EP0359774B1 - Electron accelerator with co-axial cavity - Google Patents

Electron accelerator with co-axial cavity Download PDF

Info

Publication number
EP0359774B1
EP0359774B1 EP88904976A EP88904976A EP0359774B1 EP 0359774 B1 EP0359774 B1 EP 0359774B1 EP 88904976 A EP88904976 A EP 88904976A EP 88904976 A EP88904976 A EP 88904976A EP 0359774 B1 EP0359774 B1 EP 0359774B1
Authority
EP
European Patent Office
Prior art keywords
cavity
electron
external conductor
deflector
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88904976A
Other languages
German (de)
French (fr)
Other versions
EP0359774A1 (en
Inventor
Annick N'guyen
Jacques Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0359774A1 publication Critical patent/EP0359774A1/en
Application granted granted Critical
Publication of EP0359774B1 publication Critical patent/EP0359774B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/10Accelerators comprising one or more linear accelerating sections and bending magnets or the like to return the charged particles in a trajectory parallel to the first accelerating section, e.g. microtrons or rhodotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Definitions

  • the present invention relates to an electron accelerator. It finds application in the irradiation of various substances such as agro-food products, either directly by electrons, or by X-rays obtained by conversion on a heavy metal target.
  • An electron accelerator which generally comprises a resonant cavity supplied by a high frequency field source, and an electron source capable of injecting electrons into the cavity. If certain phase and speed conditions are satisfied, the electrons are accelerated by the electric field throughout their passage through the cavity.
  • the electron beam crosses the cavity several times.
  • the device then comprises an electron deflector receiving the accelerated beam for the first time, deflecting it by approximately 180 ° and reinjecting it into the cavity for a new acceleration.
  • a second deflector can again deflect the beam which has undergone two accelerations, to make it cross a third time the cavity and thus obtain a third acceleration, and so on.
  • This type of accelerator has the following disadvantage.
  • the electron beam follows a path coincident with the axis of the latter.
  • the electric field has only one component which is directed along the axis.
  • the electron beam follows a path which is no longer directed along the axis.
  • a magnetic component perpendicular to the axial component of the electric field can act on the electron beam. This action will result in a deflection of the electrons.
  • This deviation will depend on the phase of the electromagnetic field, which will produce a scattering of the beam, some of which will consequently be lost on the walls of the cavity.
  • this parasitic phenomenon is amplified during multiple crossings.
  • the acceleration takes place in a resonant cavity and after each crossing the electrons are deflected outside the cavity so that they go around it ci and are fed back into the acceleration axis.
  • the electron beam is returned on itself and thus goes back and forth along the axis of the cavity.
  • the electron beam always follows, during its multiple traverses, a path for which the deflecting fields are zero (the electric field is parallel to the velocity vector of the electrons, and in opposite directions).
  • the object of the present invention is precisely to remedy these drawbacks. To this end, it offers an electron accelerator which benefits from the effects of multiple crossings while retaining the condition set out above on the absence of deflecting fields along the paths taken by the electrons, and which simplifies the problems linked to the deflection and reinjection of electrons into the accelerating cavity.
  • the present invention relates to an electron accelerator of the multiple acceleration type mentioned above and described in particular in FR-A-1 136 936 and which is characterized by the fact that the conductors outside and inside the cavity are cylindrical and the electron beam is injected in a plane perpendicular to the axis of the cavity where the radial component of the electric field is maximum and by the fact that the deflection means comprise a first electron deflector having a inlet facing a first outlet opening pierced in the outer conductor and diametrically opposite to the first inlet opening along a first diameter, this first deflector having an outlet facing a second inlet opening pierced in the outer conductor, a second electron deflector having an inlet facing a second outlet opening pierced in the outer conductor and diametrically opposite to the second inlet opening according to a second diameter distinct from the first, this second deflector having an outlet facing a third inlet opening pierced in the outer conductor and possibly other deflectors associated in the same way with
  • a coaxial cavity CC constituted by an external cylindrical conductor 10, an internal cylindrical conductor 20 and two flanges 31 and 32.
  • Such a cavity has an axis A and a median plane Pm, perpendicular to the axis.
  • the electric field E is purely radial in the median plane and decreases on both sides of this plane.
  • the magnetic field is maximum along the flanges and is canceled in the median plane by changing direction.
  • Such a mode can be designated, according to conventional conventions, by TE001, the initials TE recalling that it is a mode where the electric field is transverse, where the first index "0" indicates that the field has symmetry of revolution, the second index "0" indicates that there is no field cancellation along a radius of the cavity, and the third index of value 1 indicates that there is a half-wave of the field in a direction parallel to the axis.
  • Such a cavity can be supplied by a high frequency source SHF coupled to the cavity by a loop 34.
  • the electron beam is injected into the coaxial cavity in the median plane thereof. It is indeed in this plane that there is no parasitic field capable of deflecting the beam. As this point is essential we can stop there.
  • the cavity is seen in cross section in the median plane.
  • the electric fields E1 and E2 are equal along two separate radii.
  • a contour 17 is defined by these two radii and by two arcs of a circle along which the electric field is radial.
  • the circulation of the electric field (that is to say the integral of this field) is zero along this contour. Consequently, the flux of magnetic induction through a surface resting on this contour is also zero. In other words, there is no magnetic component perpendicular to the median plane.
  • FIG. 3 shows, schematically, a complete accelerator according to the invention.
  • the device comprises an electron source S, a coaxial cavity CC, formed of an outer cylindrical conductor 10 and an inner cylindrical conductor 20, two electron deflectors D1 and D2.
  • the operation of this device is as follows.
  • the electron source S emits a beam of electrons Fe directed in the median plane of the coaxial cavity CC shown in section (the plane of the figure being the median plane).
  • the beam enters the cavity through an opening 11. It passes through the cavity along a first diameter d1 of the external conductor.
  • the inner conductor 20 is pierced with two diametrically opposite openings 21 and 22.
  • the electron beam is accelerated by the electric field if the phase and frequency conditions are satisfied (the electric field must remain in the opposite direction to the speed of the electrons).
  • the accelerated beam leaves the cavity through an opening 12 diametrically opposite the opening 11. It is then deflected by a deflector D1.
  • the beam is reintroduced into the coaxial cavity through an opening 13. It then borrows a second diameter d2 and undergoes a second acceleration in the cavity. It comes out through the opening 14. When it exits, the beam is deflected again by a deflector D2 then reintroduced into the cavity by an opening 15. It borrows a third diameter d3 and undergoes a third acceleration, etc.
  • the coaxial nature of the acceleration structure means that the electric field does not have the same direction in the first and in the second half of the path taken by the electrons in the cavity, in other words along the radius which goes from the external conductor. to the inner conductor, then along the radius from the inner conductor to the outer conductor.
  • the spatial variation of the field is accompanied by a temporal variation since the field has a high frequency (a few hundred megahertz).
  • k 1
  • the radius of curvature in one of the deflectors is designated by Rc and by Ra the distance between the axis of the cavity and the inlet eD or the outlet sD of this deflector. These quantities are illustrated in FIG. 4. Furthermore, the angle between two paths is equal to ⁇ / 2n.
  • the electrical quality of an accelerating cavity is classically characterized by its effective impedance-shunt, Zs eff , ratio of the square of the energy gained by the electron during a crossing of the cavity (expressed in electron-volts) at the power dissipated by the Joule effect.
  • the shunt impedances obtained in practice are somewhat lower than the theoretical values, and in fact the dissipated power will be close to 350 kW.
  • the impedance-shunt, for homothetic cavities, is proportional to the root of the wavelength.
  • a cavity operating at 700 MHz increasing the energy of electrons by 5 MeV would therefore consume around 125 kW.
  • the radii of the cavity would differ somewhat, but the shunt impedance would vary little, and as a first approximation the dissipated power would vary in a manner inversely proportional to the number of passages.
  • the powers required are compatible with a continuous operation, and in any case do not require the use of relatively complex and expensive pulse generators.
  • the ohmic losses due to the currents flowing in the flanges of the cavity can be reduced by modifying the shape of the inner conductor, as illustrated in FIG. 5.
  • the inner conductor 20 ends in two frustoconical parts 33 and 35.
  • the inductance of the cavity is reduced. To keep the same frequency, you need to increase the capacitance, so lengthen the cavity a little.
  • the inventors have demonstrated a considerable reduction in the transverse dimensions of the beam and a less great sensitivity to misadjustments by using deflection magnets whose faces, at the entrance and at the exit of the beam, are tangent to a corner dihedral at the apex close to ⁇ (1- (1 / 2n)) if n is the number of beam crossings of the cavity.

Abstract

A co-axial cavity (CC) resonates at the fundamental frequency and electrons are injected in the median plane perpendicular to the axis. The beam can be accelerated several times along different diameters (d1, d2) by reinjection into the cavity, by means of electron deflecters (D1, D2). Used in the irradiation of various substances.

Description

La présente invention a pour objet un accélérateur d'électrons. Elle trouve une application dans l'irradiation de substances diverses telles que produits agro-alimentaires, soit directement par les électrons, soit par des rayonx X obtenus par conversion sur une cible en métal lourd.The present invention relates to an electron accelerator. It finds application in the irradiation of various substances such as agro-food products, either directly by electrons, or by X-rays obtained by conversion on a heavy metal target.

On connaît un accélérateur d'électrons qui comprend, de manière générale, une cavité résonnante alimentée par une source de champ haute fréquence, et une source d'électrons capable d'injecter des électrons dans la cavité. Si certaines conditions de phase et de vitesse sont satisfaites, les électrons sont accélérés par le champ électrique pendant toute leur traversée de la cavité.An electron accelerator is known which generally comprises a resonant cavity supplied by a high frequency field source, and an electron source capable of injecting electrons into the cavity. If certain phase and speed conditions are satisfied, the electrons are accelerated by the electric field throughout their passage through the cavity.

Dans certains types d'accélérateurs, selon ce principe, le faisceau d'électrons traverse plusieurs fois la cavité. Le dispositif comprend alors un déflecteur d'électrons recevant le faisceau accéléré une première fois, le défléchissant d'environ 180° et le réinjectant dans la cavité pour une nouvelle accélération. Un deuxième déflecteur peut à nouveau défléchir le faisceau qui a subi deux accélérations, pour lui faire traverser une troisième fois la cavité et obtenir ainsi une troisième accélération, et ainsi de suite.In certain types of accelerators, according to this principle, the electron beam crosses the cavity several times. The device then comprises an electron deflector receiving the accelerated beam for the first time, deflecting it by approximately 180 ° and reinjecting it into the cavity for a new acceleration. A second deflector can again deflect the beam which has undergone two accelerations, to make it cross a third time the cavity and thus obtain a third acceleration, and so on.

Un tel dispositif est décrit par exemple dans le brevet français n° 1 555 723 intitulé "Accélérateur d'électrons de 100 MeV en régime permanent".Such a device is described, for example, in French patent No. 1,555,723 entitled "Electron accelerator of 100 MeV in steady state".

Ce genre d'accélérateur présente un inconvénient qui est le suivant. Lors de la première injection dans la cavité, le faisceau d'électrons emprunte un trajet confondu avec l'axe de celle-ci. Le long de ce trajet, le champ électrique n'a qu'une composante qui est dirigée suivant l'axe. Il y a donc bien accélération des électrons et il n'y a pas déviation du faisceau puisqu'il n'y a pas de composante transversale du champ magnétique. Cependant, lors de la seconde traversée de la cavité, le faisceau d'électrons emprunte un parcours qui n'est plus dirigé selon l'axe. Une composante magnétique perpendiculaire à la composante axiale du champ électrique peut agir sur le faisceau d'électrons. Cette action va se traduire par une déviation des électrons. Cette déviation dépendra de la phase du champ électromagnétique, ce qui produira une dispersion du faisceau, dont, par voie de conséquence, une partie sera perdue sur les parois de la cavité. Par ailleurs, ce phénomène parasite s'amplifie au cours des traversées multiples.This type of accelerator has the following disadvantage. During the first injection into the cavity, the electron beam follows a path coincident with the axis of the latter. Along this path, the electric field has only one component which is directed along the axis. There is therefore indeed an acceleration of the electrons and there is no deflection of the beam since there is no transverse component of the field magnetic. However, during the second crossing of the cavity, the electron beam follows a path which is no longer directed along the axis. A magnetic component perpendicular to the axial component of the electric field can act on the electron beam. This action will result in a deflection of the electrons. This deviation will depend on the phase of the electromagnetic field, which will produce a scattering of the beam, some of which will consequently be lost on the walls of the cavity. Furthermore, this parasitic phenomenon is amplified during multiple crossings.

On connaît cependant des accélérateurs à passages multiples qui évitent cet écueil grâce à une structure particulière des déflecteurs. Selon une première variante, décrite par exemple dans le brevet américain 3,349,335 les électrons effectuent une boucle complète en dehors de la cavité et sont réinjectés dans l'axe de celle-ci.However, multi-pass accelerators are known which avoid this pitfall thanks to a particular structure of the deflectors. According to a first variant, described for example in American patent 3,349,335 the electrons make a complete loop outside the cavity and are reinjected in the axis of the latter.

Selon une autre variante, décrite dans FR-A-1 136 936, l'accélération s'effectue dans une cavité résonnante et après chaque traversée les électrons sont défléchis à l'extérieur de la cavité pour qu'ils effectuent le tour de celle-ci et soient réinjectés dans l'axe d'accélération.According to another variant, described in FR-A-1,136,936, the acceleration takes place in a resonant cavity and after each crossing the electrons are deflected outside the cavity so that they go around it ci and are fed back into the acceleration axis.

Selon encore une autre variante, appelée parfois "Duotron", le faisceau d'électrons est renvoyé sur lui-même et effectue ainsi un aller et retour le long de l'axe de la cavité.According to yet another variant, sometimes called "Duotron", the electron beam is returned on itself and thus goes back and forth along the axis of the cavity.

Dans ces variantes perfectionnées, le faisceau d'électrons emprunte toujours, au cours de ses multiples traversées, un trajet pour lequel les champs déviateurs sont nuls (le champ électrique est parallèle au vecteur vitesse des électrons, et de sens opposé).In these improved variants, the electron beam always follows, during its multiple traverses, a path for which the deflecting fields are zero (the electric field is parallel to the velocity vector of the electrons, and in opposite directions).

Cependant, ces dispositifs sont complexes de mise en oeuvre : dans les deux premiers, les diverses trajectoires des électrons ont bien une branche commune confondue avec l'axe de la cavité, mais les autres branches sont extérieures à la cavité, ce qui augmente la complexité et l'encombrement du dispositif. Dans le dernier, on est limité à un aller et retour du faisceau et le problème du renvoi des électrons sur eux-mêmes n'est pas simple à résoudre.However, these devices are complex of implementation: in the first two, the various trajectories of the electrons do have a common branch merged with the axis of the cavity, but the other branches are external to the cavity, which increases the complexity and the bulk of the device . In the latter, we are limited to a round trip of the beam and the problem of returning the electrons to themselves is not easy to solve.

La présente invention a justement pour but de remédier à ces inconvénients. A cette fin, elle propose un accélérateur d'électrons qui bénéficie des effets des traversées multiples tout en conservant la condition énoncée plus haut sur l'absence de champs déviateurs le long des trajets empruntés par les électrons, et qui simplifie les problèmes liés à la déflexion et à la réinjection des électrons dans la cavité accélératrice.The object of the present invention is precisely to remedy these drawbacks. To this end, it offers an electron accelerator which benefits from the effects of multiple crossings while retaining the condition set out above on the absence of deflecting fields along the paths taken by the electrons, and which simplifies the problems linked to the deflection and reinjection of electrons into the accelerating cavity.

De façon précise, la présente invention a pour objet un accélérateur d'électrons du type à accélérations multiples évoqué plus haut et décrit notamment dans FR-A-1 136 936 et qui est caractérisé par le fait que les conducteurs extérieur et intérieur de la cavité sont cylindriques et que le faisceau d'électrons est injecté dans un plan perpendiculaire à l'axe de la cavité là où la composante radiale du champ électrique est maximale et par le fait que les moyens de déflexion comprennent un premier déflecteur d'électrons ayant une entrée face à une première ouverture de sortie percée dans le conducteur extérieur et diamétralement opposée à la première ouverture d'entrée selon un premier diamètre, ce premier déflecteur ayant une sortie face à une seconde ouverture d'entrée percée dans le conducteur extérieur, un deuxième déflecteur d'électrons ayant une entrée face à une deuxième ouverture de sortie percée dans le conducteur extérieur et diamétralement opposée à la deuxième ouverture d'entrée selon un deuxième diamètre distinct du premier, ce deuxième déflecteur ayant une sortie face à une troisième ouverture d'entrée percée dans le conducteur extérieur et éventuellement d'autres déflecteurs associés de la même manière à d'autres diamètres du conducteur extérieur tous distincts les uns des autres mais tous situés dans ledit plan.Specifically, the present invention relates to an electron accelerator of the multiple acceleration type mentioned above and described in particular in FR-A-1 136 936 and which is characterized by the fact that the conductors outside and inside the cavity are cylindrical and the electron beam is injected in a plane perpendicular to the axis of the cavity where the radial component of the electric field is maximum and by the fact that the deflection means comprise a first electron deflector having a inlet facing a first outlet opening pierced in the outer conductor and diametrically opposite to the first inlet opening along a first diameter, this first deflector having an outlet facing a second inlet opening pierced in the outer conductor, a second electron deflector having an inlet facing a second outlet opening pierced in the outer conductor and diametrically opposite to the second inlet opening according to a second diameter distinct from the first, this second deflector having an outlet facing a third inlet opening pierced in the outer conductor and possibly other deflectors associated in the same way with other diameters of the external conductor all distinct from each other but all located in said plane.

De toute façon, les caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui suit. Cette description se réfère à des dessins annexés sur lesquels :

  • la figure 1 montre une cavité coaxiale résonnant selon le mode fondamental,
  • la figure 2 permet d'illustrer une propriété de la cavité coaxiale relative à l'absence de champ magnétique dans le plan médian de la cavité,
  • la figure 3 montre, en coupe, un accélérateur d'électrons selon l'invention,
  • la figure 4 illustre des caractéristiques géométriques du dispositif de l'invention, et
  • la figure 5 montre une variante de réalisation de l'invention, destinée à diminuer les pertes ohmiques.
In any case, the characteristics of the invention will appear better in the light of the description which follows. This description refers to attached drawings in which:
  • FIG. 1 shows a coaxial cavity resonating according to the fundamental mode,
  • FIG. 2 illustrates a property of the coaxial cavity relating to the absence of magnetic field in the median plane of the cavity,
  • FIG. 3 shows, in section, an electron accelerator according to the invention,
  • FIG. 4 illustrates geometric characteristics of the device of the invention, and
  • Figure 5 shows an alternative embodiment of the invention, intended to reduce ohmic losses.

Sur la figure 1, on voit une cavité coaxiale CC constituée par un conducteur cylindrique extérieur 10, un conducteur cylindrique intérieur 20 et deux flasques 31 et 32. Une telle cavité possède un axe A et un plan médian Pm, perpendiculaire à l'axe. Parmi tous les modes de résonance possibles d'une telle cavité, il en est un, dit fondamental, de type transverse électrique, pour lequel le champ électrique E est purement radial dans le plan médian et décroit de part et d'autre de ce plan pour s'annuler sur les flasques 31, 32. Inversement, le champ magnétique est maximum le long des flasques et s'annule dans le plan médian en changeant de sens.In FIG. 1, we can see a coaxial cavity CC constituted by an external cylindrical conductor 10, an internal cylindrical conductor 20 and two flanges 31 and 32. Such a cavity has an axis A and a median plane Pm, perpendicular to the axis. Among all the possible resonance modes of such a cavity, there is one, said to be fundamental, of electric transverse type, for which the electric field E is purely radial in the median plane and decreases on both sides of this plane. to cancel on the flanges 31, 32. Conversely, the magnetic field is maximum along the flanges and is canceled in the median plane by changing direction.

Un tel mode peut être désigné, selon des conventions classiques, par TE₀₀₁, les initiales TE rappelant qu'il s'agit d'un mode où le champ électrique est transverse, où le premier indice "0" indique que le champ a la symétrie de révolution, le second indice "0" indique qu'il n'y a pas d'annulation du champ le long d'un rayon de la cavité, et le troisième indice de valeur 1 indique qu'il y a une demi-alternance du champ dans une direction parallèle à l'axe.Such a mode can be designated, according to conventional conventions, by TE₀₀₁, the initials TE recalling that it is a mode where the electric field is transverse, where the first index "0" indicates that the field has symmetry of revolution, the second index "0" indicates that there is no field cancellation along a radius of the cavity, and the third index of value 1 indicates that there is a half-wave of the field in a direction parallel to the axis.

Une telle cavité peut être alimentée par une source haute fréquence SHF couplée à la cavité par une boucle 34.Such a cavity can be supplied by a high frequency source SHF coupled to the cavity by a loop 34.

Selon l'invention, le faisceau d'électrons est injecté dans la cavité coaxiale dans le plan médian de celle-ci. C'est en effet dans ce plan qu'il n'existe aucun champ parasite susceptible de dévier le faisceau. Comme ce point est primordial on peut s'y arrêter. Sur la partie a de la figure 2, on voit la cavité en coupe transversale dans le plan médian. Les champs électriques E1 et E2 sont égaux le long de deux rayons distincts. Un contour 17 est défini par ces deux rayons et par deux arcs de cercle le long desquels le champ électrique est radial. La circulation du champ électrique (c'est-à-dire l'intrégrale de ce champ) est nulle le long de ce contour. En conséquence, le flux de l'induction magnétique à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique perpendiculaire au plan médian.According to the invention, the electron beam is injected into the coaxial cavity in the median plane thereof. It is indeed in this plane that there is no parasitic field capable of deflecting the beam. As this point is essential we can stop there. In part a of FIG. 2, the cavity is seen in cross section in the median plane. The electric fields E1 and E2 are equal along two separate radii. A contour 17 is defined by these two radii and by two arcs of a circle along which the electric field is radial. The circulation of the electric field (that is to say the integral of this field) is zero along this contour. Consequently, the flux of magnetic induction through a surface resting on this contour is also zero. In other words, there is no magnetic component perpendicular to the median plane.

Sur la partie b de cette même figure 2, on voit la cavité en coupe longitudinale. Le champ électrique étant symétrique par rapport au plan médian, les champs E3 et E4 le long de deux rayons infiniment proches et situés de part et d'autre de ce plan, sont égaux. La circulation du champ électrique le long d'un contour 18 constitué par ces deux rayons et par deux branches longitudinales, est nulle. En conséquence, le flux de l'induction à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique dans le plan médian.On part b of this same figure 2, we can see the cavity in longitudinal section. The electric field being symmetrical with respect to the median plane, the fields E3 and E4 the along two infinitely close rays located on either side of this plane, are equal. The circulation of the electric field along a contour 18 constituted by these two rays and by two longitudinal branches, is zero. Consequently, the flux of induction through a surface resting on this contour is also zero. In other words, there is no magnetic component in the median plane.

Ainsi, il n'y a aucune composante magnétique dans le plan médian Pm (ce qui revient à dire, de manière imagée, que le plan médian de la cavité est une zone purement capacitive). Le faisceau d'électrons ne sera donc soumis a aucune force déviatrice.Thus, there is no magnetic component in the median plane Pm (which amounts to saying, pictorially, that the median plane of the cavity is a purely capacitive area). The electron beam will therefore not be subjected to any deflecting force.

La figure 3 montre, de façon schématique, un accélérateur complet conforme à l'invention. Le dispositif comprend une source d'électrons S, une cavité coaxiale CC, formée d'un conducteur cylindrique extérieur 10 et d'un conducteur cylindrique intérieur 20, deux déflecteurs d'électrons D1 et D2.Figure 3 shows, schematically, a complete accelerator according to the invention. The device comprises an electron source S, a coaxial cavity CC, formed of an outer cylindrical conductor 10 and an inner cylindrical conductor 20, two electron deflectors D1 and D2.

Le fonctionnement de ce dispositif est le suivant. La source d'électrons S émet un faisceau d'électrons Fe dirigé dans le plan médian de la cavité coaxiale CC représentée en coupe (le plan de la figure étant le plan médian). Le faisceau pénètre dans la cavité par une ouverture 11. Il traverse la cavité selon un premier diamètre d1 du conducteur extérieur. Le conducteur intérieur 20 est percé de deux ouvertures 21 et 22, diamétralement opposées. Le faisceau d'électrons est accéléré par le champ électrique si les conditions de phase et de fréquence sont satisfaites (le champ électrique doit rester de sens opposé à la vitesse des électrons).The operation of this device is as follows. The electron source S emits a beam of electrons Fe directed in the median plane of the coaxial cavity CC shown in section (the plane of the figure being the median plane). The beam enters the cavity through an opening 11. It passes through the cavity along a first diameter d1 of the external conductor. The inner conductor 20 is pierced with two diametrically opposite openings 21 and 22. The electron beam is accelerated by the electric field if the phase and frequency conditions are satisfied (the electric field must remain in the opposite direction to the speed of the electrons).

Le faisceau accéléré sort de la cavité par une ouverture 12 diamétralement opposée à l'ouverture 11. Il est ensuite défléchi par un déflecteur D1.The accelerated beam leaves the cavity through an opening 12 diametrically opposite the opening 11. It is then deflected by a deflector D1.

Le faisceau est réintroduit dans la cavité coaxiale par une ouverture 13. Il emprunte alors un second diamètre d2 et subit dans la cavité une seconde accélération. Il ressort par l'ouverture 14. A sa sortie, le faisceau est à nouveau défléchi par un déflecteur D2 puis réintroduit dans la cavité par une ouverture 15. Il emprunte un troisième diamètre d3 et subit une troisième accélération, etc...The beam is reintroduced into the coaxial cavity through an opening 13. It then borrows a second diameter d2 and undergoes a second acceleration in the cavity. It comes out through the opening 14. When it exits, the beam is deflected again by a deflector D2 then reintroduced into the cavity by an opening 15. It borrows a third diameter d3 and undergoes a third acceleration, etc.

Le principe de l'accélérateur de l'invention ayant été exposé, quelques considérations pratiques de mise en oeuvre vont maintenant être développées en ce qui concerne notamment la condition de synchronisme à respecter et l'impédance shunt.The principle of the accelerator of the invention having been exposed, some practical considerations of implementation will now be developed with regard in particular to the condition of synchronism to be respected and the shunt impedance.

1. Condition de synchronisme. 1. Condition of synchronism .

Le caractère coaxial de la structure d'accélération entraîne que le champ électrique n'a pas la même direction dans la première et dans la seconde moitié du trajet emprunté par les électrons dans la cavité, autrement dit le long du rayon qui va du conducteur extérieur au conducteur intérieur, puis le long du rayon qui va du conducteur intérieur au conducteur extérieur. La variation spatiale du champ s'accompagne d'une variation temporelle puisque le champ possède une haute fréquence (quelques centaines de Mégahertz). Ces deux variations sont mises à profit en injectant le faisceau de manière telle que le champ électrique s'annule au moment où les électrons traversent le conducteur central. Le temps mis par les électrons à passer d'un conducteur à l'autre doit donc être inférieur à la demi-période du champ ; le temps mis par les électrons pour traverser la totalité de la cavité est donc inférieur à la période du champ. Comme ces électrons sont quasi relativistes on peut considérer que leur vitesse est voisine de la vitesse de la lumière c. On a donc : d2/c<T, condition que l'on peut écrire d2 ≦ λ où λ est la longueur d'onde du champ électromagnétique.The coaxial nature of the acceleration structure means that the electric field does not have the same direction in the first and in the second half of the path taken by the electrons in the cavity, in other words along the radius which goes from the external conductor. to the inner conductor, then along the radius from the inner conductor to the outer conductor. The spatial variation of the field is accompanied by a temporal variation since the field has a high frequency (a few hundred megahertz). These two variations are taken advantage of by injecting the beam in such a way that the electric field is canceled out when the electrons pass through the central conductor. The time taken by the electrons to pass from one conductor to another must therefore be less than the half-period of the field; the time taken by the electrons to cross the entire cavity is therefore less than the field period. As these electrons are almost relativistic we can consider that their speed is close to the speed of light c. We therefore have: d2 / c <T, provided that we can write d2 ≦ λ where λ is the wavelength of the electromagnetic field.

Si l'on désigne par l la longueur du trajet emprunté par les électrons en dehors de la cavité, notamment dans le déflecteur, on doit avoir une condition supplémentaire qui est :
   d2 + l = k λ

Figure imgb0001
où k est un entier.If we denote by l the length of the path taken by the electrons outside the cavity, in particular in the deflector, we must have an additional condition which is:
d2 + l = k λ
Figure imgb0001
where k is an integer.

Il est souhaitable, pour réduire l'encombrement du dispositif, de prendre k=1. Mais dans certains cas particuliers, on pourrait être amené à choisir k=2 (par exemple, pour loger plus facilement un système de focalisation entre les aimants de déflexion et la cavité, ou pour avoir un plus grand rayon de courbure, afin d'utiliser une induction plus faible).To reduce the size of the device, it is desirable to take k = 1. But in certain particular cases, one could have to choose k = 2 (for example, to accommodate more easily a focusing system between the magnets of deflection and cavity, or to have a larger radius of curvature, in order to use a weaker induction).

On supposera par la suite que la condition d2+l=λ

Figure imgb0002
est satisfaite.We will assume later that the condition d2 + l = λ
Figure imgb0002
is satisfied.

On désigne par Rc le rayon de courbure dans l'un des déflecteurs et par Ra la distance entre l'axe de la cavité et l'entrée eD ou la sortie sD de ce déflecteur. Ces grandeurs sont illustrées sur la figure 4. Par ailleurs, l'angle entre deux trajets est égal à π/2n. On a donc les relations suivantes :

Figure imgb0003

d'où
Figure imgb0004

   Par exemple, pour n=6 et n=8 on aura respectivement :
Figure imgb0005

   Pour une longueur d'onde de 3m, ce qui correspond à une fréquence de 100 MHz, on aura respectivement :
Ra = 101 cm   Rc = 27 cm
Ra = 111 cm   Rc = 22,1 cm
   Le rayon extérieur R2 délimitant le champ de la cavité doit évidemment être inférieur à Rc pour tenir compte de l'épaisseur de la paroi et permettre éventuellement de loger entre celle-ci et le déflecteur des dispositifs de focalisation auxiliaires. Les dimensions calculées ci-dessus sont compatibles avec ces exigences pratiques.The radius of curvature in one of the deflectors is designated by Rc and by Ra the distance between the axis of the cavity and the inlet eD or the outlet sD of this deflector. These quantities are illustrated in FIG. 4. Furthermore, the angle between two paths is equal to π / 2n. So we have the following relationships:
Figure imgb0003

from where
Figure imgb0004

For example, for n = 6 and n = 8 we will have respectively:
Figure imgb0005

For a wavelength of 3m, which corresponds to a frequency of 100 MHz, we will have respectively:
Ra = 101 cm Rc = 27 cm
Ra = 111 cm Rc = 22.1 cm
The external radius R2 delimiting the field of the cavity must obviously be less than Rc to take account of the thickness of the wall and possibly allow housing between it and the deflector of the auxiliary focusing devices. The dimensions calculated above are compatible with these practical requirements.

2. Impédance-shunt2. Impedance-shunt

La qualité électrique d'une cavité accélératrice est classiquement caractérisée par son impédance-shunt efficace, Zseff, rapport du carré de l'énergie gagnée par l'électron au cours d'une traversée de la cavité (exprimée en électron-volt) à la puissance dissipée par effet Joule.The electrical quality of an accelerating cavity is classically characterized by its effective impedance-shunt, Zs eff , ratio of the square of the energy gained by the electron during a crossing of the cavity (expressed in electron-volts) at the power dissipated by the Joule effect.

A titre d'exemple, pour une cavité fonctionnant à 100 MHz, en prenant R2=0,8m, on obtient un maximum assez plat de Zseff au voisinage de (R1/R2)=1/4.For example, for a cavity operating at 100 MHz, taking R2 = 0.8m, a fairly flat maximum of Zs eff is obtained in the vicinity of (R1 / R2) = 1/4.

Dans ces conditions, le calcul donne Zseff ≃ 10 MΩet pour obtenir un gain d'énergie de 10 MeV avec six passages la puissance dissipée serait de 278 kW.Under these conditions, the calculation gives Zs eff ≃ 10 MΩ and to obtain an energy gain of 10 MeV with six passages, the power dissipated would be 278 kW.

Les impédances-shunt obtenues en pratique sont quelque peu inférieures aux valeurs théoriques, et en fait la puissance dissipée sera voisine de 350 kW.The shunt impedances obtained in practice are somewhat lower than the theoretical values, and in fact the dissipated power will be close to 350 kW.

L'impédance-shunt, pour des cavités homothétiques, est proportionnelle à la racine de la longueur d'onde. Une cavité fonctionnant à 700 MHz accroîssant l'énergie des électrons de 5 MeV consommerait donc environ 125 kW.The impedance-shunt, for homothetic cavities, is proportional to the root of the wavelength. A cavity operating at 700 MHz increasing the energy of electrons by 5 MeV would therefore consume around 125 kW.

Pour un nombre de passages différent, les rayons de la cavité diffèreraient quelque peu, mais l'impédance-shunt varierait peu, et en première approximation la puissance dissipée varierait d'une façon inversement proportionnelle au nombre de passages.For a different number of passages, the radii of the cavity would differ somewhat, but the shunt impedance would vary little, and as a first approximation the dissipated power would vary in a manner inversely proportional to the number of passages.

On a donc intérêt à utiliser un grand nombre de passages. On est en pratique limité dans cette voie par la diminution corrélative des rayons de courbure du faisceau dans les aimants de déviation, qui d'une part entraîne une diminution de la section de passage offerte au faisceau et d'autre part nécessite une augmentation de l'induction.It is therefore advantageous to use a large number of passages. We are in practice limited in this way by the correlative reduction in the radii of curvature of the beam in the deflection magnets, which on the one hand results in a reduction in the cross-section offered to the beam and on the other hand requires an increase in l 'induction.

Les puissances nécessaires sont compatibles avec un fonctionnement en continu, et en tout cas ne requièrent pas l'usage de générateurs d'impulsions relativement complexes et coûteux.The powers required are compatible with a continuous operation, and in any case do not require the use of relatively complex and expensive pulse generators.

On peut diminuer les pertes ohmiques dues aux courants circulant dans les flasques de la cavité en modifiant la forme du conducteur intérieur, comme illustré sur la figure 5. Le conducteur intérieur 20 se termine par deux parties tronconiques 33 et 35. L'inductance de la cavité s'en trouve diminuée. Pour conserver la même fréquence, il faut augmenter la capacitance, donc allonger un peu la cavité.The ohmic losses due to the currents flowing in the flanges of the cavity can be reduced by modifying the shape of the inner conductor, as illustrated in FIG. 5. The inner conductor 20 ends in two frustoconical parts 33 and 35. The inductance of the cavity is reduced. To keep the same frequency, you need to increase the capacitance, so lengthen the cavity a little.

Le bénéfice tiré d'une telle disposition en ce qui concerne l'impédance-shunt n'est pas très important (de l'ordre de 10%). Toutefois, cette disposition présente l'avantage de diminuer fortement la puissance maximale dissipée par unité de surface (2 à 4 fois moins qu'avec la cavité coaxiale), ce qui peut être intéressant pour faciliter le refroidissement et diminuer des effets gênants (flèche, tensions internes, etc) dus au gradient thermique dans les parois.The benefit from such a provision with regard to impedance-shunt is not very significant (of the order of 10%). However, this arrangement has the advantage of greatly reducing the maximum power dissipated per unit of area (2 to 4 times less than with the coaxial cavity), which may be advantageous for facilitating cooling and reducing annoying effects (arrow, internal tensions, etc.) due to the thermal gradient in the walls.

D'autre part, les inventeurs ont mis en évidence une réduction considérable des dimensions transversales du faisceau et une moins grande sensibilité aux déréglages en utilisant des aimants de déviation dont les faces, à l'entrée et à la sortie du faisceau, sont tangentes à un dièdre d'angle au sommet voisin de π(1-(1/2n)) si n est le nombre de traversées de la cavité par le faisceau.On the other hand, the inventors have demonstrated a considerable reduction in the transverse dimensions of the beam and a less great sensitivity to misadjustments by using deflection magnets whose faces, at the entrance and at the exit of the beam, are tangent to a corner dihedral at the apex close to π (1- (1 / 2n)) if n is the number of beam crossings of the cavity.

Claims (3)

  1. Electron accelerator of the type comprising a resonant cavity with an external conductor (10) and an internal conductor (20) having the same axis of revolution (A), a high frequency source (SHF) coupled to the cavity and supplying an electromagnetic field at a resonance frequency of the cavity, an electron source (S) able to inject into said cavity an electron beam (Fe) across a first inlet opening (11) in the external conductor (10), the beam being injected along an electric field line (E) of the resonant cavity, electron deflection means positioned outside the cavity, said accelerator being characterized in that the external and internal conductors of the cavity are cylindrical and that the electron beam is injected into a plane perpendicular to the cavity axis, where the radial component of the electric field is at a maximum and in that the deflection means comprise a first electron deflector (D1) having an inlet facing a first outlet opening (12) in the external conductor (10) and diametrically opposite to the first inlet opening (11) along a first diameter (d1), said first deflector having an outlet facing a second inlet opening (13) in the external conductor (10), a second electron deflector (D2) having an inlet facing a second outlet opening (14) in the external conductor (10) and diametrically opposite to the second inlet opening (13) along a second diameter (d2) separate from the first (d1), said second deflector (D2) having an outlet facing a third inlet opening (15) in the external conductor (10) and optionally further deflectors associated in the same way with other diameters of the external conductor (10), which are all separate from one another, but all located in said plane.
  2. Accelerator according to claim 1, characterized in that the internal conductor (20) has truncated cone-shaped ends (33, 35).
  3. Accelerator according to at least one of the claims 1 and 2, having n passages of the cavity by the beam, characterized in that use is made of electron deflectors with magnets, whose faces, at the entrance and exit of the beam, are tangential to a dihedron with an apex angle close to π(1-1/2n).
EP88904976A 1987-05-26 1988-05-25 Electron accelerator with co-axial cavity Expired - Lifetime EP0359774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8707378A FR2616032B1 (en) 1987-05-26 1987-05-26 COAXIAL CAVITY ELECTRON ACCELERATOR
FR8707378 1987-05-26

Publications (2)

Publication Number Publication Date
EP0359774A1 EP0359774A1 (en) 1990-03-28
EP0359774B1 true EP0359774B1 (en) 1993-04-28

Family

ID=9351457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88904976A Expired - Lifetime EP0359774B1 (en) 1987-05-26 1988-05-25 Electron accelerator with co-axial cavity

Country Status (11)

Country Link
US (1) US5107221A (en)
EP (1) EP0359774B1 (en)
JP (1) JP2587281B2 (en)
KR (1) KR960014439B1 (en)
AU (1) AU613381B2 (en)
CA (1) CA1306075C (en)
DE (1) DE3880681T2 (en)
ES (1) ES2007889A6 (en)
FR (1) FR2616032B1 (en)
IL (1) IL86448A (en)
WO (1) WO1988009597A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650448B1 (en) * 1989-07-27 1994-09-02 Commissariat Energie Atomique FREE ELECTRON LASER WITH IMPROVED ELECTRON ACCELERATOR
BE1004879A3 (en) * 1991-05-29 1993-02-16 Ion Beam Applic Sa Electron accelerator improved coaxial cavity.
FR2680940B1 (en) * 1991-08-28 1997-01-03 Commissariat Energie Atomique ELECTROSTATIC ACCELERATOR AND FREE ELECTRON LASER USING THE ACCELERATOR.
FR2684512B1 (en) * 1991-11-28 1997-04-18 Commissariat Energie Atomique RESONANT CAVITY ELECTRON ACCELERATOR.
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6557640B1 (en) * 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
GB2344606B (en) 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
AU770359B2 (en) 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
EG22306A (en) 1999-11-15 2002-12-31 Shell Int Research Expanding a tubular element in a wellbore
WO2004081346A2 (en) 2003-03-11 2004-09-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
AU2003230589A1 (en) 2002-04-12 2003-10-27 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
CA2482278A1 (en) 2002-04-15 2003-10-30 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
JP3712386B2 (en) * 2002-08-29 2005-11-02 株式会社半導体理工学研究センター Defect evaluation equipment using positrons
AU2003265452A1 (en) 2002-09-20 2004-04-08 Enventure Global Technology Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
FR2852480B1 (en) * 2003-03-10 2005-04-15 Commissariat Energie Atomique SOURCE OF POSITRON
US6818902B2 (en) * 2003-03-10 2004-11-16 Commissariat A L'energie Atomique Positron source
FR2852481B1 (en) * 2003-03-10 2005-05-06 SOURCE OF POSITONS
CA2523862C (en) 2003-04-17 2009-06-23 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US20050025901A1 (en) * 2003-07-31 2005-02-03 Kerluke David R. Method of curing coatings on automotive bodies using high energy electron beam or X-ray
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
WO2006020960A2 (en) 2004-08-13 2006-02-23 Enventure Global Technology, Llc Expandable tubular
WO2008138998A1 (en) * 2007-05-16 2008-11-20 Ion Beam Applications S.A. Electron accelerator and device using same
EP2509399B1 (en) 2011-04-08 2014-06-11 Ion Beam Applications Electron accelerator having a coaxial cavity
EP2804451B1 (en) * 2013-05-17 2016-01-06 Ion Beam Applications S.A. Electron accelerator having a coaxial cavity
EP3102009A1 (en) 2015-06-04 2016-12-07 Ion Beam Applications S.A. Multiple energy electron accelerator
EP3319403B1 (en) 2016-11-07 2022-01-05 Ion Beam Applications S.A. Compact electron accelerator comprising first and second half shells
EP3319402B1 (en) * 2016-11-07 2021-03-03 Ion Beam Applications S.A. Compact electron accelerator comprising permanent magnets
EP3661335B1 (en) 2018-11-28 2021-06-30 Ion Beam Applications Vario-energy electron accelerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1136936A (en) * 1954-10-18 1957-05-21 Method and apparatus for accelerating electrically charged particles
GB1016622A (en) * 1963-09-03 1966-01-12 Ass Elect Ind Improvements relating to electron accelerators
FR1555723A (en) * 1967-11-21 1969-01-31
FR2260253B1 (en) * 1974-02-04 1976-11-26 Cgr Mev

Also Published As

Publication number Publication date
DE3880681D1 (en) 1993-06-03
DE3880681T2 (en) 1993-10-14
FR2616032B1 (en) 1989-08-04
EP0359774A1 (en) 1990-03-28
AU613381B2 (en) 1991-08-01
IL86448A0 (en) 1988-11-15
KR960014439B1 (en) 1996-10-15
WO1988009597A1 (en) 1988-12-01
ES2007889A6 (en) 1989-07-01
JP2587281B2 (en) 1997-03-05
KR890702416A (en) 1989-12-23
US5107221A (en) 1992-04-21
JPH02503609A (en) 1990-10-25
AU1943788A (en) 1988-12-21
CA1306075C (en) 1992-08-04
IL86448A (en) 1991-08-16
FR2616032A1 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
EP0359774B1 (en) Electron accelerator with co-axial cavity
EP0613607B1 (en) Compact isochronic cyclotron
FR2803715A1 (en) STATIONARY WAVE PARTICLE BEAM ACCELERATOR
EP0496681A1 (en) Device for the distribution of microwave energy for excitation of a plasma
EP1095390B1 (en) Multibeam electronic tube with magnetic field for correcting beam trajectory
FR2546358A1 (en) ION SOURCE WITH ELECTRON CYCLOTRON RESONANCE
EP0239466B1 (en) Klystron output circuit, and klystron comprising it
FR2684512A1 (en) RESONANT CAVITY ELECTRON ACCELERATOR.
EP2873306B1 (en) Coaxial microwave applicator for plasma production
EP0410880B1 (en) Free electron laser with improved electron accelerator
EP0532411B1 (en) Electron cyclotron resonance ion source with coaxial injection of electromagnetic waves
EP0499514B1 (en) Mode converter and power-dividing device for a microwave tube, and microwave tube with such a device
EP0946961B1 (en) Magnetic system, particularly for ecr sources, for producing closed surfaces of equimodule b of any form and dimensions
EP0295981B1 (en) Electron curtain accelerator
FR2544128A1 (en) DEVICE FOR INJECTING AN ELECTRON BEAM FOR A MICROWAVE FREQUENCY RADIO WAVE GENERATOR
EP0514255B1 (en) Electron cyclotron resonance ion source
FR2463500A1 (en) DEVICE FOR ELECTRONIC TUNING OF A POWER MAGNETRON
FR2629976A1 (en) LINEAR ACCELERATOR WITH SELF-COATING CAVITIES WITH HIGH ELECTRONIC CAPTURE RATES FOR MODERN INJECTION VOLTAGES
EP0122186B1 (en) Microwave generator
FR2691287A1 (en) New extended interaction output circuit for a broadband relativistic klystron.
FR2985366A1 (en) Microwave frequency generator, has waveguides equipped with sealing units, and sealing units allowing supply and/or extraction of electromagnetic waves from cavity by waveguides when sealing units are in pass configuration
WO2023170116A1 (en) Cyclotron having separate bi-sectors
EP0813223A1 (en) Magnetic field generation means and ECR ion source using the same
FR2612726A1 (en) Particle accelerator device including a subharmonic cavity
FR2820880A1 (en) Semiconductor material etching ion source multiple charged beam having ionization reactor with extractor wall/ionization input and input/output poles with enclosing flux magnetic field.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920623

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3880681

Country of ref document: DE

Date of ref document: 19930603

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88904976.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070503

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070615

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070717

Year of fee payment: 20

BE20 Be: patent expired

Owner name: COMMISSARIAT A L'ENERGIE *ATOMIQUE

Effective date: 20080525

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080524