EP0295981B1 - Electron curtain accelerator - Google Patents

Electron curtain accelerator Download PDF

Info

Publication number
EP0295981B1
EP0295981B1 EP88401255A EP88401255A EP0295981B1 EP 0295981 B1 EP0295981 B1 EP 0295981B1 EP 88401255 A EP88401255 A EP 88401255A EP 88401255 A EP88401255 A EP 88401255A EP 0295981 B1 EP0295981 B1 EP 0295981B1
Authority
EP
European Patent Office
Prior art keywords
cavity
electrons
axis
cathode
median plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88401255A
Other languages
German (de)
French (fr)
Other versions
EP0295981A1 (en
Inventor
Jean-Pierre Gueguen
Annick N'guyen
Jacques Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0295981A1 publication Critical patent/EP0295981A1/en
Application granted granted Critical
Publication of EP0295981B1 publication Critical patent/EP0295981B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators

Definitions

  • the present invention relates to a sheet electron accelerator. It finds an application in the irradiation of various substances and in particular in the polymerization or crosslinking of materials in the form of sheets or strips.
  • a vacuum bell 2 comprises, at its lower part, an outlet window 3, grounded, and at its upper part, a cathode K supported by an insulator 4.
  • the cathode is connected to the negative pole of a HT source high voltage, a few hundred thousand volts.
  • An electric field E directed towards the cathode accelerates the electrons emitted by this one until the exit window. An electron sheet is thus formed and accelerated. It bombs a band 5 which passes under the bell.
  • Such a device has many drawbacks.
  • the use of a voltage of a few hundred kilovolts means that the cathode has to be supported by high quality insulators. It is also necessary to provide a sealed crossing supporting such a voltage.
  • the cathode is made emissive by heating, it is necessary that the source of heating current is itself at high voltage which is not very convenient. This drawback can possibly be remedied by making the cathode emissive by ion bombardment using an ion source located at the window. But the complexity of the device is increasing.
  • the object of the present invention is precisely to remedy these drawbacks. To this end, it offers an electron accelerator which uses a cavity whose original shape, in this application, makes it possible to obtain the same uniform accelerating field without deviating magnetic field. This result is obtained by the use of a general structure of coaxial shape.
  • the subject of the present invention is a sheet electron accelerator, comprising a linear cathode emitting a sheet-like electron beam, a accelerating structure in which there is an electric field directed in the plane of the sheet, characterized in that the accelerating structure is a resonant coaxial cavity having a fundamental resonance mode consisting of an outer cylindrical conductor and an inner cylindrical conductor having the same axis, this cavity being closed by two flanges perpendicular to the axis, this cavity being excited by a high frequency source at the resonance frequency of the fundamental mode, and by the fact that the cathode is contained in the median plane of the perpendicular cavity at the axis, the electron beam emitted by the cathode being injected into the cavity in this median plane, the outer and inner cylinders being pierced with openings, in the form of arcs of a circle centered on the axis of the cavity for the passage of the beam.
  • the accelerating structure is a resonant coaxial cavity having a fundamental resonance mode
  • FIG. 2 we see a coaxial cavity CC constituted by an external cylindrical conductor 10, an internal cylindrical conductor 20 and two flanges 31 and 32.
  • a cavity has an axis A and a median plane Pm, perpendicular to the axis.
  • the resonance modes possible of such a cavity there is one, said to be fundamental, of transverse electric type, for which the electric field E is purely radial in the median plane. This field decreases on either side of this plane to come to cancel on the flanges 31, 32.
  • the magnetic field is maximum along the flanges and is canceled in the median plane by changing direction.
  • Such a mode can be designated, according to conventional conventions, by TE001, the initials TE recalling that it is a mode where the electric field is transverse, where the first index "0" indicates that the field has symmetry of revolution, the second index "0” indicates that there is no field cancellation along a radius of the cavity, and the third index of value "1" indicates that there is a half -alternation of the field in a direction parallel to the axis.
  • Such a cavity can be supplied by a high frequency source SHF coupled to the cavity by a loop 34.
  • the electron sheet is injected into the coaxial cavity in the median plane thereof. It is indeed in this plane that there is no parasitic field capable of deflecting the beam. As this point is essential we can stop there.
  • the cavity is seen in cross section in the median plane.
  • the electric fields E1 and E2 are equal along two separate radii.
  • a contour 17 is defined by these two radii and by two arcs of a circle along which the electric field is radial.
  • the circulation of the electric field (that is to say the integral of this field) is zero along this contour. Consequently, the flux of magnetic induction through a surface resting on this contour is also zero. In other words, there is no magnetic component perpendicular to the median plane.
  • Figure 4 shows, schematically, a sheet accelerator according to the invention.
  • Part a is a longitudinal section and part b is a section in the median plane of the cavity.
  • the device comprises a cathode K, a coaxial cavity CC, formed of an external cylindrical conductor 10 and an internal cylindrical conductor 20 having the same axis A.
  • the cathode is in the form of an arc of a circle centered on the axis A of the cavity and it is located in the median plane Pm thereof.
  • the operation of this device is as follows.
  • the cathode K emits a beam of electrons Fe directed in the median plane Pm of the coaxial cavity CC.
  • the beam enters the cavity through an opening 11, in the form of a slit, pierced in the external conductor.
  • the inner conductor 20 is pierced with two openings 21 and 22, which are also in the form of slots and symmetrical with respect to the axis.
  • the electron beam is accelerated by the electric field prevailing in the coaxial cavity, if certain phase conditions are satisfied.
  • the beam leaves the cavity through an opening 12, in the form of a slot, pierced in the external conductor and diametrically opposite to the opening 11.
  • the accelerated beam irradiates the strip 5 which passes under the cavity.
  • the coaxial nature of the acceleration structure means that, at each instant, the electric field does not have the same direction in the first and in the second half of the path taken by the electrons, in other words along rays which go from the outer conductor to inner conductor, then along the spokes from the inner conductor to the conductor outside. But the field is at high frequency (a few hundred MHz). It reverses periodically. The electron beam is therefore injected in such a way that the electric field is canceled out and changes direction when the electrons pass through the central conductor. the time taken by the electrons to pass from one conductor to another must therefore be less than the half-period of the field; the time taken by the electrons to cross the entire cavity is therefore less than the field period.
  • the dose is strictly speaking homogeneous only if the strip is arranged so as to follow the shape of a cylinder coaxial with the cavity (by a system of rollers for example).
  • part a is a section perpendicular to the median plane and part b is a section in the median plane, therefore in the plane of the electron beam.
  • the pole pieces 41-42, on the one hand, and 43-44, on the other hand, define two air gaps with parallel edges.
  • the magnets have a thickness which increases as one moves away from the median plane Pm (part b).
  • the path traveled by the electrons between the pole pieces is therefore longer for the electrons which follow trajectories distant from the median plane than for the trajectories close to this plane.
  • the action of the magnetic field is therefore prolonged for the former and abridged for the latter.
  • the strongly inclined paths are therefore more curved than the others, which gives the beam parallel paths.
  • FIG. 7 illustrates another variant of these deflection means.
  • the pole pieces 51-52, on the one hand, and 53-54, on the other hand, define air gaps which tighten when moving away from the axis.
  • the magnetic field between such pole pieces increases as one moves outward. We thus find a greater deflection for the trajectories located far from the median plane than for the trajectories close to this one.
  • the calculation shows that, for a 400 keV machine, the optimum is obtained for R2 ⁇ 0.265 ⁇ and R1 ⁇ (R2 / 5), ⁇ being the wavelength.
  • the shunt impedances obtained in practice are somewhat lower (typically 30%) than the calculated values.
  • the power dissipated in the cavity would be close to 33 kW for a 400 keV machine.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Description

La présente invention a pour objet un accélérateur d'électrons à nappe. Elle trouve une application dans l'irradiation de diverses substances et notamment dans la polymérisation ou la réticulation de matériaux se présentant sous forme de feuilles ou de bandes.The present invention relates to a sheet electron accelerator. It finds an application in the irradiation of various substances and in particular in the polymerization or crosslinking of materials in the form of sheets or strips.

On connaît déjà des accélérateurs d'électrons à nappe. La figure 1 en rappelle le principe. Une cloche à vide 2 comprend, à sa partie inférieure, une fenêtre de sortie 3, mise à la terre, et à sa partie supérieure, une cathode K soutenue par un isolateur 4. La cathode est reliée au pôle négatif d'une source HT de haute tension continue, de quelques centaines de milliers de volts. Un champ électrique E, dirigé vers la cathode accélère les électrons émis par celle-ci jusqu'à la fenêtre de sortie. Une nappe d'électrons est ainsi formée et accélérée. Elle vient bombarder une bande 5 qui défile sous la cloche.We already know about accelerators of tablecloth electrons. Figure 1 recalls the principle. A vacuum bell 2 comprises, at its lower part, an outlet window 3, grounded, and at its upper part, a cathode K supported by an insulator 4. The cathode is connected to the negative pole of a HT source high voltage, a few hundred thousand volts. An electric field E, directed towards the cathode accelerates the electrons emitted by this one until the exit window. An electron sheet is thus formed and accelerated. It bombs a band 5 which passes under the bell.

Un tel dispositif présente de nombreux inconvénients. L'utilisation d'une tension de quelques centaines de kilovolts, oblige à supporter la cathode par des isolateurs de grande qualité. Il faut également prévoir une traversée étanche supportant une telle tension.Such a device has many drawbacks. The use of a voltage of a few hundred kilovolts means that the cathode has to be supported by high quality insulators. It is also necessary to provide a sealed crossing supporting such a voltage.

Si la cathode est rendue émissive par chauffage, il faut que la source de courant de chauffage soit elle-même à la haute tension ce qui n'est guère commode. On peut éventuellement remédier à cet inconvénient en rendant la cathode émissive par bombardement ionique à l'aide d'une source d'ions située au niveau de la fenêtre. Mais la complexité du dispositif s'accroît.If the cathode is made emissive by heating, it is necessary that the source of heating current is itself at high voltage which is not very convenient. This drawback can possibly be remedied by making the cathode emissive by ion bombardment using an ion source located at the window. But the complexity of the device is increasing.

Pour éviter ces inconvénients, on peut penser accélérer les électrons par un champ haute fréquence et non plus électrostatique. Ce champ peut être établi dans une enceinte conductrice résonnante. La cathode peut alors être portée à un potentiel très voisin de celui de l'enceinte et il n'y a plus besoin de générateur ni d'isolateur haute tension. En outre la cathode peut être placée à l'extérieur de l'enceinte, ce qui facilite la maintenance de l'appareil généralement délicate sur les appareils électrostatiques.To avoid these drawbacks, we can think of accelerating the electrons by a high frequency field and no longer electrostatic. This field can be established in a resonant conductive enclosure. The cathode can then be brought to a potential very close to that of the enclosure and there is no longer high voltage generator and insulator needed. In addition, the cathode can be placed outside the enclosure, which facilitates maintenance of the device, which is generally delicate on electrostatic devices.

Pour mettre en oeuvre ce concept d'accélérateur on peut penser utiliser une cavité résonnante parallélépipédique. Le mode de vibration intéressant est tel que le champ électrique, dirigé selon la plus petite dimension de la cavité, est constant selon cette direction, mais distribué sinusoïdalement selon les deux autres dimensions : il est maximum au centre et nul aux bords. En disposant une source d'électrons allongée selon la plus grande longueur, on pourrait accélérer les électrons par le champ resonnant ainsi établi.To implement this concept of accelerator we can think of using a parallelepiped resonant cavity. The interesting vibration mode is such that the electric field, directed along the smallest dimension of the cavity, is constant along this direction, but distributed sinusoidally along the other two dimensions: it is maximum in the center and zero at the edges. By having an electron source elongated along the greatest length, one could accelerate the electrons by the resonant field thus established.

Cette disposition simple présenterait cependant deux inconvénients :

  • 1) le champ électrique n'est plus uniforme, mais présente un maximum au centre. Il en résulte que l'énergie atteinte finalement par les électrons est fonction de la trajectoire des électrons : l'énergie n'est plus uniforme dans une section droite de la nappe.
  • 2) Dans le plan médian de la cavité, au voisinage duquel se trouvent les trajectoires électroniques, il existe une composante transversale du champ magnétique. Ce champ dévie la trajectoire des électrons et cette déviation est fonction de la phase de l'onde. Le faisceau obtenu ne permet plus d'assurer une irradiation homogène.
This simple arrangement would however have two drawbacks:
  • 1) the electric field is no longer uniform, but has a maximum in the center. It follows that the energy finally reached by the electrons is a function of the trajectory of the electrons: the energy is no longer uniform in a cross section of the sheet.
  • 2) In the median plane of the cavity, in the vicinity of which the electronic trajectories are, there is a transverse component of the magnetic field. This field deviates the trajectory of the electrons and this deviation is a function of the phase of the wave. The beam obtained no longer ensures uniform irradiation.

La présente invention a justement pour but de remédier à ces inconvénients. A cette fin, elle propose un accélérateur d'électrons qui utilise une cavité dont la forme originale, dans cette application, permet d'obtenir un même champ accélérateur uniforme sans champ magnétique déviateur. Ce résultat est obtenu par l'utilisation d'une structure générale de forme coaxiale.The object of the present invention is precisely to remedy these drawbacks. To this end, it offers an electron accelerator which uses a cavity whose original shape, in this application, makes it possible to obtain the same uniform accelerating field without deviating magnetic field. This result is obtained by the use of a general structure of coaxial shape.

De façon précise, la présente invention a pour objet un accélérateur d'électrons nappe, comprenant une cathode linéaire émettant un faisceau d'électrons en forme de nappe, une structure accélératrice où règne un champ électrique dirigé dans le plan de la nappe, caractérisé par le fait que la structure accélératrice est une cavité coaxiale résonante ayant un mode de résonance fondamental constituée d'un conducteur cylindrique extérieur et d'un conducteur cylindrique intérieur ayant même axe, cette cavité étant fermée par deux flasques perpendiculaires à l'axe, cette cavité étant excitée par une source haute fréquence à la fréquence de résonance du mode fondamental, et par le fait que la cathode est contenue dans le plan médian de la cavité perpendiculaire à l'axe, le faisceau d'électrons émis par la cathode étant injecté dans la cavité dans ce plan médian, les cylindres extérieur et intérieur étant percés d'ouvertures, en forme d'arcs de cercle centrés sur l'axe de la cavité pour le passage du faisceau.Specifically, the subject of the present invention is a sheet electron accelerator, comprising a linear cathode emitting a sheet-like electron beam, a accelerating structure in which there is an electric field directed in the plane of the sheet, characterized in that the accelerating structure is a resonant coaxial cavity having a fundamental resonance mode consisting of an outer cylindrical conductor and an inner cylindrical conductor having the same axis, this cavity being closed by two flanges perpendicular to the axis, this cavity being excited by a high frequency source at the resonance frequency of the fundamental mode, and by the fact that the cathode is contained in the median plane of the perpendicular cavity at the axis, the electron beam emitted by the cathode being injected into the cavity in this median plane, the outer and inner cylinders being pierced with openings, in the form of arcs of a circle centered on the axis of the cavity for the passage of the beam.

De toute façon, les caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui suit. Cette description se réfère à des dessins annexés sur lesquels :

  • la figure 1, déjà décrite, montre un dispositif de l'art antérieur,
  • la figure 2 représente une cavité coaxiale résonnant selon le mode fondamental,
  • la figure 3 permet d'illustrer une propriété de la cavité coaxiale relative à l'absence de champ magnétique dans le plan médian de la cavité,
  • la figure 4 montre un accélérateur d'électrons selon l'invention,
  • La figure 5 illustre une variante de l'invention utilisant des moyens de déflexion magnétique,
  • La figure 6 illustre un premier mode de réalisation de moyens de déflexion magnétique,
  • la figure 7 illustre un deuxième mode de réalisation de moyens de déflexion magnétique, et
  • la figure 8 illustre une variante de réalisation à faibles pertes.
In any case, the characteristics of the invention will appear better in the light of the description which follows. This description refers to attached drawings in which:
  • FIG. 1, already described, shows a device of the prior art,
  • FIG. 2 represents a coaxial cavity resonating according to the fundamental mode,
  • FIG. 3 illustrates a property of the coaxial cavity relating to the absence of magnetic field in the median plane of the cavity,
  • FIG. 4 shows an electron accelerator according to the invention,
  • FIG. 5 illustrates a variant of the invention using magnetic deflection means,
  • FIG. 6 illustrates a first embodiment of magnetic deflection means,
  • FIG. 7 illustrates a second embodiment of magnetic deflection means, and
  • FIG. 8 illustrates an alternative embodiment with low losses.

Sur la figure 2, on voit une cavité coaxiale CC constituée par un conducteur cylindrique extérieur 10, un conducteur cylindrique intérieur 20 et deux flasques 31 et 32. Une telle cavité possède un axe A et un plan médian Pm, perpendiculaire à l'axe. Parmi tous les modes de résonance possibles d'une telle cavité, il en est un, dit fondamental, de type transverse électrique, pour lequel le champ électrique E est purement radial dans le plan médian. Ce champ décroît de part et d'autre de ce plan pour venir s'annuler sur les flasques 31, 32. Inversement, le champ magnétique est maximum le long des flasques et s'annule dans le plan médian en changeant de sens.In FIG. 2, we see a coaxial cavity CC constituted by an external cylindrical conductor 10, an internal cylindrical conductor 20 and two flanges 31 and 32. Such a cavity has an axis A and a median plane Pm, perpendicular to the axis. Among all the resonance modes possible of such a cavity, there is one, said to be fundamental, of transverse electric type, for which the electric field E is purely radial in the median plane. This field decreases on either side of this plane to come to cancel on the flanges 31, 32. Conversely, the magnetic field is maximum along the flanges and is canceled in the median plane by changing direction.

Un tel mode peut être désigné, selon des conventions classiques, par TE₀₀₁, les initiales TE rappelant qu'il s'agit d'un mode où le champ électrique est tranverse, où le premier indice "0" indique que le champ a la symétrie de révolution, le second indice "0" indique qu'il n'y a pas d'annulation du champ le long d'un rayon de la cavité, et le troisième indice de valeur "1" indique qu'il y a une demi-alternance du champ dans une direction parallèle à l'axe.Such a mode can be designated, according to conventional conventions, by TE₀₀₁, the initials TE recalling that it is a mode where the electric field is transverse, where the first index "0" indicates that the field has symmetry of revolution, the second index "0" indicates that there is no field cancellation along a radius of the cavity, and the third index of value "1" indicates that there is a half -alternation of the field in a direction parallel to the axis.

Une telle cavité peut être alimentée par une source haute fréquence SHF couplée à la cavité par une boucle 34.Such a cavity can be supplied by a high frequency source SHF coupled to the cavity by a loop 34.

Selon l'invention, la nappe d'électrons est injectée dans la cavité coaxiale dans le plan médian de celle-ci. C'est en effet dans ce plan qu'il n'existe aucun champ parasite susceptible de dévier le faisceau. Comme ce point est primordial on peut s'y arrêter. Sur la partie a de la figure 2, on voit la cavité en coupe transversale dans le plan médian. Les champs électriques E1 et E2 sont égaux le long de deux rayons distincts. Un contour 17 est défini par ces deux rayons et par deux arcs de cercle le long desquels le champ électrique est radial. La circulation du champ électrique (c'est-à-dire l'intégrale de ce champ) est nulle le long de ce contour. En conséquence, le flux de l'induction magnétique à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique perpendiculaire au plan médian.According to the invention, the electron sheet is injected into the coaxial cavity in the median plane thereof. It is indeed in this plane that there is no parasitic field capable of deflecting the beam. As this point is essential we can stop there. In part a of FIG. 2, the cavity is seen in cross section in the median plane. The electric fields E1 and E2 are equal along two separate radii. A contour 17 is defined by these two radii and by two arcs of a circle along which the electric field is radial. The circulation of the electric field (that is to say the integral of this field) is zero along this contour. Consequently, the flux of magnetic induction through a surface resting on this contour is also zero. In other words, there is no magnetic component perpendicular to the median plane.

Sur la partie b de cette même figure 2, on voit la cavité en coupe longitudinale. Le champ électrique étant symétrique par rapport au plan médian, les champs E3 et E4 le long de deux rayons infiniment proches et situés de part et d'autre de ce plan, sont égaux. La circulation du champ électrique le long d'un contour 18 constitué par ces deux rayons et par deux branches longitudinales, est nulle. En conséquence, le flux de l'induction à travers une surface s'appuyant sur ce contour est nul lui aussi. En d'autres termes, il n'y a pas de composante magnétique dans le plan médian.On part b of this same figure 2, we can see the cavity in longitudinal section. The electric field being symmetrical with respect to the median plane, the fields E3 and E4 along two infinitely close rays and located on either side of this plane, are equal. The circulation of the electric field along a contour 18 constituted by these two rays and by two longitudinal branches, is zero. Consequently, the flux of induction through a surface resting on this contour is also zero. In other words, there is no magnetic component in the median plane.

Ainsi, il n'y a aucune composante magnétique dans le plan médian Pm, ce qui revient à dire, de manière imagée, que le plan médian de la cavité est une zone purement capacitive. Dans ce plan, le faisceau d'électrons ne sera donc soumis à aucune force déviatrice.Thus, there is no magnetic component in the median plane Pm, which amounts to saying, pictorially, that the median plane of the cavity is a purely capacitive area. In this plane, the electron beam will therefore not be subjected to any deflecting force.

La figure 4 montre, de façon schématique, un accélérateur à nappe conforme à l'invention. La partie a est une coupe longitudinale et la partie b une coupe dans le plan médian de la cavité. Le dispositif comprend une cathode K, une cavité coaxiale CC, formée d'un conducteur cylindrique extérieur 10 et d'un conducteur cylindrique intérieur 20 ayant même axe A. La cathode est en forme d'arc de cercle centré sur l'axe A de la cavité et elle est située dans le plan médian Pm de celle-ci.Figure 4 shows, schematically, a sheet accelerator according to the invention. Part a is a longitudinal section and part b is a section in the median plane of the cavity. The device comprises a cathode K, a coaxial cavity CC, formed of an external cylindrical conductor 10 and an internal cylindrical conductor 20 having the same axis A. The cathode is in the form of an arc of a circle centered on the axis A of the cavity and it is located in the median plane Pm thereof.

Le fonctionnement de ce dispositif est le suivant. La cathode K émet un faisceau d'électrons Fe dirigé dans le plan médian Pm de la cavité coaxiale CC. Le faisceau pénètre dans la cavité par une ouverture 11, en forme de fente, percée dans le conducteur extérieur. Le conducteur intérieur 20 est percé de deux ouvertures 21 et 22, elles aussi en forme de fentes et symétriques par rapport à l'axe. Le faisceau d'électrons est accéléré par le champ électrique qui règne dans la cavité coaxiale, si certaines conditions de phase sont satisfaites. Le faisceau sort de la cavité par une ouverture 12, en forme de fente, percée dans le conducteur extérieur et diamétralement opposée à l'ouverture 11. Le faisceau accéléré vient irradier la bande 5 qui défile sous la cavité.The operation of this device is as follows. The cathode K emits a beam of electrons Fe directed in the median plane Pm of the coaxial cavity CC. The beam enters the cavity through an opening 11, in the form of a slit, pierced in the external conductor. The inner conductor 20 is pierced with two openings 21 and 22, which are also in the form of slots and symmetrical with respect to the axis. The electron beam is accelerated by the electric field prevailing in the coaxial cavity, if certain phase conditions are satisfied. The beam leaves the cavity through an opening 12, in the form of a slot, pierced in the external conductor and diametrically opposite to the opening 11. The accelerated beam irradiates the strip 5 which passes under the cavity.

Le caractère coaxial de la structure d'accélération entraîne que, à chaque instant, le champ électrique n'a pas le même sens dans la première et dans la seconde moitié du trajet emprunté par les électrons, autrement dit le long de rayons qui vont du conducteur extérieur au conducteur intérieur, puis le long des rayons qui vont du conducteur intérieur au conducteur extérieur. Mais le champ est à haute fréquence (quelques centaines de MHz ). Il s'inverse périodiquement. On injecte donc le faisceau d'électrons de manière telle que le champ électrique s'annule et change de sens au moment où les électrons traversent le conducteur central. le temps mis par les électrons pour passer d'un conducteur à l'autre doit donc être inférieur la demi-période du champ ; le temps mis par les électrons pour traverser la totalité de la cavité est donc inférieur à la période du champ.The coaxial nature of the acceleration structure means that, at each instant, the electric field does not have the same direction in the first and in the second half of the path taken by the electrons, in other words along rays which go from the outer conductor to inner conductor, then along the spokes from the inner conductor to the conductor outside. But the field is at high frequency (a few hundred MHz). It reverses periodically. The electron beam is therefore injected in such a way that the electric field is canceled out and changes direction when the electrons pass through the central conductor. the time taken by the electrons to pass from one conductor to another must therefore be less than the half-period of the field; the time taken by the electrons to cross the entire cavity is therefore less than the field period.

On observera que l'utilisation d'une structure coaxiale permet d'obtenir une propriété remarquable qui est l'uniformité de l'accélération dans la nappe électronique. En effet, chaque électron émis par la cathode en direction de l'axe de la cavité va suivre une trajectoire radiale dans cette cavité et se trouver sousmis à un champ accélérateur dirigé selon cette trajectoire. Par ailleurs, ce champ est le même quel que soit le rayon emprunté dans le secteur angulaire défini par la nappe. Ainsi, à la sortie de la cavité, tous les électrons auront subi la même accélération et possèderont donc la même énergie.It will be observed that the use of a coaxial structure makes it possible to obtain a remarkable property which is the uniformity of the acceleration in the electronic ribbon. In fact, each electron emitted by the cathode in the direction of the axis of the cavity will follow a radial trajectory in this cavity and be subjected to an accelerating field directed along this trajectory. Furthermore, this field is the same regardless of the radius used in the angular sector defined by the sheet. Thus, at the exit of the cavity, all the electrons will have undergone the same acceleration and will therefore have the same energy.

Si l'on veut irradier un matériau se présentant en forme de bande, la dose n'est en toute rigueur homogène que si la bande est disposée de façon à épouser la forme d'un cylindre coaxial à la cavité (par un système de galets par exemple).If one wishes to irradiate a material in the form of a strip, the dose is strictly speaking homogeneous only if the strip is arranged so as to follow the shape of a cylinder coaxial with the cavity (by a system of rollers for example).

Si l'on utilise une bande plate, d'une part l'intensité du rayonnement décroît comme le cosinus de l'angle d'incidence et d'autre part la direction du rayonnement n'est plus perpendiculaire à la surface et la pénétration est moins grande. Mais ces effets se compensent en partie : à la surface, la dose reçue est sensiblement la même. Par contre, la profondeur traitée reste proportionnelle au cosinus de l'angle d'incidence.If a flat band is used, on the one hand the intensity of the radiation decreases as the cosine of the angle of incidence and on the other hand the direction of the radiation is no longer perpendicular to the surface and the penetration is smaller. But these effects partially offset each other: at the surface, the dose received is roughly the same. On the other hand, the depth treated remains proportional to the cosine of the angle of incidence.

Pour obtenir une pénétration uniforme on peut rendre, en dehors de la cavité, toutes les trajectoires électroniques sensiblement parallèles à la trajectoire médiane et cela par deux aimants, comme représenté sur la figure 5. Sur cette figure, on voit un ensemble de déflexion M1 (ou M2) constitué par deux paires d'aimants dont les formes sont représentées sur les figures 6 et 7.To obtain uniform penetration, it is possible to make, outside the cavity, all the electronic trajectories substantially parallel to the median trajectory and this by two magnets, as shown in FIG. 5. In this figure, we see a deflection assembly M1 ( or M2) consisting of two pairs of magnets whose shapes are shown in Figures 6 and 7.

Sur ces figures, la partie a est une coupe perpendiculaire au plan médian et la partie b est une coupe dans le plan médian, donc dans le plan du faisceau électronique.In these figures, part a is a section perpendicular to the median plane and part b is a section in the median plane, therefore in the plane of the electron beam.

Pour les aimants de type M représentés sur la figure 6, les pièces polaires 41-42, d'une part, et 43-44, d'autre part, définissent deux entrefers aux bords parallèles. Les aimants ont une épaisseur qui croît lorsqu'on s'éloigne du plan médian Pm (partie b). Le trajet parcouru par les électrons entre les pièces polaires est donc plus long pour les électrons qui suivent des trajectoires éloignées du plan médian que pour les trajectoires proches de ce plan. L'action du champ magnétique est donc prolongée pour les premiers et abrégée pour les seconds. Les trajectoires fortement inclinées sont donc davantage courbées que les autres, ce qui donne au faisceau des trajectoires parallèles.For type M magnets shown in Figure 6, the pole pieces 41-42, on the one hand, and 43-44, on the other hand, define two air gaps with parallel edges. The magnets have a thickness which increases as one moves away from the median plane Pm (part b). The path traveled by the electrons between the pole pieces is therefore longer for the electrons which follow trajectories distant from the median plane than for the trajectories close to this plane. The action of the magnetic field is therefore prolonged for the former and abridged for the latter. The strongly inclined paths are therefore more curved than the others, which gives the beam parallel paths.

Sur la figure 7 est illustrée une autre variante de ces moyens de déflexion. Les pièces polaires 51-52, d'une part, et 53-54, d'autre part, définissent des entrefers qui se resserrent lorsqu'on s'éloigne de l'axe. Le champ magnétique entre de telles pièces polaires va croissant lorsqu'on s'éloigne vers l'extérieur. On retrouve ainsi une plus grande déflexion pour les trajectoires situées loin du plan médian que pour les trajectoires près de celui-ci.FIG. 7 illustrates another variant of these deflection means. The pole pieces 51-52, on the one hand, and 53-54, on the other hand, define air gaps which tighten when moving away from the axis. The magnetic field between such pole pieces increases as one moves outward. We thus find a greater deflection for the trajectories located far from the median plane than for the trajectories close to this one.

Les principes de l'invention ayant été exposés, quelques données numériques vont maintenant être précisées, en ce qui concerne les dimensions et la valeur de l'impédance-shunt efficace. On sait que cette dernière grandeur, caractéristique significative de la qualité du transfert d'énergie aux électrons accélérés est égale au rapport du carré de l'énergie transférable à un électron (exprimée en électron-volt) à la puissance perdue par effet Joule dans la cavité.The principles of the invention having been exposed, some numerical data will now be specified, with regard to the dimensions and the value of the effective impedance-shunt. We know that this last quantity, a significant characteristic of the quality of the energy transfer to accelerated electrons, is equal to the ratio of the square of the energy transferable to an electron (expressed in electron volts) to the power lost by the Joule effect in the cavity.

Le calcul montre que, pour une machine de 400 keV, l'optimum est obtenu pour R2≃ 0,265 λ et R1≃ (R2/5),λétant la longueur d'onde. La longueur de la cavité est L=λ/2.The calculation shows that, for a 400 keV machine, the optimum is obtained for R2≃ 0.265 λ and R1≃ (R2 / 5), λ being the wavelength. The length of the cavity is L = λ / 2.

Dans ces conditions, on trouve par exemple pour une fréquence de 180 MHz λ =1,67m, R2=0,44m, Zs eff ≃ 6,25, MΩ, L=0,835m.Under these conditions, we find for example for a frequency of 180 MHz λ = 1.67m, R2 = 0.44m, Zs eff ≃ 6.25, MΩ, L = 0.835m.

Les impédances-shunt obtenues en pratique sont quelque peu inférieures (typiquement 30%) aux valeurs calculées.The shunt impedances obtained in practice are somewhat lower (typically 30%) than the calculated values.

Il en résulte que la puissance dissipée dans la cavité serait voisine de 33 kW pour une machine de 400 keV.As a result, the power dissipated in the cavity would be close to 33 kW for a 400 keV machine.

Les dimensions et la puissance perdues sont très modestes.The dimensions and power lost are very modest.

On voit que l'optimum est obtenu pour (R2/R1)≃5.We see that the optimum is obtained for (R2 / R1) ≃5.

On peut observer par ailleurs qu'il est possible de diminuer les pertes ohmiques dues aux courants circulant dans les flasques de la cavité en modifiant la forme du conducteur intérieur, comme illustré sur la figure 8. Le conducteur intérieur 20 se termine par deux parties tronconiques 33 et 35. L'inductance de la cavité s'en trouve diminuée. Pour conserver la même fréquence de résonance, il faut allonger un peu la cavité.It can also be observed that it is possible to reduce the ohmic losses due to the currents flowing in the flanges of the cavity by modifying the shape of the internal conductor, as illustrated in FIG. 8. The internal conductor 20 ends in two frustoconical parts 33 and 35. The inductance of the cavity is thereby reduced. To keep the same resonant frequency, you have to lengthen the cavity a little.

Le bénéfice tiré d'une telle disposition en ce qui concerne l'impédance-shunt n'est pas très important (de l'ordre de 10%). Toutefois, cette disposition présente l'avantage de diminuer fortement la puissance maximale dissipée par unité de surface (2 à 4 fois moins qu'avec la cavité coaxiale) ce qui peut être intéressant pour faciliter le refroidissement et diminuer des effets gênants (flèche, tensions internes, etc.) dus au gradient thermique dans les parois.The benefit from such a provision with regard to impedance-shunt is not very significant (of the order of 10%). However, this arrangement has the advantage of greatly reducing the maximum power dissipated per unit area (2 to 4 times less than with the coaxial cavity) which can be advantageous for facilitating cooling and reducing annoying effects (deflection, tensions internal, etc.) due to the thermal gradient in the walls.

Claims (3)

  1. Array electron accelerator, incorporating a linear cathode (K) emitting an electron beam (Fe) in the form of an array, an accelerating structure where there is an electric field (E) directed into the plane of the array, characterized in that the accelerating structure is a coaxial cavity CC constituted by an external cylindrical conductor (10) and an internal cylindrical conductor (20) having the same axis (A), said cavity being closed by two flanges (31, 32) perpendicular to the axis, said cavity being excited by a high frequency source (SHF) to the resonant frequency of the fundamental mode and in that the cathode (K) is contained in the median plane (Pm) of the cavity perpendicular to the axis, the electron beam (Fe) emitted by the cathode (K) heing injected into the cavity in said median plane, the external (10) and internal (20) cylinders having circular arc-like openings (11, 12, 21, 22) centred on the axis of the cavity for the passage of the beam (Fe).
  2. Electron accelerator according to claim 1, characterized in that the internal conductor (20) has truncated cone-shaped ends (33, 35) having a larger diameter at the ends of the internal conductor (20).
  3. Accelerator according to claim 1, characterized in that it also comprises, at the beam exit, a magnetic deflection means (M1, M2) for the electrons constituted by two magnetic circuits symmetrical to the air gap (41, 42, 43, 44 and 51, 52, 53, 54), the lateral edges of the beam respectively traversing these two air gaps, said air gaps heing such that the action of the magnetic field on the electrons increases as the electrons are further from the centre of the beam.
EP88401255A 1987-05-26 1988-05-24 Electron curtain accelerator Expired - Lifetime EP0295981B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8707379A FR2616033B1 (en) 1987-05-26 1987-05-26 ELECTRIC CLOCK ACCELERATOR
FR8707379 1987-05-26

Publications (2)

Publication Number Publication Date
EP0295981A1 EP0295981A1 (en) 1988-12-21
EP0295981B1 true EP0295981B1 (en) 1993-01-13

Family

ID=9351458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401255A Expired - Lifetime EP0295981B1 (en) 1987-05-26 1988-05-24 Electron curtain accelerator

Country Status (6)

Country Link
US (1) US4893058A (en)
EP (1) EP0295981B1 (en)
JP (1) JP2587270B2 (en)
CA (1) CA1291568C (en)
DE (1) DE3877427T2 (en)
FR (1) FR2616033B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637122A1 (en) * 1988-09-23 1990-03-30 Thomson Csf PATH CORRECTING DEVICE FOR ELECTRONIC TUBE
BE1004879A3 (en) * 1991-05-29 1993-02-16 Ion Beam Applic Sa Electron accelerator improved coaxial cavity.
CN115529710B (en) * 2022-09-28 2024-02-20 中国原子能科学研究院 Electronic curtain accelerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452561A (en) * 1940-02-06 1948-11-02 Standard Telephones Cables Ltd Electron discharge apparatus using velocity modulated beams
US2405612A (en) * 1941-03-05 1946-08-13 Bell Telephone Labor Inc Ultra high frequency resonant cavities
NL90056C (en) * 1952-03-20
FR1136936A (en) * 1954-10-18 1957-05-21 Method and apparatus for accelerating electrically charged particles
US3307194A (en) * 1963-05-21 1967-02-28 Sheleg Boris High speed microwave phase shifter using a positionable electron beam to cause electromagentic-wave reflection
US3833814A (en) * 1973-06-20 1974-09-03 Energy Sciences Inc Apparatus for simultaneously uniformly irradiating a region using plural grid controlled electron guns
FR2574978B1 (en) * 1984-12-14 1987-01-16 Commissariat Energie Atomique DEVICE FOR IRRADIATION OF MATERIAL BY AN ELECTRONIC BEAM

Also Published As

Publication number Publication date
FR2616033A1 (en) 1988-12-02
DE3877427D1 (en) 1993-02-25
JP2587270B2 (en) 1997-03-05
JPS646400A (en) 1989-01-10
FR2616033B1 (en) 1989-08-04
CA1291568C (en) 1991-10-29
EP0295981A1 (en) 1988-12-21
DE3877427T2 (en) 1993-06-24
US4893058A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
EP0359774B1 (en) Electron accelerator with co-axial cavity
EP1075168B1 (en) Method for generating an elementary plasma in order to produce a uniform plasma for a target surface and device for generating such a plasma
FR2547456A1 (en) ELECTRON BEAM TUBE DENSITY MODULE WITH INCREASED GAIN
EP1488443B1 (en) Device for confinement of a plasma within a volume
EP0013242A1 (en) Generator for very high frequency electromagnetic waves
FR2482768A1 (en) EXB MASS SEPARATOR FOR DOMINATED IONIC BEAMS BY SPACE LOADS
FR2527005A1 (en) ELECTRONIC POWER TUBE WITH PERFECTED GRID
FR2461351A1 (en) ION SOURCE AT PLASMA UHF
EP2896278B1 (en) Device for generating plasma having a high range along an axis by electron cyclotron resonance (ecr) from a gaseous medium
EP0995345B1 (en) Gas excitation device with surface wave plasma
EP0295981B1 (en) Electron curtain accelerator
FR2722559A1 (en) MICROWAVE OVEN
EP0124396B1 (en) Electron beam injection device for a microwave generator
EP0946961B1 (en) Magnetic system, particularly for ecr sources, for producing closed surfaces of equimodule b of any form and dimensions
EP0082769A1 (en) Frequency multiplier
EP0813223B1 (en) Magnetic field generation means and ECR ion source using the same
FR2642584A1 (en) AMPLIFIER OR OSCILLATOR DEVICE OPERATING IN HYPERFREQUENCY
EP0401066A1 (en) Permanent magnet helical wiggler for free-electron lasers
EP0122186B1 (en) Microwave generator
EP0734048B1 (en) Procedure and device for coating or cleaning a substrate
FR2533748A1 (en) LINEAR BEAM ELECTRONIC TUBE WITH ELECTRONS REFLECTED TRAP
EP1305811B1 (en) Broadband power micro-wave tube
FR2772186A1 (en) MICROWAVE OVEN EQUIPPED WITH MICROWAVE OUTPUT CONTROL APPARATUS
FR2815810A1 (en) Electron accelerator, for non-destructive testing or irradiation of products or substances, has cavity excited so that it presents maximum electric field in direction of cavity axis and zero magnetic field
EP2743962A2 (en) Microwave generator and related method for generating waves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19890526

17Q First examination report despatched

Effective date: 19901107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB IT LI NL SE

REF Corresponds to:

Ref document number: 3877427

Country of ref document: DE

Date of ref document: 19930225

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88401255.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980428

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980516

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980531

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990524

EUG Se: european patent has lapsed

Ref document number: 88401255.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050524