EP0210359B1 - Aluminium alloy for the manufacture of a powder having an increased heat resistance - Google Patents

Aluminium alloy for the manufacture of a powder having an increased heat resistance Download PDF

Info

Publication number
EP0210359B1
EP0210359B1 EP86106735A EP86106735A EP0210359B1 EP 0210359 B1 EP0210359 B1 EP 0210359B1 EP 86106735 A EP86106735 A EP 86106735A EP 86106735 A EP86106735 A EP 86106735A EP 0210359 B1 EP0210359 B1 EP 0210359B1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminium alloy
powder
content
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86106735A
Other languages
German (de)
French (fr)
Other versions
EP0210359A1 (en
Inventor
Malcolm James Dr. Couper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0210359A1 publication Critical patent/EP0210359A1/en
Application granted granted Critical
Publication of EP0210359B1 publication Critical patent/EP0210359B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • the invention relates to an aluminum alloy for the production of powder with increased heat resistance according to the preamble of claim 1.
  • a cylindrical capsule made of ductile aluminum sheet with a diameter of 50 mm and a height of 60 mm was filled with the powder, evacuated and welded.
  • the filled capsule was then hot pressed at 400 ° C. under a pressure of 250 MPa to the full theoretical density.
  • the capsule was removed by mechanical processing and the pressed body was inserted as a press bolt with a diameter of 36 mm into an extrusion press with a reduction ratio of 30: 1 1 and pressed at 400 ° C. to a rod with a diameter of 6.5 mm.
  • Test specimens were worked out from the rod to investigate the physical and mechanical properties.
  • a test specimen was subjected to a heat treatment at 400 ° C. for 2 hours.
  • the Vickers hardness determined afterwards at room temperature was 180 (HV). With a density of only 2.85 g / cm 3 , the tensile strength and yield strength were consistently 50 to 80% higher than that of comparable conventional alloys.
  • Example 1 The successive further processing into a strip, a powder and an extruded rod was carried out exactly the same as described in Example 1.
  • the original Vickers hardness at room temperature was 200 (HV), after heat treatment at 400 ° C / 2 it was still 180 (HV). This shows that an excellent temperature resistance has been achieved, which indicates a high heat resistance.
  • the alloy was melted from corresponding Al / Li, Al / Cr and Al / Zr master alloys and cast into an ingot similar to Example 1.
  • the ingot was melted again and brought to a casting temperature of 1,100 ° C.
  • the melt was atomized under an inert gas atmosphere of 6 MPa pressure to a powder with an average particle diameter of 30 ⁇ m.
  • the powder produced in this way was poured into an aluminum can, which was then evacuated and sealed in a vacuum-tight manner.
  • Example 2 Similar to Example 1, the body was compressed and hot pressed. After turning off the can part forming the jacket, the pressed body was heated to a temperature of 450 ° C. and extruded with a reduction ratio of 30: to a round rod at this temperature.
  • the entire powder processing was carried out under a protective gas atmosphere.
  • Test specimens worked out from the rod gave a density of 2.80 g / cm 3 . After a heat treatment at 400 ° C. for 2 hours, the Vickers hardness at room temperature was 170 (HV), after a further heat treatment at the same temperature it was still 160 (HV) for an additional 50 hours. This suggests a great thermal stability of the structure. The improvement in strength values compared to conventional alloys of the same density was approx. 100%.
  • the aluminum alloy can consist of 1.5 to 5 wt.% Li, 4 to 11 wt.% Fe and 1 to 6 wt 5 wt .-% Li, 4 to 7 wt .-% Cr as well as 1 to 4 wt .-% of at least one of the elements V, Mn, Zr, remainder AI exist, wherein it comprises at least 15 wt .-% of the phase AI 3 Li and also contains at least 2.6% by weight of the phase Al 3 Zr or the corresponding intermetallic compounds of Al with V or Mo or with V or Mn as a finely divided dispersoid of at most 0.1 ⁇ m particle diameter.
  • the aluminum alloys have a relatively large volume fraction of phases - in particular intermetallic compounds - which cannot be produced using conventional manufacturing methods. These particles, which act as dispersoids, are mainly responsible for the excellent properties of the alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

Die Erfindung geht aus von einer Aluminiumlegierung für die Herstellung von Pulver mit erhöhter Warmfestigkeit nach der Gattung des Oberbegriffs des Anspruchs 1.The invention relates to an aluminum alloy for the production of powder with increased heat resistance according to the preamble of claim 1.

Aus der Pulvermetallurgie ist bekannt, dass die Eigenschaften von gepressten und gesinterten bzw. heissgepressten Körpern aus Aluminiumlegierungen weitgehend durch die Eigenschaften des verwendeten Pulvers bestimmt werden. Neben der chemischen Zusammensetzung spielen Partikelgrösse und Mikrostruktur eine wesentliche Rolle. Letztere beiden hängen nun wiederum wesentlich von der Abkühlungsgeschwindigkeit ab. Diese sollte so hoch wie möglich sein. Um zu höheren Warmfestigkeiten von Körpern aus Aluminiumlegierung zu gelangen sind schon verschiedene Verfahren und Werkstoffzusammensetzungen vorgeschlagen worden. Durch hohe Abkühlgeschwindigkeiten werden Seigerungen vermieden und die Löslichkeitsgrenze für Legierungselemente erhöht, so dass durch geeignete Warmbehandlung oder thermomechanische Behandlung feinere Ausscheidungen mit höheren Festigkeitswerten erzielt werden können. Ausserdem besteht die Möglichkeit der Bildung vorteilhafter metastabiler Phasen, die sich unter konventionellen Abkühlungsbedingungen nicht einstellen lassen. Weitere günstige Eigenschaften, die sich durch hohe Abkühlungsgeschwindigkeiten erzielen lassen, sind erhöhter Korrosionswiderstand und bessere Zähigkeit der Legierungen.It is known from powder metallurgy that the properties of pressed and sintered or hot-pressed bodies made of aluminum alloys are largely determined by the properties of the powder used. In addition to the chemical composition, particle size and microstructure play an important role. The latter two in turn depend significantly on the cooling rate. This should be as high as possible. Various processes and material compositions have already been proposed in order to achieve higher heat strengths of aluminum alloy bodies. High cooling speeds prevent segregation and the solubility limit for alloy elements is increased, so that finer precipitations with higher strength values can be achieved by suitable heat treatment or thermomechanical treatment. There is also the possibility of the formation of advantageous metastable phases which cannot be set under conventional cooling conditions. Other favorable properties that can be achieved through high cooling rates are increased corrosion resistance and better toughness of the alloys.

Durch Zulegieren von Schwermetallen wird im allgemeinen die Dichte sowie andere physikalische Eigenschaften in ungünstiger Weise beeinflusst. Es ist daher vor allem für Anwendungen im Flugzeugbau vor einiger Zeit vorgeschlagen worden, im Zuge der konventionellen Herstellung das Element Lithium als wesentlichen Legierungsbestandteil zu benutzen. Dadurch kann die Dichte der Legierung herabgesetzt, deren Elastizitätsmodul dagegen erhöht werden, was für die Verwendung als Konstruktionsmaterial von Vorteil ist (Vergl. E. S. Balmuth & R. Schmidt, 1981, « A Perspective on the Development of Aluminium-Lithium Alloys », Proceedings of the 1st Int. Aluminium-Lithium Conf., ed. T. H. Sanders and E. A. Starke, Jr., p. 69-88). Derartige Legierungen ermangeln jedoch der für viele Verwendungszwecke geforderten Zähigkeit und Dehnbarkeit. Diese Problematik wurde eingehend diskutiert und führte auf Legierungen mit weiteren Zusätzen (Vergl. E. A. Starke, T. H. Sanders, Jr. & I. G. Palmer, 1981, « New Approaches to Alloy Development in the AI-Li System ", J. of Metals, 33, No. 9, p. 24-32). Entsprechend den spezifischen Anforderungen wurden weitere Legierungssysteme entwickelt (Vergl. F. W. Gayle & J. B. Vander Sande, 1984, « Composite Precipitates in an AI-Li-Zr Alloy », Scripta Met., 18, p. 473-478 ; B. Noble, S. J. Harris & K. Harlow, 1984, « Mechanical Properties of AI-Li-Mg Alloys at Elevated Temperature », Proc. 2nd Int. Aluminium-Lithium Conference, ed. T. H. Sanders & E. A. Starke, p. 65-78 ; I. G. Palmer et al., 1984, « Effect of Processing Variables on Two AI-Li-Cu-Mg-Zr Alloys ». ibid., p. 91-110).By alloying heavy metals, the density and other physical properties are generally adversely affected. It was therefore proposed some time ago, especially for applications in aircraft construction, to use the element lithium as an essential alloy component in the course of conventional production. As a result, the density of the alloy can be reduced, but its modulus of elasticity can be increased, which is advantageous for use as a construction material (see ES Balmuth & R. Schmidt, 1981, "A Perspective on the Development of Aluminum-Lithium Alloys", Proceedings of the 1st Int. Aluminum-Lithium Conf., ed. TH Sanders and EA Starke, Jr., p. 69-88). However, such alloys lack the toughness and ductility required for many uses. This problem was discussed in detail and led to alloys with further additives (see EA Starke, TH Sanders, Jr. & IG Palmer, 1981, "New Approaches to Alloy Development in the AI-Li System " , J. of Metals, 33, No. 9, pp. 24-32) Further alloy systems were developed in accordance with the specific requirements (cf. FW Gayle & JB Vander Sande, 1984, “Composite Precipitates in an Al-Li-Zr Alloy”, Scripta Met., 18, p. 473-478; B. Noble, SJ Harris & K. Harlow, 1984, "Mechanical Properties of AI-Li-Mg Alloys at Elevated Temperature", Proc. 2nd Int. Aluminum-Lithium Conference, ed. TH Sanders & EA Starke, p. 65-78; IG Palmer et al., 1984, "Effect of Processing Variables on Two AI-Li-Cu-Mg-Zr Alloys". Ibid., P. 91-110).

Obwohl zur Zeit beachtliche Resultate, insbesondere erhöhte Warmfestigkeit im Temperaturbereich von 250 bis 300 °C erreicht werden konnten, lassen die Eigenschaften der bisher vorgeschlagenen pulvermetallurgisch hergestellten Werkstücke noch zu wünschen übrig. Die gilt insbesondere für die Warmfestigkeit, die Duktilität und die Ermüdungsfestigkeit im Temperaturbereich von Raumtemperatur bis ca. 250 °C. Diese Legierungen weisen ausserdem im allgemeinen Dichten auf, die um ca. 10 % über denjenigen konventioneller Aluminiumlegierungen liegen. Andererseits haben Legierungen mit niedriger Dichte praktisch keine Warmfestigkeit.Although remarkable results, in particular increased heat resistance in the temperature range from 250 to 300 ° C., have currently been achieved, the properties of the previously proposed powder metallurgically manufactured workpieces still leave something to be desired. This applies in particular to the heat resistance, ductility and fatigue strength in the temperature range from room temperature to approx. 250 ° C. In addition, these alloys generally have densities which are approximately 10% higher than those of conventional aluminum alloys. On the other hand, low density alloys have practically no heat resistance.

Es besteht daher ein grosses Bedürfnis nach weiterhin verbesserten Legierungen zur Herstellung von geeigneten Pulvern, insbesondere von solchen mit niedriger Dichte.There is therefore a great need for further improved alloys for the production of suitable powders, especially those with low density.

Der Erfindung liegt die Aufgabe zugrunde, Aluminiumlegierungen anzugeben, die sich für die Herstellung von Pulvern mit erhöhter Warmfestigkeit und verbesserten mechanischen und Gefügeeigenschaften bei gleichzeitig niedriger Dichte gut eignen. Es sollen insbesondere Zusammensetzungen angestrebt werden, welche unter den vorgeschlagenen Abkühlungsbedingungen als feine Dispersoide wirkende, stabile intermetallische Verbindungen bilden.The invention has for its object to provide aluminum alloys which are well suited for the production of powders with increased heat resistance and improved mechanical and structural properties with a low density. In particular, compositions should be sought which form stable intermetallic compounds which act as fine dispersoids under the proposed cooling conditions.

Diese Aufgabe wird durch die im kennzeichnenden Teil der Ansprüche 1 und 6 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claims 1 and 6.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele beschrieben.The invention is described using the following exemplary embodiments.

Ausführungsbeispiel 1Embodiment 1

Es wurde eine Legierung der nachfolgenden nominellen Zusammensetzung hergestellt:

Figure imgb0001
An alloy with the following nominal composition was produced:
Figure imgb0001

Bei der Erschmelzung der Legierung wurde von entsprechenden Mengen von Vorlegierungen mit 10 Gew.-% Li, 10 Gew.-% Fe und 5 Gew.-% Zr ausgegangen. Diese Aluminium-Vorlegierungen wurden in einem Induktionsofen im Tonerdetiegel unter Vakuum geschmolzen und die Schmelze direkt in eine Kupferkokille abgegossen. Die totale Masse des Gussbarrens betrug 1 kg. 300 g dieses Barrens wurden in einer Vorrichtung induktiv geschmolzen und als Strahl unter hohem Druck in erster Gasphase gegen den Umfang einer mit 10 m/s Umfangsgeschwindigkeit vorliegenden, gekühlten Kupferscheibe geschleudert (sogenanntes « melt-spinning "-Verfahren). Durch die hohe Abkühlungsgeschwindigkeit wurde ein ultra-feinkörniges Band von ca. 40 µm Dicke erzeugt. Das Band wurde zerstossen und zu feinkörnigem Pulver zermahlen. Daraufhin wurde eine zylindrische Kapsel aus duktilem Aluminiumblech von 50 mm Durchmesser und 60 mm Höhe mit dem Pulver gefüllt, evakuiert und verschweisst. Dann wurde die gefüllte Kapsel bei 400 °C unter einem Druck von 250 MPa zur vollen theoretischen Dichte heissgepresst. Die Kapsel wurde durch mechanische Bearbeitung entfernt und der gepresste Körper als Pressbolzen von 36 mm Durchmesser in eine Strangpresse mit einem Reduktionsverhältnis von 30:1 1 eingesetzt und bei 400 °C zu einem Stab von 6,5 mm Durchmesser verpresst.When melting the alloy, appropriate amounts of master alloys with 10% by weight of Li, 10% by weight of Fe and 5% by weight of Zr were assumed. These aluminum master alloys were melted in an induction furnace in an alumina crucible under vacuum and the melt was poured directly into a copper mold. The total mass of the cast ingot was 1 kg. 300 g of this billet were melted inductively in a device and thrown as a jet under high pressure in the first gas phase against the circumference of a cooled copper disc which was at a peripheral speed of 10 m / s (so-called melt-spinning process) high cooling speed, an ultra-fine-grained band of approx. 40 µm thickness was produced. The tape was crushed and ground into fine-grained powder. Then a cylindrical capsule made of ductile aluminum sheet with a diameter of 50 mm and a height of 60 mm was filled with the powder, evacuated and welded. The filled capsule was then hot pressed at 400 ° C. under a pressure of 250 MPa to the full theoretical density. The capsule was removed by mechanical processing and the pressed body was inserted as a press bolt with a diameter of 36 mm into an extrusion press with a reduction ratio of 30: 1 1 and pressed at 400 ° C. to a rod with a diameter of 6.5 mm.

Aus dem Stab wurden Probekörper zur Untersuchung der physikalischen und mechanischen Eigenschaften herausgearbeitet. Ein Probekörper wurde einer Wärmebehandlung bei 400 °C während 2 h unterworfen. Die danach festgestellte Vickershärte bei Raumtemperatur betrug 180 (HV). Bei einer Dichte von nur 2,85 g/cm3 erwies sich die Zugfestigkeit und Streckgrenze durchweg um 50 bis 80 % höher als diejenige vergleichbarer konventioneller Legierungen.Test specimens were worked out from the rod to investigate the physical and mechanical properties. A test specimen was subjected to a heat treatment at 400 ° C. for 2 hours. The Vickers hardness determined afterwards at room temperature was 180 (HV). With a density of only 2.85 g / cm 3 , the tensile strength and yield strength were consistently 50 to 80% higher than that of comparable conventional alloys.

Ausführungsbeispiel 2Embodiment 2

Gemäss Beispiel 1 wurde folgende Legierung erschmolzen :

Figure imgb0002
The following alloy was melted in accordance with Example 1:
Figure imgb0002

Die sukzessive Weiterverarbeitung zu einem Band, einem Pulver und einem stranggepressten Stab erfolgte genau gleich, wie in Beispiel 1 beschrieben. Die ursprüngliche Vickershärte bei Raumtemperatur betrug 200 (HV), nach einer Wärmebehandlung bei 400 °C/2 noch 180 (HV). Dies lässt erkennen, dass eine ausgezeichnete Temperaturbeständigkeit erreicht wurde, welche auf eine hohe Warmfestigkeit schliessen lässt.The successive further processing into a strip, a powder and an extruded rod was carried out exactly the same as described in Example 1. The original Vickers hardness at room temperature was 200 (HV), after heat treatment at 400 ° C / 2 it was still 180 (HV). This shows that an excellent temperature resistance has been achieved, which indicates a high heat resistance.

Ausführungsbeispiel 3Embodiment 3

Es wurde eine Legierung der nachfolgenden nominellen Zusammensetzung hergestellt :

Figure imgb0003
An alloy with the following nominal composition was produced:
Figure imgb0003

Die Legierung wurde aus entsprechenden AI/Li-, AI/Cr- und AI/Zr-Vorlegierungen erschmolzen und ähnlich Beispiel 1 zu einem Barren vergossen. Der Barren wurde erneut aufgeschmolzen und auf eine Giesstemperatur von 1 100 °C gebracht. Nun wurde die Schmelze unter Inertgasatmosphäre von 6 MPa Druck zu einem Pulver von durchschnittlich 30 µm Partikeldurchmesser zerstäubt.The alloy was melted from corresponding Al / Li, Al / Cr and Al / Zr master alloys and cast into an ingot similar to Example 1. The ingot was melted again and brought to a casting temperature of 1,100 ° C. Now the melt was atomized under an inert gas atmosphere of 6 MPa pressure to a powder with an average particle diameter of 30 µm.

Das auf diese Weise erzeugte Pulver wurde in eine Aluminiumdose eingefüllt, welche daraufhin evakuiert und vakuumdicht verschlossen wurde.The powder produced in this way was poured into an aluminum can, which was then evacuated and sealed in a vacuum-tight manner.

Aehnlich Beispiel 1 wurde der Körper verdichtet und heissgepresst. Nach Abdrehen des den Mantel bildenden Dosenteils wurde der Presskörper auf eine Temperatur von 450 °C erwärmt und mit einem Reduktionsverhältnis von 30 : bei dieser Temperatur zu einem Rundstab stranggepresst.Similar to Example 1, the body was compressed and hot pressed. After turning off the can part forming the jacket, the pressed body was heated to a temperature of 450 ° C. and extruded with a reduction ratio of 30: to a round rod at this temperature.

Die gesamte Pulververarbeitung erfolgte unter Schutzgasatmosphäre.The entire powder processing was carried out under a protective gas atmosphere.

Aus dem Stab herausgearbeitete Probekörper ergaben eine Dichte von 2,80 g/cm3. Nach einer Wärmebehandlung bei 400 °C während einer Dauer von 2 h betrug die Vickershärte bei Raumtemperatur 170 (HV), nach einer weiteren Wärmebehandlung bei der gleichen Temperatur während zusätzlichen 50 h noch immer 160 (HV). Dies lässt auf eine grosse thermische Stabilität des Gefüges schliessen. Die Verbesserung der Festigkeitswerte gegenüber konventionellen Legierungen gleicher Dichte betrug ca. 100 %.Test specimens worked out from the rod gave a density of 2.80 g / cm 3 . After a heat treatment at 400 ° C. for 2 hours, the Vickers hardness at room temperature was 170 (HV), after a further heat treatment at the same temperature it was still 160 (HV) for an additional 50 hours. This suggests a great thermal stability of the structure. The improvement in strength values compared to conventional alloys of the same density was approx. 100%.

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Grundsätzlich kann die Aluminiumlegierung aus 1,5 bis 5 Gew.-% Li, 4 bis 11 Gew.-% Fe sowie 1 bis 6 Gew.-% mindestens eines der Elemente Mo, V, Zr, Rest AI oder aus 1,5 bis 5 Gew.-% Li, 4 bis 7 Gew.-% Cr sowie 1 bis 4 Gew.-% mindestens eines der Elemente V, Mn, Zr, Rest AI bestehen, wobei sie mindestens 15 Gew.-% der Phase AI3Li und ausserdem mindestens 2,6 Gew.-% der Phase AI3Zr oder der entsprechenden intermetallischen Verbindungen des AI mit V oder Mo bzw. mit V oder Mn als fein verteiltes Dispersoid von höchstens 0,1 µm Partikeldurchmesser enthält.The invention is not restricted to the exemplary embodiments. Basically, the aluminum alloy can consist of 1.5 to 5 wt.% Li, 4 to 11 wt.% Fe and 1 to 6 wt 5 wt .-% Li, 4 to 7 wt .-% Cr as well as 1 to 4 wt .-% of at least one of the elements V, Mn, Zr, remainder AI exist, wherein it comprises at least 15 wt .-% of the phase AI 3 Li and also contains at least 2.6% by weight of the phase Al 3 Zr or the corresponding intermetallic compounds of Al with V or Mo or with V or Mn as a finely divided dispersoid of at most 0.1 µm particle diameter.

Bevorzugte Aluminiumlegierungen bestehen aus :

  • 1,5 bis 4,5 Gew.-% Li, 5 bis 10 Gew.-% Fe und mindestens einem der Elemente Mo, V, Zr in einem Höchstgehalt von je 2 Gew.-%, Rest Al, wobei der totale Gehalt dieser 3 letzteren Elemente 4 Gew.-% nicht überschreitet.

Oder:
  • 1,5 bis 4,5 Gew.-% Li, 4 bis 7 Gew.-% Fe und mindestens einem der Elemente Zr, Mo in einem Höchstgehalt von je 2 Gew.-%, wobei der totale Gehalt dieser 2 letzteren Elemente 4 Gew.-% nicht überschreitet.
Preferred aluminum alloys consist of:
  • 1.5 to 4.5% by weight of Li, 5 to 10% by weight of Fe and at least one of the elements Mo, V, Zr in a maximum content of 2% by weight each, balance Al, the total content of these 3 the latter elements does not exceed 4% by weight.

Or:
  • 1.5 to 4.5% by weight of Li, 4 to 7% by weight of Fe and at least one of the elements Zr, Mo in a maximum content of 2% by weight each, the total content of these 2 latter elements being 4% by weight .-% does not exceed.

Die Aluminiumlegierungen weisen einen verhältnismässig grossen Volumenanteil an Phasen - insbesondere intermetallische Verbindungen - auf, die sich bei konventionellen Herstellungsmethoden nicht erzeugen lassen. Diese, als Dispersoide wirkende Partikei sind hauptsächlich für die hervorragenden Eigenschaften der Legierungen verantwortlich.The aluminum alloys have a relatively large volume fraction of phases - in particular intermetallic compounds - which cannot be produced using conventional manufacturing methods. These particles, which act as dispersoids, are mainly responsible for the excellent properties of the alloys.

Claims (7)

1. An aluminium alloy for the production of a powder having increased high-temperature strength, characterized in that it consists of 1.5 to 5 % by weight of Li, 4 to 11 % by weight of Fe and 1 to 6 % by weight of at least one of the elements Mo, V or Zr, the remainder being Al, and in that it contains at least 15 % by weight of the phase AI3Li and also at least 2.6 % by weight of the phase AI3Zr or of the corresponding intermetallic compounds of the AI with Mo or V as a finely divided dispersoid having a particle diameter of no more than 0.1 pm.
2. An aluminium alloy according to Claim 1, characterized in that it consists of 1.5 to 4.5 % by weight of Li, 5 to 10 % by weight of Fe and at least one of the elements Mo, V or Zr in a maximum content of 2 % by weight each, the remainder being AI, the total content of these 3 last-mentioned elements not exceeding 4 % by weight.
3. An aluminium alloy according to Claim 2, characterized in that the Li content is 2 % by weight and the Fe content is 8.5 % by weight and in that 1 % by weight of Zr is present.
4. An aluminium alloy according to Claim 2, characterized in that the Li content is 2.5 % by weight and the Fe content is 8 % by weight and in that 1 % by weight of Mo is present.
5. An aluminium alloy according to Claim 1, characterized in that it consists of 1.5 to 4.5 % by weight of Li, 4 to 7 % by weight of Fe and at least one of the elements, Zr or Mo in a maximum content of 2 % by weight each, the total content of these 2 last-mentioned elements not exceeding 4 % by weight.
6. An aluminium alloy for the production of a powder having increased high-temperature strength, characterized in that it consists of 1.5 to 5 % by weight of Li, 4 to 7 % by weight of Cr and 1 to 4 % by weight of a least one of the elements V, Mn or Zr, the remainder being Al, and in that it contains at least 15 % by weight of the phase AI3Li and also at least 2.6 % by weight of the phase AI3Zr or of the corresponding intermetallic compounds of the AI with V or Mn as a finely distributed dispersoid having a particle diameter of no more than 0.1 µm.
7. An aluminium alloy according to Claim 6, characterized in that the Li content is 3 % by weight and the Cr content is 5.5 % by weight and in that 1 % by weight of Zr is present.
EP86106735A 1985-06-26 1986-05-16 Aluminium alloy for the manufacture of a powder having an increased heat resistance Expired EP0210359B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2713/85 1985-06-26
CH271385 1985-06-26

Publications (2)

Publication Number Publication Date
EP0210359A1 EP0210359A1 (en) 1987-02-04
EP0210359B1 true EP0210359B1 (en) 1989-09-20

Family

ID=4239922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86106735A Expired EP0210359B1 (en) 1985-06-26 1986-05-16 Aluminium alloy for the manufacture of a powder having an increased heat resistance

Country Status (5)

Country Link
US (1) US4765851A (en)
EP (1) EP0210359B1 (en)
JP (1) JPS624850A (en)
DE (1) DE3665740D1 (en)
NO (1) NO862576L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187701A (en) * 1990-11-20 1992-07-06 Honda Motor Co Ltd Aluminum alloy powder for powder metallurgy and its green compact and sintered body
JP4722589B2 (en) * 2005-06-30 2011-07-13 株式会社三井ハイテック Stator laminated core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH216204A (en) * 1937-10-29 1941-08-15 Kommanditgesellschaft Mahle Aluminum alloy, especially for pistons in internal combustion engines.

Also Published As

Publication number Publication date
US4765851A (en) 1988-08-23
JPS624850A (en) 1987-01-10
NO862576L (en) 1986-12-29
EP0210359A1 (en) 1987-02-04
DE3665740D1 (en) 1989-10-26
NO862576D0 (en) 1986-06-25

Similar Documents

Publication Publication Date Title
DE69104784T2 (en) High-strength magnesium alloy, containing strontium and manufacturing process by means of rapid solidification.
DE68907331T2 (en) Process for the production of 7000 series aluminum alloys by spray deposition and non-continuously reinforced composite materials, the matrix of which consists of these alloys with high mechanical strength and good ductility.
DE69512490T2 (en) BERYLLIUM CONTAINING ALUMINUM ALLOYS AND LIQUID / SOLID PROCESSING OF SUCH ALLOYS
DE68909544T2 (en) HIGH-STRENGTH MAGNESIUM ALLOYS AND METHOD FOR OBTAINING THIS ALLOYS BY RASCH SOLIDIFICATION.
DE3883087T2 (en) Aluminum composite alloys.
DE69304231T2 (en) High strength aluminum alloy
DE69223194T2 (en) Process for the production of composite alloy powder with aluminum matrix
EP0224016B1 (en) Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c
DE69030366T2 (en) Aluminum alloy powder, sintered aluminum alloy and process for producing this sintered alloy
DE69502867T2 (en) High strength aluminum alloy
DE69734515T2 (en) SINTERED HARD ALLOY
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
DE3043503A1 (en) CRYSTALINE METAL ALLOY
DE69229971T2 (en) Chromium containing gamma titanium aluminides
DE3139548A1 (en) IMPROVED ALUMINUM TRANSITION METAL ALLOYS MANUFACTURED USING RAPID-FASTENED POWDERS AND METHOD FOR THE PRODUCTION THEREOF
DE3882397T2 (en) Metallic composite materials containing fly ash and process for their manufacture.
EP0035602B1 (en) Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique
EP0035601B1 (en) Process for making a memory alloy
DE3788387T2 (en) Dispersion-reinforced aluminum alloys.
DE3524276A1 (en) Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
DE68909420T2 (en) EXTRUSION OF RASCH FIXED HIGH TEMPERATURE ALLOYS ON AL BASIS ACTIVATED BY FRICTION.
DE69427281T2 (en) LIGHT METAL BERYLLIUM - ALUMINUM ALLOY WITH HIGH STRENGTH
EP0207268B1 (en) Aluminium alloy suitable for the rapid cooling of a melt supersaturated with alloying elements
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
DE2049546B2 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19870608

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19880901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890920

REF Corresponds to:

Ref document number: 3665740

Country of ref document: DE

Date of ref document: 19891026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900821

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910425

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910531

Ref country code: CH

Effective date: 19910531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910727

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

EUG Se: european patent has lapsed

Ref document number: 86106735.3

Effective date: 19921204