EP0199833B1 - Pompe hydraulique - Google Patents

Pompe hydraulique Download PDF

Info

Publication number
EP0199833B1
EP0199833B1 EP19850105181 EP85105181A EP0199833B1 EP 0199833 B1 EP0199833 B1 EP 0199833B1 EP 19850105181 EP19850105181 EP 19850105181 EP 85105181 A EP85105181 A EP 85105181A EP 0199833 B1 EP0199833 B1 EP 0199833B1
Authority
EP
European Patent Office
Prior art keywords
flow
valve
hydraulic pump
prolongation
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850105181
Other languages
German (de)
English (en)
Other versions
EP0199833A1 (fr
Inventor
René Dr. Schulz
Heinz Teubler
Peter Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione luk Fahrzeug - Hidraulik & Co KG GmbH
Original Assignee
Vickers Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vickers Systems GmbH filed Critical Vickers Systems GmbH
Priority to EP19850105181 priority Critical patent/EP0199833B1/fr
Priority to DE8585105181T priority patent/DE3564603D1/de
Priority to CA000506074A priority patent/CA1253771A/fr
Priority to JP61095925A priority patent/JPH0749797B2/ja
Publication of EP0199833A1 publication Critical patent/EP0199833A1/fr
Application granted granted Critical
Publication of EP0199833B1 publication Critical patent/EP0199833B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the invention relates to a hydraulic pump, in particular for steering assistance, with the features of the preamble of claim 1.
  • Power steering pumps are usually designed as vane pumps and rigidly connected to the drive motor of the vehicle in which the power steering is used. Accordingly, the pump delivery flow increases with increasing engine speed. However, strong steering assistance is usually not required at higher engine speeds. For this reason, a flow control valve is usually used to regulate part of the pump delivery flow, while the remaining regulated useful flow is fed back to the tank via the steering valve.
  • the hydraulic fluid under the so-called dynamic pressure relaxes, which leads to a corresponding loss of performance if the power is not absorbed by the steering.
  • Such a high power consumption does not occur practically in the high speed range because you cannot turn in sharply when driving fast. In the high speed range of the pump, a constant readiness to perform is maintained, the level of which is not required and thus leads to an unnecessary loss of performance.
  • the invention is based on the object of designing a hydraulic pump of the generic type in such a way that a small range of falling characteristic curve branches of the useful flow pump speed characteristic can be generated by slight changes to the flow control valve. It should therefore be possible to generate a characteristic adapted to the application.
  • the annular space formed on the extension of the slide piston has a certain overlap width with respect to the orifice bore and the discharge channels, which are preferably duplicated.
  • the annular space is fed by a cavity in the extension of the slide piston.
  • the current divides in the annulus in terms of the useful flow and the regulated flow. The latter is quickly discharged into the pump inlet so that there is little flow loss.
  • the division of the current in the annular space has the further advantage that the impulse forces exerted are opposite to each other, so that the flow forces on the slide piston are largely compensated for.
  • the utility flow bore channel has a second inlet, formed by an annular gap between the extension of the valve slide and the valve bore wall in the range of movement of this extension.
  • This inlet cross-section is smaller than the normal opening cross-section between the annulus and the utility flow bore channel.
  • the extension of the slide piston can have different geometrical configurations in order to influence the course of the useful current / pump speed characteristic.
  • the vane pump has a main housing part 1 and a housing cover 2, which enclose an interior 1 a pressure-tight.
  • an interior 1 sit - arranged fixed to the housing - a pressure plate 4 and a cam ring 5, which are secured against rotation by pins 6.
  • a rotor 7 is arranged within the cam ring 5 and between the housing cover 2 and the pressure plate 4, which rotor (FIG. 3) has a series of radial guide slots. Wings 8 are radially displaceably mounted within these guide slots.
  • the rotor 7 can be driven via a shaft 9 which is mounted in a bearing bore in the housing cover 2.
  • the rotor 7 is cylindrical, while the cam ring 5 has an approximately oval inner contour, the small axis of which corresponds approximately to the diameter of the rotor, while the large axis determines the extension length of the vanes 8.
  • the cam ring 5 and the rotor 7 there are two crescent-shaped displacement regions 11, 12, which are divided into a number of cell spaces by the vanes 8. The cell spaces increase on the suction side of the system and decrease on the pressure side.
  • Hydraulic fluid is supplied from a tank 14 (FIG. 3) and a distribution area 16 via two slightly sloping bores 17 (FIG. 2), knee-shaped feed channel sections 18 and inlet openings 20 into the respective displacement areas of the pump.
  • the knee-shaped feed channel sections 18 each have a radial leg which opens into an unloading channel 19 (FIGS. 2 and 4).
  • the hydraulic fluid is removed via outlet openings 33 (FIG. 1) through the pressure plate 4 into a pressure chamber 35 on its rear side.
  • a flow control valve 40 the pump delivery flow is divided into a regulated useful flow flowing via a bore 38 to an outer pump outlet 37 (FIG. 2) and a regulated delivery flow flowing through the discharge channels 19.
  • the bore 38 represents a useful current channel and at the same time part of a measuring orifice 36 through which the useful current flows and whose voltage drop is tapped.
  • the useful flow reaches the pump outlet 37 (FIG. 2) via an inclined discharge duct 39 (FIG. 1). From this, a connection leads to a control chamber 47 of the flow control valve 40 via a damping throttle 48.
  • the flow control valve 40 has a slide piston 41 guided in a valve bore 55, which is pushed by the force of a spring 42 in the direction of the pressure plate 4 and, if necessary, to abut there brought.
  • the slide piston 41 has a first and second piston surface 53, 54 and two piston collars 43, 44, between which an annular groove 45 extends.
  • the piston collar 43 is narrower than the discharge channels 19 (FIG. 2) which meet the annular groove 45.
  • a partially radially and partially axially extending channel 46 leads from the annular groove 45 through the slide piston 41 into the control chamber 47, and the channel 46 is dominated by a cone valve which responds when a certain permissible pressure in the control chamber 47 is exceeded and discharges this chamber, so that the spool 41 acts as a controlled pressure relief valve, as is known.
  • the valve 40 assumes the position shown in FIG. 4.
  • the slide piston 41 has an extension 49 in which a cavity 50 is accommodated. This is connected via a series of bores 51 to an annular space 52 of width b.
  • the annular space 52 is delimited by the first piston surface 53 and a third piston surface 56, which work in cooperation with the discharge channels 19 and the useful flow bore channel 38 as control edges, so that the valve 40 represents a two-edge controller.
  • the radial bore 38 and the radial unloading channel 19 are shown in FIG. 4 in the same axial plane of the valve 40, while in reality they lie in different axial planes which, for example, form an angle of 90 ° to one another. Projected onto the axial sectional plane shown in FIG.
  • the pump operates as follows: the rotor 7 is driven by the shaft 9 and the vanes 8 pass through the displacement areas 11 and 12, so that the liquid via the liquid outlet system 33, 35, 50, 38, 39 to the outer pump outlet 37 is fed and liquid is sucked in via the outer pump inlet 16 and the liquid supply system 17, 18, 20. If the liquid flow through the bore 38 exceeds the desired value, the pressure drop across this bore 38 is sufficiently large to overcome the force of the valve spring 42, i.e. the compressive force on the piston surface 53 is greater than the compressive force on the piston surface 54 plus the spring force 42. Now part of the pumped flow is regulated via the discharge channel 19, while the useful flow continues to be withdrawn via the bore 38. Their effective cross-sectional area decreases due to the control edge 56 moving in the closing direction, i.e. the orifice 36 becomes narrower and the pressure drop in the useful flow increases.
  • a slide piston 41 is shown, the extension 49 is slightly conical.
  • the annular space 52 therefore extends to a certain extent up to the front edge 57 of the slide piston 41. Accordingly, if the slide piston 41 moves against the force of its valve spring 42, the opening width of the annular gap between the extension 49 and the valve bore 55 becomes narrower, the narrowing speed as it approaches the edge 57 to the valve bore 55 increases sharply, so that the proportion of the useful current that flows over the annular gap between the extension 49 and the valve bore 55 decreases sharply.
  • a certain proportion of the useful flow remains, as is shown in the assigned characteristic.
  • Fig. 7 shows a slide piston 41 with a Extension 49, which is composed of the shapes of the extension according to FIGS. 5 and 6, that is to say has a cylindrical region 58 and a conical region 59.
  • a certain proportion of the useful flow can flow through the annular gap between the conical region 59 and the valve bore 55 into the bore 38 until one certain position of the slide piston 41, the cylindrical portion 58 enters the valve bore 55.
  • a larger or smaller remaining useful flow is then achieved, as is indicated in the assigned useful flow speed characteristic.
  • Fig. 8 shows an embodiment of the slide piston 41 with an extension 49, which has a spherical surface. This shape approximates the design according to FIG. 7, and accordingly a similar useful current-speed characteristic is achieved.
  • the gap width, minus d z 0.21 to 0.71 mm, was varied.
  • a constant useful current could be achieved regardless of the pump speed n.
  • the dimension b was varied between 7.7 and 8.7 mm, whereby higher useful current values were achieved at higher values of b, ie the falling branch of the characteristic dropped less strongly or remained constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)
  • Reciprocating Pumps (AREA)

Claims (8)

1. Pompe hydraulique, notamment pour assistance de direction, ayant les particularités suivantes: la pompe hydraulique comporte un rotor (7) entraîné à une vitesse de rotation variable (n), qui constitue avec des parties fixes de la pompe au moins une zone de refoulement (11, 12), à laquelle conduisent des orifices d'entrée (20) et des orifices de sortie (33);
les orifices d'entrée (20) de chaque zone de refoulement sont reliés à un système d'alimentation (17, 18) et les orifices de sortie (33) de chaque zone de refoulement sont reliés à un volume de pression (35); le volume de pression (35) et le système d'alimentation sont reliés entre eux par l'intermédiaire d'une valve re régulation d'écoulement (40), qui décharge un écoulement de refoulement non réglé dans un canal de décharge (19) du système d'alimentation (17, 18) et qui fait parvenir un écoulement utile réglé (Q) à une sortie extérieure (37) de la pompe;
la valve de régulation d'écoulement (40) contient un tiroir de distribution (41) guidé dans un alésage (55) de la valve et comportant une première surface haute-pression (53) et une seconde surface basse- pression (54), un ressort de valve (42) ainsi qu'un diaphragme de mesure (36), dans lequel une baisse de pression de l'écoulement utile réglé (Q) est captée et est transmise aux deux surfaces (53, 54) du tiroir de distribution (41);
le tiroir de distribution (41 ) comporte un appendice (49), dont la position diminue la largeur utile du diaphragme de mesure (36) lorsque la vitesse de rotation (n) de la pompe augmente de sorte qu'on obtient, pour la courbe caractéristique représentant l'écoulement utile en fonction de la vitesse de rotation de la pompe, une branche de courbe au total décroissante,
caractérisé en ce que le diaphragme de mesure (36) est formé dans un canal (38) de passage d'écoulement utile s'étendant dans l'ensemble radialement en direction de la valve de régulation d'écoulement (40),
en ce que le canal (38) de passage d'écoulement utile et le canal de décharge correspondant (19) sont espacés l'un de l'autre d'une distance axiale (c), mesurée dans la direction de translation du tiroir de distribution (41 qui est plus petite que la largeur (b) d'un volume annulaire (52), qui est créé sur le tiroir de distribution (41 ) entre la première surface de tiroir (53) et une troisième surface de tiroir (56);
et en ce que le volume annulaire (52) est relié au volume de pression (35) par l'intermédiaire d'une cavité (50) prévue dans le tiroir de distribution (41
2. Pompe hydraulique selon la revendication 1, caractérisée en ce que l'appendice (49) du tiroir de distribution (41 ) a un diamètre extérieur (d2) qui est inférieur, d'une petite dimension, au diamètre intérieur (d1) de l'alésage de valve (55) dans la zone de déplacement de cet appendice (49).
3. Pompe hydraulique selon la revendication 2, caractérisée en ce que la petite dimension est comprise entre 0,1 et 1 mm.
4. Pompe hydraulique selon la revendication 2, caractérisée en ce que la petite dimension est comprise entre 0,2 et 0,7 mm.
5. Pompe hydraulique selon une des revendications précédentes, caractérisée en ce que l'appendice (49) est pourvu d'une forme conique avec une surface (59) effilée en direction du volume annulaire (52).
6. Pompe hydraulique selon une des revendications précédentes, caractérisée en ce que l'appendice (49) comporte une surface sphérique qui est en saillie en direction du volume annulaire (52).
7. Pompe hydraulique selon une des revendications précédentes, caractérisée en ce que le volume annulaire (52) se prolonge sous la forme d'un intervalle sur la périphérie extérieure de l'appendice (49) du tiroir de distribution (41 ).
EP19850105181 1985-04-27 1985-04-27 Pompe hydraulique Expired EP0199833B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19850105181 EP0199833B1 (fr) 1985-04-27 1985-04-27 Pompe hydraulique
DE8585105181T DE3564603D1 (en) 1985-04-27 1985-04-27 Hydraulic pump
CA000506074A CA1253771A (fr) 1985-04-27 1986-04-08 Pompe hydraulique
JP61095925A JPH0749797B2 (ja) 1985-04-27 1986-04-26 油圧ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19850105181 EP0199833B1 (fr) 1985-04-27 1985-04-27 Pompe hydraulique

Publications (2)

Publication Number Publication Date
EP0199833A1 EP0199833A1 (fr) 1986-11-05
EP0199833B1 true EP0199833B1 (fr) 1988-08-24

Family

ID=8193470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850105181 Expired EP0199833B1 (fr) 1985-04-27 1985-04-27 Pompe hydraulique

Country Status (4)

Country Link
EP (1) EP0199833B1 (fr)
JP (1) JPH0749797B2 (fr)
CA (1) CA1253771A (fr)
DE (1) DE3564603D1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623421A1 (de) * 1986-07-11 1988-01-14 Vickers Systems Gmbh Lenkhilfpumpe
JPH0729267Y2 (ja) * 1989-06-02 1995-07-05 株式会社ユニシアジェックス ベーンポンプ
US5220939A (en) * 1991-05-21 1993-06-22 Koyo Seiko Co., Ltd. Flow control apparatus
WO1999067534A1 (fr) * 1998-06-24 1999-12-29 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Dispositif de refoulement hydraulique
AT520109B1 (de) * 2017-07-11 2019-09-15 Avl List Gmbh Reversible Pumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE619219C (de) * 1934-10-14 1935-09-27 Fortuna Werke Spezialmaschinen Regelbares Drosselventil mit Spueleinrichtung
US2145533A (en) * 1936-07-06 1939-01-31 Caterpillar Tractor Co Fluid transfer mechanism
DE1108027B (de) * 1959-08-19 1961-05-31 Bosch Gmbh Robert Von der Durchflussmenge eines Druckmittels beeinflusstes selbsttaetiges Steuerventil
US3033221A (en) * 1960-04-29 1962-05-08 Hough Co Frank Priority valve
US3185178A (en) * 1962-10-15 1965-05-25 Armand A Bonnard Cylindrical squeeze-type directional valve
JPS5838536B2 (ja) * 1975-08-01 1983-08-23 帝人株式会社 ゴム補強用ポリエステル系繊維材料の製造法
DE3033388A1 (de) * 1980-09-05 1982-04-22 Robert Bosch Gmbh, 7000 Stuttgart Mehrstellungs-mehrwegeventil
DE3211948C2 (de) * 1982-03-31 1984-07-26 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Regeleinrichtung für eine Verdrängerpumpe, insbesondere Flügelzellenpumpe

Also Published As

Publication number Publication date
DE3564603D1 (en) 1988-09-29
JPH0749797B2 (ja) 1995-05-31
EP0199833A1 (fr) 1986-11-05
CA1253771A (fr) 1989-05-09
JPS61250391A (ja) 1986-11-07

Similar Documents

Publication Publication Date Title
DE2938743C2 (fr)
DE1528951C3 (de) Verdrängerpumpe zur Förderung einer stark dampf- und blasenhaltigen Flüssigkeit
DE4090852C2 (de) Servolenkung
DE1580479C3 (de) Hydraulikanlage
DE4428667C2 (de) Kombiniertes Stromregel- und Druckregelventil für eine Pumpe und mit patronenförmigem Ventilgehäuse
DE2328658C2 (de) Steuerschieberanordnung
DE2441662B2 (de) Stromregelventil
DE3313390A1 (de) Oelpumpenanordnung
DE3327119A1 (de) Luftlageranordnung fuer ein zahnaerztliches handstueck
DE3237380C2 (fr)
EP0199833B1 (fr) Pompe hydraulique
DE2124068A1 (de) Hydraulische Regeleinrichtung insbesondere für Kraftfahrzeuge
WO1988001958A1 (fr) Soupape de distribution rotative pour servo-directions hydrauliques
WO1993009349A1 (fr) Pompe a ailettes
EP0151657A1 (fr) Pompe à palettes, en particulier pour système de puissance assisté
DE2418275A1 (de) Pumpvorrichtung
DE2835816A1 (de) Drehkolbenpumpe
EP0509077B1 (fr) Pompe a pistons, notamment pompe a pistons radiaux
DE2402017A1 (de) Rotationskolbenpumpe, insbesondere fuer servolenkungen von kraftfahrzeugen
DE4235698C2 (de) Hydrostatisches Antriebssystem
DE3211948C2 (de) Regeleinrichtung für eine Verdrängerpumpe, insbesondere Flügelzellenpumpe
DE2600918C2 (de) Regelpumpe
DE3407827C2 (de) Druckmittler
DE2001614C3 (de) Stromregeleinrichtung fur eine Hydraulikpumpe
EP0221062B1 (fr) Dispositif de regulation pour une pompe volumetrique, en particulier une pompe a palettes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19861129

17Q First examination report despatched

Effective date: 19880209

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3564603

Country of ref document: DE

Date of ref document: 19880929

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;LUK FAHRZEUG - HIDRAULIK GMBH & CO. KG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940315

Year of fee payment: 10

EAL Se: european patent in force in sweden

Ref document number: 85105181.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950428

EUG Se: european patent has lapsed

Ref document number: 85105181.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020328

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020503

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST