JPH04187701A - Aluminum alloy powder for powder metallurgy and its green compact and sintered body - Google Patents

Aluminum alloy powder for powder metallurgy and its green compact and sintered body

Info

Publication number
JPH04187701A
JPH04187701A JP2315019A JP31501990A JPH04187701A JP H04187701 A JPH04187701 A JP H04187701A JP 2315019 A JP2315019 A JP 2315019A JP 31501990 A JP31501990 A JP 31501990A JP H04187701 A JPH04187701 A JP H04187701A
Authority
JP
Japan
Prior art keywords
aluminum alloy
powder
alloy powder
hydrogen
dissociation pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2315019A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Ryuichi Kubota
隆一 窪田
Masao Ichikawa
政夫 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2315019A priority Critical patent/JPH04187701A/en
Priority to FR9114229A priority patent/FR2669844A1/en
Publication of JPH04187701A publication Critical patent/JPH04187701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture this aluminum alloy powder effectively removing hydrogen by precipitating intermetallic compound having a function forming metal hydride compounds in a specified condition to the surface of aluminum alloy powder for powder metallurgy by a quenching solidification method. CONSTITUTION:For example, the quenching solidification method is applied to aluminum alloy powder for powder metallurgy consisting of Al-Cr-Fe-Zr-X based alloy (X means one or more kinds of Mn, Cu, Co, V). By this reason, the intermetallic compounds having the function forming metal hydride compounds and characteristics including at least a part of equilibrium hydrogen dissociation line of hydride within specified range, temp.; -20-650 deg.C, equilibrium dissociation pressure; 10-<3>-10 atm. in relation to the temp. and the equilibrium hydrogen dissociation pressure, are made to be present on the surface of aluminum alloy powder with 20-80% area ratio. By this means, aluminum alloy powder occluding hydrogen on the surface of powder as a form of metal hydride and easily releasing hydrogen by the conventional degassing condition is manufactured.

Description

【発明の詳細な説明】 A5発明の目的 (1)産業上の利用分野 本発明は粉末冶金用アルミニウム合金粉末、圧粉体およ
び焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION A5 Object of the Invention (1) Field of Industrial Application The present invention relates to an aluminum alloy powder for powder metallurgy, a green compact, and a sintered compact.

(2)従来の技術 アルミニウム合金粉末の表面には、水分吸着層および不
働態膜(Apz 03とAft 03  ・nH2Oの
混合物)が生成され、それら水分吸着層等は焼結過程で
粉末相互間の拡散を妨げる性質を有する。
(2) Conventional technology A moisture adsorption layer and a passive film (a mixture of Apz 03 and Aft 03 ・nH2O) are formed on the surface of aluminum alloy powder, and these moisture adsorption layers are formed by the formation of particles between the powders during the sintering process. It has the property of hindering diffusion.

そこで、従来は、アルミニウム合金粉末より成形された
圧粉体に脱ガス処理を施す、といった手段を採用してい
る。この脱ガス処理は圧粉体を加熱することによって酸
化物の分解、吸着水の分解を行うものである。
Therefore, conventionally, a method has been adopted in which a green compact formed from aluminum alloy powder is subjected to a degassing treatment. This degassing treatment decomposes oxides and adsorbed water by heating the green compact.

(3)発明が解決しようとする課題 しかしながら前記脱ガス処理は、粉末表面側については
有効であるとしても、粉末内部に水素が固溶している場
合にはその水素を除去することはできず、その結果、焼
結工程にて粉末の変形に伴い残存水素が粒界に現出して
焼結体の脆性破壊の要因になる、といった問題がある。
(3) Problems to be solved by the invention However, even if the degassing treatment is effective on the powder surface side, it cannot remove hydrogen if it is dissolved inside the powder. As a result, there is a problem in that residual hydrogen appears at grain boundaries as the powder deforms during the sintering process, causing brittle fracture of the sintered body.

本発明は前記に鑑み、通常の脱ガス処理により水素を容
易に除去し得るような物性を有するアルミニウム合金粉
末、その粉末より成形された圧粉体およびその圧粉体よ
り製造された焼結体を提供することを目的とする。
In view of the above, the present invention provides an aluminum alloy powder having physical properties such that hydrogen can be easily removed by ordinary degassing treatment, a compact formed from the powder, and a sintered compact produced from the compact. The purpose is to provide

B0発明の構成 (1)課題を解決するための手段 本発明に係る粉末冶金用アルミニウム合金粉末は、金属
水素化物形成能を有すると共に温度と平衡水素解離圧と
の関係において、温度−20℃以上、650℃以下で、
且つ平衡水素解離圧10−1atm以上、10atm以
下と規定される範囲内に、水素化物の平衡水素解離圧直
線の少なくとも一部が含まれるような特性を有する金属
間化合物を、粉末状主体の表面に、面積率で20%以上
、80%以下存在させたことを特徴とする。
B0 Structure of the Invention (1) Means for Solving the Problems The aluminum alloy powder for powder metallurgy according to the present invention has a metal hydride forming ability, and in the relationship between temperature and equilibrium hydrogen dissociation pressure, the temperature is -20°C or higher. , below 650℃,
In addition, an intermetallic compound having characteristics such that at least a part of the equilibrium hydrogen dissociation pressure line of the hydride is included within a range defined as an equilibrium hydrogen dissociation pressure of 10 -1 atm or more and 10 atm or less is applied to the surface of the powder-based main body. It is characterized in that it is present in an area ratio of 20% or more and 80% or less.

本発明に係る圧粉体は、前記粉末冶金用アルミニウム合
金粉末に成形処理を施したことを特徴とする。
The green compact according to the present invention is characterized in that the aluminum alloy powder for powder metallurgy is subjected to a molding treatment.

本発明に係る焼結体は、前記圧粉体に、脱ガス処理およ
び焼結処理を施したことを特徴とする。
The sintered body according to the present invention is characterized in that the green compact is subjected to degassing treatment and sintering treatment.

0ン作 用 前記アルミニウム合金粉末において、金属間化合物の特
性を前記のように特定すると、粉末表面の水素は、その
大部分が金属間化合物によって金属水素化物の形態で吸
蔵され、そして、通常の脱ガス処理条件下において、金
属間化合物が水素を容易に放出する。
If the characteristics of the intermetallic compound in the aluminum alloy powder are specified as described above, most of the hydrogen on the powder surface is occluded by the intermetallic compound in the form of metal hydride, and then Under degassing conditions, intermetallic compounds readily release hydrogen.

これにより水素の除去が効率良く行われる。This allows hydrogen to be removed efficiently.

た\゛し、面積率が20%未満では水素吸蔵量が少ない
ので、十分な水素除去効果が得られず、−方、80%を
超えると、焼結体における粒界にそれら金属間化合物が
存在することによって、その焼結体の強度、靭延性等が
低下する。
However, if the area ratio is less than 20%, the amount of hydrogen absorbed will be small, and a sufficient hydrogen removal effect will not be obtained.On the other hand, if the area ratio exceeds 80%, these intermetallic compounds will be present at the grain boundaries in the sintered body. Due to its presence, the strength, toughness and ductility of the sintered body are reduced.

また金属間化合物が前記特性を持たない場合には、水素
の吸蔵効率および通常の脱ガス処理条件下での水素の放
出効率が悪化する。
Furthermore, if the intermetallic compound does not have the above characteristics, the hydrogen storage efficiency and the hydrogen release efficiency under normal degassing conditions deteriorate.

前記圧粉体によれば、前記金属間化合物が粒界に存する
ので、脱ガス処理における水素の放出が確実に行われる
According to the powder compact, since the intermetallic compound exists in the grain boundaries, hydrogen is reliably released during the degassing treatment.

前記焼結体は、脱ガス処理により水素が除去されている
ので、残存水素に起因した諸問題が回避されて高強度で
ある。この脱ガス処理は圧粉体または焼結体に施される
Since hydrogen has been removed from the sintered body through degassing treatment, various problems caused by residual hydrogen are avoided and the sintered body has high strength. This degassing treatment is performed on the green compact or sintered body.

なお、粉末内部に存する水素は金属間化合物により水素
化物として固定されているので、残存水素による焼結体
の脆性破壊といった不具合は、焼結体の通常の使用温度
域では回避される。
Note that since the hydrogen existing inside the powder is fixed as a hydride by the intermetallic compound, problems such as brittle fracture of the sintered body due to residual hydrogen can be avoided in the normal usage temperature range of the sintered body.

(3)実施例 本発明におけるアルミニウム合金は、例えばA1、−C
r−F e−Z r−X系合金である。この場合、Xは
選択的化学成分であって、Mn、Cu、Co、Mgおよ
びVから選択される少なくとも一種が該当する。
(3) Example The aluminum alloy in the present invention is, for example, A1, -C
r-Fe-Z r-X alloy. In this case, X is a selective chemical component, and is at least one selected from Mn, Cu, Co, Mg and V.

この種合金組成の粉末冶金用アルミニウム合金粉末の製
造法としては急冷凝固法が適用され、この急冷凝固法の
適用下において、粉末状主体の表面に、金属水素化物形
成能を有する金属間化合物が析出する。この場合、主体
内部にも金属間化合物は存在する。
A rapid solidification method is applied as a method for producing aluminum alloy powder for powder metallurgy with this type of alloy composition, and under the application of this rapid solidification method, intermetallic compounds having the ability to form metal hydrides are formed on the surface of the powder main body. Precipitate. In this case, the intermetallic compound also exists inside the main body.

第1図は、各種金属間化合物の水素化物における温度と
平衡水素解離圧との関係を示す。
FIG. 1 shows the relationship between temperature and equilibrium hydrogen dissociation pressure in hydrides of various intermetallic compounds.

本発明における有効な金属間化合物は、温度と平衡水素
解離圧との関係において、温度−20℃以上、650℃
以下で、且つ平衡水素解離圧10−1atm以上、10
atm以下と規定される範囲内、即ち、第1図で点A 
I””’A4を結ぶ線図で囲まれる範囲内に、水素化物
の平衡水素解離圧直線の少なくとも一部が含まれるよう
な特性を有する。
In the relationship between temperature and equilibrium hydrogen dissociation pressure, the effective intermetallic compound in the present invention has a temperature of -20°C or higher, 650°C or higher.
or less, and the equilibrium hydrogen dissociation pressure is 10 −1 atm or more, 10
within the range defined as below atm, that is, point A in Figure 1.
It has a characteristic that at least a part of the equilibrium hydrogen dissociation pressure straight line of the hydride is included in the range surrounded by the line connecting I'''''A4.

このような金属間化合物の一般式を、A2、。The general formula of such an intermetallic compound is A2.

Cr (b)  Fetc+  Zr (4)  X(
111とすると、それら(a)〜(e)は次のように規
定される。
Cr (b) Fetc+ Zr (4) X(
111, those (a) to (e) are defined as follows.

即ち、Σ= (a) + (b) + (c) + (
a) + (e)としたとき、0≦(a)/Σ≦0,9
、 O≦(b)/Σ≦0.7. 0≦(C)/Σ≦0.8. 0≦@/Σ≦0.8. 0≦(e)/Σ≦0.8 となる。
That is, Σ= (a) + (b) + (c) + (
a) + (e), 0≦(a)/Σ≦0,9
, O≦(b)/Σ≦0.7. 0≦(C)/Σ≦0.8. 0≦@/Σ≦0.8. 0≦(e)/Σ≦0.8.

前記条件を満たす金属間化合物としては下記のものが該
当する。
The following intermetallic compounds meet the above conditions.

(i)   AlCr系:Alt  Cr、Aj!+s
Crフ(ii)  Al2Fe系: Als F e、
 AI’lsF ea(iii)  AN Z r系:
 A 11 Z r z 、 A l 3Z r t、
AfZr、 、AI!、s Zr (iv)  Al1CrFe系:Al1CrFe(v)
  Al1ZrX系: Als Z ro、rts V
o、5ts(vi)  CrZr系:CrzZr (vi)  CrFeZr系:CrFeZr。
(i) AlCr system: Alt Cr, Aj! +s
CrF (ii) Al2Fe system: Als Fe,
AI'lsF ea(iii) AN Z r series:
A 11 Z r z , A l 3 Z r t,
AfZr, , AI! , s Zr (iv) Al1CrFe system: Al1CrFe(v)
Al1ZrX system: Als Z ro, rts V
o, 5ts (vi) CrZr-based: CrzZr (vi) CrFeZr-based: CrFeZr.

Cro、s Feb、s Zr (vIi)  CrFeZrX系:CrFeZrMna
、s、CrFeZrCuo、z (tx)  F e Z r X系: F el、目Z
 rMn+、zg(x)  ZrX系:ZrVz 金属間化合物が複数の金属間化合物より構成される場合
は、金属水素化物形成能の高い活性金属間化合物を含む
ことが必要であり、その活性金属間化合物は、温度と平
衡水素解離圧との関係において、温度50℃以上、50
0℃以下で、且つ平衡水素解離圧10−1atm以上、
10atm以下と規定される範囲内、即ち、第1図で点
B、〜B4を結ぶ線図で囲まれる範囲内に、水素化物の
平衡水素解離圧直線の少なくとも一部が含まれるような
特性を有する。
Cro, s Feb, s Zr (vIi) CrFeZrX system: CrFeZrMna
, s, CrFeZrCuo, z (tx) F e Z r X system: F el, Z
rMn+, zg(x) ZrX system: ZrVz When the intermetallic compound is composed of multiple intermetallic compounds, it is necessary to include an active intermetallic compound with a high metal hydride forming ability, and the active intermetallic compound In the relationship between temperature and equilibrium hydrogen dissociation pressure, when the temperature is 50°C or higher and the
0°C or lower, and an equilibrium hydrogen dissociation pressure of 10-1 atm or higher,
Characteristics such that at least a part of the equilibrium hydrogen dissociation pressure line of the hydride is included within the range defined as 10 atm or less, that is, within the range surrounded by the line connecting points B and ~B4 in FIG. have

このような活性化金属間化合物は、次のようΔ各種一般
式を有し、また各−殺伐には次のような具体的金属間化
合物が該当する。これら活性化金属間化合物はZrを必
須化学成分とするもので、先に挙げた金属間化合物群に
含まれている。
Such activated intermetallic compounds have various general formulas Δ as shown below, and the following specific intermetallic compounds correspond to each type of activation. These activated intermetallic compounds contain Zr as an essential chemical component and are included in the above-mentioned group of intermetallic compounds.

(! )  Cr (II) F e n、Z r <
c+系Σ=(a)+(ロ)+(C)としたとき、0、O
1≦(a)/Σ≦0.5 0、O1≦(b)/Σ≦0.5 0.01≦(C)/Σ≦0.5 となる。
(!) Cr (II) F e n, Z r <
When c + system Σ = (a) + (b) + (C), 0, O
1≦(a)/Σ≦0.5 0, O1≦(b)/Σ≦0.5 0.01≦(C)/Σ≦0.5.

具体的金属間化合物としては、CrFeZr、Cro、
s F e +、s Z rを挙げることができる。
Specific intermetallic compounds include CrFeZr, Cro,
Examples include s F e + and s Z r.

(ti )  Cr (II) F e tb+ Z 
r (CI X (4+系Σ−(a) + (b) +
(c)+(イ)としたとき、0≦(a)/Σ≦0.4 0≦(b)/Σ≦0.4 0、1≦(C)/Σ≦0.5 0≦(ロ)/Σ≦0.4 となる。
(ti) Cr (II) Fe tb+ Z
r (CI X (4+ system Σ-(a) + (b) +
When (c) + (a), 0≦(a)/Σ≦0.4 0≦(b)/Σ≦0.4 0, 1≦(C)/Σ≦0.5 0≦(Ro) )/Σ≦0.4.

具体的金属間化合物としては、CrFeZrMno、s
 、CrFeZrCua、zを挙げることができる。
Specific intermetallic compounds include CrFeZrMno, s
, CrFeZrCua, z.

(iii)  Aj! +111 Z r ty系Σ−
(a)十伽)としたとき、 (a)/Σ≦0.3.0.7≦(a)/Σ0))/Σ≦
0.3.0.7≦ら〕/Σとなる。
(iii) Aj! +111 Z r ty system Σ-
(a) Jutoga) When (a)/Σ≦0.3.0.7≦(a)/Σ0))/Σ≦
0.3.0.7≦et]/Σ.

具体的金属間化合物としてはA I Z r x 、A
 f、Zrを挙げることができる。
Specific intermetallic compounds include A I Z r x , A
Examples include f and Zr.

(iv)  Aj! (1Z r (b+ X TCI
系Σ= (a) + (b) + (C)としたとき、
(a)/Σ≦0.3.0.7≦(a)/ΣQ))/Σ≦
0.3.0.7≦(b)/Σ(C)/Σ≦0.3 となる。
(iv) Aj! (1Z r (b+ X TCI
When the system Σ= (a) + (b) + (C),
(a)/Σ≦0.3.0.7≦(a)/ΣQ))/Σ≦
0.3.0.7≦(b)/Σ(C)/Σ≦0.3.

具体的金属間化合物としては、A13 Zro、Bs■
。9.7.を挙げることができる。
Specific intermetallic compounds include A13 Zro, Bs■
. 9.7. can be mentioned.

このような活性金属間化合物の含有量は、水素の吸蔵放
出の観点より、全金属間化合物量の5重量%以上である
ことが望ましい。
The content of such active intermetallic compounds is desirably 5% by weight or more based on the total amount of intermetallic compounds from the viewpoint of absorbing and releasing hydrogen.

第1図中、金属間化合物T i A j! +zF e
 x S iは比較例であり、その水素化物における平
衡水素解離圧直線は前記点A、〜A4による線図の範囲
内を逸脱している。
In FIG. 1, the intermetallic compound T i A j! +zF e
x S i is a comparative example, and the equilibrium hydrogen dissociation pressure line in its hydride deviates from the range of the diagram defined by points A and A4.

第2図は、前記金属間化合物ZrV、、Cr。FIG. 2 shows the intermetallic compounds ZrV, Cr.

Zr、CrFeZrCuo、z 、CrFeZr、Fe
 +、 ++ Z r M n I、1g、Cro、s
 Feb、s Zr、CrFe ZrMne、s 5A
ItZrs 、AI!3Zr。
Zr, CrFeZrCuo, z, CrFeZr, Fe
+, ++ Z r M n I, 1g, Cro, s
Feb, s Zr, CrFe ZrMne, s 5A
ItZrs, AI! 3Zr.

Art3Z ro、+zs Vt、自ts (D水素化
物ニラいテノ温度50〜100”Cにおける平衡水素解
離圧と水素吸蔵量との関係を示す。
Art3Z ro, +zs Vt, autots (D Shows the relationship between equilibrium hydrogen dissociation pressure and hydrogen storage amount at a hydride temperature of 50 to 100''C.

ZrVt 、ZrCrzを除く、他の金属間化合物は、
平衡水素解離圧が温度5o〜ioo”cにおいて、la
tm近傍にあり、且つ水素吸蔵量も多いことから、粉末
冶金分野における脱ガス処理を効率良く行う上で有効で
あることが判る。
Other intermetallic compounds except ZrVt and ZrCrz are
The equilibrium hydrogen dissociation pressure is la
It is found that it is effective in efficiently performing degassing treatment in the powder metallurgy field because it is close to tm and has a large hydrogen storage capacity.

前記アルミニウム合金粉末より焼結体を製造する場合は
、その合金粉末に圧縮成形処理を施して圧粉体を得る工
程と、圧粉体に脱ガス処理を施す工程と、圧粉体に焼結
処理を施す工程とを順次実施するものである。必要に応
じて、脱ガス処理は焼結処理後において行われる。
When producing a sintered body from the aluminum alloy powder, the alloy powder is subjected to a compression molding process to obtain a green compact, the green compact is degassed, and the green compact is sintered. The processing steps are sequentially performed. If necessary, degassing treatment is performed after the sintering treatment.

圧縮成形処理としては、冷間ブレス加工、CIP処理等
が適用される。
As the compression molding treatment, cold pressing, CIP treatment, etc. are applied.

脱ガス処理は温度350〜500℃、時間150〜30
0分間の条件下で行われる。
Degassing treatment is performed at a temperature of 350 to 500°C and a time of 150 to 30 minutes.
It is carried out under conditions of 0 minutes.

焼結処理としては、熱間押出し加工、HIP処理、温間
鍛造加工、熱間鍛造加工等が適用される。
As the sintering treatment, hot extrusion processing, HIP processing, warm forging processing, hot forging processing, etc. are applied.

第3図はアルミニウム合金粉末表面における金属間化合
物の面積率と焼結体における残存水素量との関係を示す
FIG. 3 shows the relationship between the area ratio of intermetallic compounds on the surface of the aluminum alloy powder and the amount of residual hydrogen in the sintered body.

線!、は本発明の一実施例であるAf−Cr−Fe−Z
r系合金粉末を用いた場合であり、金属間化合物として
はCrFeZr、Cr、、s Feb、sZr、Als
 Zr、AItZrsが粉末状主体表面に析出している
。この場合、金属間化合物の全部が活性金属間化合物で
ある。
line! , is an example of the present invention Af-Cr-Fe-Z
This is the case when r-based alloy powder is used, and intermetallic compounds include CrFeZr, Cr, sFeb, sZr, Als
Zr and AItZrs are precipitated on the surface of the powdered main body. In this case, all of the intermetallic compounds are active intermetallic compounds.

vAxzは比較例であるAN−Fe−Ce系合金粉末を
用いた場合であり、金属間化合物としてはAj!+eF
ez Ce、AlrsFeaが粉末状主体表面に析出し
ている。
vAxz is the case using AN-Fe-Ce alloy powder as a comparative example, and Aj! as an intermetallic compound. +eF
ez Ce and AlrsFea are precipitated on the surface of the powdery main body.

線X、は他の比較例であるAj!−Fe−3i系合金粉
末を用いた場合であり、金属間化合物さしてはAj!、
□FeユStが粉末状主体表面に析出している。
Line X is another comparative example Aj! -This is the case when Fe-3i alloy powder is used, and the intermetallic compound Aj! ,
□Fe-St is precipitated on the surface of the powdered main body.

残存水素量の測定に当っては、次のような方法が用いら
れた。
The following method was used to measure the amount of residual hydrogen.

先ず、前記合金粉末を用いてCIP処理の適用下で圧粉
体を得、次いでその圧粉体にlatmにて450℃、9
0分間の脱ガス処理を施し、その後圧粉体に熱間押出し
加工を施して焼結体を得た。
First, a green compact was obtained using the alloy powder by CIP treatment, and then the green compact was heated at 450° C. at 90° C. at latm.
After degassing for 0 minutes, the green compact was subjected to hot extrusion to obtain a sintered body.

このようにして得られた焼結体を溶融し、その溶融によ
る発生水素量を不活性ガスをキャリヤとして測定し、こ
れを残存水素量とした。
The sintered body thus obtained was melted, and the amount of hydrogen generated by the melting was measured using an inert gas as a carrier, and this was taken as the amount of residual hydrogen.

第3図線X、より、本発明によれば焼結体における残存
水素量を二比較例に比べて大幅に低減し得ることが明ら
かである。
From the line X in FIG. 3, it is clear that according to the present invention, the amount of residual hydrogen in the sintered body can be significantly reduced compared to the two comparative examples.

これは、本発明に係るアルミニウム合金粉末においては
、金属間化合物の特性が前記のように特定されているの
で、粉末表面の水素の大部分が金属間化合物によって金
属水素化物の形態で吸蔵され、そして、通常の脱ガス処
理条件下において、金属間化合物が水素を容易に放出す
ることに起因する。
This is because, in the aluminum alloy powder according to the present invention, the characteristics of the intermetallic compound are specified as described above, so that most of the hydrogen on the powder surface is occluded by the intermetallic compound in the form of metal hydride. This is because intermetallic compounds easily release hydrogen under normal degassing conditions.

第4図は、アルミニウム合金粉末表面に析出した全金属
間化合物における活性金属間化合物の含有量と、焼結体
における残存水素量との関係を示す。
FIG. 4 shows the relationship between the content of active intermetallic compounds in all the intermetallic compounds deposited on the surface of the aluminum alloy powder and the amount of residual hydrogen in the sintered body.

残存水素量の測定に当っては、次のような方法が用いら
れた。
The following method was used to measure the amount of residual hydrogen.

先ず、At  (at )Cr  (ax )Fe−(
a、)Zr系合金として、3重量%≦(a、)58重量
%、0.5重量%≦(a8)53重量%、0≦(a、)
58重量%のものを選定し、(at)を6重量%に、(
ax )を3重量%にそれぞれ設定し、また(a、)の
値を変化させて5種類の溶湯を調製した。
First, At(at)Cr(ax)Fe-(
a,) As a Zr-based alloy, 3% by weight≦(a,) 58% by weight, 0.5% by weight≦(a8) 53% by weight, 0≦(a,)
Select 58% by weight, (at) to 6% by weight, (
ax ) was set at 3% by weight, and five types of molten metals were prepared by varying the values of (a, ).

次いで各溶湯の温度を1000℃以上に保持して冷却速
度10”〜10”Cの条件下で急冷凝固法を実施して5
種類のアルミニウム合金粉末I〜■を製造した。
Next, the temperature of each molten metal was maintained at 1000°C or higher and a rapid solidification method was carried out at a cooling rate of 10" to 10"C.
Different types of aluminum alloy powders I to (2) were produced.

各アルミニウム合金粉末I〜■の表面には、Ais Z
r、Ant Zr、An!s Zrx 、AjICrF
e、Af13Fe4 、At!+3Crtといった各種
金属間化合物が析出していた。
Ais Z on the surface of each aluminum alloy powder I~■
r, Ant Zr, An! s Zrx , AjICrF
e, Af13Fe4, At! Various intermetallic compounds such as +3Crt were precipitated.

活性金属間化合物としてAl5Zrを選定し、各アルミ
ニウム合金粉末■〜Vについて全金属間化合物における
Aj!:+Zrの含有量、全金属間化金物の面積率およ
びAj!、Zrの面積率を求めたところ下表の通りであ
った。
Al5Zr was selected as the active intermetallic compound, and Aj in all intermetallic compounds for each aluminum alloy powder ① to V! :+Zr content, total area ratio of intermetallic metals and Aj! The area ratios of Zr and Zr were determined as shown in the table below.

各アルミニウム合金粉末■〜Vを用いてCIP処理の適
用下で圧粉体を得、次いでその圧粉体にlatmにて4
50℃、40分間の脱ガス処理を施し、その後圧粉体に
熱間押出し加工を施して焼結体を得た。
A green compact was obtained using each of the aluminum alloy powders ① to ① to V under the application of CIP treatment, and then the green compact was heated at latm for 4 hours.
A degassing treatment was performed at 50° C. for 40 minutes, and then the green compact was subjected to hot extrusion to obtain a sintered body.

このようにして得られた焼結体を溶融し、その溶融によ
る発生水素量を不活性ガスをキャリヤとして測定し、こ
れを残存水素量とした。
The sintered body thus obtained was melted, and the amount of hydrogen generated by the melting was measured using an inert gas as a carrier, and this was taken as the amount of residual hydrogen.

第4図から明らかなように、活性金属間化合物であるA
j!3Zrの含有量を5重量%以上に設定することによ
って焼結体における残存水素量を大幅に低減することが
できる。
As is clear from Figure 4, A is an active intermetallic compound.
j! By setting the content of 3Zr to 5% by weight or more, the amount of residual hydrogen in the sintered body can be significantly reduced.

C6発明の効果 本発明によれば、通常の脱ガス処理条件下において、水
素の除去を効率良(行うことが可能な粉末冶金用アルミ
ニウム合金粉末およびその粉末より得られた圧粉体を提
供することができる。
C6 Effects of the Invention According to the present invention, an aluminum alloy powder for powder metallurgy that can efficiently remove hydrogen under normal degassing treatment conditions and a green compact obtained from the powder are provided. be able to.

また本発明によれば、アルミニウム合金よりなり、且つ
残存水素量の極めて少ない高強度な焼結体を提供するこ
とができる。
Further, according to the present invention, it is possible to provide a high-strength sintered body made of an aluminum alloy and having an extremely small amount of residual hydrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度と平衡水素解離圧との関係を示すグラフ、
第2図は温度50〜100℃における平衡水素解離圧と
水素吸蔵量との関係を示すグラフ、第3図はアルミニウ
ム合金粉末表面における金属間化合物の面積率と焼結体
における残存水素量との関係を示すグラフ、第4図は全
金属間化合物における活性金属間化合物AI2:lZr
の含有量と焼結体における残存水素量との関係を示すグ
ラフである。 特 許 出 願 人  本田技研工業株式会社代理人 
  弁理士  落  合     健同       
 仁   木   −明第3図 アルミニウム合金粉末表面における 金属間化合物の面積率(%) 第4図 全金属間化合物における活性金属間 化合物Aj2+ Zrの含有量(重量%)手続補正書(
自発) 平成3年12月27日 1、 事件の表示 特願平2−315019号 2、 発明の名称 粉末冶金用アルミニウム合金粉末、 圧粉体および焼結体 3、補正をする者 事件との関係  特許出願人 名称  (532)本田技研工業株式会社4、代理人 
@105 住所  東京都港区西新橋三丁目12番10号明細書の
「発明の詳細な説明」の欄、 補正の内容 (1)明細書第6頁末行を下記の通り訂正する。 記 「 なお、粉末内部に存する水素は、その粉末内部に存
する金属間化合物に」 (2)図面第2図を別紙の通り訂正する。 以上
Figure 1 is a graph showing the relationship between temperature and equilibrium hydrogen dissociation pressure.
Figure 2 is a graph showing the relationship between equilibrium hydrogen dissociation pressure and hydrogen storage capacity at temperatures of 50 to 100°C, and Figure 3 is a graph showing the relationship between the area ratio of intermetallic compounds on the aluminum alloy powder surface and the amount of residual hydrogen in the sintered body. A graph showing the relationship, Figure 4, shows the active intermetallic compound AI2:lZr in all intermetallic compounds.
2 is a graph showing the relationship between the content of hydrogen and the amount of residual hydrogen in the sintered body. Patent applicant: Agent for Honda Motor Co., Ltd.
Patent Attorney Kendo Ochiai
Figure 3 Area ratio of intermetallic compounds on the surface of aluminum alloy powder (%) Figure 4 Content of active intermetallic compound Aj2+ Zr in all intermetallic compounds (% by weight) Procedural amendment (
Spontaneous) December 27, 1991 1, Indication of the case: Patent Application No. 2-315019 2, Title of the invention: Aluminum alloy powder for powder metallurgy, green compact and sintered body 3, Person making the amendment: Relationship with the case Patent applicant name (532) Honda Motor Co., Ltd. 4, Agent
@105 Address: 3-12-10 Nishi-Shinbashi, Minato-ku, Tokyo Contents of amendment in the "Detailed Description of the Invention" column of the specification (1) The last line of page 6 of the specification is corrected as follows. (2) Figure 2 of the drawing is corrected as shown in the attached sheet. that's all

Claims (5)

【特許請求の範囲】[Claims] (1)金属水素化物形成能を有すると共に温度と平衡水
素解離圧との関係において、温度−20℃以上、650
℃以下で、且つ平衡水素解離圧10^−^3atm以上
、10atm以下と規定される範囲内に、水素化物の平
衡水素解離圧直線の少なくとも一部が含まれるような特
性を有する金属間化合物を、粉末状主体の表面に、面積
率で20%以上、80%以下存在させたことを特徴とす
る粉末冶金用アルミニウム合金粉末。
(1) It has the ability to form metal hydrides, and in terms of the relationship between temperature and equilibrium hydrogen dissociation pressure, the temperature is -20℃ or higher, 650℃
℃ or less, and the equilibrium hydrogen dissociation pressure is within the range specified as 10^-^3 atm or more and 10 atm or less, and has the property that at least a part of the equilibrium hydrogen dissociation pressure line of the hydride is included. An aluminum alloy powder for powder metallurgy, characterized in that an aluminum alloy powder is present on the surface of a powder main body in an area ratio of 20% or more and 80% or less.
(2)前記金属間化合物は、金属水素化物形成能の高い
活性金属間化合物を含み、その活性金属間化合物は温度
と平衡水素解離圧との関係において、温度50℃以上、
500℃以下で、且つ平衡水素解離圧10^−^1at
m以上、10atm以下と規定される範囲内に、水素化
物の平衡水素解離圧直線の少なくとも一部が含まれるよ
うな特性を有し、前記活性金属間化合物の含有量を全金
属間化合物量の5重量%以上に設定した、第(1)項記
載の粉末冶金用アルミニウム合金粉末。
(2) The intermetallic compound includes an active intermetallic compound that has a high ability to form metal hydrides, and the active intermetallic compound has a temperature of 50°C or higher in the relationship between temperature and equilibrium hydrogen dissociation pressure.
Below 500℃ and equilibrium hydrogen dissociation pressure 10^-^1at
It has a characteristic that at least a part of the equilibrium hydrogen dissociation pressure line of the hydride is included in the range defined as not less than m and not more than 10 atm, and the content of the active intermetallic compound is calculated based on the total amount of intermetallic compounds. The aluminum alloy powder for powder metallurgy according to item (1), wherein the aluminum alloy powder is set at 5% by weight or more.
(3)前記活性金属間化合物は,その化学成分としてZ
rを含有する、第(2)項記載の粉末冶金用アルミニウ
ム合金粉末。
(3) The active intermetallic compound contains Z as its chemical component.
The aluminum alloy powder for powder metallurgy according to item (2), which contains r.
(4)第(1),第(2)または第(3)項記載の粉末
冶金用アルミニウム合金粉末に成形処理を施してなる圧
粉体。
(4) A green compact obtained by subjecting the aluminum alloy powder for powder metallurgy according to item (1), item (2), or item (3) to a molding treatment.
(5)第(4)項記載の圧粉体に、脱ガス処理および焼
結処理を施してなる焼結体。
(5) A sintered body obtained by subjecting the green compact described in item (4) to degassing treatment and sintering treatment.
JP2315019A 1990-11-20 1990-11-20 Aluminum alloy powder for powder metallurgy and its green compact and sintered body Pending JPH04187701A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2315019A JPH04187701A (en) 1990-11-20 1990-11-20 Aluminum alloy powder for powder metallurgy and its green compact and sintered body
FR9114229A FR2669844A1 (en) 1990-11-20 1991-11-19 Aluminium alloy powder, green compacted product and sintered compacted product for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315019A JPH04187701A (en) 1990-11-20 1990-11-20 Aluminum alloy powder for powder metallurgy and its green compact and sintered body

Publications (1)

Publication Number Publication Date
JPH04187701A true JPH04187701A (en) 1992-07-06

Family

ID=18060446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315019A Pending JPH04187701A (en) 1990-11-20 1990-11-20 Aluminum alloy powder for powder metallurgy and its green compact and sintered body

Country Status (2)

Country Link
JP (1) JPH04187701A (en)
FR (1) FR2669844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294070A (en) * 2014-11-11 2015-01-21 安徽工业大学 Method for preparing aluminum alloy containing magnesium through low temperature sintering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077524B1 (en) * 2018-02-08 2021-01-15 C Tec Constellium Tech Center METHOD OF MANUFACTURING A PART FROM ALUMINUM AND CHROME ALLOY
FR3092119B1 (en) * 2019-01-24 2020-12-25 C Tec Constellium Tech Center Process for manufacturing an aluminum alloy part, the alloy comprising at least zirconium and magnesium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0105595B1 (en) * 1982-09-03 1988-03-23 Alcan International Limited Aluminium alloys
JPS6043453A (en) * 1983-08-17 1985-03-08 Nissan Motor Co Ltd Heat-resistant aluminum alloy
EP0210359B1 (en) * 1985-06-26 1989-09-20 BBC Brown Boveri AG Aluminium alloy for the manufacture of a powder having an increased heat resistance
NO161686C (en) * 1986-06-20 1989-09-13 Raufoss Ammunisjonsfabrikker ALUMINUM ALLOY, PROCEDURE FOR ITS MANUFACTURING AND USE OF THE ALLOY IN ELECTRIC WIRES.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294070A (en) * 2014-11-11 2015-01-21 安徽工业大学 Method for preparing aluminum alloy containing magnesium through low temperature sintering

Also Published As

Publication number Publication date
FR2669844A1 (en) 1992-06-05

Similar Documents

Publication Publication Date Title
US8002912B2 (en) High strength L12 aluminum alloys
EP2112239B1 (en) Method of forming an aluminum alloy with l12 precipitates
US3954458A (en) Degassing powder metallurgical products
EP0580081B1 (en) A product of a Ti-Al system intermetallic compound having a superior oxidation resistance and wear resistance and a method of manufacturing the product
JP2002540294A5 (en)
JPS6283446A (en) High strength corrosion resistant magnesium base metal alloysolidified quickly, its production and metal article compressed from said alloy
Komjathy The constitution of some vanadium-base binary and ternary systems and the ageing characteristics of selected ternary alloys
US3677723A (en) Composite material of vanadium alloys and iron or nickel alloys
US3664889A (en) TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
EP0366134B1 (en) Aluminum alloy useful in powder metallurgy process
US4931253A (en) Method for producing alpha titanium alloy pm articles
JPH04187701A (en) Aluminum alloy powder for powder metallurgy and its green compact and sintered body
JPS5841335B2 (en) Taisanka Saven Sankiyouka Gokin
Partridge et al. The effect of microstructure and composition on the properties of vapour quenched Al Cr alloys—II. Tensile properties
US4202688A (en) High conductivity high temperature copper alloy
Scholl et al. Relative Ductilities of TiFe, TiCo, and TiNi
JPH0790517A (en) Aluminum-base alloy
JP3370352B2 (en) Ultra-high vacuum titanium alloy with low outgassing
US3494807A (en) Dispersion hardened cobalt alloy sheet and production thereof
JPH0353037A (en) High strength titanium alloy
JP2790774B2 (en) High elasticity aluminum alloy with excellent toughness
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
EP0634496A1 (en) High strength and high ductility TiAl-based intermetallic compound and process for producing the same
JPH07116547B2 (en) High toughness tungsten sintered alloy
JPS62188738A (en) Structural member made of sintered al or al alloy and its production