EP0210359A1 - Aluminium alloy for the manufacture of a powder having an increased heat resistance - Google Patents

Aluminium alloy for the manufacture of a powder having an increased heat resistance Download PDF

Info

Publication number
EP0210359A1
EP0210359A1 EP86106735A EP86106735A EP0210359A1 EP 0210359 A1 EP0210359 A1 EP 0210359A1 EP 86106735 A EP86106735 A EP 86106735A EP 86106735 A EP86106735 A EP 86106735A EP 0210359 A1 EP0210359 A1 EP 0210359A1
Authority
EP
European Patent Office
Prior art keywords
weight
powder
elements
heat resistance
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86106735A
Other languages
German (de)
French (fr)
Other versions
EP0210359B1 (en
Inventor
Malcolm James Dr. Couper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0210359A1 publication Critical patent/EP0210359A1/en
Application granted granted Critical
Publication of EP0210359B1 publication Critical patent/EP0210359B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • the invention relates to an aluminum alloy for the production of powder with increased heat resistance according to the preamble of claim 1.
  • the invention has for its object to provide aluminum alloys which are well suited for the production of powders with increased heat resistance and improved mechanical and structural properties with a low density.
  • compositions should be sought which form stable intermetallic compounds which act as fine dispersoids under the proposed cooling conditions.
  • the tape was crushed and ground into fine-grained powder. Then a cylindrical capsule made of ductile aluminum sheet 50 mm in diameter and 60 mm high was filled with the powder, evacuated and welded. The filled capsule was then hot pressed at 400 ° C. under a pressure of 250 MPa to the full theoretical density. The capsule was removed by mechanical processing and the pressed body was inserted as a press bolt with a diameter of 36 mm in an extrusion press with a reduction ratio of 30: 1 and pressed at 400 ° C. to a rod with a diameter of 6.5 mm.
  • Test specimens were examined out of the rod to investigate the physical and mechanical properties.
  • a test specimen was subjected to a heat treatment at 400 ° C. for 2 hours.
  • the Vickers hardness determined afterwards at room temperature was 180 (HV). With a density of only 2.85 g / cm ', the tensile strength and yield strength were consistently 50 to 80% higher than that of comparable conventional alloys.
  • Example 2 The successive further processing into a strip, a powder and an extruded rod was carried out exactly the same as described in Example 1.
  • the original Vickers hardness at room temperature was 200 (HV), after heat treatment at 400 ° C / 2 h still 180 (HV). This shows that an excellent temperature resistance has been achieved, which indicates a high heat resistance.
  • the alloy was melted from corresponding Al / Li, Al / Cr and Al / Zr master alloys and cast into an ingot similar to Example 1.
  • the ingot was melted again and brought to a casting temperature of 1100 ° C.
  • the melt was atomized under an inert gas atmosphere of 6 MPa pressure to a powder with an average particle diameter of 30 ⁇ m.
  • the powder produced in this way was poured into an aluminum can, which was then evacuated and sealed in a vacuum-tight manner. Similar to Example 1, the body was compressed and hot pressed. After turning off the can part forming the jacket, the pressed body was heated to a temperature of 450 ° C. and extruded with a reduction ratio of 30: 1 at this temperature into a round bar.
  • the entire powder processing was carried out under a protective gas atmosphere.
  • Test specimens worked out from the rod gave a density of 2.80 g / cm '. After a heat treatment at 400 ° C. for 2 hours, the Vickers hardness at room temperature was 170 (HV), after a further heat treatment at the same temperature it was still 160 (HV) for an additional 50 hours. This suggests a great thermal stability of the structure. The improvement in strength values compared to conventional alloys of the same density was approx. 100%.
  • the aluminum alloy can consist of 1.5 to 5% by weight of Li, 4 to 11% by weight of Fe and 1 to 6% by weight of at least one of the elements Mo, V, Zr, balance A1 or from 1.5 to 5% by weight of Li, 4 to 7% by weight of Cr and 1 to 4% by weight of at least one of the elements V, Mn, Zr and the remainder Al.
  • the aluminum alloys have a relatively large volume fraction of phases - in particular intermetallic compounds - which cannot be produced using conventional manufacturing methods. These particles, which act as dispersoids, are mainly responsible for the excellent properties of the alloys.
  • at least 15% by weight of the Al 3 Li phase and at least 2.6% by weight of the Al 3 Zr phase or another intermetallic compound of aluminum with Mo, V or Mn as finely divided dispersoid should not exceed 0.

Abstract

Aluminiumlegierung für die Herstellung von Pulver mit erhöhter Warmfestigkeit durch schnelles Abkühlen, welche 1,5 bis 5 Gew.-% Li, 4 bis 11 Gew.-% Fe und 1 bis 6 Gew.-% mindestens eines der Elemente Mo, V, Zr, Rest Al oder 1,5 bis 5 Gew.-% Li, 4 bis 7 Gew.-% Cr und 1 bis 4 Gew.-% mindestens eines der Elemente V, Mn, Rest AI enthält. Niedrige Dichte und hohe Warmfestigkeit sowie gute thermische Stabilität bis zu 400°C bei Vickershärten von bis 180 (HV) werden erreicht. Härtende Dispersoide in Form der Phasen Al3Zr sowie weiterer intermetallischer Verbindungen des Al mit Mo, V, Mn von höchstens 0,1 µm Partikeldurchmesser als hoher Volumenanteil vorhanden.Aluminum alloy for the production of powder with increased heat resistance by rapid cooling, which contains 1.5 to 5% by weight of Li, 4 to 11% by weight of Fe and 1 to 6% by weight of at least one of the elements Mo, V, Zr , Al or 1.5 to 5 wt .-% Li, 4 to 7 wt .-% Cr and 1 to 4 wt .-% contains at least one of the elements V, Mn, remainder AI. Low density and high heat resistance as well as good thermal stability up to 400 ° C with Vickers hardness of up to 180 (HV) are achieved. Hardening dispersoids in the form of the phases Al 3 Zr and other intermetallic compounds of Al with Mo, V, Mn of at most 0.1 µm particle diameter are present as a high volume fraction.

Description

Die Erfindung geht aus von einer Aluminiumlegierung für die Herstellung von Pulver mit erhöhter Warmfestigkeit nach der Gattung des Oberbegriffs des Anspruchs 1.The invention relates to an aluminum alloy for the production of powder with increased heat resistance according to the preamble of claim 1.

Aus der Pulvermetallurgie ist bekannt, dass die Eigenschaften von gepressten und gesinterten bzw. heissgepressten Körpern aus Aluminiumlegierungen weitgehend durch die Eigenschaften des verwendeten Pulvers bestimmt werden. Neben der chemischen Zusammensetzung spielen Partikelgrösse und Mikrostruktur eine wesentliche Rolle. Letztere beiden hängen nun wiederum wesentlich von der Abkühlungsgeschwindigkeit ab. Diese sollte so hoch wie möglich sein. Um zu höheren Warmfestigkeiten von Körpern aus Aluminiumlegierung zu gelangen sind schon verschiedene Verfahren und Werkstoffzusammensetzungen vorgeschlagen worden. Durch hohe Abkühlgeschwindigkeiten werden Seigerungen vermieden und die Löslichkeitsgrenze für Legierungselemente erhöht, so dass durch geeignete Warmbehandlung oder thermomechanische Behandlung feinere Ausscheidungen mit höheren Festigkeitswerten erzielt werden können. Ausserdem besteht die Möglichkeit der Bildung vorteilhafter metastabiler Phasen, die sich unter konventionellen Abkühlungsbedingungen nicht einstellen - lassen. Weitere günstige Eigenschaften, die sich durch hohe Abkühlungsgeschwindigkeiten erzielen lassen, sind erhöhter Korrosionswiderstand und bessere Zähigkeit der Legierungen.It is known from powder metallurgy that the properties of pressed and sintered or hot-pressed bodies made of aluminum alloys are largely determined by the properties of the powder used. In addition to the chemical composition, particle size and microstructure play an important role. The latter two in turn depend significantly on the cooling rate. This should be as high as possible. Various processes and material compositions have already been proposed in order to achieve higher heat strengths of aluminum alloy bodies. High cooling speeds prevent segregation and the solubility limit for alloy elements is increased, so that finer precipitations with higher strength values can be achieved by suitable heat treatment or thermomechanical treatment. There is also the possibility of Formation of advantageous metastable phases that cannot be set under conventional cooling conditions. Other favorable properties that can be achieved through high cooling rates are increased corrosion resistance and better toughness of the alloys.

Durch Zulegieren von Schwermetallen wird im allgemeinen die Dichte sowie andere physikalische Eigenschaften in ungünstiger Weise beeinflusst. Es ist daher vor allem für Anwendungen im Flugzeugbau vor einiger Zeit vorgeschlagen worden, im Zuge der konventionellen Herstellung das Element Lithium als wesentlichen Legierungsbestandteil zu benutzen. Dadurch kann die Dichte der Legierung herabgesetzt, deren Elastizitätsmodul dagegen erhöht werden, was für die Verwendung als Konstruktionsmaterial von Vorteil ist (Vergl. E.S. Balmuth & R. Schmidt, 1981, "A Perspective on the Development of Aluminium-Lithium Alloys", Proceedings of the Ist Int. Aluminium-Lithium Conf., ed. T.H. Sanders and E.A. Starke, Jr., p. 69-88). Derartige Legierungen ermangeln jedoch der für viele Verwendungszwecke geforderten Zähigkeit und Dehnbarkeit. Diese Problematik wurde eingehend diskutiert und führte auf Legierungen mit weiteren Zusätzen (Vergl. E.A. Starke, T.H. Sanders, Jr. & I.G. Palmer, 1981, "New Approaches to Alloy Development in the Al-Li System", J. of Metals, 33, No. 9, p. 24-32). Entsprechend den spezifischen Anforderungen wurden weitere Legierungssysteme entwickelt (Vergl. F.W. Gayle & J.B. Vander Sande, 1984, "Composite Precipitates in an Al-Li-Zr Alloy", Scripta Met., 18, p. 473-478; B. Noble, S.J. Harris & K. Harlow, 1984, "Mechanical Properties of Al-Li-Mg Alloys at Elevated Temperature", Proc. 2nd Int. Aluminium-Lithium Conference, ed. T.H. Sanders & E.A. Starke, p. 65-78; I.G. Palmer et al., 1984, "Effect of Processing Variables on Two Al-Li-Cu-Mg-Zr Alloys", ibid, p. 91-110).By alloying heavy metals, the density and other physical properties are generally adversely affected. It was therefore proposed some time ago, especially for applications in aircraft construction, to use the element lithium as an essential alloy component in the course of conventional production. As a result, the density of the alloy can be reduced, the modulus of elasticity of which, on the other hand, can be increased, which is advantageous for use as a construction material (see ES Balmuth & R. Schmidt, 1981, "A Perspective on the Development of Aluminum-Lithium Alloys", Proceedings of the Ist Int. Aluminum-Lithium Conf., ed. TH Sanders and EA Starke, Jr., p. 69-88). However, such alloys lack the toughness and ductility required for many uses. This problem was discussed in detail and led to alloys with other additives (see EA Starke, TH Sanders, Jr. & IG Palmer, 1981, "New Approaches to Alloy Development in the Al-Li System", J. of Metals, 33, No. 9, p. 24-32). Further alloy systems were developed in accordance with the specific requirements (cf. FW Gayle & JB Vander Sande, 1984, "Composite Precipitates in an Al-Li-Zr Alloy", Scripta Met., 18, p. 473-478; B. Noble, SJ Harris & K. Harlow, 1984, "Mechanical Properties of Al-Li-Mg Alloys at Elevated Temperature", Proc. 2nd Int. Aluminum-Lithium Conference, ed. TH Sanders & EA Starke, p. 65-78; IG Palmer et al., 1984, "Effect of Processing Variables on Two Al-Li-Cu-Mg-Zr Alloys", ibid, p. 91-110).

Obwohl zurzeit beachtliche Resultate, insbesondere erhöhte Warmfestigkeit im Temperaturbereich von 250 bis 300°C erreicht werden konnten, lassen die Eigenschaften der bisher vorgeschlagenen pulvermetallurgisch hergestellten Werkstücke noch zu wünschen übrig. Dies gilt insbesondere für die Warmfestigkeit, die Duktilität und die Ermüdungsfestigkeit im Temperaturbereich von Raumtemperatur bis ca. 250°C. Diese Legierungen weisen ausserdem im allgemeinen Dichten auf, die um ca. 10 % über denjenigen konventionellen Aluminiumlegierungen liegen. Andererseits haben Legierungen mit niedriger Dichte praktisch keine Warmfestigkeit.Although considerable results, in particular increased heat resistance in the temperature range from 250 to 300 ° C., have been achieved at the moment, the properties of the previously proposed powder-metallurgically manufactured workpieces still leave something to be desired. This applies particularly to the heat resistance, ductility and fatigue strength in the temperature range from room temperature to approx. 250 ° C. In addition, these alloys generally have densities which are approximately 10% higher than those of conventional aluminum alloys. On the other hand, low density alloys have practically no heat resistance.

Es besteht daher ein grosses Bedürfnis nach weiterhin verbesserten Legierungen zur Herstellung von geeigneten Pulvern, insbesondere von solchen mit niedriger Dichte.There is therefore a great need for further improved alloys for the production of suitable powders, especially those with low density.

Der Erfindung liegt die Aufgabe zugrunde, Aluminiumlegierungen anzugeben, die sich für die Herstellung von Pulvern mit erhöhter Warmfestigkeit und verbesserten mechanischen und Gefügeeigenschaften bei gleichzeitig niedriger Dichte gut eignen. Es sollen insbesondere Zusammensetzungen angestrebt werden, welche unter den vorgeschlagenen Abkühlungsbedingungen als feine Dispersoide wirkende, stabile intermetallische Verbindungen bilden.The invention has for its object to provide aluminum alloys which are well suited for the production of powders with increased heat resistance and improved mechanical and structural properties with a low density. In particular, compositions should be sought which form stable intermetallic compounds which act as fine dispersoids under the proposed cooling conditions.

Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele beschrieben.The invention is described using the following exemplary embodiments.

Ausführungsbeispiel 1:Example 1:

Es wurde eine Legierung der nachfolgenden nominellen Zusammensetzung hergestellt:

Figure imgb0001
An alloy with the following nominal composition was produced:
Figure imgb0001

Bei der Erschmelzung der Legierung wurde von entsprechenden Mengen von Vorlegieruhgen mit 10 Gew.-% Li, 10 Gew.-% Fe und 5 Gew.-% Zr ausgegangen. Diese Aluminium-Vorlegierungen wurden in einem Induktionsofen im Tonerdetiegel unter Vakuum geschmolzen und die Schmelze direkt in eine Kupferkokille abgegossen. Die totale Masse des Gussbarrens betrug 1 kg. 300 g dieses Barrens wurden in einer Vorrichtung induktiv geschmolzen und als Strahl unter hohem Druck in erster Gasphase gegen den Umfang einer mit 10 m/s Umfangsgeschwindigkeit vorliegenden, gekühlten Kupferscheibe geschleudert (sogenanntes "melt-spinning"-Verfahren). Durch die hohe Abkühlungsgeschwindigkeit wurde ein ultra-feinkörniges Band von ca. 40µm Dicke erzeugt. Das Band wurde zerstossen und zu feinkörnigem Pulver zermahlen. Daraufhin wurde eine zylindrische Kapsel aus duktilem Aluminiumblech von 50 mm Durchmesser und 60 mm Höhe mit dem Pulver gefüllt, evakuiert und verschweisst. Dann wurde die gefüllte Kapsel bei 400°C unter einem Druck von 250 MPa zur vollen theoretischen Dichte heissgepresst. Die Kapsel wurde durch mechanische Bearbeitung entfernt und der gepresste Körper als Pressbolzen von 36 mm Durchmesser in eine Strangpresse mit einem Reduktionsverhältnis von 30:1 eingesetzt und bei 400°C zu einem Stab von 6,5 mm Durchmesser verpresst.When melting the alloy, appropriate amounts of master alloys with 10% by weight Li, 10% by weight Fe and 5% by weight Zr were assumed. These aluminum master alloys were melted in an induction furnace in an alumina crucible under vacuum and the melt was poured directly into a copper mold. The total mass of the cast ingot was 1 kg. 300 g of this ingot were melted inductively in a device and thrown as a jet under high pressure in the first gas phase against the circumference of a cooled copper disk which was at a peripheral speed of 10 m / s (so-called "melt-spinning" process). Due to the high cooling rate, an ultra-fine-grain band with a thickness of approx. 40 µm was produced. The tape was crushed and ground into fine-grained powder. Then a cylindrical capsule made of ductile aluminum sheet 50 mm in diameter and 60 mm high was filled with the powder, evacuated and welded. The filled capsule was then hot pressed at 400 ° C. under a pressure of 250 MPa to the full theoretical density. The capsule was removed by mechanical processing and the pressed body was inserted as a press bolt with a diameter of 36 mm in an extrusion press with a reduction ratio of 30: 1 and pressed at 400 ° C. to a rod with a diameter of 6.5 mm.

Aus dem Stab wurden Probekörper zur Untersuchung der physikalischen und mechanischen Eigenschaften herausgearhpitpt. Ein Probekörper wurde einer Wärmebehandlung bei 400 °C während 2 h unterworfen. Die danach festgeslelllr Vickershärte bei Raumtemperatur betrug 180 (HV). Bei einer Dichte von nur 2,85 g/cm' erwies sich die Zugfestigkeit und Streckgrenze durchweg um 50 bis 80 % höher als dtejenige vergleichbarer konventioneller Legierungen.Test specimens were examined out of the rod to investigate the physical and mechanical properties. A test specimen was subjected to a heat treatment at 400 ° C. for 2 hours. The Vickers hardness determined afterwards at room temperature was 180 (HV). With a density of only 2.85 g / cm ', the tensile strength and yield strength were consistently 50 to 80% higher than that of comparable conventional alloys.

Ausführungsbeispiel 2:Example 2:

Cemäss Beispiel 1 wurde folgende Legierung erschmolzen:

Figure imgb0002
The following alloy was melted in accordance with Example 1:
Figure imgb0002

Die sukzessive Weiterverarbeitung zu einem Band, einem Pulver und einem stranggepressten Stab erfolgte genau gleich, wie in Beispiel 1 beschrieben. Die ursprüngliche Vickershärte bei Raumtemperatur betrug 200 (HV), nach einer Wärmebehandlung bei 400°C/2 h noch 180 (HV). Dies lässt erkennen, dass eine ausgezeichnete Temperaturbeständigkeit erreicht wurde, welche auf eine hohe Warmfestigkeit schliessen lässt.The successive further processing into a strip, a powder and an extruded rod was carried out exactly the same as described in Example 1. The original Vickers hardness at room temperature was 200 (HV), after heat treatment at 400 ° C / 2 h still 180 (HV). This shows that an excellent temperature resistance has been achieved, which indicates a high heat resistance.

Ausführungsbeispiel 3:Example 3:

Es wurde eine Legierung der nachfolgenden nominellen Zusammensetzung hergestellt:

Figure imgb0003
An alloy with the following nominal composition was produced:
Figure imgb0003

Die Legierung wurde aus entsprechenden Al/Li-, Al/Cr-und Al/Zr-Vorlegierungen erschmolzen und ähnlich Beispiel 1 zu einem Barren vergossen. Der Barren wurde erneut aufgeschmolzen und auf eine Giesstemperatur von 1100°C gebracht. Nun wurde die Schmelze unter Inertgasatmosphäre von 6 MPa Druck zu einem Pulver von durchschnittlich 30µm Partikeldurchmesser zerstäubt. Das auf diese Weise erzeugte Pulver wurde in eine Aluminiumdose eingefüllt, welche daraufhin evakuiert und vakuumdicht verschlossen wurde. Aehnlich Beispiel 1 wurde der Körper verdichtet und heissgepresst. Nach Abdrehen des den Mantel bildenden Dosenteils wurde der Presskörper auf eine Temperatur von 450°C erwärmt und mit einem Reduktionsverhältnis von 30:1 bei dieser Temperatur zu einem Rundstab stranggepresst. Die gesamte Pulververarbeitung erfolgte unter Schutzgasatmosphäre.The alloy was melted from corresponding Al / Li, Al / Cr and Al / Zr master alloys and cast into an ingot similar to Example 1. The ingot was melted again and brought to a casting temperature of 1100 ° C. Now the melt was atomized under an inert gas atmosphere of 6 MPa pressure to a powder with an average particle diameter of 30 µm. The powder produced in this way was poured into an aluminum can, which was then evacuated and sealed in a vacuum-tight manner. Similar to Example 1, the body was compressed and hot pressed. After turning off the can part forming the jacket, the pressed body was heated to a temperature of 450 ° C. and extruded with a reduction ratio of 30: 1 at this temperature into a round bar. The entire powder processing was carried out under a protective gas atmosphere.

Aus dem Stab herausgearbeitete Probekörper ergaben eine Dichte von 2,80 g/cm'. Nach einer Wärmebehandlung bei 400°C während einer Dauer von 2 h betrug die Vickershärte bei Raumtemperatur 170 (HV), nach einer weiteren Wärmebehandlung bei der gleichen Temperatur während zusätzlichen 50 h noch immer 160 (HV). Dies lässt auf eine grosse thermische Stabilität des Gefüges schliessen. Die Verbesserung der Festigkeitswerte gegenüber konventionellen Legierungen gleicher Dichte betrug ca. 100 %.Test specimens worked out from the rod gave a density of 2.80 g / cm '. After a heat treatment at 400 ° C. for 2 hours, the Vickers hardness at room temperature was 170 (HV), after a further heat treatment at the same temperature it was still 160 (HV) for an additional 50 hours. This suggests a great thermal stability of the structure. The improvement in strength values compared to conventional alloys of the same density was approx. 100%.

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Grundsätzlich kann die Aluminiumlegierung aus 1,5 bis 5 Gew.-% Li, 4 bis 11 Gew.-% Fe sowie 1 bis 6 Gew.-% mindestens eines der Elemente Mo, V, Zr, Rest A1 oder aus 1,5 bis 5 Gew.-% Li, 4 bis 7 Gew.-% Cr sowie 1 bis 4 Gew.-% mindestens eines der Elemente V, Mn, Zr, Rest Al bestehen.The invention is not restricted to the exemplary embodiments. In principle, the aluminum alloy can consist of 1.5 to 5% by weight of Li, 4 to 11% by weight of Fe and 1 to 6% by weight of at least one of the elements Mo, V, Zr, balance A1 or from 1.5 to 5% by weight of Li, 4 to 7% by weight of Cr and 1 to 4% by weight of at least one of the elements V, Mn, Zr and the remainder Al.

Bevorzugte Aluminiumlegierungen enthalten:

  • 1,5 bis 4,5 Gew.-% Li, 5 bis 10 Gew.-% Fe und mindestens eines der Elemente Mo, V, Zr in einem Höchstgehalt von je 2 Gew.-%, wobei der totale Gehalt dieser 3 letzteren Elemente 4 Gew.-% nicht überschreitet.
Preferred aluminum alloys contain:
  • 1.5 to 4.5% by weight of Li, 5 to 10% by weight of Fe and at least one of the elements Mo, V, Zr in a maximum content of 2% by weight each, the total content of these 3 latter elements Does not exceed 4% by weight.

Oder:

  • 1,5 bis 4,5 Gew.-% Li, 4 bis 7 Gew.-% Fe und mindestens eines der Elemente Mn, Zr, Mo in einem Höchstgehalt von je 2 Gew.-%, wobei der totale Gehalt dieser 3 letzteren Elemente 4 Gew.-% nicht überschreitet.
Or:
  • 1.5 to 4.5% by weight of Li, 4 to 7% by weight of Fe and at least one of the elements Mn, Zr, Mo in a maximum content of 2% by weight each, the total content of these 3 latter elements Does not exceed 4% by weight.

Die Aluminiumlegierungen weisen einen verhältnismässig grossen Volumenanteil an Phasen - insbesondere intermetallische Verbindungen - auf, die sich bei konventionellen Herstellungsmethoden nicht erzeugen lassen. Diese, als Dispersoide wirkende Partikel sind hauptsächlich für die hervorragenden Eigenschaften der Legierungen verantwortlich. Im vorliegenden Fall sollen mindestens 15 Gew.-% der Phase Al3Li und mindestens 2,6 Gew.-% der Phase Al3Zr oder einer anderen intermetallischen Verbindung des Aluminiums mit Mo, V oder Mn als fein verteiltes Dispersoid von höchstens 0,l µm Partikeldurchmesser in der Legierung vorliegen.The aluminum alloys have a relatively large volume fraction of phases - in particular intermetallic compounds - which cannot be produced using conventional manufacturing methods. These particles, which act as dispersoids, are mainly responsible for the excellent properties of the alloys. In the present case, at least 15% by weight of the Al 3 Li phase and at least 2.6% by weight of the Al 3 Zr phase or another intermetallic compound of aluminum with Mo, V or Mn as finely divided dispersoid should not exceed 0. There are 1 µm particle diameter in the alloy.

Claims (7)

1. Aluminiumlegierung für die Herstellung von Pulver mit erhöhter Warmfestigkeit, dadurch gekennzeichnet, dass sie aus 1,5 bis 5 Gew.-% Li, 4 bis 11 Gew.-% Fe sowie 1 bis 6 Gew.-% mindestens eines der Elemente Mo, V, Zr, Rest A1 oder aus 1,5 bis 5 Gew.-% Li, 4 bis 7 Gew.-% Cr sowie 1 bis 4 Gew.-% mindestens eines der Elemente V, Mn, Zr, Rest Al besteht.1. aluminum alloy for the production of powder with increased heat resistance, characterized in that it consists of 1.5 to 5 wt .-% Li, 4 to 11 wt .-% Fe and 1 to 6 wt .-% of at least one of the elements Mo , V, Zr, residue A1 or from 1.5 to 5% by weight of Li, 4 to 7% by weight of Cr and 1 to 4% by weight of at least one of the elements V, Mn, Zr, rest of Al. 2. Aluminiumlegierunq nach Anspruch 1, dadurch qekennzeichnet, dass sie 1,5 bis 4,5 Gew.-% Li, 5 bis 10 Gew.-% Fe und mindestens eines der Elemente Mo, V, Zr in einem Höchstgehalt von je 2 Gew.-% enthält, wobei der totale Gehalt dieser 3 letzteren Elemente 4 Gew.-% nicht überschreitet.2. Aluminum alloy according to claim 1, characterized in that it contains 1.5 to 4.5% by weight of Li, 5 to 10% by weight of Fe and at least one of the elements Mo, V, Zr in a maximum content of 2% by weight .-%, the total content of these 3 latter elements does not exceed 4 wt .-%. 3. Aluminiumlegierung nach Anspruch 2, dadurch gekennzeichnet, dass sie 2 Gew.-% Li, 8,5 Gew.-% Fe und 1 Gew.-% Zr enthält.3. Aluminum alloy according to claim 2, characterized in that it contains 2% by weight of Li, 8.5% by weight of Fe and 1% by weight of Zr. 4. Aluminiumlegierung nach Anspruch 2, dadurch gekennzeichnet, dass sie 2,5 Gew.-% Li, 8 Gew.-% Fe und 1 Gew.-% Mo enthält.4. Aluminum alloy according to claim 2, characterized in that it contains 2.5% by weight of Li, 8% by weight of Fe and 1% by weight of Mo. 5. Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie 1,5 bis 4,5 Gew.-% Li, 4 bis 7 Gew.-% Fe und mindestens eines der Elemente Mn, Zr, Mo in einem Höchstgehalt von je 2 Gew.-% enthält, wobei der totale Gehalt dieser 3 letzteren Elemente 4 Gew.-% nicht überschreitet.5. aluminum alloy according to claim 1, characterized in that they 1.5 to 4.5 wt .-% Li, 4 to 7 wt .-% Fe and at least one of the elements Mn, Zr, Mo in a maximum content of 2 wt .-%, the total content of these 3 latter elements does not exceed 4 wt .-%. 6. Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie 3 Gew.-% Li, 5,5 Gew.-% Cr und 1 Gew.-% Zr enthält.6. Aluminum alloy according to claim 1, characterized in that it contains 3% by weight of Li, 5.5% by weight of Cr and 1% by weight of Zr. 7. Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie mindestens 15 Gew.-% der Phase Al3Li und mindestens 2,6 Gew.-% der Phase Al3Zr oder anderer intermetallischer Verbindungen des Al mit Mo, V, Mn als fein verteiltes Dispersoid von höchstens 0,1 µm Partikeldurchmesser enthält.7. Aluminum alloy according to claim 1, characterized in that it contains at least 15% by weight of the Al 3 Li phase and at least 2.6% by weight of the Al 3 Zr phase or other intermetallic compounds of Al with Mo, V, Mn contains finely divided dispersoid of at most 0.1 µm particle diameter.
EP86106735A 1985-06-26 1986-05-16 Aluminium alloy for the manufacture of a powder having an increased heat resistance Expired EP0210359B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH271385 1985-06-26
CH2713/85 1985-06-26

Publications (2)

Publication Number Publication Date
EP0210359A1 true EP0210359A1 (en) 1987-02-04
EP0210359B1 EP0210359B1 (en) 1989-09-20

Family

ID=4239922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86106735A Expired EP0210359B1 (en) 1985-06-26 1986-05-16 Aluminium alloy for the manufacture of a powder having an increased heat resistance

Country Status (5)

Country Link
US (1) US4765851A (en)
EP (1) EP0210359B1 (en)
JP (1) JPS624850A (en)
DE (1) DE3665740D1 (en)
NO (1) NO862576L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669844A1 (en) * 1990-11-20 1992-06-05 Honda Motor Co Ltd Aluminium alloy powder, green compacted product and sintered compacted product for powder metallurgy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722589B2 (en) * 2005-06-30 2011-07-13 株式会社三井ハイテック Stator laminated core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH216204A (en) * 1937-10-29 1941-08-15 Kommanditgesellschaft Mahle Aluminum alloy, especially for pistons in internal combustion engines.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH216204A (en) * 1937-10-29 1941-08-15 Kommanditgesellschaft Mahle Aluminum alloy, especially for pistons in internal combustion engines.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CORROSION SCIENCE, Band 22, Nr. 4, 1982, Seiten 283-304, Pergamon Press Ltd., GB; P. NISKANEN et al.: "Corrosion of aluminum alloys containing lithium" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669844A1 (en) * 1990-11-20 1992-06-05 Honda Motor Co Ltd Aluminium alloy powder, green compacted product and sintered compacted product for powder metallurgy

Also Published As

Publication number Publication date
JPS624850A (en) 1987-01-10
NO862576D0 (en) 1986-06-25
NO862576L (en) 1986-12-29
DE3665740D1 (en) 1989-10-26
EP0210359B1 (en) 1989-09-20
US4765851A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
DE69734515T2 (en) SINTERED HARD ALLOY
DE3139548A1 (en) IMPROVED ALUMINUM TRANSITION METAL ALLOYS MANUFACTURED USING RAPID-FASTENED POWDERS AND METHOD FOR THE PRODUCTION THEREOF
EP2646587B1 (en) Process for producing an alscca alloy and also an aiscca alloy
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
EP0224016A1 (en) Wrought aluminium alloy of the type Al-Cu-Mg having a high strength in the temperature range between 0 and 250o C
EP0035601B1 (en) Process for making a memory alloy
EP0035602B1 (en) Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique
DE3524276A1 (en) Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
DE3047524A1 (en) "ALUMINUM TITANIUM BOR ALLOY"
CH646999A5 (en) OBJECT OF A HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF.
EP0207268B1 (en) Aluminium alloy suitable for the rapid cooling of a melt supersaturated with alloying elements
EP0366134A1 (en) Aluminum alloy useful in powder metallurgy process
EP0210359B1 (en) Aluminium alloy for the manufacture of a powder having an increased heat resistance
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
EP0035070B1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE2149546C3 (en) Process for the production of superplastic lead alloys with an elongation of at least 100% at room temperature
DE2449867C2 (en) Process for producing an isotropic permanent magnet material
EP1012353A1 (en) Alloy and method for producing objects therefrom
EP0256449B1 (en) Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy
DE102005045046A1 (en) Tungsten shot
DE2646096B2 (en) Process for making ductile superconductive! material
DE102019104492A1 (en) PROCESS FOR PREPARING A CRYSTALLINE ALUMINUM IRON / SILICON ALLOY
DE2108978A1 (en) Process for the production of superalloys
AT264147B (en) Machined tantalum alloy
DE3727360A1 (en) METHOD FOR PRODUCING A WORKPIECE FROM A CORROSION AND OXYDATION RESISTANT NI / AL / SI / B ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19870608

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19880901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19890920

REF Corresponds to:

Ref document number: 3665740

Country of ref document: DE

Date of ref document: 19891026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900821

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910425

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910531

Ref country code: CH

Effective date: 19910531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910727

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920517

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

EUG Se: european patent has lapsed

Ref document number: 86106735.3

Effective date: 19921204