EP0256449B1 - Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy - Google Patents

Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy Download PDF

Info

Publication number
EP0256449B1
EP0256449B1 EP87111462A EP87111462A EP0256449B1 EP 0256449 B1 EP0256449 B1 EP 0256449B1 EP 87111462 A EP87111462 A EP 87111462A EP 87111462 A EP87111462 A EP 87111462A EP 0256449 B1 EP0256449 B1 EP 0256449B1
Authority
EP
European Patent Office
Prior art keywords
weight
powder
alloy
production
workpiece according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111462A
Other languages
German (de)
French (fr)
Other versions
EP0256449A1 (en
Inventor
Malcolm James Dr. Couper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0256449A1 publication Critical patent/EP0256449A1/en
Application granted granted Critical
Publication of EP0256449B1 publication Critical patent/EP0256449B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • Heat-resistant aluminum alloys which are made from powders obtained at high cooling rates by atomizing a melt. High content of alloy components not permitted under the usual solidification conditions, e.g. Fe and Cr.
  • the invention relates to the production of aluminum alloy powders and the production of moldings from these powders.
  • Aluminum alloys which are suitable for the production of powders from melts by means of gas jet atomization using very high cooling speeds (105 ° C./s and more) and can be used for the production of heat-resistant workpieces, have become known in numerous variations.
  • An important group are the polynary alloys of the type AI / Fe / X, which generally have relatively high iron contents, where X denotes at least one of the elements Ti, Zr, Hf, V, Nb, Cr, Mo, W.
  • An alloy with 8% by weight Fe and 2% by weight Mo apparently occupies a special position (cf. GB-PS 2 088 409 A).
  • the invention has for its object to provide a method for powder metallurgical production of a workpiece from a heat-resistant aluminum alloy taking into account the optimum alloy composition and adaptation of the process steps, which leads to tougher and more ductile finished products without sacrificing strength. In doing so, powder production should also be carried out at higher temperatures. stable phases are achieved, which - regardless of the particle size - are homogeneously distributed over the whole powder grain and give it a high deformability.
  • an alloy which contains 8 to 14% by weight Fe, 0.5 to 2% by weight V and 0.2 to 1% by weight Mn, the rest being aluminum and contains any impurities, the alloy being melted, the melt being atomized at a cooling rate of at least 105 ° C./s in a gas stream to give particles with a diameter of 1 to 40 11 m, the dispersoids formed thereby being homogeneously distributed and not micro-eutectic Zone is present within a powder particle, and that the powder is compacted at a temperature of 350 to 450 ° C under a pressure of 2000 to 6000 bar in such a way that the intermetallic phase stabilized by Mn forms Al 6 Fe in fine distribution and the phase AI 3 Fe is largely suppressed.
  • the melt was first atomized in a device by means of a gas stream (nitrogen) while maintaining a cooling rate of at least 105 ° C./s to a powder.
  • the average particle diameter was approx. 20 ⁇ m, the maximum approx. 40 ⁇ m.
  • the structure of the particles was characterized by an even distribution of the dispersoids, while the disruptive micro-eutectic that otherwise occurs with conventional alloys was missing.
  • Approx. 160 g of the powder were compacted by hot pressing in a mold under a pressure of 3000 bar at a temperature of 400 ° C. to a press bolt of approximately 99% theoretical density.
  • the heating time in the mold was about 45 minutes.
  • the press bolt had a diameter of 40 mm and a height of 60 mm. This press bolt was inserted into the cylinder of an extrusion press and pressed under a pressure of 5000 bar at a temperature of 400 ° C to a rod of 13 mm in diameter.
  • the reduction ratio was approximately 9: 1.
  • Test pieces were cut out of the bar and the mechanical properties measured at room temperature and at 300 ° C. The yield point at room temperature was 450 MPa. A metallographic examination revealed the presence of considerable volume fractions of the Al 6 Fe phase, while practically no Al 3 Fe could be found. Furthermore, there were no non-deformed powder particles containing Al 3 Fe in the compacted material.
  • the cooling rate during powder production should be at least 10 5 ° C / s.
  • the particle diameter of the powder produced by gas jet atomization should be within the limits of 1 to 40 ⁇ m.
  • the powder can be compressed at temperatures between 350 and 450 ° C under pressures of 2000 to 6000 bar. Preferred values are 400 ° C for powder compaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Description

Technisches Gebiet:Technical field:

Warmfeste Aluminiumlegierungen, welche aus mit hoher Abkühlungsgeschwindigkeit durch Zerstäuben einer Schmelze gewonnenen Pulvern hergestellt werden. Hoher Gehalt an unter sonst üblichen Erstarrungsbedingungen nicht zulässigen Legierungsbestandteilen wie z.B. Fe und Cr.Heat-resistant aluminum alloys which are made from powders obtained at high cooling rates by atomizing a melt. High content of alloy components not permitted under the usual solidification conditions, e.g. Fe and Cr.

Die Erfindung bezieht sich auf die Erzeugung von Aluminiumlegierungspulvern und die Herstellung von Formkörpern aus diesen Pulvern.The invention relates to the production of aluminum alloy powders and the production of moldings from these powders.

Insbesondere betrifft sie die pulvermetallurgische Herstellung eines Werkstücks aus einer warmfesten Aluminiumlegierung des Typs AI/Fe/X mit 5 bis 15 Gew.-% Fe, wobei X für das Element V und/oder Mn steht. (Vergl. GB-PS 2 088 409 A).In particular, it relates to the powder-metallurgical production of a workpiece from a heat-resistant aluminum alloy of the type AI / Fe / X with 5 to 15% by weight Fe, where X stands for the element V and / or Mn. (See GB-PS 2 088 409 A).

Stand der Technik:State of the art:

Aluminiumlegierungen, welche sich für die Erzeugung von Pulvern aus Schmelzen mittels Gasstrahlzerstäubung unter Anwendung sehr hoher Abkühlungsgeschwindigkeiten (105 °C/s und mehr) eignen und für die Herstellung warmfester Werkstücke verwenden lassen, sind in zahlreichen Variationen bekannt geworden. Eine bedeutende Gruppe stellen die polynären, meist relativ hohe Eisengehalte aufweisenden Legierungen des Typs AI/Fe/X dar, wobei X mindestens eines der Elemente Ti, Zr, Hf, V, Nb, Cr, Mo, W, bedeutet. Dabei nimmt offenbar eine Legierung mit 8 Gew.-% Fe und 2 Gew.-% Mo eine Sonderstellung ein (Vergl. GB-PS 2 088 409 A).Aluminum alloys, which are suitable for the production of powders from melts by means of gas jet atomization using very high cooling speeds (105 ° C./s and more) and can be used for the production of heat-resistant workpieces, have become known in numerous variations. An important group are the polynary alloys of the type AI / Fe / X, which generally have relatively high iron contents, where X denotes at least one of the elements Ti, Zr, Hf, V, Nb, Cr, Mo, W. An alloy with 8% by weight Fe and 2% by weight Mo apparently occupies a special position (cf. GB-PS 2 088 409 A).

Es wird ganz allgemein versucht, bei diesen Aluminiumlegierungen Ausscheidungs- und/oder Dispersionshärtung aufeinander abzustimmen und zu optimieren. Dabei spielen binäre und ternäre intermetallische Verbindungen eine wesentliche Rolle. In diesem Zusammenhang wird oft auf die intermetallische Verbindung AI3Fe als wichtige konstituierende Phase und auf ein im Pulverkorn bei hoher Abkühlungsgeschwindigkeit gebildetes Mikro-Eutektikum hingewiesen (Vergl. C.M. Adam and R.G. Bourdeau in: R. Mehrabian et al, eds., Rapid Solidification Processing, Batou Rouge, 1980, p. 246; C.M. Adam in: B.H. Kear et al, eds., "Rapidly Solidified Amorphous and Crystalline Alloys", 1982; W.J. Boettinger, L. Bendersky, J.G. Early, submitted to Met. Trans A (1985) und M.J. Couper and R.F. Singer in: M. Koczak and G. Hildeman (eds.), Conference proceedings, High Strength PM Aluminium Alloys, 1985, in Press.).In general, attempts are made to coordinate and optimize precipitation and / or dispersion hardening in these aluminum alloys. Binary and ternary intermetallic compounds play an important role in this. In this context, reference is often made to the intermetallic compound AI 3 Fe as an important constituent phase and to a micro-eutectic formed in the powder grain at a high cooling rate (see CM Adam and RG Bourdeau in: R. Mehrabian et al, eds., Rapid Solidification Processing, Batou Rouge, 1980, p. 246; CM Adam in: BH Kear et al, eds., "Rapidly Solidified Amorphous and Crystalline Alloys", 1982; WJ Boettinger, L. Bendersky, JG Early, submitted to Met. Trans A (1985) and MJ Couper and RF Singer in: M. Koczak and G. Hildeman (eds.), Conference proceedings, High Strength PM Aluminum Alloys, 1985, in Press.).

Die Eigenschaften der bekannten Legierungen und der daraus nach pulvermetallurgischen Methoden erzeugten Press- und Formkörper lassen noch zu wünschen übrig. Insbesondere ist die Zähigkeit und die Duktilität derartiger Werkstücke für viele Verwendungen ungenügend.The properties of the known alloys and the pressed and molded bodies produced from them using powder metallurgical methods leave something to be desired. In particular, the toughness and ductility of such workpieces is insufficient for many uses.

Es besteht daher ein grosses Bedürfnis, bekannte Legierungen weiterhin zu verbessern und die Herstellungsmethoden für Fertigerzeugnisse zu verfeinern.There is therefore a great need to further improve known alloys and to refine the manufacturing methods for finished products.

Darstelluno der Erfinduno:Representation of the invention:

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur pulvermetallurgischen Herstellung eines Werkstücks aus einer warmfesten Aluminiumlegierung unter Berücksichtigung optimaler Legierungszusammensetzung und Anpassung der Verfahrensschritte anzugeben, welches zu zäheren und duktileren Fertigerzeugnissen ohne Einbusse an Festigkeit führt. Dabei sollen bei der Pulverherstellung auch bei höheren Temperaturen. stabile Phasen erzielt werden, welche - unabhängig von der Partikelgrösse - über das ganze Pulverkorn homogen verteilt sind und ihm eine hohe Verformbarkeit verleihen.The invention has for its object to provide a method for powder metallurgical production of a workpiece from a heat-resistant aluminum alloy taking into account the optimum alloy composition and adaptation of the process steps, which leads to tougher and more ductile finished products without sacrificing strength. In doing so, powder production should also be carried out at higher temperatures. stable phases are achieved, which - regardless of the particle size - are homogeneously distributed over the whole powder grain and give it a high deformability.

Diese Aufgabe wird dadurch gelöst, dass beim eingangs erwähnten Verfahren eine Legierung gewählt wird, die 8 bis 14 Gew.-% Fe, 0,5 bis 2 Gew.-% V und 0,2 bis 1 Gew.-% Mn, Rest Aluminium und allfällige Verunreinigungen enthält, wobei die Legierung erschmolzen, die Schmelze unter einer Abkühlungsgeschwindigkeit von mindestens 105 °C/s in einem Gasstrom zu Partikeln mit einem Durchmesser von 1 bis 40 11m zerstäubt wird, wobei die dabei gebildeten Dispersoide homogen verteilt und keine mikro-eutektische Zone innerhalb eines Pulverpartikels vorhanden ist, und dass das Pulver bei einer Temperatur von 350 bis 450°C unter einem Druck von 2000 bis 6000 bar dergestalt verdichtet wird, dass die intermetallische, durch Mn stabilisierte Phase AI6Fe in feiner Verteilung gebildet und die Phase AI3Fe weitgehend unterdrückt wird.This object is achieved in that in the method mentioned at the outset an alloy is selected which contains 8 to 14% by weight Fe, 0.5 to 2% by weight V and 0.2 to 1% by weight Mn, the rest being aluminum and contains any impurities, the alloy being melted, the melt being atomized at a cooling rate of at least 105 ° C./s in a gas stream to give particles with a diameter of 1 to 40 11 m, the dispersoids formed thereby being homogeneously distributed and not micro-eutectic Zone is present within a powder particle, and that the powder is compacted at a temperature of 350 to 450 ° C under a pressure of 2000 to 6000 bar in such a way that the intermetallic phase stabilized by Mn forms Al 6 Fe in fine distribution and the phase AI 3 Fe is largely suppressed.

Wea zur Ausführuno der Erfinduna:How to implement the invention:

Die Erfindung wird anhand des nachfolgenden Ausführungsbeispiels erläutert.The invention is explained on the basis of the exemplary embodiment below.

Ausführunasbeisciel:Execution example:

Es wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen:

  • Fe = 10 Gew.-%
  • V = 1 Gew.-%
  • Mn = 0,5 Gew.-%
  • AI = Rest
An alloy of the following composition was melted:
  • Fe = 10% by weight
  • V = 1% by weight
  • Mn = 0.5% by weight
  • AI = rest

Die Schmelze wurde in einer Vorrichtung mittels eines Gasstromes (Stickstoff) unter Wahrung einer Abkühlungsgeschwindigkeit von mindestens 105 °C/s zu einem Pulver zuerstäubt. Der mittlere Partikeldurchmesser betrug ca. 20 µm, der maximale ca. 40 µm. Die Struktur der Partikel war durch eine gleichmässige Verteilung der Dispersoide gekennzeichnet, während das sonst bei herkömmlichen Legierungen auftretende störende Mikro-Eutektikum fehlte.The melt was first atomized in a device by means of a gas stream (nitrogen) while maintaining a cooling rate of at least 105 ° C./s to a powder. The average particle diameter was approx. 20 µm, the maximum approx. 40 µm. The structure of the particles was characterized by an even distribution of the dispersoids, while the disruptive micro-eutectic that otherwise occurs with conventional alloys was missing.

Ca. 160 g des Pulvers wurden durch Heisspressen in einer Form unter einem Druck von 3000 bar bei einer Temperatur von 400°C zu einem Pressbolzen von ca. 99 % theoretischer Dichte verdichtet. Die Aufheizzeit in der Form betrug dabei ca. 45 min. Der Pressbolzen hatte einen Durchmesser von 40 mm und eine Höhe von 60 mm. Dieser Pressbolzen wurde in den Zylinder einer Strangpresse eingesetzt und unter einem Druck von 5000 bar bei einer Temperatur von 400°C zu einer Stange von 13 mm Durchmesser verpresst. Das Reduktionsverhältnis betrug ca. 9:1.Approx. 160 g of the powder were compacted by hot pressing in a mold under a pressure of 3000 bar at a temperature of 400 ° C. to a press bolt of approximately 99% theoretical density. The heating time in the mold was about 45 minutes. The press bolt had a diameter of 40 mm and a height of 60 mm. This press bolt was inserted into the cylinder of an extrusion press and pressed under a pressure of 5000 bar at a temperature of 400 ° C to a rod of 13 mm in diameter. The reduction ratio was approximately 9: 1.

Aus der Stange wurden Probestücke herausgeschnitten und die mechanischen Eigenschaften bei Raumtemperatur und bei 300°C gemessen. Die Streckgrenze bei Raumtemperatur betrug 450 MPa. Eine metallographische Untersuchung ergab das Vorhandensein beträchtlicher Volumenanteile der Phase Al6Fe während praktisch kein AI3Fe festgestellt werden konnte. Ferner waren keine nicht-deformierten, AI3Fe enthaltenden Pulverpartikel im verdichteten Material vorhanden.Test pieces were cut out of the bar and the mechanical properties measured at room temperature and at 300 ° C. The yield point at room temperature was 450 MPa. A metallographic examination revealed the presence of considerable volume fractions of the Al 6 Fe phase, while practically no Al 3 Fe could be found. Furthermore, there were no non-deformed powder particles containing Al 3 Fe in the compacted material.

Die Erfindung ist nicht auf das Ausführungsbeispiel beschränkt. Die Aluminiumlegierung kann grundsätzlich folgende Zusammensetzung haben:

  • Fe = 8 bis 14 Gew.-%
  • (vorzugsweise 10 bis 14 Gew.-%)
  • V = 0,5 bis 2 Gew.-%
  • Mn = 0,2 bis 1 Gew.-%
  • AI = Rest.
The invention is not restricted to the exemplary embodiment. The aluminum alloy can basically have the following composition:
  • Fe = 8 to 14% by weight
  • (preferably 10 to 14% by weight)
  • V = 0.5 to 2% by weight
  • Mn = 0.2 to 1% by weight
  • AI = rest.

Die Abkühlungsgeschwindigkeit bei der Pulverherstellung soll mindestens 105 °C/s betragen. Der Partikeldurchmesser des durch Gasstrahl-Zerstäubung hergestellten Pulvers soll sich innerhalb der Grenzen 1 bis 40 µm bewegen. Die Verdichtung des Pulvers kann bei Temperaturen zwischen 350 und 450°C unter Drücken von 2000 bis 6000 bar erfolgen. Bevorzugte Werte sind 400°C für die Pulververdichtung.The cooling rate during powder production should be at least 10 5 ° C / s. The particle diameter of the powder produced by gas jet atomization should be within the limits of 1 to 40 µm. The powder can be compressed at temperatures between 350 and 450 ° C under pressures of 2000 to 6000 bar. Preferred values are 400 ° C for powder compaction.

Weitere vorteilhafte Legierungszusammensetzungen sind:

  • Fe = 10 bis 12 Gew.-%
  • V = 1 Gew.-%
  • Mn = 0,4 bis 1,0 Gew.-%
  • AI = Rest,
  • oder:
  • Fe = 12 Gew.-%
  • V = 1,5 Gew.-%
  • Mn =1,0 Gew.-%
  • AI = Rest.
Further advantageous alloy compositions are:
  • Fe = 10 to 12% by weight
  • V = 1% by weight
  • Mn = 0.4 to 1.0% by weight
  • AI = rest,
  • or:
  • Fe = 12% by weight
  • V = 1.5% by weight
  • Mn = 1.0% by weight
  • AI = rest.

Claims (6)

1. Process for the powder-metallurgical production of a workpiece from a heat-resistant aluminium alloy of the AVFe/X type with 5 to 15% by weight Fe, where X represents the element V and/or Mn, characterized in that the alloy contains 8 to 14% by weight Fe, 0.5 to 2% by weight V and 0.2 to 1% by weight Mn, remainder aluminium, and any impurities, the alloy being melted, the melt being atomized in a gas stream to form particles having a diameter from 1 to 40 µm at a rate of cooling of at least 105 °C/s, the dispersoids formed in this manner being homogeneously distributed and no micro-eutectic zone being present within a powder particle, and in that the powder is compressed at a temperature of 350 to 450°C at a pressure of 1000 to 5000 bar, in such a manner that the intermetallic Al6Fe phase stabilized by Mn is formed in fine distribution and the Al3Fe phase is to a large extent suppressed.
2. Process for the production of a workpiece according to Claim 1, characterized in that the alloy ex- hibitis an Fe content of 10 to 14% by weight.
3. Process for the production of a workpiece according to Claim 2, characterized in that the temperature during the powder compression is 400°C.
4. Process for the the production of a workpiece according to Claim 1, characterized in that the alloy exhibits the following composition:
Fe = 10 to 12% by weight
V = 1 % by weight
Mn = 0.4 to 1.0% byweight
AI = remainder.
5. Process for the production of a workpiece according to Claim 4, characterized in that the alloy exhibits the following composition:
Fe = 10% by weight
V =1 % by weight
Mn = 0.5% by weight
AI = remainder.
6. Process for the production of a workpiece according to Claim 1, characterized in that the alloy exhibits the following composition:
Fe = 12% by weight
V = 1.5% by weight
Mn = 1.0% by weight
AI = remainder.
EP87111462A 1986-08-12 1987-08-07 Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy Expired - Lifetime EP0256449B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3232/86 1986-08-12
CH3232/86A CH673242A5 (en) 1986-08-12 1986-08-12

Publications (2)

Publication Number Publication Date
EP0256449A1 EP0256449A1 (en) 1988-02-24
EP0256449B1 true EP0256449B1 (en) 1990-05-16

Family

ID=4251507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111462A Expired - Lifetime EP0256449B1 (en) 1986-08-12 1987-08-07 Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy

Country Status (7)

Country Link
US (1) US4737339A (en)
EP (1) EP0256449B1 (en)
JP (1) JPS6347343A (en)
CH (1) CH673242A5 (en)
DE (1) DE3762756D1 (en)
DK (1) DK415787A (en)
NO (1) NO873365L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH673240A5 (en) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie
FR2636974B1 (en) * 1988-09-26 1992-07-24 Pechiney Rhenalu ALUMINUM ALLOY PARTS RETAINING GOOD FATIGUE RESISTANCE AFTER EXTENDED HOT HOLDING AND METHOD FOR MANUFACTURING SUCH PARTS
EP0577436B1 (en) * 1992-07-02 1997-12-03 Sumitomo Electric Industries, Limited Nitrogen-combined aluminum sintered alloys and method of producing the same
JPH08325660A (en) * 1995-05-31 1996-12-10 Ndc Co Ltd Porous aluminum sintered material
US7794520B2 (en) * 2002-06-13 2010-09-14 Touchstone Research Laboratory, Ltd. Metal matrix composites with intermetallic reinforcements
CN1658989A (en) * 2002-06-13 2005-08-24 塔奇斯通研究实验室有限公司 Metal matrix composites with intermetallic reinforcements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311391A1 (en) * 1975-05-14 1976-12-10 Pechiney Aluminium ELECTRICAL CONDUCTORS IN AL FE ALLOYS OBTAINED BY SHELL SPINNING
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
US4647321A (en) * 1980-11-24 1987-03-03 United Technologies Corporation Dispersion strengthened aluminum alloys
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
DE3524276A1 (en) * 1984-07-27 1986-01-30 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
US4734130A (en) * 1984-08-10 1988-03-29 Allied Corporation Method of producing rapidly solidified aluminum-transition metal-silicon alloys

Also Published As

Publication number Publication date
DE3762756D1 (en) 1990-06-21
NO873365D0 (en) 1987-08-11
EP0256449A1 (en) 1988-02-24
JPS6347343A (en) 1988-02-29
US4737339A (en) 1988-04-12
DK415787A (en) 1988-02-13
DK415787D0 (en) 1987-08-10
NO873365L (en) 1988-02-15
CH673242A5 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
DE69223194T2 (en) Process for the production of composite alloy powder with aluminum matrix
EP0256450B1 (en) Process for manufacturing powder compacts with a high resistance and relatively low density from a heat-resisting aluminium alloy
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
DE68907331T2 (en) Process for the production of 7000 series aluminum alloys by spray deposition and non-continuously reinforced composite materials, the matrix of which consists of these alloys with high mechanical strength and good ductility.
DE68917904T2 (en) Process for the production of powder-metallurgically sintered moldings.
DE3139548A1 (en) IMPROVED ALUMINUM TRANSITION METAL ALLOYS MANUFACTURED USING RAPID-FASTENED POWDERS AND METHOD FOR THE PRODUCTION THEREOF
DE69014254T2 (en) Process for producing a silicon-containing aluminum alloy.
DE69011951T2 (en) Process for the treatment and production of material.
DE2365046A1 (en) POWDER METALLURGICAL PROCESSING OF HIGH PERFORMANCE ALLOYS
DE2755976A1 (en) METAL WORKPIECE AND POWDER ALLOY AND PROCESS FOR THE MANUFACTURING OF METAL WORKPIECES FROM SILICON AND POWDER ALLOY ON AN ALUMINUM BASE
DE3524276A1 (en) Aluminium alloy for producing ultrafine-grained powder having improved mechanical and microstructural properties
EP0256449B1 (en) Powder-metallurgical manufacture of work pieces from a heat-resisting aluminium alloy
CH646999A5 (en) OBJECT OF A HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF.
DE69301365T2 (en) Compressed and solidified material made of a high-strength, heat-resistant aluminum-based alloy and process for its production
DE2200670B2 (en)
DE69320649T2 (en) SILICON ALLOY, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR PRODUCING CONSOLIDATED PRODUCTS FROM THIS ALLOY
DE69428236T2 (en) Metallic powder for manufacturing parts by press molding and sintering, and method for manufacturing the powder
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
DE112011104430B4 (en) Improved aluminum alloy metal powder with transition elements
DE960930C (en) Process for the production of castings from molybdenum and / or tungsten alloys
EP0207268B1 (en) Aluminium alloy suitable for the rapid cooling of a melt supersaturated with alloying elements
EP1249510B2 (en) Process for preparing tool steel articles by powder metallurgy
DE2814553B2 (en) Completely dense products made from nickel superalloys manufactured by powder metallurgy
DE2001341A1 (en) Alloy or mixed metal based on molybdenum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19880609

17Q First examination report despatched

Effective date: 19890724

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3762756

Country of ref document: DE

Date of ref document: 19900621

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901027

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901116

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910712

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910716

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910719

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910831

Ref country code: CH

Effective date: 19910831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920808

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 87111462.5

Effective date: 19930307