EP0198517B2 - Dispositif de mise en place de support de bobines - Google Patents

Dispositif de mise en place de support de bobines Download PDF

Info

Publication number
EP0198517B2
EP0198517B2 EP86107107A EP86107107A EP0198517B2 EP 0198517 B2 EP0198517 B2 EP 0198517B2 EP 86107107 A EP86107107 A EP 86107107A EP 86107107 A EP86107107 A EP 86107107A EP 0198517 B2 EP0198517 B2 EP 0198517B2
Authority
EP
European Patent Office
Prior art keywords
bobbin
tender
cradle
yarn
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86107107A
Other languages
German (de)
English (en)
Other versions
EP0198517A3 (en
EP0198517A2 (fr
EP0198517B1 (fr
Inventor
André Lattion
Jürg BISCHOFBERGER
Walter Slavik
Günter Gärtner
Ernst Engeli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27226829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0198517(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB08313994A external-priority patent/GB2140046B/en
Priority claimed from GB838333471A external-priority patent/GB8333471D0/en
Priority to AT86107107T priority Critical patent/ATE57888T1/de
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Priority claimed from EP84105036A external-priority patent/EP0126352B1/fr
Publication of EP0198517A2 publication Critical patent/EP0198517A2/fr
Publication of EP0198517A3 publication Critical patent/EP0198517A3/en
Publication of EP0198517B1 publication Critical patent/EP0198517B1/fr
Application granted granted Critical
Publication of EP0198517B2 publication Critical patent/EP0198517B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H67/00Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
    • B65H67/04Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements
    • B65H67/0405Arrangements for removing completed take-up packages or for loading an empty core
    • B65H67/0417Arrangements for removing completed take-up packages or for loading an empty core for loading an empty core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to improvements in travelling service tenders for yarn handling machines of the type having a plurality of operating stations each including a yarn wind-up apparatus comprising a friction drive roll and a cradle means for holding a bobbin tube/yarn package in contact with the friction drive roll during formation of a yarn package on the bobbin tube.
  • Such machines include, in particular but not exclusively, rotor spinning machines; other examples include automatic rewinders for rewinding cops into cross-wound packages and false twist texturising machines.
  • examples of the type of wind-up mechanism involved can be seen from the following patent specifications-German 2 649 156, US 3 356 306 and GB 1 399 891.
  • Fig. 1 shows in diagrammatic side elevation a friction drive roll 10 and a bobbin cradle mechanism generally indicated by the numeral 12.
  • the cradle mechanism comprises a pair of arms 14, 16 which are aligned with one another as viewed in Fig. 1 so that only the nearer arm 14 is fully visible in that figure.
  • Arm 16 is slightly longer than arm 14 so that its end portion can be seen in Fig. 1.
  • Each arm carries a respective centering plate 18, 20 (better seen in Fig. 2) which in use carry between them a cylindrical bobbin tube 22.
  • Arms 14, 16 are carried by a carrier 23 (Fig. 1) which is pivotable about a bearing element 24 mounted in the machine structure. Arm 14 is fixed to the carrier, but arm 16 is pivotally mounted thereon for movement towards and away from the arm 14 as indicated by the double-headed arrow B in Fig. 2. Arm 16 has a normal position approximately parallel to arm 14 such that bobbin tube 22 is clamped between the plates 18 and 20. However, when arm 16 is pivoted away from arm 14 as shown in Fig. 2, a space is made for release of a yarn package formed on the bobbin tube 22 and/or insertion of a fresh bobbin tube between the centering plates.
  • Cradle mechanism 12 further comprises a cradle loading device 28 (Fig. 1).
  • Device 28 is fixed at one end to the machine structure 26 and at the other end to the cradle comprising carrier 23 and arms 14, 16.
  • the loading device includes a biasing means (usually a spring-weighted device) which normally tends to draw the arms 14, 16 downwardly as viewed in Fig. 1 into a winding position in which a bobbin tube 22 carried by the arms engages the friction roll 10.
  • Roll 10 is driven into rotation about its own longitudinal axis as indicated by the arrow in Fig. 1, and the plates 18, 20 are rotatable about axis 19 on the arms 14, 16 so that the bobbin tube 22 is rotated by frictional engagement with the roll 10.
  • a yarn When a yarn is secured to the bobbin tube, therefore, it will begin to wind on the tube and a suitable traverse guide means (not shown) is provided to enable formation of a cross-wound package in a well-known manner.
  • the arms 14, 16 can, however, be swung upwardly on the bearing element 24 to an uppermost position 14A, 16A in Fig. 1 and the loading device 24 has an over-centre system such that the weighting means is ineffective to draw the arms downwardly out of this uppermost position.
  • the devices required to perform these operations automatically may be provided at the individual spinning stations, but for economic reasons it is preferred to provide a service tender which is provided with one set of ejection/insertion devices and which is movable longitudinally of the machine past the stations. Means is provided to locate the tender in alignment with any selected station in order to enable performance of ejection/insertion operations thereon.
  • a service tender will be assumed, but it will be apparent that the principles described could also be applied to multiple ejection/insertion devices.
  • Bobbin insertion is commonly effected by means of a bobbin gripper 30 (Fig. 1A) mounted at the end of an arm 32 which is pivotable about a pivot mounting 34 in the service tender.
  • the gripper collects a bobbin from a bobbin holder (not shown) in an upper portion of its swinging movement about the mounting 34, and then moves the bobbin to a position at which the bobbin can be transferred to the cradle mechanism 12.
  • the bobbin holder may be on the service tender or on the machine, but in the latter case one bobbin holder per operating station is required.
  • bobbin diameters used by spinning mills on rotor spinning machines may vary between approximately 60 and 105 mm.
  • a "bobbin collection position" 36 (Fig. 1) is defined at which the gripper 30 collects a bobbin presented to it by a suitable bobbin holder.
  • the holder is designed to hold all bobbin axes 38 at a predetermined location in the bobbin collection position, regardless of varying external diameters 22Aand 22B respectively.
  • the bobbin insertion device does not insert bobbins into the cradle mechanism at the winding position, but at a "transfer location" which is spaced from the winding position.
  • this transfer location is defined by the uppermost position of the cradle.
  • This uppermost position of the cradle (and, correspondingly, the transfer location) is the same for all bobbin diameters. It is not essential to use the uppermost position of the cradle to define the transfer location, which could be shifted along the arc 40 towards the friction roller 10 as far as the winding position of the largest diameter bobbin for which the machine is designed.
  • the uppermost position of the cradle is preferred because it is a closely defined position in which the cradle is held in a stable condition without direct intervention of the service tender.
  • the path of movement of the bobbins between the collection position and the transfer location is the same regardless of bobbin diameter. Accordingly, while it is necessary to adapt the bobbin holder and the bobbin gripper to varying bobbin diameters, it is no longer necessary to adapt the movement defining system for the bobbin insertion device.
  • the illustrated examples assume a pivotal movement for the bobbin insertion device, defining curved bobbin insertion paths. It will be apparent, however, that the principles are the same for reciprocatory bobbin insertion device defining straight bobbin insertion paths.
  • the cradle In order to enable insertion of a bobbin into the cradle at the transfer location, the cradle must be "opened” i.e. arm 16 must be pivoted away from its normal, parallel disposition relative to arm 14 to create space, so that the gripper 30 can bring the bobbin to a position in which the bobbin is substantially co- axial with the axis 19 (Fig. 2). The cradle must then be "closed", i.e. arm 16 must be returned to its normal disposition so that the bobbin is clamped between the plates 18, 20. These movements of the arm 16 can be effected by a lever (not shown in Fig. 1) mounted in the service tender and operable by means to be described later. Such devices are now well-known in the art.
  • An inserted bobbin is moved to its respective winding position by downward movement of the cradle from its uppermost position as viewed in Fig. 1. This movement can also be effected by a suitable lever provided on and operated by the tender.
  • the bobbin insertion function of the gripper 30 is therefore completed when the bobbin is transferred to the cradle.
  • Fig. 2 the bobbin 22 is assumed to be already in its winding position in contact with the friction roller 10.
  • the cradle is illustrated in its open or "release” condition with the arm 16 pivoted away from its normal disposition relative to the arm 14. Again, this is effected by a lever diagrammatically indicated at 44 in Fig. 2 mounted on and operated by the service tender.
  • This re-opening of the cradle with the bobbin in the winding position enables extension of a yarn Y through the gap between the righthand end of bobbin 22 (as seen in Fig. 2) and the plate 20 on arm 16.
  • the gripper 30 is used to hold the bobbin in the winding position during opening of the cradle in the course of the clamping operation.
  • the gripper 30 remains in gripping contact with bobbin 22 and urges it towards the left as viewed in that figure into continued contact with the plate 18.
  • the clamping end of the bobbin (the righthand end as viewed in Fig. 2) is therefore accurately located during the clamping operation.
  • a gripper design suitable for this purpose will be described in further detail later.
  • the yarn Y is commonly fed to the wind-up system from a guide system indicated generally by the numeral 46 in Fig. 2.
  • the resulting yarn tension tends to draw the yarn into the shortest yarn path between the guide system 46 and the package forming on the bobbin 22.
  • the shortest yarn path lies on the centre line C at the mid-length of the bobbin 22.
  • the yarn end is taken up by a yarn manipulating device 48.
  • the form of this device will depend substantially upon the type of machine with which it is to be used.
  • the manipulating device 48 should also be a take-up device such as a suction pistol. Where yarn forwarding is dependent upon the wind-up itself, the manipulating device does not have to be a take-up. In any event, the manipulating device 48 is provided on and moved by the service tender.
  • Device 48 takes the yarn from the guide system 46 and extends it through the gap created by opening of the cradle between the bobbin 22 and the plate 20.
  • the length of yarn which is to be clamped to the bobbin end should extend approximately at right angles to the axis 19.
  • auxiliary guide 50 which will be described in further detail below and which is also carried by the tender.
  • the length of yarn extending between the bobbin and device 48 is drawn by rotation of the bobbin against a knife edge indicated diagrammatically at 52.
  • the knife is secured to the manipulating device 48 so that it remains spaced from the yarn until the latter is drawn into rotation. By this means, a short yarn tail is produced projecting from the clamping point, and the remainder of the yarn connected to device 48 is removed by the tender when it retracts the device 48 and knife 52.
  • Fig. 3 shows the principle of matching of the gripper movement after bobbin insertion to the movement of the cradle between the transfer location and the bobbin winding position.
  • the numerals used correspond with those used in description of Fig. 1, although the path of movement of the gripper 30 is different to that previously illustrated.
  • Biasing means (not shown) hold the gripper 30 in a normal position relative to the arm 32, in which position the gripper 30 can collect a bobbin from the non-illustrated bobbin holder.
  • Gripper 30 remains in this normal position during movement along the bobbin insertion path 56 from the collection location to the transfer location. Transfer of the bobbin from gripper 30 to the cradle is effected in the manner described above.
  • the bobbin inserting device would be retracted after insertion of a bobbin into the cradle.
  • the anti-clockwise pivotal movement of the arm 32 continues even after bobbin insertion has been completed with the pivot mounting 54 moving along the extension 58 of the bobbin insertion path 56.
  • the paths 56 and 58 can together be taken to define a "gripper path".
  • the cradle is moved downwardly under the control of suitable levers on the tender to move the bobbin clamped therein from the transfer location to the winding position.
  • the gripper path 56, 58 is arranged to intersect the arc 40 in the region of the bobbin winding positions. In this way, it is ensured that the gripper 30 is efficiently oriented relative to its arm 32 in order to hold the bobbin 22 in the winding position during the clamping operation as described with reference to Fig. 2.
  • Fig. 4 shows a side elevation of one form of bobbin gripper suitable for the system shown in principle in Fig. 3.
  • the carrier arm 32 is illustrated also in Fig. 4.
  • arm 32 carries a bearing shaft 60, the axis of the shaft 60 extending transversely to the length of arm 32.
  • Two plates 62 (only one of which can be seen in Fig. 4) are spaced along shaft 60 on the same side of arm 32. Each plate is secured against movement axially of the shaft 60 but is free to rotate around the axis of the shaft.
  • the plates are secured together by a cross piece 64 for joint rotation about the shaft axis. This rotation is limited in one direction, however, by abutment of the cross piece 64 with a pin 66 secured in shaft 60 and extending radially therefrom.
  • Each plate can be considered to have two “legs” extending away from shaft 60.
  • the longer legs (to the left as viewed in Fig. 4) carry between them a yoke 68 which has a shallow U-shape.
  • the bend of the U is secured by pins 70 to the plates 62.
  • One arm 72 of the U forms an extension of the longer legs of the plates 62, and carries at its free end a roller assembly 74 which will be described further below.
  • the other arm 76 of the U extends into the space between the legs of the plate 62 and carries at its free end a roller assembly 78, similar to the assembly 74.
  • Pin 80 is fixed to the plates and carries a projecting lug 82 which is connected to one end of a tension spring 84, the other end of which (not seen) is connected to the arm 32.
  • Spring 84 by its action on lug 82, tends to pivot plates 62 in a clockwise direction (as viewed in Fig. 4) about the bearing shaft 60, so that cross piece 64 is normally urged against abutment 66.
  • An arm 86 is mounted on pin 80 for pivotal movement about the axis of the pin. Arm 86 forms an extension of the shorter legs of plates 62, and carries at its free end a single roller 88.
  • a tension spring 90 is secured between plates 62 and arm 86 so as to draw the roller 88 towards the roller assemblies 74, 78. This movement is limited by a stop 92 extending between the shorter legs of the plates 62 and engaged by the arm 86. Stop 92 is adjustable in position along slot 93.
  • the dotted line 94 in Fig. 4 indicates the outline of a bobbin gripped by gripper 30.
  • Arms 72 and 86 extend around more than half of the circumference 94 so that the roller 88 and the rollers of assembly 74 retain the bobbin in the gripper.
  • the gripper can open to take up and release a bobbin by pivoting of arm 86 on pin 80 against the bias of spring 90. Penetration of the bobbin into the gripper is limited by the roller assemblies 78.
  • shaft 60 In its approach movement to collect a bobbin, shaft 60 is moved along a rearward extension of the bobbin insertion path and the fully open "face" of the gripper is presented to the bobbin to be collected.
  • the gripper is held by spring 84 in its normal disposition, i.e. with cross piece 64 engaging abutment 66. The gripper maintains this normal disposition relative to arm 32 until it arrives in the transfer location.
  • the path of the bobbin is determined by the cradle mechanism.
  • the gripper maintains a hold on the bobbin throughout movement thereof from the transfer location to the winding position.
  • plates 62 pivot in an anti-clockwise direction as viewed in Fig. 4 around shaft 60, i.e. cross piece 64 pivots away from abutment 66, against the bias supplied by spring 84.
  • the degree of pivot about shaft 60 reaches a maximum at the maximum spacing of the arc 40 and path 58, and the gripper 30 returns to its normal disposition, or a disposition very close thereto, as the bobbin reaches its winding position.
  • the degree of pivot is exaggerated in Fig. 3 for ease of illustration of the principle.
  • each assembly comprises a bearing box 96 secured to the free end of the arm 72 or 76 and providing a bearing for a shaft 98 carrying a roller pair 100, 102.
  • the axis 104 of the shaft 98 is skewed relative to the axis of the bobbin carried by the gripper. This is illustrated in Fig. 4A by means of a line 106 which can be assumed to lie parallel to the bobbin axis and hence parallel to the axis of shaft 60.
  • the skew of the shaft axis 104 is sufficient to produce a net axial force on the bobbin when the latter is rotated in contact with the rollers 100, 102, the rollerassem- blies 74, 78 acting in unison to produce the required force F.
  • the gripper can be adapted to varying bobbin diameters by releasing the yoke 68 from the plates 62 and replacing it with an alternative yoke appropriate to the new bobbin diameter to be used. If required, the stop 92 can also be adjusted relative to the plates 62 in order to adapt to the new bobbin type.
  • arms 72, 76 could of course be separately mounted on the gripper body provided by the plates 62, these arms being releasably secured in positions appropriate to the bobbin type to be used.
  • Figs. 5 and 6 show a bobbin holder suitable for presenting bobbins of varying diameter to a gripper such as that shown in Fig. 4.
  • the holder comprises a main body 110 (Fig. 6, omitted from Fig. 5) having depending leg structures 112, 114, one of which is illustrated in Fig. 5.
  • the illustrated leg structure comprises an inverted L-member 116 and a retainer member 118 which is pivotally mounted to the body 110 at 120 and is resiliently biased (by means not shown) in an anti-clockwise direction relative to Fig. 5 into a normal disposition indicated in that figure.
  • the limbs of the L-member 116 are positioned relative to the retainer 118 in a manner dependent upon the external diameter of the bobbins to be used.
  • a bobbin 22Aof relative small external diameter rests on the (substantially) horizontal limb of the L-member 116 and is retained between the vertical limb and the retainer 118 with the bobbin axis 38A lying on the bobbin insertion path 56.
  • L-member 116 is moved downwardly and away from retainer plate 118 to a position such that the bobbin 22B is retained with its axis 38B also on the bobbin insertion path 56.
  • the system differs from that shown in Fig. 1 in that the bobbin holder does not define a unique position for the bobbin axis in the bobbin collection position, but this does not necessitate any adjustment of the gripper path.
  • leg structures 112, 114 engage a presented bobbin 22 adjacent respective end portions thereof. Accordingly, the gripper 30 can be passed between the leg structures 112, 114, taking up the bobbin 22 in so doing.
  • the spring bias urging retainers 118 into their normal positions must be stronger than the tension spring 90 of the gripper 30, so that the gripper first opens to receive the bobbin and the retainers then pivot away from their normal disposition (in a clockwise direction as viewed in Fig. 5) after engagement of the collected bobbin with the roller assembly 78. Feed of bobbins to the bobbin holder will be described later.
  • a traverse guide (not shown) of well-known type is provided to traverse the yarn axially of bobbin 22 to build up a package in the traverse zone T.
  • a circumferential groove 122 is provided between the traverse zone and the clamping end of the bobbin.
  • a thread reserve is used to enable knotting together of successive packages in further processing of the packaged yarn.
  • the similar groove 122 at the opposite end of the package has no function in the present instance, but is provided so that the bobbin is symmetrical about its centre line C and there is no need for specific bobbin orientation prior to insertion.
  • the auxiliary guide 50 functions as a reserve-forming guide, as will now be described.
  • a predetermined number of reserve windings can be formed in the groove.
  • Guide 50 is then pivoted in an anti-clockwise direction on its mounting 124 so as to push the yarn back towards the clamping end of the bobbin.
  • the anticlockwise movement of guide 50 is, however, terminated before the yarn reaches the bobbin end, and guide 50 is pivoted once again in the clockwise direction so that it exerts no further restraining action on the yarn Y.
  • the windings formed during these brief pivotal movements of the guide 50 over-wrap the length of yarn extending between the groove 122 and the clamping point and also the groove 122 itself.
  • the tail extending from the reserve groove back towards the clamping point will, therefore, be locked in position even after release of the eventual completed package from the cradle.
  • the bobbin insertion device is commonly associated with a package ejector.
  • the description thus far has concentrated upon bobbin insertion and has assumed that a fresh bobbin is required each time a package is ejected. This is not always the case.
  • winding will be terminated at at least one station, e.g. for maintenance purposes or for a change of yarn type to be handled or for other reasons. At this time, it may be desired to carry out a package ejecting operation without inserting a fresh bobbin.
  • the full set or equipment for operating on a wind-up means during package ejection/bobbin insertion may comprise a cradle operating means, a package ejecting means, a bobbin inserting device, and a yarn manipulating device.
  • these elements are mounted on a service tender, they will be movable relative to the tender between operative and inoperative positions, adopting their inoperative positions during running of the tender to and fro past the operating stations. Movements of the various elements to their operating positions, and their movements during the ejection/insertion operation are normally controlled by a sequence programming means.
  • a practical form of such a programming means comprises a set of cam plates 152 (Fig.
  • cam plate set functions simultaneously as a programming means and as a source of drive motion for the operating elements.
  • the latter are represented in Fig. 7 by the bobbin inserting arm 32, a package ejection lever 154, a cradle operating lever 156 and a yarn manipulating lever 158.
  • Each of the levers 154, 156 and 158 is pivotally mounted at one end in the tender structure (not shown) and its movements on its pivot mounting are controlled and effected by the set of cams 152.
  • Fig. 7 again shows the L-member 116 and retainer 118, but the body 110 has been modified in relation to the simple version shown in Fig. 6.
  • Body 110 now includes side plates 111 which extend downwardly to or below the bobbin collection position. One side plate is assumed to be removed in the illustration of Fig. 7, so that the bobbin holder is visible.
  • Each leg structure 112, 114 (Fig. 6) is now secured to a respective side plate 111.
  • this is effected for the L-member by means of lugs 117 on the L-member and securing holes in the respective side plate.
  • the appropriate securing holes are selected from an array of such holes 119 in dependence upon the required position of the L-member relative to the retainer 118, the pivot 120 of which is fixed to the same side plate.
  • the L-member can be released from its current securing holes and shifted to newly selected holes or replaced by a different size L-member held at newly selected holes.
  • a bobbin magazine in the form of an inclined plane 160 carrying a rowofcyl- indrical bobbins 22.
  • a wall 162 extends downwardly from plane 160 to pivot mounting 120.
  • Wall 162 is fixed relative to the side plates 111 and forms the front of a feed chute directing bobbins from the plane 160 towards the holder.
  • the back of the chute is provided by a wall 163 releasably secured to the plates 111 (for example, as described for L-member 116) and adjustable to adjust the size of the feed chute in dependence upon bobbin size.
  • An upward extension of wall 163 forms a stop for the row of bobbins on plane 160.
  • a selector gate comprising a U-shaped body 164 pivotally mounted at 166, so that either the one or the other arm of the U projects into the chute.
  • Body 164 is biased by means not shown in a clockwise direction (as viewed in Fig. 7) on its mounting 166, so that the lower arm of the U projects into the chute and retains a column of bobbins above itself.
  • the selector 164 is pivoted anti-clockwise (as viewed in Fig. 7) against the bias, the lower arm of the U is retracted so that the lowermost bobbin of the column is released and is permitted to pass into the holder 110.
  • the upper arm of the U is, however, inserted between the released bobbin and the next bobbin in the column, sothatthe remainderofthe column is retained.
  • the selector is permitted to return to its normal (illustrated) position, the column is permitted to fall onto the lower arm of the U, so that the system is ready for a repeat operation.
  • Pivotal movement of body 164 on mounting 166 is effected by any suitable drive means (not shown) controlled by an electronic programmable controller PC.
  • This controller PC also controls the drive for the set of cams 152.
  • Controller PC initiates operation of the cam set both during a normal ejection/insertion operation and during a termination operation.
  • controller PC only operates the selector gate to feed a bobbin to holder 110 if PC receives an input signal during a doffing operation indicating normal ejection/ insertion. If a termination operation is signalled, the selector gate is not operated and holder 110 remains empty. This has the additional advantage that holder 110 remains empty during each return swing of the arm 32, so that gripper 30 can pass freely between leg structures 112, 114 on each return swing.
  • the detectors 168 and 170 respectively are provided to sense the "level of fill" of the magazine. Detectors 168, 170 are desirably light barriers adapted to beam across the row of bobbins, but any other detectors sensitive to the presence of bobbins can be substituted.
  • the detector 168 is associated with the gate means. In operation, the gate can be maintained full in readiness for a feeding operation. If detector 168 senses that no bobbin is received by the member 164 when pivoted to its normal position, the detector sends a signal to controller PC which thereupon blocks further ejection/insertion operations and causes the service tender to travel to a loading position (not shown) at which further bobbins can be loaded into the magazine.
  • Detector 170 functions similarly to detect the "full" condition of the magazine, controller PC duly responding to terminate the loading operation. Signals from the controller to the loading station can be transmitted via a cable connecting the tender to the machine, and thus to the loading station.
  • Figs. 8A and 8B illustrate the principles involved in two methods for enabling such adaptation.
  • Fig. 8A illustrates the mounting 24 (see also Fig. 1) by means of which the package cradle is secured in the machine structure.
  • Numeral 172 indicates the swing axis about which the cradle pivots to produce the arc of movement 40 shown in Fig. 1.
  • Axis 172 is illustrated horizontal, parallel to a horizontally disposed friction drive roller 10 (see Fig. 1, not shown in Fig. 8A).
  • this axis 172 is assumed to be maintained horizontal even for production of conical packages.
  • the cradle itself is, however, pivoted relative to the mounting 24 about a pivot 174 so that the axis 19 (see also Fig. 2) which joins the bobbin clamping plates 18 and 20, is inclined at an angle a to the axis 172.
  • Angle a is half the cone angle of the conical package/conical bobbin, enabling the conical bobbin to engage the horizontal friction roller along the full length of the bobbin.
  • This is the adjustment principle used, e.g. in the system shown in German Patent Specification No. 653 759.
  • the line H represents a horizontal corresponding with the axis 172 forwinding of cylindrical packages.
  • the mounting 24 is tilted to an angle a relative to this horizontal H, the axes 19 and 172 remaining parallel.
  • the adjustment is assumed to occur by pivoting of mounting 24 about a pivot mounting 176 intersected by the axis 172. This is not necessary.
  • the mounting 24 (and with it the cradle) can be pivoted about a pivot mounting displaced from the axis 172-the said specification proposes a horizontal axis tangential to the friction drive roll.
  • German patent Specification 653 759 and British Patent Specification 1 344 226 are hereby incorporated in the present specification by reference.
  • the service tender can be correspondingly adapted. This will be illustrated by reference to Fig. 9 showing the organisation of a multi-purpose service tender for use with a rotor spinning machine.
  • the rotor spinning machines (not shown) are of the type shown, for example, in US Patent Specification 3 375 649.
  • Each spinning station comprises a spinning unit, a yarn forwarding section for withdrawing yarn from the spinning unit and a wind-up section for forming the withdrawn yarn into a package.
  • the wind-up section is located above the spinning unit.
  • the tender has a main framework 178, horizontally divided at line 177 into an upper suspension/dri- ve section above line 177 and a depending section which contains the operating elements.
  • Section 177 runs on a rail (not shown) to move the depending section past the spinning stations.
  • the framework is vertically divided by bulkheads 179 into three portions.
  • the operating elements are contained in the central portion, drives therefor are provided in one of the side portions and other "utilities" (e.g. suction systems, electronic controls) are provided in the other side portion.
  • the tender is assumed to be of the multipurpose type designed to perform both piecing and doffing functions on the spinning stations. At least some of the function elements designed to operate on the wind-up sections of the stations are carried by sub- frame 180, function elements designed to operate between the wind-up sections and the spinning units are carried by a subframe 181 and function elements designed to cooperate directly with the spinning units are carried by a sub-frame 183.
  • Sub-frame 180 is pivotable in the main framework and is located in the full-line position for winding of cylindrical packages.
  • the sub-framework is tilted about an axis 182 into the dotted line position 180A.
  • the axis 182 is coaxial with the pivot axis of the pivot mounting at which the wind-up section of the operating station is adjusted to enable it to wind conical packages.
  • axis 182 is co-axial with the pivot axis of mounting 174, in the case of Fig. 8B with the pivot axis of mounting 176, and in the case of the system shown in British Patent Specification No. 1 344 226, axis 182 is co-axial with the horizontal adjustment axis tangential to the friction drive roll.
  • the angle through which sub-frame 180 is adjusted corresponds, of course, to the angle a shown in Fig. 8. Details of the mounting system enabling pivoting of the sub-frame 180 have not been shown in Fig. 9; many suitable systems will occur to machine designers, and need not be explained in detail here.
  • the sub-frame 180 carries those operating elements of the service tender which co-operate with the adjustable wind-up section of the machine; and which must be adjusted in order to deal with conical bobbins and packages.
  • the service tender is of the multi-purpose type, being designed to perform both yarn piecing and package doffing operations
  • sub-frame 180 may also carry operating elements used in the piecing operation; e.g. a package rotating roller carried by the tender and extendable therefrom into contact with the package to) rotate the latter in the reverse direction to provide a "seed" yarn for piecing in an open end spinning machine.
  • Acomplete package ejection/bobbin insertion sequence, and a complete set of equipment appropriate thereto, will vary substantially depending upon both the machine type and the detailed design thereof. Purely by way of example, for the sake of completeness of the present specification, a complete set of equipment suitable for operating upon a specific design of open end spinning machine will be listed and very briefly described in the following.
  • the open end spinning machine is of the type in which package winding is stopped when the package has reached a predetermined length, and the cradle mechanism is operated to lift the fully-wound package through a short distance away from the friction drive roll 10. In this "lifted-off position", the package awaits the arrival of the service tender.
  • the tender After being located in registry with the spinning station, the tender first operates a "cradle lift” lever which engages the arm 16 of the cradle mechanism and lifts it to its uppermost position. As already described, the cradle will be maintained in this position by the cradle mechanism of the machine. The tender then moves out a “doffing lever” which engages the underside of the package to support it. Further, the tender moves out an "upper cradle opener” which opens the cradle as described with reference to Fig. 2 in order to release the package, which is thereupon moved away from the cradle mechanism by the doff lever to a position at which the package is taken over by transport means on the machine.
  • the doff lever is then withdraw in and the bobbin insertion arm is operated to bring a bobbin to the transfer location as described with reference to Figs. 1 and 3.
  • the uppercra- die opener is then operated to close the cradle; this opener also exerts a grip on the lever 16 and, after closing of the cradle, forces the cradle downwardly, initially against the action of the cradle mechanism.
  • the upper cradle opener releases its grip on the cradle, and control of lowering of the cradle to the winding position is taken over by the cradle lift lever.
  • the expressions "cradle” and “cradle mechanism” as used in both the description and claims are not limited to a package holding device comprising a pair of arms.
  • Alternative systems are known.
  • the bobbin is held upon a "chuck" member carried by a single arm swingable to produce the arc of movement 40 shown in Fig. 1.
  • the chuck is mounted cantilever fashion on the arm, for example as shown in US Specification 3491 961.
  • the package/bobbin is held by clamping pressure applied to its ends; any convenient means may be used for this purpose.
  • the terms “bobbin” and “bobbin tube” used herein are intended to be synonymous.
  • the term “doffing” as used herein refers to an operating sequence including both package ejection and fresh bobbin insertion.
  • Fig. 10 shows further detail of the tender shown in Fig. 10.
  • the axis 182 about which the sub-frame 180 can be pivoted to adapt the tender is provided by a sub- frame mounting (not shown).
  • the mounting is provided between subframe 180 and a cross piece 232 extending between and secured to the bulkheads 179.
  • Cross piece 232 has a pair of curved slots 234 through which bolts can be extended to co-operate with portions of the subframe 180 in order to secure the sub-frame relative to the cross piece.
  • a second cross piece 236 extends between bulkheads 179 ad- jacentthe upper end of sub-frame 180 and is provided with a second pair of curved slots 238 for the same purpose as the slots 234.
  • subframe 180 When the securing bolts are released, subframe 180 can be pivoted about axis 182 with bolts moving in a corresponding manner along their respective curved slots 234 or 238. When the sub-frame 180 is in the desired position, the bolts can be re-tightened in order to hold the sub-frame relative to the cross pieces 232 and 236.
  • the parts to be carried by the sub-frame 180 in a practical service tender will depend substantially upon the purpose for which said tender is designed, and in particular upon the machine with which the tender is to operate.
  • a complete set of equipment suitable for performing a particular type of doffing operation was described above.
  • Each of the elements referred to in that description i.e. the cradle lift lever, the doffing lever, the upper cradle opener, the bobbin inserting arm and the lower cradle opener
  • the doff lever is preferably in the form of a "shovel" having a plate-like member adapted to engage the underside of a package to be doffed (i.e. the side facing the friction drive roller 10 shown in Fig. 1) along a substantial portion of the axial length of the package.
  • This shovel member must maintain a substantially horizontal disposition despite tilting of the sub-frame 180 in order to adapt the tender for use with conical packages. This is because even a conical package remains in contact with a horizontally disposed friction drive roll.
  • the doff lever may be mounted on sub-frame 180 for rotation thereon about its own longitudinal axis, so that the doff lever can be pivoted back to its required horizontal disposition despite tilting of the sub-frame.
  • the doff lever could be mounted separately upon the frame of the tender so that it does not tilt with the sub-frame 180.

Landscapes

  • Spinning Or Twisting Of Yarns (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)

Claims (5)

1. Chariot de service pour une machine de maniement de fil comportant une pluralité de postes de travail comprenant chacune un appareil de renvidage de fil comprenant un rouleau d'entraînement par friction (10) et un moyen porteur en étrier (12) permettant de maintenir en contact avec le rouleau d'entraînement par friction (10) un fuseau de bobine/bobine de fil pendant la formation d'une bobine de fil sur le fuseau de bobine, et ayant au moins un poste de travail où le mécanisme porteur en étrier peut être réglé par rapport au rouleau d'entraînement par friction (10) afin de permettre le renvidage soit en bobine cylindrique ou en bobine conique, le chariot de service ayant au moins un élément (32) adapté pour réaliser une opération sur le mécanisme porteur en étrier ou une pièce associée à celui-ci dans l'utilisation, caractérisé par le fait que ledit élément est porté par un membre (180) monté dans le chariot de telle sorte à être ajustable par rapport à celui-ci, entre une première position permettant à l'élément (3) de travailler sur les postes produisant des bobines cylindriques et une deuxième position pe- mettant à l'élément de travailler sur les postes produisant des bobines coniques et qui peut être arrêté dans la position voulue par rapport au chariot de service.
2. Chariot selon revendication 1, dans lequel le chariot possédé un chassis principal (178) et un chassis subalterne (180), et où ledit élément (32) est monté sur le chassis subalterne (180) qui est ajustable par rapport au chassis principal (178) afin de permettre ledit ajustement de l'élément (32).
3. Chariot selon revendication 2, dans lequel le chassis subalterne (180) porte une pluralité d'éléments adaptés pour réaliser les fonctions de service respectives dans une station.
4. Chariot selon revendication 2 ou 3, dans lequel le chassis subalterne (180) est monté dans le chassis principal (178) de sorte à être ajustable en pivotement par rapport à celui-ci, autour d'un axe de pivotement prédéterminé.
5. Machine de traitement de fil comprenant un chariot de servitude comme énoncé dans la revendication 4, et où au moins une partie du mécanisme porteur en étrier (12) dans au moins une station peut être pivotée autour d'un axe prédéterminé pour permettre ledit ajustement pour le renvidage sélectif soit en bobines coniques ou en bobines cylindriques, l'axe de pivotement du mécanisme porteur en étrier (12) et l'axe de pivotement du chassis subalterne (180) étant substantiellement co-axiaux lorsque le chariot est localisé en concordance avec ladite station.
EP86107107A 1983-05-20 1984-05-04 Dispositif de mise en place de support de bobines Expired - Lifetime EP0198517B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86107107T ATE57888T1 (de) 1983-05-20 1984-05-04 Spulenhuelsen-einlegevorrichtung.

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB8313994 1983-05-20
GB08313994A GB2140046B (en) 1983-05-20 1983-05-20 Bobbin inserting device
GB838333471A GB8333471D0 (en) 1983-12-15 1983-12-15 Spinning machine tenders
GB8333471 1983-12-15
EP84105036A EP0126352B1 (fr) 1983-05-20 1984-05-04 Disposition de mise en place de support de bobines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP84105036.2 Division 1984-05-04

Publications (4)

Publication Number Publication Date
EP0198517A2 EP0198517A2 (fr) 1986-10-22
EP0198517A3 EP0198517A3 (en) 1988-05-11
EP0198517B1 EP0198517B1 (fr) 1990-10-31
EP0198517B2 true EP0198517B2 (fr) 1994-05-04

Family

ID=27226829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107107A Expired - Lifetime EP0198517B2 (fr) 1983-05-20 1984-05-04 Dispositif de mise en place de support de bobines

Country Status (3)

Country Link
EP (1) EP0198517B2 (fr)
AT (1) ATE36142T1 (fr)
DE (1) DE3473138D1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890799A (en) * 1987-06-06 1990-01-02 W. Schlafhorst & Co. Apparatus for removing a tube from a tube magazine and for transferring the tube to the creel of a winding station
DE3726508C2 (de) * 1987-06-06 1996-02-22 Schlafhorst & Co W Vorrichtung zum Entnehmen einer Hülse aus einem Hülsenmagazin und zum Übergeben der Hülse an den Spulenrahmen einer Spulstelle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH199753A (de) * 1937-11-30 1938-09-15 Schweiter Ag Maschf Hülsenmagazin für Kötzerspulmaschinen mit selbsttätigem Spulenwechsel.
CH223527A (de) * 1940-11-13 1942-09-30 Halstenbach & Co Spulenwechseleinrichtung an einer spindellosen Spulmaschine.
DE2037826A1 (de) * 1970-07-30 1972-04-06 Barmag Barmer Maschinenfabrik Ag, 5600 Wuppertal Vorrichtung zum selbsttätigen Beschicken von Spulenhaltern, insbesondere an Textilmaschinen
GB1411362A (en) * 1974-01-17 1975-10-22 Toyoda Automatic Loom Works Empty bobin supply device
DE2816418C2 (de) * 1978-04-15 1985-03-28 Fritz 7347 Bad Überkingen Stahlecker Offenend-Spinnmaschine mit einer Spulenwechseleinrichtung

Also Published As

Publication number Publication date
EP0198517A3 (en) 1988-05-11
DE3473138D1 (en) 1988-09-08
EP0198517A2 (fr) 1986-10-22
ATE36142T1 (de) 1988-08-15
EP0198517B1 (fr) 1990-10-31

Similar Documents

Publication Publication Date Title
US4598881A (en) Bobbin inserting device
US4340187A (en) Bobbin changing apparatus
EP0205958B1 (fr) Dispositif de guidage de fil
US4555215A (en) Spool transporting device
US3295775A (en) Method and apparatus for readying the winding operation of yarn supply coils on coil winding machines
US4781334A (en) Method and apparatus for increasing the winding speed of an automatic winding machine
US4899531A (en) Method and apparatus for automatic exchange of roving bobbins of a ring spinning machine
JPH0376829A (ja) オープンエンド紡績装置において糸継ぎを行う方法および装置
US5778651A (en) Method of, and device for, spinning-in yarn on an open-end spinning machine
US6189826B1 (en) Apparatus and method for guiding and cutting a continuously advancing yarn during a winding process
JPS609926A (ja) 繊維機械における糸継装置
US4132056A (en) Open end spinning apparatus
CZ299303B6 (cs) Servisní agregát pro textilní stroj vyrábející krížem vinuté cívky
GB2179066A (en) Forming overwrapped thread reserves on bobbins
EP0198517B2 (fr) Dispositif de mise en place de support de bobines
US4595151A (en) Bobbin inserting device
US20020023422A1 (en) Open-end spinning device and process for temporary receiving of a yarn by means of such an open end spinning device
EP0329202B1 (fr) Dispositif de mise en place de support de bobines
EP0330245B1 (fr) Dispositif de mise en place de supports de bobines
CZ281430B6 (cs) Způsob a zařízení k navíjení nitě na kuželovou cívku u dopřádacích strojů s otevřeným koncem
US6315236B1 (en) Apparatus and method for guiding and cutting an advancing yarn during a package doff
GB2179064A (en) Bobbin doffing device
GB2179376A (en) Bobbin inserting device
GB2179065A (en) Bobbin donning
US4693070A (en) Thread joining apparatus for an open end spinning machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 126352

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR IT LI NL

17P Request for examination filed

Effective date: 19870327

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: B65H 67/04

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR IT LI NL

17Q First examination report despatched

Effective date: 19881025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 126352

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR IT LI NL

REF Corresponds to:

Ref document number: 57888

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3483534

Country of ref document: DE

Date of ref document: 19901206

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910531

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910715

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910722

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910724

Year of fee payment: 8

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: W. SCHLAFHORST & CO.

Effective date: 19910726

NLR1 Nl: opposition has been filed with the epo

Opponent name: W. SCHLAFHORST & CO.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920531

Ref country code: CH

Effective date: 19920531

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: MASCHINENFABRIK RIETER A.G.

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

ITTA It: last paid annual fee
ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940504

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR IT LI NL

EN3 Fr: translation not filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970510

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302