US3789335A - Magnetic focusing device for an isochronous cyclotron - Google Patents

Magnetic focusing device for an isochronous cyclotron Download PDF

Info

Publication number
US3789335A
US3789335A US3789335DA US3789335A US 3789335 A US3789335 A US 3789335A US 3789335D A US3789335D A US 3789335DA US 3789335 A US3789335 A US 3789335A
Authority
US
United States
Prior art keywords
magnetic
sectors
device
annular
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
P Delphin
P Peironet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to US18620271A priority Critical
Application granted granted Critical
Publication of US3789335A publication Critical patent/US3789335A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons

Abstract

This device makes it possible to secure a major improvement in the efficiency of particle accelerators of the isochronous cyclotron type. It comprises a soft magnetic yoke, two circular soft-iron plates protuding from said yoke, first and second sets of soft magnetic sectors facing each other and building up the main airgap of the device, these sectors being respectively carried by two plates, two annular spacings being respectively provided between the sectors and their carrying plate, and correcting magnetic means being positioned within said annular spacings.

Description

United States Patent 1191 Delphin et a1. 7

[ Jan. 29, 1974 MAGNETIC FOCUSING DEVICE FOR AN ISOCHRONOUS CYCLOTRON Inventors: Pierre P. Delphin; Pierre R.

Peironet, both of Paris, France Assignee: Thomson-CSF, Paris, France Filed: Oct. 4, 1971 Appl. No.: 186,202

US. Cl 335/210, 313/62, 328/234 Int. Cl. Holt 7/00 Field of Search 335/210, 297; 328/234; 313/62 References Cited UNITED STATES PATENTS Verster 313/62 Burleigh et a1. 313/62 X Primary Examiner-George Harris Attorney, Agent, or FirmCushman, Darby & Cushman [5 7] ABSTRACT This device makes it possible to secure a major improvement in the efficiency of particle accelerators of i the isochronous cyclotron type. It comprises a soft magnetic yoke, two circular soft-iron plates protuding from said yoke, first and second sets of soft magnetic sectors facing each other and building up the main airgap of the device, these sectors being respectively carried by two plates, two annular spacings being respectively provided between the sectors and their carrying plate, and correcting magnetic means being positioned within said annular spacings.

9 Claims, 5 Drawing Figures PATENTEB JAR 2 9 19. 4.

SHEET 1 BF 2 T. R A R W R P 2 5 PRIOR AR MAGNETIC FOCUSING DEVICE FOR AN ISOCI-IRONOUS CYCLOTRON where B, is the flux density at the centre of the cyclotron, r the mean radius of the trajectory, c the velocity of light and (n the cyclotron angular frequency of the particles namely w =q B lm, where q/m is the ratio between the charge and the mass of the particle. The cyclotron will operate satisfactorily if the radia frequency 't th? R%r qls t tb. tifi tfajectories, is e qual to the frequency ca of the HF. acceleration power source, that is to say if the measured magnetic flux density BR at a given point in the trajectory is equal to the theoretical magnetic flux density B calculated at that point.

However, a substantial variation in the magnetic field is generally observed in the neighbourhood of the edges of the polepieces of the electro-magnet. This variation is dependent upon the structure of the polepieces and upon their magnetic saturation, thus upon the magnetomotive force of the electromagnet.

In accordance with the present invention, the special configuration of the polepieces, enables these drawbacks to be overcome.

The object of the invention is a magnetic focusing device for particle accelerators of the isochronous cyclotron type, capable of exciting within a main air gap a controlled magnetic field, said device comprising a soft magnetic yoke, a first circular soft-iron plate protuding from said yoke and having a first face, a second circular soft-iron plate protruding from said yoke and having a second face facing said first face, first and second sets of soft magnetic sectors building up said main air gap and respectively carried by said first and second faces, and correcting means, a first annular spacing being provided between said first face and said first set of magnetic sectors 1, a second annular spacing being provided between said second face and said second set of magnetic sectors 1, said correcting magnetic means being positioned within said annular spacings.

The invention will be better understood and other of its features rendered apparent, from a consideration of the ensuing description and of the drawings relating thereto, in which FIG. 1 simultaneously shows the variations in the theoretical magnetic flux density (curve a), the variations in the flux density obtained in the main air gap when using conventional pole pieces (curve b) and the variations in magnetic flux density obtained in the main air gap with pole pieces in accordance with the invention (curve c'). The variations are sketched in relation to radius of said pole pieces.

FIGS. 2 and 3 illustrate a conventional pole piece design currently used in isochronous cyclotrons.

FIG. 4 illustrates an electro-magnet equipped with pole pieces in accordance with the invention.

FIG. 5 illustrates a detail of a pole piece in accordance with the invention.

In the various figures, similar element have been indicated by the same references.

FIG. 1 shows, versus the radius r of the particle trajectory the theoretical values of the magnetic flux density required for the proper operation of an isochronous cyclotron, and the measured magnetic flux density produced by a conventional electro-magnet (curve b), and the measured magnetic flux density produced by an electro-magnet equipped with pole pieces in accordance with the invention (curve 0). v The limiting radius of this particle trajectory is fixed by the phase-shift which can be tolerated between the accelerating voltage and the instant of penetration of the particle within said accelerating source. However, this phase-shift is due in major part to the difference which exists between the measured magnetic flux density and the theoretical flux density, when moving away from the centre of the pole pieces.

The structure of the pole pieces in accordance with the invention makes it possible to obtain, for a larger radius (c curve in FIG. 2), a measured magnetic field strength which closely fits to the theoretical magnetic field strength, thus allowing a larger limiting radius.

In order to make it easier to understand the object of the invention, pole pieces of the kind conventionally employed in 'isaenrafibus cyclofroris', invest illustrated in FIG. 2.

These pole pieces are constituted by two circular plates 1 and 2 of magnetic material (soft iron), respectively carrying a projecting first set of soft magnetic sectors 3a second set of soft magnetic sectors 4. The sectors 3 fixed to four plate 1 and four sectors 4 fixed to the plate 2 are shown in the example chosen here. These sectors are located opposite one another. Annular, concentric coils 5, 6, 7, 8 are arranged below seetors 3 as FIG. 3 shows, the centre of curvature of these coils being coincidental with the centre of curvature of the plate 1. irnilarly, annular concentric coils 9, 10, 11 and 12 respectively identical to the coils 5, 6, 7 and 8 and disposed in opposite fashion, are arranged on the sectors 4 fixed to the plate 2. The spacing between the two sets of coils constitutes the main air gap 13 of electro magnet.

FIG. 4 illustrates an electro-magnet equipped with circular pole pieces or plates 20 and 21 in accordance with the invention.

These plates 20 and 21 are respectively provided, along the periphery of their mutually opposite faces, with projecting annular rings 22 and 23 of rectangular cross-section, these rings being integral with these plates.

The peripheral parts 41 and 42 of the magnetic material (soft iron) sectors 3 and 4 are attached onto these rings, the apices 45 of these sectors being oriented towards the centre of the carrying plates 20 and 21. These sectors 3 and 4 are maintained parallel to the plates 20 and 21 which respectively support them, by means of spacers 24' and 25 of non-magnetic material,

aluminum for example, the thickness of said spacers being substantially equal to the height of the rings. Thus, first and second annular spacings 26 an 27 are respectively obtained between the sectors 3 and 4, and each of the plates to which they are attached. these spacings constitute secondary air gaps, within which are arranged respective annular windings 28, 29, 30-

and 31, 32, 33 of insulated metallic wires. The input and output ends 43 and 44 of these windings pass through holes 34 drilled in the plates. These holes 34 are drilled parallel to the axis of the circular plates in the I a manner shown in FIG. 5. The plates 20 and 21 pertain to the vacuumtight walls of the evacuated chamber 39 and the holes 34 are sealed off through the medium of epoxy resin beads 40 which fix the ends of the wires in the holes 34. The wire ends, after crossing the plates 20 and 21, enter grooves 35 and 36 milled in the yokes 37 and 38 of the electro-magnet. The evacuated chamber 39 is thus completely free from any coils or wires.

The magnetic focusing device in accordance with the invention makes it possible to achieve a suitable magnetic flux density in the neighbourhood of the periphery of the polepieces, the saturation phenomenon being in this case very weak.

The soft-iron sectors 3 and 4 as shown in FIGS. 2 and 3, and also those shown in FIGS. 4 and 5, are all designed to produce vertical focusing of the particle beam through the creation of alternate regions wherein the flux density is alternately high and low. The profile of these sectors, as FIGS. 4 and show, is calculated in order to produce a measured magnetic field which is as close as possible to the theoretical magnetic field. In the present embodiment, the distance separating the sectors 3 and 4 facing one another, decreases from the centre of the pole pieces towards their periphery.

Thus, the two identical sets of concentric annular coils, known as correcting coils, which are conventionally arranged below sectors 3 and 4 and located within the main air gap, as shown in FIG. 3, are replaced, in the device in accordance with the invention, by windings located within the secondary air gaps 26 and 27 respectively built up between plates 20, 21, and sectors 3, 4 as FIG 4 shows. These windings make it possible to locally correct the discrepancies existing between the theoretical magnetic field and the measured magnetic field, these discrepancies being due to saturation of the magnetic material and to mechanical imperfections in the electro-magnet.

'In accordance with the invention, the number and proper choice of the position of these two sets of windings make it possible to very substantially reduce the rapid variations of the magnetic field value.

The invention is not limited to the example which has been described and illustrated here in particular, the sectors may have other profiles. The same applies to the correcting rings 22, 23 of plates 20, 21, which rings may have a section differing from that indicated hereinbefore.

What we claim is I 1. A magnetic focusing device for particle accelerators of the isochronous cyclotron type, capable of exciting within a main air gap a controlled magnetic field, said device comprising a soft magnetic yoke, a first circular soft-iron plate protruding from said yoke and having a first face, a second circular soft-iron plate protruding from said yoke and having a second face facing said first face, first and second sets of soft magnetic sectors building up said main air gap, said first and second sets of soft magnetic sectors being respectively carried by said first and second faces, and correcting means, a first annular spacing being provided between said first face and said first set of magnetic sectors, a second annular spacing being provided between said second face and said second set of magnetic sectors, said correcting magnetic means being positioned within said annular spacings.

2. A device as claimed in claim 1, wherein said correcting means comprise at least one pair of annular identical windings respectively located within said first and second annular spacings said annular windings being centered in relation with said faces.

3. A device as claimed in claim I, wherein said correcting means comprise at least two concentric pairs of annular identical windings, constituted with insulated metallic wires. 7

4. A device as claimed in claim I, wherein said sets of magnetic sectors are coupled to the edges of said plates through magnetic conducting elements.

5. A device as claimed in claim 4, wherein said magnetic conducting elements are circular rings integral with said plates.

6. A device as claimed in claim 4, wherein the apices of said sectors are mechanically coupled tosaid face through spacers of non-magnetic material.

7. A device as claimed in claim 1, wherein said plates comprise vacuumtight means for providing control of said correcting magnetic means.

8. A device as claimed in claim 2, wherein the ends of said windings pass through holes of said plates said holes being sealed by vacuumtight means.

9. A device as claimed in claim 1, wherein the distance separating said two sets of soft magnetic sectors decreases from the apices of said sectors towards their edges.

Claims (9)

1. A magnetic focusing device for particle accelerators of the isochronous cyclotron type, capable of exciting within a main air gap a controlled magnetic field, said device comprising : a soft magnetic yoke, a first circular soft-iron plate protruding from said yoke and having a first face, a second circular soft-iron plate protruding from said yoke and having a second face facing said first face, first and second sets of soft magnetic sectors building up said main air gap, said first and second sets of soft magnetic sectors being respectively carried by said first and second faces, and correcting means, a first annular spacing being provided between said first face and said first set of magnetic sectors, a second annular spacing being provided between said second face and said second set of magnetic sectors, said correcting magnetic means being positioned within said annular spacings.
2. A device as claimed in claim 1, wherein said correcting means comprise at least one pair of annular identical windings respectively located within said first and second annular spacings ; said annular windings being centered in relation with said faces.
3. A device as claimed in claim 1, wherein said correcting means comprise at least two concentric pairs of annular identical windings, constituted with insulated metallic wires.
4. A device as claimed in claim 1, wherein said sets of magnetic sectors are coupled to the edges of said plates through magnetic conducting elements.
5. A device as claimed in claim 4, wherein said magnetic conducting elements are circular rings integral with said plates.
6. A device as claimed in claim 4, wherEin the apices of said sectors are mechanically coupled to said face through spacers of non-magnetic material.
7. A device as claimed in claim 1, wherein said plates comprise vacuumtight means for providing control of said correcting magnetic means.
8. A device as claimed in claim 2, wherein the ends of said windings pass through holes of said plates , said holes being sealed by vacuumtight means.
9. A device as claimed in claim 1, wherein the distance separating said two sets of soft magnetic sectors decreases from the apices of said sectors towards their edges.
US3789335D 1971-10-04 1971-10-04 Magnetic focusing device for an isochronous cyclotron Expired - Lifetime US3789335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18620271A true 1971-10-04 1971-10-04

Publications (1)

Publication Number Publication Date
US3789335A true US3789335A (en) 1974-01-29

Family

ID=22684041

Family Applications (1)

Application Number Title Priority Date Filing Date
US3789335D Expired - Lifetime US3789335A (en) 1971-10-04 1971-10-04 Magnetic focusing device for an isochronous cyclotron

Country Status (1)

Country Link
US (1) US3789335A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096461A (en) * 1974-08-23 1978-06-20 U.S. Philips Corporation Magnet system for tunable YIG oscillator and tunable YIG filter
US4353033A (en) * 1979-03-07 1982-10-05 Rikagaku Kenkyusho Magnetic pole structure of an isochronous-cyclotron
US4639634A (en) * 1983-04-12 1987-01-27 C.G.R. Mev Cyclotron with focussing-defocussing system
US4639348A (en) * 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4771208A (en) * 1985-05-10 1988-09-13 Yves Jongen Cyclotron
US5347254A (en) * 1993-03-08 1994-09-13 The United States Of America As Represented By The Secretary Of The Army Tubular structure having transverse magnetic field with gradient
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024379A (en) * 1959-01-23 1962-03-06 Philips Corp Arrangement for accelerating particles
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024379A (en) * 1959-01-23 1962-03-06 Philips Corp Arrangement for accelerating particles
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096461A (en) * 1974-08-23 1978-06-20 U.S. Philips Corporation Magnet system for tunable YIG oscillator and tunable YIG filter
US4353033A (en) * 1979-03-07 1982-10-05 Rikagaku Kenkyusho Magnetic pole structure of an isochronous-cyclotron
US4639634A (en) * 1983-04-12 1987-01-27 C.G.R. Mev Cyclotron with focussing-defocussing system
US4639348A (en) * 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4771208A (en) * 1985-05-10 1988-09-13 Yves Jongen Cyclotron
US5347254A (en) * 1993-03-08 1994-09-13 The United States Of America As Represented By The Secretary Of The Army Tubular structure having transverse magnetic field with gradient
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process

Similar Documents

Publication Publication Date Title
US5283544A (en) Magnetic field generating device used for MRI
US4019989A (en) Wien filter
Sǎndulescu et al. Synthesis of new elements within the fragmentation theory: application to Z= 104 and 106 elements
US3668459A (en) Coupled cavity slow wave circuit and tube using same
US3868522A (en) Superconducting cyclotron
Giese Strong focusing ion source for mass spectrometers
US2630544A (en) Traveling wave electronic tube
US6057655A (en) Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
US2790902A (en) Ion accelerator beam extractor
US2473477A (en) Magnetic induction device
Halbach Application of permanent magnets in accelerators and electron storage rings
US7456591B2 (en) Cyclotron equipped with novel particle beam deflecting means
US4710722A (en) Apparatus generating a magnetic field for a particle accelerator
GB1190815A (en) Improved Simplified Deflection System for a Plural Beam Cathode Ray Tube
US2533859A (en) Improved injection system for magnetic induction accelerators
US2672574A (en) Magnetic beam controlling system
EP0228154A2 (en) Magnetic field generating device for NMR-CT
US2513929A (en) Beam centering device for cathode-ray tubes
US2394070A (en) Magnetic induction accelerator
US2297305A (en) Magnetic induction accelerator
US3133227A (en) Linear particle accelerator apparatus for high energy particle beams provided with pulsing means for the control electrode
US2165307A (en) Means for translating magnetic variations into electric variations
US2212206A (en) Electron device
US2956200A (en) Periodically focused traveling wave tube with tapered phase velocity
US2847607A (en) Magnetic focusing system