur à l'entrefer 19. Le flux magnétique dans les vallées est essentiellement nul.The angular spaces 15 and 15 ', located respectively between the sectors 13 and 13', are called "valleys". The air gap is important, that is to say of very large dimension compared to that of the air gap of the hills because it extends from the upper cylinder head 3 to the cylinder head lower 5. This air gap is, for example, on the order of 30 times greater than the air gap 19. The magnetic flux in the valleys is essentially zero.

Les divers éléments constitutifs sont assemblés par des moyens connus en soi comme des boulons.The various constituent elements are assembled by means known per se as bolts.

Le conduit central 25 est destiné à recevoir, au moins en partie, la source de particules à accélérer qui sont injectées au centre de l'appareil par des moyens connus en soi.The central duct 25 is intended to receive, at least in part, the source of particles to be accelerated which are injected into the center of the device by means known per se.

Dans le cas représenté d'un cyclotron à quatre secteurs ou à quatre "collines", l'angle d'un secteur est avantageusement de l'ordre de 54°.In the case shown of a cyclotron with four sectors or four "hills", the angle of a sector is advantageously of the order of 54 °.

Un cyclotron selon l'invention comporte avantageusement les étages finals de deux amplificateurs de puissance à haute fréquence 27 couplés inductivement par une boucle aux électrodes d'accélération 28 à poutre verticale 29, qui sont logés dans les "vallées" entre les secteurs 13, 13'.A cyclotron according to the invention advantageously comprises the final stages of two high frequency power amplifiers 27 inductively coupled by a loop to the acceleration electrodes 28 with vertical beam 29, which are housed in the "valleys" between the sectors 13, 13 '.

Dans le cyclotron selon l'invention, la chambre à vide (31) peut avantageusement être très simple. Elle se compose d'un anneau en matériau non magnétique, s'étendant de la culasse supérieure 3 à la culasse inférieure 5 dans l'espace laissé entre les secteurs 13, 13' et les bobines 21, 23.In the cyclotron according to the invention, the vacuum chamber (31) can advantageously be very simple. It consists of a ring of non-magnetic material, extending from the upper yoke 3 to the lower yoke 5 in the space left between the sectors 13, 13 'and the coils 21, 23.

On notera l'avantage de la simplicité d'une paire de grosses bobines et de l'entrefer reduit à un minimum, qui permet d'obtenir des économies d'énergie importantes.Note the advantage of the simplicity of a pair of large coils and the air gap reduced to a minimum, which allows significant energy savings.

À titre d'exemple, on peut mentionner que, dans le cas d'un cyclotron d'une énergie de l'ordre de 30 MeV, l'entrefer dans les collines est de 3 cm et le champ magnétique 1.8 T (18 kGs), tandis que dans les vallées l'entrefer est de 106 cm et le champ magnétique 0.04 T (0,4 kGs). Dans ce cas le nombre d'ampère tours requis est de 33.000 At par bobine, ce qui, avec une densité de courant de 50 A/cm2 dans les bobines donne une puissance consommée de 7 kW pour le cyclotron selon l'invention contre 100 kW pour un cyclotron normal.As an example, we can mention that, in the case of a cyclotron with an energy of about 30 MeV, the air gap in the hills is 3 cm and the magnetic field 1.8 T (18 kGs) , while in the valleys the air gap is 106 cm and the magnetic field 0.04 T (0.4 kGs). In this case the number of ampere turns required is 33,000 At per coil, which, with a current density of 50 A / cm 2 in the coils gives a consumed power of 7 kW for the cyclotron according to the invention against 100 kW for a normal cyclotron.

Notons par exemple que pour un cyclotron supraconducteur selon US-A-3 925 676, le nombre d'ampère tours requis est de 1,8 106 At par bobine (col. 4, ligne 33 à 43).Note, for example, that for a superconductive cyclotron according to US-A-3 925 676, the number of ampere turns required is 1.8 10 6 At per coil (col. 4, line 33 to 43).

Claims (8)

1. Non-superconductive cyclotron of the compact type intended for the acceleration of a beam of particles, comprising a magnetic structure which exhibits a symmetry with respect to a medium plane (17) in which the particles are accelerated by means of accelerating electrodes (28) and with respect to an axis (26) perpendicular to this plane; said magnetic structure comprising:
two base plates (3, 5) situated substantially in a configuration which is coaxial with respect to the axis (26) parallel and symmetrical with respect to the median plane (17), one (3) being above the median plane and the other one (5) being below the latter;
at least three upper sectors (13) and an equal number of lower sectors (13'), rigidly fixed to the respective plates situated one opposite the other, symmetrically with respect to the median plane (17), and axially separated, the opposite sectors being disposed symmetrically with respect to the axis (26) to form alternated regions called "hills" (13, 13') and "valleys" (15, 15'), the axial separation of the sectors defining an air gap (19) of the "hills" and the axial separation of the base plate (3, 5) defining an air gap of the valleys;
flux returns connecting together rigidly the base plates (3, 5);
the base plates (3, 5), the sectors (13, 13') and the flux returns (11) being carried out in a ferromagnetic material;
and a substantially circular pair of windings (21, 23) substantially surrounding the hills (13, 13') and the valleys (15, 15');
the said cyclotron being characterized in that:
the air gap (19) of the hills is reduced to a dimension close to the axial dimension of the accelerated beam and in that the magnetic flux is substantially concentrated therein, while the air gap of the valleys is of a very large dimension with respect to that of the air gap of the hills, in order that the magnetic flux in the valleys should be substantially zero.
2. Cyclotron according to Claim 1, characterized in that the sectors called "hills" are rigidly fixed to a single component constructed of ferromagnetic material.
3. Cyclotron according to Claim 1, characterized in that the air gap of the valleys (15, 15') is of the order of 30 times greater than the air gap (19) of the hills (13, 13').
4. Cyclotron according to Claim 1, characterized in that it includes flux returns fitted (11) outside the pair of annular windings (21, 23), opposite the hills (13, 13'), to form the magnetic circuit.
5. Cyclotron according to Claim 1, characterized in that the sectors (13, 13') designated as hills exhibit an angle of the order of 54°.
6. Cyclotron according to Claim 1, characterized in that the accelerating electrodes (28) are accommodated to the valleys (15, 15').
7. Cyclotron according to Claim 1, characterized in that the final stage of a power amplifier (27) is mounted in the valleys (15, 15').
8. Cyclotron according to Claim 1, characterized in that the final stage of a power amplifier (27) is inductively coupled with the accelerating electrodes (28).
EP86902291A 1985-05-10 1986-04-30 Cyclotron Expired - Lifetime EP0222786B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86902291T ATE54531T1 (en) 1985-05-10 1986-04-30 CYCLOTRON.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU85895 1985-05-10
LU85895A LU85895A1 (en) 1985-05-10 1985-05-10 CYCLOTRON

Publications (2)

Publication Number Publication Date
EP0222786A1 EP0222786A1 (en) 1987-05-27
EP0222786B1 true EP0222786B1 (en) 1990-07-11

Family

ID=19730465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902291A Expired - Lifetime EP0222786B1 (en) 1985-05-10 1986-04-30 Cyclotron

Country Status (6)

Country Link
US (1) US4771208A (en)
EP (1) EP0222786B1 (en)
JP (1) JPH0654719B2 (en)
DE (1) DE3672566D1 (en)
LU (1) LU85895A1 (en)
WO (1) WO1986006924A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1003551A3 (en) * 1989-11-21 1992-04-21 Ion Beam Applic Sa CYCLOTRONS FOCUSED BY SECTORS.
US5139731A (en) * 1991-05-13 1992-08-18 Cti, Incorporated System and method for increasing the efficiency of a cyclotron
BE1005530A4 (en) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochronous
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
BE1009669A3 (en) * 1995-10-06 1997-06-03 Ion Beam Applic Sa Method of extraction out of a charged particle isochronous cyclotron and device applying this method.
US6576916B2 (en) 1998-03-23 2003-06-10 Penn State Research Foundation Container for transporting antiprotons and reaction trap
US5977554A (en) * 1998-03-23 1999-11-02 The Penn State Research Foundation Container for transporting antiprotons
US6414331B1 (en) 1998-03-23 2002-07-02 Gerald A. Smith Container for transporting antiprotons and reaction trap
SE513190C2 (en) * 1998-09-29 2000-07-24 Gems Pet Systems Ab Method and system for minimizing magnetic size in a cyclotron
EP1069809A1 (en) * 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
EP1385362A1 (en) * 2002-07-22 2004-01-28 Ion Beam Applications S.A. Cyclotron provided with new particle beam sweeping means
EP1977631B1 (en) * 2006-01-19 2010-03-03 Massachusetts Institute of Technology Magnet structure for particle acceleration
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
US8153997B2 (en) * 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
EP2410823B1 (en) 2010-07-22 2012-11-28 Ion Beam Applications Cyclotron for accelerating at least two kinds of particles
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP2901823B1 (en) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6121546B2 (en) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド Control system for particle accelerator
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (en) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Superconducting magnetic field stabilizer
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2018009779A1 (en) 2016-07-08 2018-01-11 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP2022524103A (en) 2019-03-08 2022-04-27 メビオン・メディカル・システムズ・インコーポレーテッド Irradiation by column and generation of treatment plan for it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
US3789335A (en) * 1971-10-04 1974-01-29 Thomson Csf Magnetic focusing device for an isochronous cyclotron
FR2176485B3 (en) * 1972-03-20 1978-01-20 Thomson Csf
CA966893A (en) * 1973-06-19 1975-04-29 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Superconducting cyclotron
US3925676A (en) * 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
CA1008125A (en) * 1975-03-07 1977-04-05 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Method and apparatus for magnetic field shimming in an isochronous cyclotron
SU747396A1 (en) * 1979-01-04 1983-12-30 Предприятие П/Я А-7904 Circular cyclotron
US4445102A (en) * 1981-11-19 1984-04-24 The United States Of America As Represented By The United States Department Of Energy Magnet pole tips

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952634B2 (en) 2004-07-21 2015-02-10 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US8344340B2 (en) 2005-11-18 2013-01-01 Mevion Medical Systems, Inc. Inner gantry
US9452301B2 (en) 2005-11-18 2016-09-27 Mevion Medical Systems, Inc. Inner gantry
US8907311B2 (en) 2005-11-18 2014-12-09 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8916843B2 (en) 2005-11-18 2014-12-23 Mevion Medical Systems, Inc. Inner gantry
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8941083B2 (en) 2007-10-11 2015-01-27 Mevion Medical Systems, Inc. Applying a particle beam to a patient
US8970137B2 (en) 2007-11-30 2015-03-03 Mevion Medical Systems, Inc. Interrupted particle source
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
US9185789B2 (en) 2012-09-28 2015-11-10 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US9301384B2 (en) 2012-09-28 2016-03-29 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader

Also Published As

Publication number Publication date
JPH0654719B2 (en) 1994-07-20
EP0222786A1 (en) 1987-05-27
JPS63501533A (en) 1988-06-09
US4771208A (en) 1988-09-13
DE3672566D1 (en) 1990-08-16
LU85895A1 (en) 1986-12-05
WO1986006924A1 (en) 1986-11-20

Similar Documents

Publication Publication Date Title
EP0222786B1 (en) Cyclotron
BE1009669A3 (en) Method of extraction out of a charged particle isochronous cyclotron and device applying this method.
EP0613607B1 (en) Compact isochronic cyclotron
JP2572250B2 (en) Magnetic field generator
EP0359774B1 (en) Electron accelerator with co-axial cavity
EP1130949B1 (en) Electromagnetic device for cold atom production
WO2012004225A1 (en) Cyclotron comprising a means for modifying the magnetic field profile and associated method
WO1983001541A1 (en) Synchronous electric machine with superconductor inducer
BE1019557A3 (en) Synchrocyclotron.
EP0128052B1 (en) Cyclotron with defocusing system
EP0204742A1 (en) Solenoidal magnet with homogeneous magnetic field
EP0203952A1 (en) Ironless solenoidal magnet.
FR2925217A1 (en) HYPERFREQUENCY STRUCTURE FOR MICROWAVE TUBE WITH PERMANENT MAGNET BEAM CONFINEMENT DEVICE AND IMPROVED COOLING
EP3392887A1 (en) System for generating a vectorial magnetic field
BE1003551A3 (en) CYCLOTRONS FOCUSED BY SECTORS.
FR2672730A1 (en) MODEL CONVERTER DEVICE AND POWER DIVIDER FOR MICROWAVE TUBE AND MICROWAVE TUBE COMPRISING SUCH A DEVICE.
FR3026549A1 (en) MAGNETIC CORE OF ROTATING TRANSFORMER
EP2633741B1 (en) Synchrocyclotron
WO2023203016A1 (en) Magnetic coupling device and process for manufacturing such a magnetic coupling device
WO2023170116A1 (en) Cyclotron having separate bi-sectors
FR2473215A1 (en) Electromagnetic multipolar inductor winding - has layered annular and radial conductors defining polar spaces with opposing sense currents circulating round adjacent spaces
WO2018041861A1 (en) Superconductive synchrocyclotron
FR2621439A1 (en) Resonant cavity, coupling device, particle acclerator and travelling-wave tube including such cavities
FR3015109A1 (en) ION SOURCE WITH ELECTRONIC CYCLOTRONIC RESONANCE
EP0813223A1 (en) Magnetic field generation means and ECR ion source using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870515

17Q First examination report despatched

Effective date: 19880803

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 54531

Country of ref document: AT

Date of ref document: 19900715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3672566

Country of ref document: DE

Date of ref document: 19900816

ITF It: translation for a ep patent filed
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86902291.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030417

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030430

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050323

Year of fee payment: 20

Ref country code: SE

Payment date: 20050323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050325

Year of fee payment: 20

Ref country code: GB

Payment date: 20050325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050330

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050427

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060430

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20060430

EUG Se: european patent has lapsed
BE20 Be: patent expired

Owner name: *UNIVERSITE CATHOLIQUE DE LOUVAIN

Effective date: 20060430