EP0216876B1 - Kühlung von hohlfaser-kreuzstrom-separatoren - Google Patents

Kühlung von hohlfaser-kreuzstrom-separatoren Download PDF

Info

Publication number
EP0216876B1
EP0216876B1 EP86902277A EP86902277A EP0216876B1 EP 0216876 B1 EP0216876 B1 EP 0216876B1 EP 86902277 A EP86902277 A EP 86902277A EP 86902277 A EP86902277 A EP 86902277A EP 0216876 B1 EP0216876 B1 EP 0216876B1
Authority
EP
European Patent Office
Prior art keywords
fibres
liquid
shell
gas
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86902277A
Other languages
English (en)
French (fr)
Other versions
EP0216876A1 (de
EP0216876A4 (de
Inventor
Douglas Lyons Ford
Eric William Anderson
Clinton Virgil Kopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memtec Ltd
Original Assignee
Memtec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memtec Ltd filed Critical Memtec Ltd
Priority to AT86902277T priority Critical patent/ATE52707T1/de
Publication of EP0216876A1 publication Critical patent/EP0216876A1/de
Publication of EP0216876A4 publication Critical patent/EP0216876A4/de
Application granted granted Critical
Publication of EP0216876B1 publication Critical patent/EP0216876B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2083By reversing the flow

Definitions

  • This invention relates to the cooling of porous hollow fibres within a cross-flow separator.
  • the invention will be described in relation to the use of hollow fibres in the recovery of fine solids from suspensions.
  • the invention is not limited to solids concentrators as it may be readily applied to cross-flow filters and other devices utilising porous hollow fibres.
  • Transmembrane gas reverse flow is impossible in very finely pored filters such as reverse osmosis membranes and ultrafilters because the pressures needed to overcome surface tension are far beyond the strengths of normal hollow fibre membranes used for these purposes; wetting liquids may pass but not gases. Any gas bubbles passing through such a membrane indicate the presence of pin hole defects in the membrane. Hence, this invention has no application to reverse osmosis or to true ultrafilters.
  • This invention is concerned with microfilters which contain larger pores than those of ultrafilters and which range from 0.1 to 10 microns. Usually, the larger of the pores are so distributed that clarified liquids are free of all visible turbidity. Turbidity of the clarified liquid involves more than pore and particle size, obeying and arising from well known optical laws.
  • Cooling hot fibres by blowing air on them or by evaporating water from them involves the same thermal principles as shaking a towel soaked in water to cool it; these thermal principles are well known.
  • the present invention is particularly concerned with the provision of methods and means for the rapid cooling of porous hollow fibre bundles in cross-flow separators handling hot suspensions in order to permit reverse flow liquid and gas cleaning of the fibres.
  • the rapid cooling of the fibres may be integrated with other operating cycles of the separator, and the methods of the invention may be applied to suspensions containing substantial amounts of volatile substances.
  • reverse flow is commenced with clarified liquid at pressures carefully adjusted to stretch the elastic pores (without bursting the hot fibres) so as to release foulants from within substantially all of the pores of the fibres followed by gas at a pressure which exceeds the capillary pressure of surface tension in some of the larger pores to expand at the surface of the fibres and to wash away concentrate cake from the fibre surfaces and from within the shell of the concentrator.
  • the pressures needed to effect the reverse flow are set by the fibre elasticity in the case of liquid reverse flow and by the pore sizes and the surface tension for the gas reverse flow. For use in the microfilter range of porous polymeric fibres, these pressures are much higher than the filtering or concentrating pressures. Thus, rapid repetitive cooling of hot fibres before reverse flow is needed for highly productive equipment.
  • a method of treating a liquid suspension in which the liquid suspension is applied to elastic, microporous, hollow fibres within a shell or housing and in which solids retained on or in the fibres or otherwise within the shell are discharged by a pressurized reverse flow of clarified liquid followed by a pressurised reverse flow of gas characterized in that the hollow fibres are cooled prior to the initiation of the pressurised reverse flow.
  • the application of the pressurized gas is conducted so as to backwash the full length of the fibres by displacing any lumen liquid with gas at a pressure below the bubble point of the walls.
  • the shell is then sealed with the relatively incompressible feed liquid so that gas cannot flow through the fibre walls as the pressure of the trapped gas is raised beyond the bubble point.
  • the seal is then released to allow the trapped gas to escape substantially uniformly through the fibre walls even at the most distant point from the lumen inlet thus minimizing subsequent preferential washing of pores near the gas inlet.
  • the fibres may be cooled by passing gas down the lumens of the fibres or by introducing gas into the shell of the concentrator so that the gas is applied to the exterior surface of the fibres.
  • the hollow fibre cross-flow concentrator 10 shown in Figs. 1 and 2 includes a cartridge shell 11 within which is positioned a bundle of hollow, porous, polymeric fibres 12.
  • each fibre is made of polypropylene, has an average pore size of 0.2 micron, a wall thickness of 200 micron and a lumen diameter of 200 micron.
  • Polyurethane potting compound 13, 14 holds the ends of the fibres 12 in place without blocking their lumens and closes off each end of the shell 11.
  • the liquid feed suspension to be concentrated is pumped into the shell 11 through feed suspension inlet 15 and passes over the external walls of the hollow fibres 12. Some of the feed suspension passes through the walls of the fibres 12 into the lumens of the fibres to be drawn off through the lumen outlet port 16 as clarified liquid.
  • outlet 16 is closed so that the flow of clarified liquid is stopped.
  • Pressurised clarified liquid is then introduced into the lumens through lumen inlet port 18 to stretch substantially all of the pores and to wash them with at least the total pore volume of clarified liquid.
  • compressed gas is introduced through lumen inlet port 18, along the lumens of the fibres 12 and through the walls of the fibres into the feed suspension/concentrated stream causing violent bubbling which purges the shell of any retained species which may have built up on the outer walls or may have been washed from within the pores of the fibres by the clarified liquid purge.
  • the compressed gas is introduced through inlet 18 and along the lumens of the fibres 12 after opening the lumen outlet port 16 for a limited period so that no gas penetrates the pores of the fibres at this stage.
  • the liquid-filled shell is then sealed by closing shell inlet 15 and shell outlet 17. Gas still cannot penetrate the porous walls even though the gas pressure is now raised well above the normal bubble point of the fibre walls because the liquid within the shell is relatively incompressible. A reservoir of high pressure gas is thus accumulated in the fibre lumens.
  • the shell outlet 17 is then opened which allows gas to penetrate the pores along the whole length of each fibre. Initially, the surge of bubbling gas is substantially uniform, but ultimately is slower at the end remote from lumen inlet port 18 due to the viscous pressure drop along the thin fibres. In extreme cases, it is desirable to admit gas through both lumen ports 16 and 18 after carrying out the above described pressurised, trapped gas operation.
  • the resumption of feed suspension flow after gaseous reverse flow cleaning be delayed for sufficient time to enable the pores that have been stretched by the gas to recover to their original size so that oversized particles from the feed suspension will not be able to pass into or through the enlarged pores.
  • Fig. 3 shows the effect of the solid discharges described in relation to Fig. 2 upon the rate of production of clarified liquid.
  • Curve A shows the decay of clarified liquid flux against time without discharge of solids
  • Curve C shows the recovery of clarified liquid flux after each combined liquid and gasesous reverse flow discharge cycle.
  • Curve D represents the collapsing pressure of a polypropylene fibre in which the pressure is applied to the exterior of the fibre. The pressure at which the fibre collapses falls at higher temperatures.
  • Curve E in Fig. 4 shows the pressure at which a polypropylene fibre will burst when the pressure is applied to the lumen. This bursting pressure also falls at higher temperatures. If the suspension is treated at an elevated temperature T(1) at which the fibre has adequate crush strength but inadequate burst strength to withstand the much higher reverse flow pressures, it is advantageous to have rapid cooling means. Then the fibres are cooled to an optimum safe temperature T(2), at which the bursting pressure is substantially increased from P(1) to P(2) before applying the full reverse flow pressure. However, the temperature drop must be controlled so that pore-stretching is possible.
  • the application of the cooling method of the invention when applied to a cross-flow hollow fibre concentrator can be implemented using the system shown in Fig. 5 which operates in a number of modes.
  • the pump 38 draws feed suspension from the feed suspension tank 27 through pump suction line 39 thence through inlet pressure valve 37 and delivers it through feed suspension inlet line 29 (having a feed suspension stop solenoid valve 41) to the cross-flow concentrator 20.
  • Feed suspension passes over the surface of the hollow fibres inside the cross-flow concentrator 20 and some of the fluid passes through the fibres into the lumens to be delivered to the clarified liquid outlet line 21.
  • the clarified liquid in line 21 passes through clarified liquid hold-up cylinder 47 which is operated by solenoid 47a, clarified liquid control valve 22 controlled by solenoid 22a and flow sensor 32 to a clarified liquid collection point. Flow of clarified liquid to line 23 is prevented by check valve 51.
  • Concentrated feed suspension from the cross-flow concentrator 20 passes through the check valve 35 and the solenoid-operated shell sealing valve 55 (when fitted) into line 28 from which it is delivered to the three way concentrate divert valve 30 controlled by solenoid 30a.
  • the valve 30 has outlet paths (a) and (b) which lead to the feed suspension tank 27 and to a concentrate collection point respectively. In the concentration mode, the valve 30 is in position (a) so that the concentrated feed suspension passes through back pressure valve 33 into the tank 27.
  • a bypass valve 34 in bypass line 40 is set to control, together with the inlet pressure valve 37, the flow rate through the cross-flow concentrator 20.
  • the feed suspension tank 27 has a feed suspension inlet 53, a washing inlet 52, heater 54 and vent 48.
  • the suspension inlet pressure, the concentrated suspension outlet pressure and the clarified liquid pressure are controlled or set by the said valves 37, 33 and 22 respectively.
  • valve 55 is opened and valve 30 is set to path (a).
  • the pressure in the concentrator shell 20 is set to remove gas in the filter pores within a predetermined time to allow elastic recovery of the expanded pores upon resumption of the concentration mode after expansion caused by backwash by clarified liquid followed by gas.
  • the liquor issuing from valve 22 is monitored by flow sensor 32 and the parameter sensors are used as the input to the programmable controller 31.
  • the controller 31 compares actual flow rate of the clarified liquid with preset values of flow rate and time to initiate a discharge cycle.
  • the first criterion is the clarified liquid discharge flow rate and once it decreases to a predetermined and set rate, the controller 31 initiates a discharge cycle.
  • the second criterion is time where the controller initiates a discharge cycle at fixed time intervals. The second criterion is more appropriate for feed suspensions where the liquor flow rate does not decline very rapidly.
  • Substantially dry gas is introduced to the system during the discharge mode through line 23 which includes a gas pressure control valve 24, a gas flow valve 25 and a gas stop valve 26 controlled by solenoid 26a.
  • the gas In order to allow evaporation (and hence cooling), the gas must be under saturated with respect to the liquid vapour at the operating temperature.
  • a lumenal cooling discharge line 60 connected between the lumenal air outlet 61 and the clarified liquid permeate outlet line 62 contains a lumenal cooling stop valve 43 which is controlled by a solenoid 43a and a lumenal cooling check valve 46.
  • a shell cooling line 63 connected between the feed inlet line 29 and the shell cooling divert valve 42 in line 23 has a shell cooling check valve 45.
  • the shell cooling divert valve 42 is controlled by solenoid 42a and has inlet paths (a) and (b) the functions of which will be described below.
  • the programmable controller 31 sets the system to discharge mode by actuating solenoids 22a, 26a, 43a and 30a which in turn close valve 22, open valve 26, close valve 43 and change the outlet path of the three way concentrate divert valve 30 to path (b) so that the subsequent variable volume clarified liquid hold up and the gaseous discharge medium as well as the material dislodged from the fibres can be discharged from the system.
  • the programmable controller initiates a lumenal flow through of gas for rapid evaporative cooling of the hollow fibres prior to reverse flow cleaning by actuating solenoids 22a, 43a, 41 a and 26a so that valve 22 is closed, valve 43 is open, valve 41 is closed and valve 26 is open for a predetermined time, termed the lumenal cool time.
  • the lumenal cooling gas flows through line 21 without disturbing the clarified liquid in the hold-up cylinder 47 and is discharged into the clarified liquid line through valve 43.
  • the lumenal cool time is sufficient to reduce the temperature of the fibres to within safe limits.
  • the concentrate discharge is then initiated by the programmable controller 31 which actuates solenoids 43a and 30a to close valve 43 and to change valve 30 to position (b) and then actuates the electronically controlled clarified liquid hold up cylinder 47 which empties the contents of that device under pressure from gas from valve 26 into the lumens and across the membranes in the reverse direction to normal operation so as to expand all the pores and to displace all the liquid in the pores.
  • programmable controller 31 continues gas discharge through the larger pores to wash concentrate off fibres and shell, opening valve 26 for the discharge cycle time.
  • programmable controller 31 At the end of the discharge cycle time, programmable controller 31 returns the system to the concentration mode as described above, except that valve 22 is kept closed until the hold-up cylinder 47 is filled with clarified liquid.
  • the programmable controller initiates a shell-side cooling cycle by actuating valve 41 (closed), 26 (open), and 42 (to position a)) for a preset time, termed the shell-side cool time, which is sufficient to reduce the temperature of the fibres to an optimal safe level.
  • the programmable controller initiates a reverse flow cleaning cycle by actuating valves 22 (closed), 42 (to position b) for the reverse flow cycle time.
  • the programmable controller returns to the system to the concentration mode as described above.
  • TMP transmembrane pressure
  • the temperature of the feedstock was then raised to 65°C and the average permeation rate rose to 60 Usq. m./hour, showing the doubling of productivity.
  • the temperature of the feedstock was then raised to 98°C and the permeation rate rose at once to 80 Usq. m./hour but no reverse flow was attempted at 98°C since experiments showed undue fibre softening at 80°C. It was decided to hold 60°C to 65°C as the reverse flow optimal temperature range.
  • the shell cooling mode was cooled by passing air at 24 litre/minute and the fibre temperature fell from 98°C to 60°C in 6 seconds, due to the high latent heat of vaporisation of water.
  • the reverse direction flow cleaning cycle then proceeded satisfactorily.
  • Example 1 was repeated but this time the wet fibre bundle of 3000 fibres at 98°C was cooled by air passing along the lumens at 25 litre/minute displacing the permeate therein, after the shell was emptied of hot suspension. The temperature of the fibres fell to 65°C in 9 seconds.
  • the invention provides for precisely controlled cooling which is rapid and uniform.
  • the cooling is preferably evaporative, but, it is identical in equipment needs if the feed suspension does not contain volatile substances.
  • the cooling of the fibres is controlled to fit the elastic properties of the fibres so as to give optimal cleaning and rate of production to the concentrator.
  • the cooling method of the invention can be largely performed and controlled by using existing equipment on a hot cross-flow hollow fibre separator.
  • the apparatus of Fig. 5 was used to filtre a city water supply through a 1 square metre 0.2 micron cartridge with an average transmembrane pressure of 100 kPa.
  • the flux was maintained at each temperature studies by periodic air backwashing and the average flux rate recorded.
  • the flux more than doubled as the temperature was raised from 10 degrees Celsius to 50 degrees Celsius, as expected from the drop in viscosity. The value of being able to operate at the highest possible temperature is evident.
  • Fig. 5 The apparatus of Fig. 5 was used to filter a 2.5 gram/litre bentonite suspension at the somewhat elevated temperature of 42 degrees Celsius at a transmembrane pressure of 150 kPa and the results graphed in Fig. 7.
  • the combined action of higher temperature (high considering the low heat distortion temperature of the fibre used) and the apparatus and operating procedures of the invention allow continued high output with total clarity of output even with the notoriously difficult bentonite feed suspension.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Claims (8)

1. Verfahren zum Behandeln einer flüssigen Suspension, in welchem die flüssige Suspension auf die äußere Oberfläche von elastischen, mirkoporösen, hohlen Fasern innerhalb eines Mantels oder Gehäuses angewandt wird, wobei die Fasern Poren haben, die im Bereich von 0,1 bis 10 pm liegen, und in welchem Feststoffe, die auf oder in den Fasern oder andernfalls innerhalb des Mantels zurückgehalten werden, durch eine unter Druck stehende umgekehrte Strömung von geklärter Flüssigkeit, gefolgt von einer unter Druck stehenden umgekehrten Strömung von Gas entladen werden, worin die hohlen Fasern vor dem Beginn der unter Druck stehenden umgekehrten Strömung gekühlt werden.
2. Verfahren nach Anspruch 1, das für das Konzentrieren der Feststoffe einer flüssigen Suspension geeignet ist, dadurch gekennzeichnet, daß es die folgenden Schritte umfaßt:
(i) Anwenden der flüssigen Suspension auf die äußere Oberfläche von elastischen, mikroporösen, hohlen Fasern innerhalb eines Mantels oder Gehäuses, wodurch:
a) etwas von der flüssigen Suspension durch die Wände der Fasern hindurchgeht, um als geklärte Flüssigkeit aus den Faserhohlräumen abgezogen zu werden,
b) wenigstens etwa von den Feststoffen auf oder in den Fasern oder andernfalls innerhalb des Mantels zurückgehalten wird, wobei die nichtzurückgehaltenen Feststoffe aus dem Mantel mit dem Rest der Flüssigkeit entfernt werden,
(ii) Beenden der Strömung von flüssiger Suspension und dann Kühlen der hohlen Fasern, und
(iii) Entladen der zurückgehaltenen Feststoffe aus dem Mantel mittels Anwenden durch die Faserhohlräume:
a) einer unter Druck stehenden Flüssigkeit, welche durch im wesentlichen alle die Poren hindurchgeht, wodurch im wesentlichen alle Poren gestreckt werden, um irgendwelche zurückgehaltenen Feststoffe auszuwaschen, gefolgt durch
b) ein unter Druck stehendes Gas, welches durch die größeren Poren hindurchgeht, so daß es diese Poren gestreckt werden, um irgendwelche Feststoffe, die in diesen Poren zurückgehalten sind, zu entfernen, und so daß die äußeren Wände der Fasern und das Innere des Mantels gewaschen werden, um alle Feststoffe aus dem Mantel zu einer äußeren Sammelstelle zu entfernen.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß das Anwenden des unter Druck stehenden Gases die folgenden Schritte umfaßt:
a) anfängliches Anwenden des Gases bei einem Druck unterhalb des Blasenpunkts der Wände der Fasern, so daß irgendwelche Flüssigkeit aus den Faserhohlräumen verdrängt wird,
b) Abdichten des Mantels und der äußeren Oberflächen der Fasern mit einer Flüssigkeit,
c) Erhöhen des Drucks des Gases über den Blasenpunkt der Wände der Fasern, und
d) Ausschalten der Flüssigkeitsdichtung, um es dem eingefangenen Gas zu ermöglichen, im wesentlichen gleichförmig durch die Faserwände zu entkommen.
4. Verfahren nach irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fasern dadurch gekühlt werden, daß man Gas die Hohlräume der Fasern hinunterströmen läßt.
5. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Fasern dadurch gekühlt werden, daß man Gas auf die äußere Oberfläche der Fasern anwendet.
6. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Schritte des Verfahrens als ein kontinuierlicher Prozeß unter Verwendung von wiederholten Zyklen der Feststoffzurückhaltung, Faserkühlung und Feststoffentladung ausgeführt werden.
7. Konzentrator (10) zum Konzentrieren der feinen Feststoffe einer flüssigen Speisesuspension mittels eines Verfahrens gemäß Anspruch 1 oder Anspruch 2, umfassend:
(i) einen Mantel (11),
(ii) eine Mehrzahl von elastischen, hohlen, mikroporösen Polymerfasern (12) innerhalb des Mantels (11), wobei die Fasern Poren haben, welche im Bereich von 0,1 bis 10 um liegen,
(iii) eine Einrichtung (15, 38, 29, 41) zum Zuführen von unter Druck stehender Speisesuspension zu der Außenseite der Fasern,
(iv) eine Einrichtung (16, 21) zum Abziehen von geklärter Flüssigkeit aus den Faserhohlräumen,
(v) eine Einrichtung (23, 26, 42) zum Kühlen der Fasern, und
(vi) eine Einrichtung (47) zum Anwenden von Flüssigkeit, gefolgt durch Gas unter Druck, auf die Faserhohlräume.
8. Konzentrator nach Anspruch 7, dadurch gekennzeichnet, daß er weiter eine Einrichtung (55) zum Abdichten der relativ inkompressiblen Speisesuspension in dem Mantel bei Verdrängung der Flüssigkeit aus den Faserhohlräumen mittels des unter Druck stehenden Gases aufweist, so daß das Gas in den Hohlräumen bei einem Druck oberhalb des Blasenpunkts der Faserwände eingefangen werden kann, und eine Einrichtung (55a) zum Ermöglichen des plötzlichen Entspannens des Gases im wesentlichen gleichförmig durch die Faserwände.
EP86902277A 1985-03-28 1986-03-27 Kühlung von hohlfaser-kreuzstrom-separatoren Expired EP0216876B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86902277T ATE52707T1 (de) 1985-03-28 1986-03-27 Kuehlung von hohlfaser-kreuzstrom-separatoren.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU9947/85 1985-03-28
AUPG994785 1985-03-28
AUPH335785 1985-11-11
AU3357/85 1985-11-11

Publications (3)

Publication Number Publication Date
EP0216876A1 EP0216876A1 (de) 1987-04-08
EP0216876A4 EP0216876A4 (de) 1987-07-30
EP0216876B1 true EP0216876B1 (de) 1990-05-16

Family

ID=25642923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902277A Expired EP0216876B1 (de) 1985-03-28 1986-03-27 Kühlung von hohlfaser-kreuzstrom-separatoren

Country Status (4)

Country Link
US (1) US4816160A (de)
EP (1) EP0216876B1 (de)
DE (1) DE3671175D1 (de)
WO (1) WO1986005705A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441130A1 (de) * 2017-08-09 2019-02-13 Bio-Aqua A/S Verfahren und vorrichtung zur reinigung einer membran unter verwendung von ozongas

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024762A (en) * 1985-03-05 1991-06-18 Memtec Limited Concentration of solids in a suspension
ES2014516A6 (es) * 1986-07-11 1990-07-16 Mentec Ltd Procedimiento para la limpieza de filtros.
FR2668078B1 (fr) * 1990-10-17 1992-12-24 Dumez Lyonnaise Eaux Procede pour le retrolavage de membrane tubulaires de filtration, et dispositif de mise en óoeuvre.
US5149447A (en) * 1991-05-23 1992-09-22 Allied-Signal Inc. Creosote filtration system with a shell and tube type filtration device
WO1993002779A1 (en) * 1991-08-07 1993-02-18 Memtec Limited Concentration of solids in a suspension using hollow fibre membranes
DE4228471A1 (de) * 1992-08-27 1994-03-03 Henkel Kgaa Rauchgasentschwefelung
FR2719498A1 (fr) * 1994-05-03 1995-11-10 Florentin William Marcel Rene Microfiltration à chaud d'eaux polluées.
ES2113258B1 (es) * 1994-07-05 1999-01-01 Jmc Trade 2000 S L Sistema de filtracion y procedimiento de lavado para modulo de microfiltracion.
AUPM800694A0 (en) * 1994-09-09 1994-10-06 Memtec Limited Cleaning of hollow fibre membranes
AUPO377796A0 (en) * 1996-11-21 1996-12-19 Memtec America Corporation Microporous membrane filtration and backwashing process
US20040232076A1 (en) * 1996-12-20 2004-11-25 Fufang Zha Scouring method
WO1998028066A1 (en) * 1996-12-20 1998-07-02 Usf Filtration And Separations Group, Inc. Scouring method
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
TWI222895B (en) 1998-09-25 2004-11-01 Usf Filtration & Separations Apparatus and method for cleaning membrane filtration modules
AUPP985099A0 (en) * 1999-04-20 1999-05-13 Usf Filtration And Separations Group Inc. Membrane filtration manifold system
US6755970B1 (en) * 1999-06-22 2004-06-29 Trisep Corporation Back-flushable spiral wound filter and methods of making and using same
AUPQ680100A0 (en) * 2000-04-10 2000-05-11 Usf Filtration And Separations Group Inc. Hollow fibre restraining system
AUPR064800A0 (en) * 2000-10-09 2000-11-02 Usf Filtration And Separations Group Inc. Improved membrane filtration system
AUPR094600A0 (en) * 2000-10-23 2000-11-16 Usf Filtration And Separations Group Inc. Fibre membrane arrangement
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
AUPR421501A0 (en) * 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR584301A0 (en) * 2001-06-20 2001-07-12 U.S. Filter Wastewater Group, Inc. Membrane polymer compositions
AUPR692401A0 (en) * 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
AUPR774201A0 (en) * 2001-09-18 2001-10-11 U.S. Filter Wastewater Group, Inc. High solids module
EP1312408B1 (de) * 2001-11-16 2006-07-19 US Filter Wastewater Group, Inc. Methode zur Reinigung von Membranen
US7247238B2 (en) * 2002-02-12 2007-07-24 Siemens Water Technologies Corp. Poly(ethylene chlorotrifluoroethylene) membranes
AUPS300602A0 (en) * 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) * 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
CA2535360C (en) 2003-08-29 2013-02-12 U.S. Filter Wastewater Group, Inc. Backwash
SG119706A1 (en) * 2003-09-19 2006-03-28 Us Filter Wastewater Group Inc Improved methods of cleaning membrane modules
KR101141514B1 (ko) * 2003-09-22 2012-05-08 지멘스 인더스트리, 인크. 역세척 및 세척 방법
CN100421772C (zh) 2003-11-14 2008-10-01 西门子水技术公司 改进的组件清洗方法
KR100453329B1 (ko) * 2004-03-08 2004-10-21 주식회사 나노엔텍 밀도 조절형 섬유사 정밀여과장치
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
WO2005107929A2 (en) 2004-04-22 2005-11-17 Siemens Water Technologies Corp. Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
CN1988949B (zh) * 2004-07-02 2012-08-22 西门子工业公司 气体可透膜
EP1773477B1 (de) 2004-07-05 2011-09-07 Siemens Water Technologies Corp. Hydrophile membranen
CN101052457B (zh) * 2004-08-20 2012-07-04 西门子工业公司 正方形mbr歧管系统
JP4838248B2 (ja) * 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション 逆洗液体廃棄物の低減
AU2005284677B2 (en) 2004-09-14 2010-12-23 Evoqua Water Technologies Llc Methods and apparatus for removing solids from a membrane module
WO2006029465A1 (en) 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US7591950B2 (en) * 2004-11-02 2009-09-22 Siemens Water Technologies Corp. Submerged cross-flow filtration
CA2585861A1 (en) * 2004-11-02 2006-05-11 Siemens Water Technologies Corp. Membrane filtration module with fluid retaining means
MY141919A (en) * 2004-12-03 2010-07-30 Siemens Water Tech Corp Membrane post treatment
EP1838422A4 (de) 2004-12-24 2009-09-02 Siemens Water Tech Corp Einfaches gasspülverfahren und entsprechende vorrichtung
CA2591408C (en) 2004-12-24 2015-07-21 Siemens Water Technologies Corp. Cleaning in membrane filtration systems
KR20080005993A (ko) 2005-04-29 2008-01-15 지멘스 워터 테크놀로지스 코포레이션 막 필터의 화학 세정
WO2006135966A1 (en) * 2005-06-20 2006-12-28 Siemens Water Technologies Corp. Cross linking treatment of polymer membranes
NZ564968A (en) 2005-07-14 2011-11-25 Siemens Water Tech Corp Monopersulfate treatment of membranes
WO2007022576A1 (en) 2005-08-22 2007-03-01 Siemens Water Technologies Corp. An assembly for water filtration using a tube manifold to minimise backwash
US20070138090A1 (en) 2005-10-05 2007-06-21 Jordan Edward J Method and apparatus for treating wastewater
WO2007044345A2 (en) * 2005-10-05 2007-04-19 Siemens Water Technologies Corp. Method and apparatus for treating wastewater
AU2007272318B2 (en) * 2006-07-14 2011-06-09 Evoqua Water Technologies Llc Improved monopersulfate treatment of membranes
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
HU4544U (en) 2007-05-29 2015-05-28 Evoqua Water Technologies Llc Structural arrangement of a membrane assembly unit placed in a fluid tank
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
CN102123784A (zh) 2008-08-20 2011-07-13 西门子水处理技术公司 改进的膜系统反洗能效
WO2010142673A1 (en) 2009-06-11 2010-12-16 Siemens Water Technologies Corp. Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
WO2011079062A1 (en) * 2009-12-21 2011-06-30 Siemens Industry, Inc. Charged porous polymeric membranes and their preparation
WO2011136888A1 (en) 2010-04-30 2011-11-03 Siemens Industry, Inc Fluid flow distribution device
EP2618916A4 (de) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Flüssigkeitssteuerungsverteiler für ein membranfilterungssystem
CN103958024B (zh) 2011-09-30 2016-07-06 伊沃夸水处理技术有限责任公司 改进的歧管排列
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
DE102011117990A1 (de) * 2011-11-09 2013-05-16 4Biogas Gmbh & Co. Kg Verfahren zur Trennung eines wässrigen Substrats in ein Konzentrat und Filtrat
EP2866922B1 (de) 2012-06-28 2018-03-07 Evoqua Water Technologies LLC Eintopfungsverfahren
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
AU2016294153B2 (en) 2015-07-14 2022-01-20 Evoqua Water Technologies Llc Aeration device for filtration system
FR3083458B1 (fr) 2018-07-06 2022-08-26 Arkema France Fibres polymeres creuses en tant que membranes de filtration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992301A (en) * 1973-11-19 1976-11-16 Raypak, Inc. Automatic flushing system for membrane separation machines such as reverse osmosis machines
US3912624A (en) * 1974-03-26 1975-10-14 Universal Oil Prod Co Cleaning of membrane surfaces
GB1535832A (en) * 1975-01-20 1978-12-13 Eastman Kodak Co Pressure driven membrane processing apparatus
JPS5624006A (en) * 1979-08-06 1981-03-07 Ebara Infilco Co Ltd Maintainance method of capacity of permeable membrane in membrane separation
AU563321B2 (en) * 1983-09-30 1987-07-02 U.S. Filter Wastewater Group, Inc. Cleaning of filters
JPS60137404A (ja) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd 吊下げフイルタ−の逆洗浄方法
JP3191988B2 (ja) * 1992-07-03 2001-07-23 オリンパス光学工業株式会社 内視鏡システム
CN1034584C (zh) * 1992-05-07 1997-04-16 国际壳牌研究有限公司 聚酮聚合物及制备聚酮聚合物的方法
JPH0644088A (ja) * 1992-07-24 1994-02-18 Toshiba Corp オペレーティングシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441130A1 (de) * 2017-08-09 2019-02-13 Bio-Aqua A/S Verfahren und vorrichtung zur reinigung einer membran unter verwendung von ozongas
WO2019030144A1 (en) * 2017-08-09 2019-02-14 Bio-Aqua A/S METHOD AND DEVICE FOR RESTORING THE FUNCTIONAL CAPACITY OF AT LEAST ONE CERAMIC MEMBRANE FOR FILTERING OR SEPARATING LIQUID PARTICLE MIXTURE FLOW

Also Published As

Publication number Publication date
WO1986005705A1 (en) 1986-10-09
DE3671175D1 (de) 1990-06-21
US4816160A (en) 1989-03-28
EP0216876A1 (de) 1987-04-08
EP0216876A4 (de) 1987-07-30

Similar Documents

Publication Publication Date Title
EP0216876B1 (de) Kühlung von hohlfaser-kreuzstrom-separatoren
US4793932A (en) Variable volume filter or concentrator
US5024762A (en) Concentration of solids in a suspension
US4931186A (en) Concentration of solids in a suspension
US4935143A (en) Cleaning of filters
AU576424B2 (en) Concentration of solids in a suspension
CA2460207C (en) High solids module
AU686879B2 (en) Cleaning of hollow fibre membranes
EP1897602B1 (de) Filtriervorrichtung
US5262053A (en) Filtration process, use of stabilizers installation for a filtration process, and procedure for operating said installation
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JPH07185268A (ja) 中空糸濾過膜エレメントおよびモジュール
EP0079040A2 (de) Verfahren und Vorrichtung zur Erhöhung des Durchflusses bei der Querstromfiltration von suspendierte Feststoffe enthaltenden Flüssigkeiten
AU590271B2 (en) Cooling hollow fibre cross-flow separators
JPH06170178A (ja) 中空糸膜モジュール濾過装置
AU575724B2 (en) Variable volume filter or concentrator
JPH11342320A (ja) 中空糸膜モジュールの運転方法
JPH11347382A (ja) 形状記憶分離膜システムモジュール
JPS62502317A (ja) 冷却中空ファイバ−直交流形セパレ−タ
CA1315209C (en) Concentration of solids in a suspension
JPH0824590A (ja) 高濃度有機液の濾過方法
JPH04171030A (ja) 高濃度懸濁液用濾過装置
KR930012029B1 (ko) 현탁액내에서의 고형물 농축
JPH11207152A (ja) 中空糸膜モジュール
JPH09122451A (ja) 中空糸膜モジュールを用いるろ過装置及びその運転方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861105

A4 Supplementary search report drawn up and despatched

Effective date: 19870730

17Q First examination report despatched

Effective date: 19880719

111L Licence recorded

Free format text: 0100 MEMTEC EUROPE LIMITED * 0200 MEMTEC EUROPE LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19900516

Ref country code: SE

Effective date: 19900516

Ref country code: BE

Effective date: 19900516

Ref country code: AT

Effective date: 19900516

Ref country code: NL

Effective date: 19900516

Ref country code: LI

Effective date: 19900516

Ref country code: CH

Effective date: 19900516

REF Corresponds to:

Ref document number: 52707

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3671175

Country of ref document: DE

Date of ref document: 19900621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLI

Owner name: MEMTEC EUROPE LIMITED

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930309

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930316

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930324

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940327

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST