EP0194524B1 - Winding method - Google Patents

Winding method Download PDF

Info

Publication number
EP0194524B1
EP0194524B1 EP86102619A EP86102619A EP0194524B1 EP 0194524 B1 EP0194524 B1 EP 0194524B1 EP 86102619 A EP86102619 A EP 86102619A EP 86102619 A EP86102619 A EP 86102619A EP 0194524 B1 EP0194524 B1 EP 0194524B1
Authority
EP
European Patent Office
Prior art keywords
winding
modulation
speed
process according
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86102619A
Other languages
German (de)
French (fr)
Other versions
EP0194524A2 (en
EP0194524A3 (en
Inventor
Siegmar Dipl.-Ing. Gerhartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG filed Critical Barmag AG
Publication of EP0194524A2 publication Critical patent/EP0194524A2/en
Publication of EP0194524A3 publication Critical patent/EP0194524A3/en
Application granted granted Critical
Publication of EP0194524B1 publication Critical patent/EP0194524B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/381Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
    • B65H54/383Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft in a stepped precision winding apparatus, i.e. with a constant wind ratio in each step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/42Arrangements for rotating packages in which the package, core, or former is rotated by frictional contact of its periphery with a driving surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a winding process for threads, in particular chemical threads in spinning and stretching machines.
  • Chemical threads are threads made of thermoplastic materials.
  • the industry uses in particular polyester (polyethylene terephthalate) and polyamide (nylon 6, nylon 6.6).
  • Chemical threads consist of a large number of individual capillaries and are therefore referred to as multifilaments.
  • Such multifilament chemical threads offer the problem of mirror formation when spooling if they are spooled in a wild winding.
  • the coils are formed at a constant coil circumferential speed and at a constant traversing speed.
  • the result of this is that the winding ratio - that is the ratio of the speed of the winding spindle to the double stroke number of the traversing (ns / DH) - decreases steadily over the course of the winding cycle, since the speed of the winding spindle! decreases with increasing coil diameter.
  • Mirrors are created when the winding ratio becomes an integer or takes values. that differ by a large fraction from the next integer winding ratio.
  • a "large fraction” is a fraction whose denominator is a small whole number (integer), e.g. 1/2, 1/3, 1/4.
  • DE-OS 2 319 282 discloses a method for disturbing the mirror, in which a change with a low frequency and also a change with a high frequency are superimposed on the setpoint value of the traversing speed. This is to avoid the formation of mirrors.
  • the coil is built up at a traversing speed that is directly proportional to the speed of the winding spindle.
  • the winding ratio - that is the ratio of the speed of the winding spindle to the double stroke rate of the traversing speed - is fixed and remains constant during the winding cycle, while the traversing speed decreases proportionally to the spindle speed with the winding ratio as a proportionality factor.
  • a coil built in precision winding can have advantages over a coil built in wild winding. In particular, mirror formation can be avoided in the case of a precision winding by specifying the winding ratio.
  • the so-called graduated precision winding differs from the precision winding in that the winding ratio remains constant only during predetermined phases of the winding cycle. From phase to phase, the winding ratio in jumps is reduced by suddenly increasing the traversing speed.
  • the object of the invention is to make the step precision winding method a suitable method for producing high-quality coils with a large diameter, even if the technical accuracy of the electronic, electrical and mechanical devices does not allow the spool ratios to be kept exactly as before have been determined and programmed as optimal.
  • the solution according to the invention is characterized in that an inaccuracy of the winding ratio is deliberately brought about.
  • the invention makes use of the knowledge that the unintentional inaccuracy is constant and always has the same phase direction to the exact value, so that the defects in the thread deposit caused by the inaccuracy of the winding ratio are constant in terms of size and phase direction.
  • the drive of the traversing device is e.g. run faster than specified by the program. However, it will not fluctuate at times faster and at times slower than specified by the program.
  • the inaccuracy, which is intended according to the invention but fluctuates deliberately causes defects in the thread deposit, which however also fluctuate in size and phase direction. This not only eliminates the consequences of these defects, but also completely eliminates the defects in the thread deposit.
  • the modulation of the winding ratio proposed according to the invention has a modulation width A which is so small that the traversing speed does not change by more than ⁇ 0.5% of the calculated and programmed value of the traversing speed.
  • the modulation width of the winding ratio is generally less than 0.1%, but preferably less than 1 per mille and generally also less than 0.5 per mille. It has been found that the modulation width, based on the winding ratio, is substantially equal to the modulation width, based on the traversing speed.
  • K is the winding ratio KM is the average winding ratio during the phase of a precision winding KO
  • the upper limit of the winding ratio KU is the lower limit of the winding ratio.
  • Modulation widths of more than 0.5% must be avoided in any case, since otherwise it is no longer guaranteed that critical winding conditions will not be run through.
  • Critical winding ratios are those in which the mirror symptoms described above occur.
  • the modulation is preferably fluctuating periodically.
  • the frequency of the fluctuations must be greater than 5 per minute, preferably greater than 10 per minute.
  • Experience has shown that at frequencies of the fluctuation of more than 30 per minute, all winding errors which have been described above can be eliminated.
  • the modulation can be limited to those sections of the winding cycle in which experience has shown that problems with winding, in particular bead formation, occur. However, the modulation can also take place as a function of disturbances which appear on the take-up device. It should be pointed out here that bead formation leads to vibrations of the winding device and also to noise. As soon as such disturbances in the take-up device are detected, these disturbances can be detected by sensors and the output signal of the sensors can be used to switch on the modulation. In a further embodiment of the invention it is provided that a constant scanning, preferably optical or pneumatic scanning of the coil surface takes place and that the modulation is switched on when bulges appear on the coil surface.
  • the winding machine is first described with reference to FIG. 3.
  • the thread 1 runs at the constant speed v through the traversing thread guide 3, which is set in a reciprocating movement transversely to the running direction of the thread by the reverse thread shaft 2.
  • the traversing device includes the grooved roller 4, in the endless, back and forth groove of which the thread is guided with a partial wrap. 7 with the coil and 6 with the freely rotatable winding spindle (spindle) is designated.
  • the driving roller and traverse on the one hand and the winding spindle and the spool on the other hand are radially movable relative to one another, so that the center distance between the spindle 6 and the driving roller 8 can be changed as the diameter of the spool increases.
  • the reverse thread roller 2 and the grooved roller 4 are driven by a three-phase motor, for example an asynchronous motor 9.
  • the reverse thread roller 2 and Grooved roller 4 are connected to one another in a geared manner, for example by drive belts 10.
  • the drive roller 8 is driven by a synchronous motor 11 at a constant peripheral speed.
  • a motor can also be used to drive the bobbin, which drives the bobbin spindle 6 directly and whose speed is controlled so that the peripheral speed. the coil remains constant even with increasing coil diameter.
  • the three-phase motors 9 and 11 receive their energy from frequency converters 12 and 13.
  • the synchronous motor 11, which serves as a coil drive, is connected to the frequency converter 12, which supplies the adjustable frequency f2.
  • the asynchronous motor 9 is operated by frequency converter 12, which is connected to a computer 15.
  • the output signal 20 of the computer 15 depends on the input.
  • the current traversing speed or double stroke number is also advantageously sensed by sensor 17 and input to the computer by sensor 17.
  • the computer 15 carries out a target / actual value comparison and regulates the traversing speed of the traversing devices driven by the asynchronous motor 9 to the target value.
  • the setpoint value of the traversing speed is the value which results from the rotational speed of the winding spindle 6, currently measured by measuring sensor 18, divided by the winding ratio, which is pre-calculated for the respective winding phase and entered into the computer 15 by the program unit 19.
  • the main task of the computer 15 is to carry out this setpoint determination of the traversing speed.
  • the computer first receives from the program memory or program generator 19 the pre-calculated winding conditions which are ideal and stored in the sense of the invention. From each of these ideal winding conditions and from the initial value, e.g. The computer calculates an "ideal" spindle speed based on the upper limit value (OGC) of the traversing speed. However, the programmer can also be entered the spindle speeds previously calculated from the "ideal" winding conditions, taking into account the initial value of the traversing speed, so that this computing operation does not have to be carried out by the computer. In any case, the values of the "ideal" spindle speeds are compared with the current spindle speeds determined by the sensor 18.
  • GOC upper limit value
  • the computer determines the identity of the spindle speeds, it outputs the output value 20 of the traversing speed, which is also predetermined by the programmer 19, as the setpoint to the frequency converter 13.
  • the computer reduces this setpoint value of the traversing speed in proportion to the constantly measured spindle speed, which decreases hyperbolically with increasing coil diameter and constant coil peripheral speed.
  • the predetermined "ideal" winding ratio thus remains constant during this stage of the precision winding.
  • the output value of the traversing speed is again specified as the setpoint as output signal 20.
  • a new level of precision winding follows.
  • a specific ideal winding ratio K is constantly specified and programmed in each phase P of the winding cycle or the diameter structure.
  • a constant winding ratio K during a winding phase P means that the traversing speed decreases in proportion to the spindle speed.
  • the upper limit of the traversing speed is a constant value which is continuously reset in the course of the winding cycle. It is always set when this variable assumes a pre-calculated, ideal value in relation to the current spindle speed.
  • the lower limit value of the traversing speed is only a mathematical quantity that indicates the greatest permissible drop in the traversing speed, which, however, is rarely or never achieved in reality and only plays a role in the calculation of the upper limit value. It should be noted that the process can also be controlled in reverse.
  • the lower limit value of the traversing speed can be specified as a real limit value that is repeatedly approached.
  • the upper limit indicates the largest permissible jump in the traversing speed upwards. However, in reality it only becomes exceptional If the upper limit value happens to have an ideal predicted value in relation to the current spindle speed.
  • the thread tension may only fluctuate within certain limits, so that the range between the limit values of the traversing speed OGC and UGC is very narrow.
  • This also means that two winding ratios K1 and K2 of the two successive winding phases P1 and P2 must be relatively close together. Nevertheless, the successive winding conditions must be selected so that there is no risk of mirror formation.
  • the number of favorable winding ratios available for selection is relatively limited and it cannot be avoided that a favorable winding ratio for K1 is very close to another unfavorable winding ratio which leads to bead formation. So it was e.g. required to select a winding ratio of 4.08631 for K1, which results in a good winding build-up if exactly adhered to.
  • the first-mentioned winding ratio 4.08631 was again set without increasing the accuracy requirements for the measurement data acquisition and the adjustment and control of the traversing speed, and this setpoint was also modulated in a theoretical sine line.
  • the associated setpoint of the traversing speed was changed sinusoidally by ⁇ 0.005% at a modulation frequency of 20 per minute.
  • 1A shows the sinusoidal modulation of the winding ratio with the modulation amplitude (modulation width) A and a certain modulation frequency.
  • a program for sinusoidal modulation of the traversing speed is further input to the program unit 19.
  • This program can be a constant or variable, e.g. Provide increasing modulation amplitude (modulation width) during the winding cycle.
  • the modulation range according to this invention is in any case less than 0.5%, preferably less than 0.1%. It should be emphasized that the modulation amplitude should be chosen as narrow as possible, since this has improved the quality of the coil. It must be taken into account how close the spool ratios must be to each other in order to avoid impermissible thread tension changes, but still maintain a good spool build-up. The smaller the difference between the spool ratios, the smaller the modulation width. In general, the modulation width with which the traversing speed is changed is less than 1 per mille.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Description

Die Erfindung betrifft ein Aufwickelverfahren für Fäden, insbesondere Chemiefäden in Spinn-und Streckmaschinen. Chemiefäden sind Fäden aus thermoplastischen Materialien. Die Industrie benutzt insbesondere Polyester (Polyäthylenterephthalat) und Polyamide (Nylon 6, Nylon 6.6). Chemiefäden bestehen aus einer Vielzahl von Einzelkapillaren und werden daher als multifil bezeichnet.The invention relates to a winding process for threads, in particular chemical threads in spinning and stretching machines. Chemical threads are threads made of thermoplastic materials. The industry uses in particular polyester (polyethylene terephthalate) and polyamide (nylon 6, nylon 6.6). Chemical threads consist of a large number of individual capillaries and are therefore referred to as multifilaments.

Derartige multifile Chemiefäden bieten beim Aufspulen das Problem der Spiegelbildung, wenn sie in wilder Wicklung aufgespult werden.Such multifilament chemical threads offer the problem of mirror formation when spooling if they are spooled in a wild winding.

Bei der wilden Wicklung erfolgt die Bildung der Spulen bei konstanter Spulenumfangsgeschwindigkeit und bei konstanter Changiergeschwindigkeit. Daraus ergibt sich, daß das Spulverhältnis - das ist das Verhältnis der Drehzahl der Spulspindel zu der Doppelhubzahl der Changierung (ns/DH) - im Verlauf der Spulreise stetig abnimmt, da auch die Drehzahl der Spulspinde! mit wachsendem Spulendurchmesser abnimmt. Dabei entstehen Spiegel, wenn das Spulverhältnis ganzzahlig wird oder Werte annimmt. die sich um einen großen Bruch vom nächsten ganzzahligen Spulverhältnis unterscheiden. Als "großer Bruch" wird dabei ein Bruch bezeichnet, dessen Nenner eine kleine ganze Zahl (Integer) ist, also z.B. 1/2, 1/3, 1/4.In the case of the wild winding, the coils are formed at a constant coil circumferential speed and at a constant traversing speed. The result of this is that the winding ratio - that is the ratio of the speed of the winding spindle to the double stroke number of the traversing (ns / DH) - decreases steadily over the course of the winding cycle, since the speed of the winding spindle! decreases with increasing coil diameter. Mirrors are created when the winding ratio becomes an integer or takes values. that differ by a large fraction from the next integer winding ratio. A "large fraction" is a fraction whose denominator is a small whole number (integer), e.g. 1/2, 1/3, 1/4.

Durch die DE-OS 2 319 282 ist ein Verfahren zur Spiegeistörung bekannt, bei welchem dem Sollwert der Changiergeschwindigkeit eine Veränderung mit niedriger Frequenz und ferner eine Veränderung mit hoher Frequenz überlagert wird. Hierdurch soll die Bildung von Spiegeln vermieden werden.DE-OS 2 319 282 discloses a method for disturbing the mirror, in which a change with a low frequency and also a change with a high frequency are superimposed on the setpoint value of the traversing speed. This is to avoid the formation of mirrors.

Bei einer Präzisionswicklung erfolgt der Spulenaufbau mit einer Changiergeschwindigkeit, die der Drehzahl der Spulspindel direkt proportional ist. Das bedeutet, daß bei einer Präzisionswicklung das Spulverhältnis - das ist das Verhältnis der Drehzahl der Spulspindel zu der Doppelhubzahl der Changiergeschwindigkeit - fest vorgegeben wird und im Laufe der Spulreise konstant bleibt, während die Changiergeschwindigkeit proportional zur Spindeldrehzahl mit dem Spulverhältnis als Proportionalitätsfaktor abnimmt. Eine in Präzisionswicklung aufgebaute Spule kann gegenüber einer in wilder Wicklung aufgebauten Spule Vorteile haben. Insbesondere läßt sich bei einer Präzisionswicklung durch Vorgabe des Spulverhältnisses die Spiegelbildung vermeiden.In the case of a precision winding, the coil is built up at a traversing speed that is directly proportional to the speed of the winding spindle. This means that with a precision winding the winding ratio - that is the ratio of the speed of the winding spindle to the double stroke rate of the traversing speed - is fixed and remains constant during the winding cycle, while the traversing speed decreases proportionally to the spindle speed with the winding ratio as a proportionality factor. A coil built in precision winding can have advantages over a coil built in wild winding. In particular, mirror formation can be avoided in the case of a precision winding by specifying the winding ratio.

Die sog. gestufte Präzisionswicklung unterscheidet sich von der Präzisionswicklung dadurch, daß das Spulverhältnis nur während vorgegebener Phasen der Spulreise konstant bleibt. Von Phase zu Phase wird das Spulverhältnis in Sprüngen durch sprunghafte Erhöhung der Changiergeschwindigkeit vermindert.The so-called graduated precision winding differs from the precision winding in that the winding ratio remains constant only during predetermined phases of the winding cycle. From phase to phase, the winding ratio in jumps is reduced by suddenly increasing the traversing speed.

Das bedeutet, daß bei der gestuften Präzisionswicklung innerhalb jeder Phase bzw. Stufe eine Präzisionswicklung erfolgt, bei der die Changiergeschwindigkeit proportional mit der Spindeldrehzahl abnimmt. Nach jeder Phase wird die Changiergeschwindigkeit wieder sprunghaft erhöht, so daß sich ein erniedrigtes Spulverhältnis ergibt. Dabei müssen die Spulverhältnisse, die während der einzelnen Phasen eingehalten werden sollen, vorausberechnet und einprogrammiert werden.This means that with the stepped precision winding, a precision winding takes place within each phase or step, in which the traversing speed decreases proportionally with the spindle speed. After each phase, the traversing speed is increased again suddenly, so that there is a reduced winding ratio. The winding conditions that are to be maintained during the individual phases must be calculated in advance and programmed.

Bei dem durch die DE-AS 26 49 780 bekannten Spulverfahren mit Stufenpräzisionswicklung werden innerhalb einer Spulreise nur wenige Spulverhältnisse als ganzzahlige Verhältnisse vorgegeben und durch Eingabe des Fadenabstandes von einem Rechner eingestellt. Das ist nur möglich, weil gleichzeitig eine Regelung der Fadenzugkraft erfolgt. Wo das nicht der Fall ist, dürfen die Änderungen der Changiergeschwindigkeit jedoch nur so klein gewählt werden, daß die Fadenzugkraft innerhalb bestimmter Grenzen bleibt.In the winding method with step-precision winding known from DE-AS 26 49 780, only a few winding ratios are specified as integer ratios within a winding trip and are set by a computer by entering the thread spacing. This is only possible because the thread tension is regulated at the same time. Where this is not the case, however, the changes in the traversing speed may only be chosen so small that the thread tension remains within certain limits.

Ein solches Verfahren ist durch die EP-A 0 055 849 bekannt. Dabei wird für die Changiergeschwindigkeit ein oberer Grenzwert und ein unter Grenzwert vorgegeben, und es werden nur Änderungen der Changiergeschwindigkeit zwischen diesen Grenzwerten zugelassen. Dabei ist der Bereich zwischen diesen Grenzwerten so eng gewählt, daß die Änderung der Changiergeschwindigkeit nicht zu unzulässigen Fadenspannungsänderungen führt. Gleichwohl muß vermieden werden, daß Spulverhältnisse mit Spiegelsymptomen eingestellt werden. Die Vorausberechnung der nacheinander einzustellenden Spulverhältnisse hat daher mit großer Sorgfalt und Genauigkeit zu erfolgen, und es sind in Zweifelsfällen auch Versuche darüber durchzuführen, ob ein vorausberechnetes Spulverhältnis in der Praxis tatsächlich nicht zu Spielgelsymtomen führt.Such a method is known from EP-A 0 055 849. An upper limit value and a lower limit value are specified for the traversing speed, and only changes in the traversing speed between these limit values are permitted. The range between these limit values is so narrow that the change in the traversing speed does not lead to impermissible thread tension changes. Nevertheless, it must be avoided that winding conditions are set with mirror symptoms. The precalculation of the winder ratios to be set one after the other must therefore be carried out with great care and accuracy, and in cases of doubt, tests must also be carried out to determine whether a predicted winder ratio actually does not lead to game game symptoms in practice.

Es hat sich nun herausgestellt, daß zwar die Spulverhältnisse, die nacheinander eingestellt werden sollen, mit großer Genauigkeit so berechnet werden können, daß eine gute Präzisionswicklung theoretisch entstehen sollte, daß jedoch trotzdem von Zeit zu Zeit dicke Wülste in rautenförmiger Anordnung auf der Spulenoberfläche entstanden. Es war nicht möglich, diese Erscheinung durch noch genauere Vorausberechnung der Spulverhältnisse zu vermeiden.It has now been found that the winding ratios that are to be set one after the other can be calculated with great accuracy so that a good precision winding should theoretically arise, but that nevertheless thick beads in a diamond-shaped arrangement were formed from time to time on the surface of the spool. It was not possible to avoid this phenomenon by calculating the winding conditions more precisely.

Es wurde nun gefunden, daß zur Erzielung einer optimalen Fadenablage die Spulverhältnisse nicht nur mit großer Genauigkeit vorberechnet, sondern auch genau eingehalten werden müssen, und daß hier die elektrische und elektronische Meß- und Regelungstechnik, die für die Messung der Drehzahlen und für die Einhaltung der Proportionalität zwischen Spindelgeschwindigkeit und Changiergeschwindigkeit verantwortlich ist, zumindest auf ihre wirtschaftlichen Grenzen stößt.It has now been found that in order to achieve optimal thread placement, the bobbin ratios not only have to be precalculated with great accuracy, but also have to be adhered to exactly, and that here the electrical and electronic measuring and control technology required for measuring the speeds and for complying with Proportionality between spindle speed and traversing speed is responsible, at least reaches its economic limits.

Erforderlich zur Erzielung der ausreichenden Genauigkeit wäre insbesondere der Einsatz eines Synchronmotors zum Antrieb der Changiereinrichtung.In particular, the use of a synchronous motor to drive the traversing device would be required to achieve sufficient accuracy.

Die Aufgabe der Erfindung besteht darin, das Verfahren der StufenpräzisionswickJung zu einem geeigneten Verfahren zur Herstellung von qualitativ hochwertigen Spulen mit großem Durchmesser zu machen, auch wenn die technisch bedingte Genauigkeit der elektronischen, elektrischen und mechanischen Einrichtungen nicht gestattet, die Spulverhältnisse genau einzuhalten, die zuvor als optimal ermittelt und einprogrammiert wurden.The object of the invention is to make the step precision winding method a suitable method for producing high-quality coils with a large diameter, even if the technical accuracy of the electronic, electrical and mechanical devices does not allow the spool ratios to be kept exactly as before have been determined and programmed as optimal.

Die erfindungsgemäße Lösung zeichnet sich dadurch aus, daß eine Ungenauigkeit des Spulverhäftnisses bewußt herbeigeführt wird. Dabei macht sich die Erfindung die Erkenntnis zunutze, daß die unbeabsichtigte Ungenauigkeit konstant und stets dieselbe Phasenrichtung zu dem genauen Wert hat, so daß auch die durch die Ungenauigkeit des Spulverhältnisses hervorgerufenen Mängel der Fadenablage nach Größe und Phasenrichtung konstant sind. Der Antrieb der Changiereinrichtung wird z.B. schneller laufen als durch das Programm vorgegeben ist. Er wird jedoch nicht schwankend zeitweise schneller und zeitweise langsamer laufen als durch das Programm vorgegeben ist. Durch die erfindungsgemäß beabsichtigte, jedoch schwankende Ungenauigkeit werden bewußt Mängel in der Fadenablage herbeigeführt, die jedoch nach Größe und Phasenrichtung ebenfalls schwanken. Hierdurch werden nicht nur die Folgen dieser Mängel eliminiert, sondern die Mängel der Fadenablage werden gänzlich beseitigt.The solution according to the invention is characterized in that an inaccuracy of the winding ratio is deliberately brought about. The invention makes use of the knowledge that the unintentional inaccuracy is constant and always has the same phase direction to the exact value, so that the defects in the thread deposit caused by the inaccuracy of the winding ratio are constant in terms of size and phase direction. The drive of the traversing device is e.g. run faster than specified by the program. However, it will not fluctuate at times faster and at times slower than specified by the program. The inaccuracy, which is intended according to the invention but fluctuates, deliberately causes defects in the thread deposit, which however also fluctuate in size and phase direction. This not only eliminates the consequences of these defects, but also completely eliminates the defects in the thread deposit.

Die erfindungsgemäß vorgeschlagene Modulation des Spulverhältnisses hat eine Modulationsbreite A, die so klein ist, daß sich die Changiergeschwindigkeit um nicht mehr als ± 0,5% des berechneten und einprogrammierten Wertes der Changiergeschwindigkeit ändert. Das bedeutet, daß die Modulationsbreite des Spulverhältnisses grundsätzlich kleiner als 0,1%, vorzugsweise aber kleiner als 1 Promille und in aller Regel auch kleiner als 0,5 Promille ist. Es hat sich herausgestellt, daß die Modulationsbreite, bezogen auf das Spulverhältnis im wesentlichen gleich der Modulationsbreite, bezogen auf die Changiergeschwindigkeit ist.The modulation of the winding ratio proposed according to the invention has a modulation width A which is so small that the traversing speed does not change by more than ± 0.5% of the calculated and programmed value of the traversing speed. This means that the modulation width of the winding ratio is generally less than 0.1%, but preferably less than 1 per mille and generally also less than 0.5 per mille. It has been found that the modulation width, based on the winding ratio, is substantially equal to the modulation width, based on the traversing speed.

Im Rahmen dieser Anmeldung ist die Modulationsbreite angegeben durch die Formel A = (KO - KU) x 2 / KO + KU = 2 (KO - KM) / KM = 2 (KM - KU) / KM wobei K das Spulverhältnis KM das mittlere Spulverhältnis während der Phase einer Präzisionswicklung KO der obere Grenzwert des Spulverhältnisses KU der untere Grenzwert des Spulverhältnisses ist.In the context of this application, the modulation range is given by the formula A = (KO - KU) x 2 / KO + KU = 2 (KO - KM) / KM = 2 (KM - KU) / KM where K is the winding ratio KM is the average winding ratio during the phase of a precision winding KO the upper limit of the winding ratio KU is the lower limit of the winding ratio.

Modulationsbreiten von mehr als 0,5% müssen jedenfalls vermieden werden, da sonst nicht mehr gewährleistet ist, daß kritische Spulverhältnisse nicht durchlaufen werden. Dabei sind als kritische Spulverhältnisse solche Spulverhältnisse anzusehen, bei denen die zuvor beschriebenen Spiegelsymptome auftreten.Modulation widths of more than 0.5% must be avoided in any case, since otherwise it is no longer guaranteed that critical winding conditions will not be run through. Critical winding ratios are those in which the mirror symptoms described above occur.

Die Modulation erfolgt vorzugsweise periodisch schwankend. Die Frequenz der Schwankungen muß größer als 5 pro Minute, vorzugsweise größer als 10 pro Minute sein. Bei Frequenzen der Schwankung von mehr als 30 pro Minute können erfahrungsgemäß sämtliche Wickelfehler, die zuvor geschildert wurden, beseitigt werden.The modulation is preferably fluctuating periodically. The frequency of the fluctuations must be greater than 5 per minute, preferably greater than 10 per minute. Experience has shown that at frequencies of the fluctuation of more than 30 per minute, all winding errors which have been described above can be eliminated.

Die Modulation kann auf solche Abschnitte der Spulreise beschränkt werden, in denen erfahrungsgemäß Probleme bei der Aufwicklung, insbesondere Wulstbildungen auftreten. Die Modulation kann jedoch auch in Abhängigkeit von Störungen, die an der Aufwickeleinrichtung in Erscheinung treten, erfolgen. Hierzu ist darauf hinzuweisen, daß Wulstbildung zu Schwingungen der Aufwickeleinrichtung sowie auch zu Geräuschen führen. Sobald derartige Störungen an der Aufwickeleinrichtung einfeten, können diese Störungen durch Sensoren erfaßt und das Ausgangssignal der Sensoren zur Einschaltung der Modulation benutzt werden. In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß eine ständige Abtastung, vorzugsweise optische oder pneumatische Abtastung der Spulenoberfläche stattfindet und daß die Modulation eingeschaltet wird, wenn sich auf der Spulenoberfläche Wulstbildungen zeigen.The modulation can be limited to those sections of the winding cycle in which experience has shown that problems with winding, in particular bead formation, occur. However, the modulation can also take place as a function of disturbances which appear on the take-up device. It should be pointed out here that bead formation leads to vibrations of the winding device and also to noise. As soon as such disturbances in the take-up device are detected, these disturbances can be detected by sensors and the output signal of the sensors can be used to switch on the modulation. In a further embodiment of the invention it is provided that a constant scanning, preferably optical or pneumatic scanning of the coil surface takes place and that the modulation is switched on when bulges appear on the coil surface.

Es hat sich nun durch Versuche herausgestellt, daß es abhängig von den Spinnparametem, insbesondere Titer, Changiergeschwindigkeit, Spulenlänge und gesamte Spulendicke zweckmäßig sein kann, die Modulationsbreite des Spulverhältnisses im Laufe der Spulreise zu erhöhen. Hierdurch kann die Qualität der Fadenablage weiter verbessert werden.It has now been found through tests that, depending on the spinning parameters, in particular titer, traversing speed, bobbin length and overall bobbin thickness, it may be expedient to increase the modulation width of the bobbin ratio in the course of the winding cycle. As a result, the quality of the thread deposit can be further improved.

Im folgenden wird ein Ausführungsbeispiel der Erfindung beschrieben.An embodiment of the invention is described below.

In Fig. 1 ist der Verlauf des Spulverhältnisses während dieses Spulenaufbaus von 100 bis 450 mm Durchmesser dargestellt.

  • Fig. 1A stellt einen vergrößerten Ausschnitt von Fig. 1 dar.
  • Fig. 2 zeigt ein typisches Changierdiagramm für eine Stufenpräzisionswicklung mit dem Spulendurchmesser D als Abszisse und der Changiergeschwindigkeit VC als Koordinate. Gezeigt ist, daß auf einer Hülse von 100 mm Durchmesser eine Spule aus einem Faden aufgewickelt wird mit einem Enddurchmesser von 450 mm. Die Schwankungen, die nach dieser Erfindung der Changiergeschwindigkeit aufgeprägt werden, sind so gering, daß sie in Fig. 2 nicht dargestellt werden können.
  • Fig. 3 zeigt den Querschnitt durch eine Aufwickelmaschine für Chemiefasern, wobei insbesondere die Steuereinrichtungen gezeigt sind.
In Fig. 1 the course of the winding ratio is shown during this coil construction of 100 to 450 mm in diameter.
  • 1A shows an enlarged section of FIG. 1.
  • 2 shows a typical traversing diagram for a step precision winding with the coil diameter D as the abscissa and the traversing speed VC as the coordinate. It is shown that a bobbin is wound from a thread with a final diameter of 450 mm on a sleeve of 100 mm in diameter. The fluctuations which are imposed on the traversing speed according to this invention are so small that they cannot be shown in FIG. 2.
  • Fig. 3 shows the cross section through a winding machine for man-made fibers, in particular the control devices are shown.

Die Aufwickelmaschine wird zunächst anhand von Fig. 3 beschrieben.The winding machine is first described with reference to FIG. 3.

Der Faden 1 läuft mit der konstanten Geschwindigkeit v durch den Changierfadenführer 3, welcher durch die Kehrgewindewelle 2 in eine Hin- und Herbewegung quer zur Laufrichtung des Fadens versetzt wird. Neben dem Fadenführer 3 gehört zur Changiereinrichtung die Nutwalze 4, in deren endloser, hin- und hergehender Nut der Faden mit teilweiser Umschlingung geführt ist. Mit 7 ist die Spule und mit 6 die frei drehbare Spulspindel (Spindel) bezeichnet. Am Umfang der Spule 7 liegt die Treibwalze 8 an, die mit konstanter Umfangsgeschwindigkeit angetrieben wird. Es sei erwähnt, daß Treibwalze und Changierung einerseits und Spulspindel und Spule andererseits relativ zueinander radial beweglich sind, so daß der Achsabstand zwischen der Spindel 6 und der Treibwalze 8 bei steigendem Durchmesser der Spule veränderbar ist. Die Kehrgewindewalze 2 und die Nutwalze 4 werden durch einen Drehstrommotor, z.B. Asynchronmotor 9, angetrieben. Die Kehrgewindewalze 2 und die Nutwalze 4 sind getrieblich, z.B. durch Treibriemen 10, miteinander verbunden. Die Treibwalze 8 wird durch einen Synchronmotor 11 mit konstanter Umfangsgeschwindigkeit angetrieben. Es sei erwähnt, daß zum Antrieb der Spule auch ein Motor dienen kann, der die Spulspindel 6 unmittelbar antreibt und dessen Drehzahl so gesteuert wird, daß die Umfangsgeschwindigkeit . der Spule auch bei steigendem Spulendurchmesser konstant bleibt. Die Drehstrommotoren 9 und 11 erhalten ihre Energie durch Frequenzwandler 12 und 13. Der Synchronmotor 11, der als Spulantrieb dient, ist an den Frequenzwandler 12 angeschlossen, der die einstellbare Frequenz f2 liefert. Der Asynchronmotor 9 wird durch Frequenzwandler 12 betrieben, der mit einem Rechner 15 verbunden ist. Das Ausgangssignal 20 des Rechners 15 hängt ab von der Eingabe.The thread 1 runs at the constant speed v through the traversing thread guide 3, which is set in a reciprocating movement transversely to the running direction of the thread by the reverse thread shaft 2. In addition to the thread guide 3, the traversing device includes the grooved roller 4, in the endless, back and forth groove of which the thread is guided with a partial wrap. 7 with the coil and 6 with the freely rotatable winding spindle (spindle) is designated. The drive roller 8, which is driven at a constant peripheral speed, lies against the circumference of the coil 7. It should be mentioned that the driving roller and traverse on the one hand and the winding spindle and the spool on the other hand are radially movable relative to one another, so that the center distance between the spindle 6 and the driving roller 8 can be changed as the diameter of the spool increases. The reverse thread roller 2 and the grooved roller 4 are driven by a three-phase motor, for example an asynchronous motor 9. The reverse thread roller 2 and Grooved roller 4 are connected to one another in a geared manner, for example by drive belts 10. The drive roller 8 is driven by a synchronous motor 11 at a constant peripheral speed. It should be mentioned that a motor can also be used to drive the bobbin, which drives the bobbin spindle 6 directly and whose speed is controlled so that the peripheral speed. the coil remains constant even with increasing coil diameter. The three-phase motors 9 and 11 receive their energy from frequency converters 12 and 13. The synchronous motor 11, which serves as a coil drive, is connected to the frequency converter 12, which supplies the adjustable frequency f2. The asynchronous motor 9 is operated by frequency converter 12, which is connected to a computer 15. The output signal 20 of the computer 15 depends on the input.

Eingegeben werden fortlaufend: die Drehzahl der Spulspindel 6, die durch Meßfühler 18 ermittelt wird; das Ausgangssignal der dem Rechner vorgeschalteten Programmeinheit 19, die vorzugsweise frei programmierbar ist und in der die Spulverhältnisse eingegeben worden sind, die im Verlauf der Spulreise in den einzelnen Phasen mit Präzisionswicklung nacheinander gefahren werden sollen.The following are continuously entered: the speed of the winding spindle 6, which is determined by sensor 18; the output signal of the program unit 19 connected upstream of the computer, which is preferably freely programmable and in which the winding ratios have been entered, which are to be moved in succession in the individual phases with precision winding in the course of the winding cycle.

Mit Vorteil wird auch durch Meßfühler 17 die aktuelle Changiergeschwindigkeit bzw. Doppelhubzahl durch Meßfühler 17 abgetastet und dem Rechner eingegeben. Der Rechner 15 führt einen Soll-/IstWert-Vergleich durch und regelt die Changiergeschwindigkeit der durch Asynchronmotor 9 angetriebenen Changiereinrichtungen auf den Soll- Wert. Soll-Wert der Changiergeschwindigkeit ist der Wert, der sich aus der augenblicklich durch Meßfühler 18 gemessenen Drehzahl der Spulspindel 6, dividiert durch das Spulverhältnis, ergibt, das für die jeweilige Aufwickelphase vorberechnet und dem Rechner 15 durch Programmeinheit 19 eingegeben wird.The current traversing speed or double stroke number is also advantageously sensed by sensor 17 and input to the computer by sensor 17. The computer 15 carries out a target / actual value comparison and regulates the traversing speed of the traversing devices driven by the asynchronous motor 9 to the target value. The setpoint value of the traversing speed is the value which results from the rotational speed of the winding spindle 6, currently measured by measuring sensor 18, divided by the winding ratio, which is pre-calculated for the respective winding phase and entered into the computer 15 by the program unit 19.

Die Hauptaufgabe des Rechners 15 besteht darin, diese Sollwertermittlung der Changiergeschwindigkeit durchzuführen.The main task of the computer 15 is to carry out this setpoint determination of the traversing speed.

Hierzu erhält der Rechner zunächst einmal durch den Programmspeicher bzw. Programmgeber 19 die vorausberechneten, im Sinne der Erfindung idealen und gespeicherten Spulverhältnisse. Aus jedem dieser idealen Spulverhältnisse und aus dem Ausgangswert, z.B. dem oberen Grenzwert (OGC) der Changiergeschwindigkeit errechnet der Rechner jeweils eine "ideale" Spindeldrehzahl. Dem Programmgeber können jedoch auch die zuvor aus den "idealen" Spulverhältnissen unter Berücksichtigung des Ausgangswertes der Changiergeschwindigkeit errechneten Spindeldrehzahlen eingegeben werden, so daß diese Rechenoperation nicht vom Rechner vorgenommen werden muß. Jedenfalls werden die Werte der "idealen" Spindeldrehzahlen mit den aktuellen, durch den Meßfühler 18 ermittelten Spindeldrehzahlen verglichen. Wenn der Rechner Identität der Spindeldrehzahlen feststellt, gibt er als Ausgangssignal 20 den ebenfalls durch Programmgeber 19 vorgegebenen Ausgangswert der Changiergeschwindigkeit als Sollwert dem Frequenzwandler 13 vor. Im folgenden Verlauf der Spulreise vermindert der Rechner diesen Sollwert der Changiergeschwindigkeit proportional zur ständig gemessenen Spindeldrehzahl, die mit wachsendem Spulendurchmesser bei konstanter Spulenumfangsgeschwindigkeit hyperbolisch abnimmt. Das vorgegebene "ideale" Spulverhältnis bleibt also während dieser Stufe der Präzisionswicklung konstant. Sobald der Rechner nunmehr feststellt, daß sich die aktuell gemessene Spindeldrehzahl der durch das nächste als "ideal" vorgegebene Spulverhältnis ermittelten "idealen" Spindeldrehzahl annähert, wird als Ausgangssignal 20 wiederum der Ausgangswert der Changiergeschwindigkeit als Sollwert vorgegeben. Es folgt eine neue Stufe der Präzisionswicklung.For this purpose, the computer first receives from the program memory or program generator 19 the pre-calculated winding conditions which are ideal and stored in the sense of the invention. From each of these ideal winding conditions and from the initial value, e.g. The computer calculates an "ideal" spindle speed based on the upper limit value (OGC) of the traversing speed. However, the programmer can also be entered the spindle speeds previously calculated from the "ideal" winding conditions, taking into account the initial value of the traversing speed, so that this computing operation does not have to be carried out by the computer. In any case, the values of the "ideal" spindle speeds are compared with the current spindle speeds determined by the sensor 18. If the computer determines the identity of the spindle speeds, it outputs the output value 20 of the traversing speed, which is also predetermined by the programmer 19, as the setpoint to the frequency converter 13. In the following course of the winding cycle, the computer reduces this setpoint value of the traversing speed in proportion to the constantly measured spindle speed, which decreases hyperbolically with increasing coil diameter and constant coil peripheral speed. The predetermined "ideal" winding ratio thus remains constant during this stage of the precision winding. As soon as the computer now determines that the currently measured spindle speed is approaching the "ideal" spindle speed determined by the next winding ratio specified as "ideal", the output value of the traversing speed is again specified as the setpoint as output signal 20. A new level of precision winding follows.

Da die Zuliefergeschwindigkeit des Fadens zu der Spule konstant ist (z.B. Spinnen eines Chemiefadens) und aus diesem Grunde die Oberfiächengeschwindigkeit der Spule trotz steigenden Durchmessers konstant bleiben muß, nimmt die Drehzahl der Spulspindel im Verlaufe der Spulreise hyperbolisch ab. Es ist nun weiterhin erforderlich, daß die Fadenspannung des Fadens auf der Spule innerhalb gewisser Grenzen bleibt, um einen ordnungsgemäßen Spulenaufbau zu bewirken. Aus diesem Grunde muß die Changiergeschwindigkeit innerhalb vorgegebener, enger Grenzen OGC und UGC bleiben. Dabei wird in jeder Phase P der Spulreise bzw. des Durchmesseraufbaus ein bestimmtes ideales Spulverhältnis K konstant vorgegeben und einprogrammiert. Ein konstantes Spulverhältnis K während einer Aufwickelphase P bedeutet, daß die Changiergeschwindigkeit proportional zur Spindelgeschwindigkeit abnimmt. Diese Abnahme der Changiergeschwindigkeit kann nur so lange zugelassen werden, bis der untere Grenzwert UGC der Changiergeschwindigkeit zumindest annähernd erreicht ist. Das bedeutet im Diagramm nach Fig. 1 und Fig. 1A, daß der obere Grenzwert OGK des Spulverhältnisses erreicht ist. Nunmehr muß die Changiergeschwindigkeit wieder sprunghaft auf ihren oberen Grenzwert OGC erhöht werden. Diese sprunghafte Erhöhung der Changiergeschwindigkeit bedeutet in Fig. 1, Fig. 1A eine sprunghafte Absenkung des Spulverhältnisses K auf seinen unteren Grenzwert UGK.Since the speed of delivery of the thread to the bobbin is constant (e.g. spinning a chemical thread) and for this reason the surface speed of the bobbin must remain constant despite the increasing diameter, the speed of the winding spindle decreases hyperbolically in the course of the winding cycle. It is now also necessary that the thread tension of the thread on the bobbin remains within certain limits in order to bring about a proper bobbin build-up. For this reason, the traversing speed must remain within predefined, narrow limits OGC and UGC. A specific ideal winding ratio K is constantly specified and programmed in each phase P of the winding cycle or the diameter structure. A constant winding ratio K during a winding phase P means that the traversing speed decreases in proportion to the spindle speed. This decrease in the traversing speed can only be permitted until the lower limit value UGC of the traversing speed is at least approximately reached. In the diagram according to FIGS. 1 and 1A, this means that the upper limit value OGK of the winding ratio has been reached. Now the traversing speed must be increased suddenly to its upper limit OGC. This abrupt increase in the traversing speed in FIG. 1, FIG. 1A means an abrupt decrease in the winding ratio K to its lower limit value UGK.

Es ergibt sich hieraus, daß in der geschilderten Ausführunq der obere Grenzwert der Changiergeschwindigkeit eine konstante Größe ist, die im Laufe der Spulreise fortlaufend neu eingestellt wird. Sie wird immer dann eingestellt, wenn diese Größe in Relation zur aktuellen Spindeldrehzahl einen vorberechneten, idealen Wert annimmt. Der untere Grenzwert der Changiergeschwindigkeit ist dagegen lediglich eine rechnerische Größe, die den größten zulässigen Abfall der Changiergeschwindigkeit angibt, der in Wirklichkeit jedoch selten oder nie erreicht wird und lediglich bei der Berechnung des oberen Grenzwerts eine Rolle spielt. Es sei bemerkt, daß das Verfahren auch umgekehrt gesteuert werden kann. Man kann den unteren Grenzwert der Changiergeschwindigkeit als realen, immer wieder angefahrenen Grenzwert vorgeben. Der obere Grenzwert gibt dann den größten zulässigen Sprung der Changiergeschwindigkeit nach oben an. Er wird jedoch in Wirklichkeit nur in Ausnahmesituationen angefahren, wenn dieser obere Grenzwert in Relation zur augenblicklichen Spindeldrehzahl zufällig einen als ideal vorausberechneten Wert hat.It follows from this that in the described embodiment the upper limit of the traversing speed is a constant value which is continuously reset in the course of the winding cycle. It is always set when this variable assumes a pre-calculated, ideal value in relation to the current spindle speed. The lower limit value of the traversing speed, on the other hand, is only a mathematical quantity that indicates the greatest permissible drop in the traversing speed, which, however, is rarely or never achieved in reality and only plays a role in the calculation of the upper limit value. It should be noted that the process can also be controlled in reverse. The lower limit value of the traversing speed can be specified as a real limit value that is repeatedly approached. The upper limit then indicates the largest permissible jump in the traversing speed upwards. However, in reality it only becomes exceptional If the upper limit value happens to have an ideal predicted value in relation to the current spindle speed.

Wie erwähnt, darf die Fadenspannung nur innerhalb gewisser Grenzen schwanken, so daß der Bereich zwischen den Grenzwerten der Changiergeschwindigkeit OGC und UGC sehr eng ist. Das bedeutet weiterhin, daß zwei Spulverhältnisse K1 und K2 der beiden aufeinanderfolgenden Spulphasen P1 und P2 verhältnismäßig dicht beieinander liegen müssen. Trotzdem müssen die aufeinanderfolgenden Spulverhältnisse so ausgewählt werden, daß die Gefahr einer Spiegelbildung nicht besteht. Dadurch wird die Zahl der zur Auswahl stehenden günstigen Spulverhältnisse relativ beschränkt und es kann nicht vermieden werden, daß ein günstiges Spulverhältnis für K1 sehr nahe bei einem anderen ungünstigen Spulverhältnis liegt, das zu Wulstbildungen führt. So war es z.B. erforderlich, für K1 ein Spulverhältnis von 4,08631 zu wählen, das bei exakter Einhaltung einen guten Wicklungsaufbau ergibt. Dieser gute Wicklungsaufbau wurde bei Nachfahren des Spulverhältnisses im Laborbetrieb auch wirklich erzielt. Bei praxisgerechtem Betrieb stellte sich jedoch heraus, daß sich trotz der richtigen Vorausberechnung des Spulverhältnisses eine sehr starke Wulstbildung zeigte. Messungen aus Spindeldrehzahl und Changiergeschwindigkeit ergaben, daß das Spulverhältnis in Wirklichkeit bei 4,08696 lag. Trotz dieser äußerst geringen Abweichung von nur 0,015% ergab sich mithin ein sehr schlechter Spulenaufbau, hervorgerufen durch die Abweichung des tatsächlich ausgeführten Spulverhältnisses von dem als gut vorausberechneten und eingestellten Spulverhältnis. Erfindungsgemäß wurde nun ohne Erhöhung der Genauigkeitsanforderungen an die Meßdatenerfassung sowie die Einstellung und Regelung der Changiergeschwindigkeit wiederum das erstgenannte Spulverhältnis = 4,08631 eingestellt und außerdem dieser Sollwert in einer theoretischen Sinuslinie moduliert. Hierzu wurde der zugehörige Sollwert der Changiergeschwindigkeit bei einer Modulationsfrequenz von 20 pro Minute sinusförmig um ± 0,005% verändert.As mentioned, the thread tension may only fluctuate within certain limits, so that the range between the limit values of the traversing speed OGC and UGC is very narrow. This also means that two winding ratios K1 and K2 of the two successive winding phases P1 and P2 must be relatively close together. Nevertheless, the successive winding conditions must be selected so that there is no risk of mirror formation. As a result, the number of favorable winding ratios available for selection is relatively limited and it cannot be avoided that a favorable winding ratio for K1 is very close to another unfavorable winding ratio which leads to bead formation. So it was e.g. required to select a winding ratio of 4.08631 for K1, which results in a good winding build-up if exactly adhered to. This good winding structure was actually achieved when the winding ratio was adjusted in laboratory operation. In practical operation, however, it turned out that despite the correct prediction of the winding ratio, a very strong bead formation was shown. Measurements from spindle speed and traversing speed showed that the winding ratio was actually 4.08696. Despite this extremely small deviation of only 0.015%, there was therefore a very poor package build-up, caused by the deviation of the actual winding ratio from the winding ratio which was calculated and set well in advance. According to the invention, the first-mentioned winding ratio = 4.08631 was again set without increasing the accuracy requirements for the measurement data acquisition and the adjustment and control of the traversing speed, and this setpoint was also modulated in a theoretical sine line. For this purpose, the associated setpoint of the traversing speed was changed sinusoidally by ± 0.005% at a modulation frequency of 20 per minute.

Durch diese elektronisch und elektrisch einfach zu bewirkende Maßnahme konnte die Wulstbildung völlig eliminiert und ein einwandfreier Wicklungsaufbau erzielt werden. Es zeigte sich, daß der Spulenaufbau mit steigender Modulationsfrequenz besser wurde.This electronically and electrically simple measure made it possible to completely eliminate the formation of bulges and to achieve a perfect winding structure. It was shown that the coil structure became better with increasing modulation frequency.

Fig. 1 A zeigt unmaßstäblich die sinusförmige Modulation des Spulverhältnisses mit der Modulationsamplitude (Modulationsbreite) A und einer gewissen Modulationsfrequenz.1A shows the sinusoidal modulation of the winding ratio with the modulation amplitude (modulation width) A and a certain modulation frequency.

Im Verlaufe der Spulreise, bei der Spulverhältnisse zwischen 7,1227 und 1,3599 durchfahren wurden, wurde der Wert der Modulationsbreite um 0,1 Promille des jeweiligen Spulverhältnisses gleichmäßig bei jeder Absenkung des Sputverhältnisses angehoben und hierdurch ein guter Spulenaufbau erzielt.In the course of the winding cycle, in which winding ratios between 7.1227 and 1.3599 were passed through, the value of the modulation width was increased uniformly by 0.1 per mille of the respective winding ratio each time the winding ratio was lowered, and a good bobbin build-up was thereby achieved.

Zur Erzielung dieser Modulation der Changiergeschwindigkeit wird der Programmeinheit 19 weiterhin ein Programm zur sinusförmigen Modulation der Changiergeschwindigkeit eingegeben. Dieses Programm kann eine konstante oder variable, z.B. im Laufe der Spulreise zunehmende Modulationsamplitude (Modulationsbreite) vorsehen. Dabei beträgt die Modulationsbreite nach dieser Erfindung jedenfalls weniger als 0,5%, vorzugsweise weniger als 0,1%. Dabei ist hervorzuheben, daß die Modulat,- onsamplitude möglichst eng gewählt werden sollte, da sich hierdurch die Qualität der Spule verbessert hat. Dabei ist zu berücksichtigen, wie dicht die Spulverhältnisse beieinander liegen müssen, um unzulässige Fadenspannungsänderungen zu vermeiden, trotzdem aber einen guten Spulenaufbau zu erha!- ten. Je geringer der Unterschied zwischen den Spulverhältnissen ist, desto geringer wird auch die Modulationsbreite gewählt. Im allgemeinen beträgt die Modulationsbreite, mit der die Changiergeschwindigkeit verändert wird, weniger als 1 Promille.In order to achieve this modulation of the traversing speed, a program for sinusoidal modulation of the traversing speed is further input to the program unit 19. This program can be a constant or variable, e.g. Provide increasing modulation amplitude (modulation width) during the winding cycle. The modulation range according to this invention is in any case less than 0.5%, preferably less than 0.1%. It should be emphasized that the modulation amplitude should be chosen as narrow as possible, since this has improved the quality of the coil. It must be taken into account how close the spool ratios must be to each other in order to avoid impermissible thread tension changes, but still maintain a good spool build-up. The smaller the difference between the spool ratios, the smaller the modulation width. In general, the modulation width with which the traversing speed is changed is less than 1 per mille.

Claims (7)

1. Process for winding yams, in particular freshly spun or drawn man-made filament yarns, into cylindrical cross-wound packages in stepwise precision winding, where, in every step of the precision wind, the traverse speed is reduced proportionally to the spindle speed and then, to obtain a predetermined lower package ratio (number of spindle revo- lutions/number of double traverses), increased again sharply, characterized in that the traverse speed is predetermined in the form of its average value and constantly recurring deviations are allowed as long as these deviations A amount to less than 0.5% and reoccur constantly at a frequency of more than 5 per minute.
2. Process according to Claim 1, characterized in that the modulation width A of the spool ratio is not more than 0.1 %.
3. Process according to Claim 1, characterized in that the modulation width A of the package ratio is less than 0.2 per thousand.
4. Process according to Claims 1, 2 or 3, characterized in that the modulation frequency is greater than 10 per minute, preferably greater than 30 per minute.
5. Process according to any one of Claims 1 to 4, characterized in that the modulation takes place as a function of disturbances, for example vibrations or noises, emanating from the winding means.
6. Process according to any one of Claims 1 to 4, characterized in that the modulation is effected as a function of the structure of the package surface by scanning the package surface.
7. Process according to any one of Claims 1 to 6, characterized in that the modulation width is increased in the course of the package build-up.
EP86102619A 1985-03-05 1986-02-28 Winding method Expired EP0194524B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE3507632 1985-03-05
DE3507632 1985-03-05
DE3514875 1985-04-25
DE3514875 1985-04-25
DE3523322 1985-06-29
DE3523322 1985-06-29

Publications (3)

Publication Number Publication Date
EP0194524A2 EP0194524A2 (en) 1986-09-17
EP0194524A3 EP0194524A3 (en) 1987-08-12
EP0194524B1 true EP0194524B1 (en) 1989-06-14

Family

ID=27192860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102619A Expired EP0194524B1 (en) 1985-03-05 1986-02-28 Winding method

Country Status (4)

Country Link
US (1) US4667889A (en)
EP (1) EP0194524B1 (en)
CN (1) CN1005029B (en)
DE (1) DE3663931D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636151A1 (en) * 1986-08-16 1988-04-28 Barmag Barmer Maschf Method for the winding of threads

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290682A (en) * 1986-06-03 1987-12-17 Teijin Seiki Co Ltd Traverse device
EP0256383B1 (en) * 1986-08-09 1990-01-31 B a r m a g AG Method to wind up threads
DE3769053D1 (en) * 1986-09-18 1991-05-08 Teijin Seiki Co Ltd METHOD FOR REWINDING YARN ON SPOOLS WITH RELATED MACHINE.
IT1227912B (en) * 1988-12-23 1991-05-14 Savio Spa PROCEDURE AND APPARATUS TO DRIVE THE DISTRIBUTION OF THE WIRE ON THE PACKAGE IN FORMATION IN A COLLECTION GROUP FOR SYNTHETIC WIRES
DE3918846A1 (en) * 1989-06-09 1990-12-13 Maag Fritjof PRAEZISION CROSS COIL, METHOD FOR THE PRODUCTION AND COIL INSTALLATION THEREFOR
IT1251866B (en) * 1991-09-24 1995-05-26 Fadis Spa METHOD FOR CHECKING THE POSITION OF THE YARN REVERSAL POINT, PARTICULARLY FOR ROCKING MACHINES AND RELATED EQUIPMENT
DE4208393A1 (en) * 1992-03-16 1993-09-23 Sahm Georg Fa METHOD FOR REWINDING CONTINUOUSLY WITH PREFERRED, CONSTANT SPEED OF A THREADED DEVICE, THREAD-SHAPED GOODS IN STEPPED PRECISION CROSSWINDING, AND REEL DEVICE FOR IMPLEMENTING THIS
DE4208395A1 (en) * 1992-03-16 1993-09-23 Sahm Georg Fa METHOD FOR REWINDING, TAPE OR THREADED DISHWOOD FROM A WINDING DEVICE IN CROSS WINDING WITH PRECISION WINDING
DE4223271C1 (en) * 1992-07-17 1993-06-24 Neumag - Neumuenstersche Maschinen- Und Anlagenbau Gmbh, 2350 Neumuenster, De
DE4343881A1 (en) * 1993-12-22 1995-06-29 Schlafhorst & Co W Yarn guide belt drive control for laying at surface of bobbin
DE19619706A1 (en) * 1995-05-29 1996-12-05 Barmag Barmer Maschf Bobbin winding
DE19548257A1 (en) * 1995-12-22 1997-10-09 Schlafhorst & Co W Ribbon volume avoiding method used during rolling of bobbin
WO1998033735A1 (en) * 1997-02-05 1998-08-06 Plant Engineering Consultants, Inc. Precision winding method and apparatus
TW359661B (en) * 1997-04-24 1999-06-01 Barmag Barmer Maschf Method of winding a yarn to cylindrical cross-wound package
US6568623B1 (en) * 2000-03-21 2003-05-27 Owens-Corning Fiberglas Technology, Inc. Method for controlling wind angle and waywind during strand package buildup
DE10015933B4 (en) * 2000-03-30 2015-09-03 Saurer Germany Gmbh & Co. Kg Method for producing a step precision winding
ITMI20010682A1 (en) * 2000-04-20 2002-09-30 Schlafhorst & Co W PROCEDURE FOR PRODUCING A CROSSED COIL AND CROSSED COIL OBTAINED WITH IT
AT502782B1 (en) * 2003-05-19 2008-07-15 Starlinger & Co Gmbh BANDAUFWICKELVERFAHREN
SI22124A (en) * 2006-12-07 2007-04-30 Danilo Jaksic Method of precise winding of textile yarn to cones by changing the winding ratio within one winding cycle several times
EP2349895A4 (en) * 2008-10-27 2012-07-18 Invista Tech Sarl Precision wind synthetic elastomeric fiber and method for same
JP5185781B2 (en) * 2008-11-14 2013-04-17 長岡産業株式会社 Sheet material winding device
JP2016078995A (en) * 2014-10-17 2016-05-16 村田機械株式会社 Yarn winder and package deceleration method
CZ2015311A3 (en) * 2015-05-06 2016-08-10 Technická univerzita v Liberci Method of winding self-supporting bobbin and self-supporting bobbin with cheese package of lower thread for sewing machines

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741491A (en) * 1971-11-29 1973-06-26 Leesona Corp Apparatus for winding yarn
US3799463A (en) * 1972-04-18 1974-03-26 Allied Chem Ribbon breaking for high speed surface driven winders
CH603469A5 (en) * 1975-11-05 1978-08-15 Rieter Ag Maschf
BG23472A1 (en) * 1975-12-05 1977-09-15
DE2606208C3 (en) * 1976-02-17 1982-12-16 Bayer Ag, 5090 Leverkusen Winding process for the production of cross-wound bobbins
DE3049573A1 (en) * 1980-12-31 1982-07-29 Fritjof Dipl.-Ing. Dr.-Ing. 6233 Kelkheim Maag DEVICE FOR PRODUCING YARN BOBBINS
US4504021A (en) * 1982-03-20 1985-03-12 Barmag Barmer Maschinenfabrik Ag Ribbon free wound yarn package and method and apparatus for producing the same
US4504024A (en) * 1982-05-11 1985-03-12 Barmag Barmer Maschinenfabrik Ag Method and apparatus for producing ribbon free wound yarn package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636151A1 (en) * 1986-08-16 1988-04-28 Barmag Barmer Maschf Method for the winding of threads
DE3636151C2 (en) * 1986-08-16 1998-02-05 Barmag Barmer Maschf Process for winding threads

Also Published As

Publication number Publication date
CN86100703A (en) 1986-09-03
DE3663931D1 (en) 1989-07-20
CN1005029B (en) 1989-08-23
EP0194524A2 (en) 1986-09-17
US4667889A (en) 1987-05-26
EP0194524A3 (en) 1987-08-12

Similar Documents

Publication Publication Date Title
EP0194524B1 (en) Winding method
EP0195325B1 (en) Winding method
DE69128939T3 (en) STRUCTURE OF A THREAD WINDING
DE3627879C2 (en) Process for winding threads
DE68907875T2 (en) Method for checking the thread guidance on a winder in a winding device for synthetic threads.
EP0561188B1 (en) Procedure for the precision crosswinding of ribbon-like or yarn-like material
DE19833703A1 (en) Tension control during precision winding of yarn packages involves periodic variation of winding speed to compensate for yarn displacement due to action of traverse
DE3781719T2 (en) TRANSFER APPARATUS FOR THREAD.
EP0150771B2 (en) Precision wound package, process and device for its manufacture
EP0256383B1 (en) Method to wind up threads
EP1951605A1 (en) Method for avoiding ribbon windings
EP0055849B1 (en) Method and device for winding yarn
DE3241362C2 (en) Thread tension regulator
EP0562296B1 (en) Method for winding filamentary material, continuously fed at preferably constant speed, in a stepped precision winding and winding device for carrying out the method
DE19817111A1 (en) Method of winding yarn on cylindrical cross wound bobbin
EP0093258B1 (en) Method of avoiding images at the random cross winding of a yarn
DE3210244A1 (en) Process for eliminating a bolster during the winding of a yarn by random winding
DE102020110999B4 (en) Process for the high-precision thread depositing of a thread when winding a bobbin
DE3918846C2 (en)
DE4239579A1 (en) Cross wound bobbin winding - has computer to take rotary angle signals from bobbin and guide drum to detect faulty winding and apply braking action to prevent faults
DE19950285A1 (en) Swinging arm traverse for winder is driven by computer controlled servomotor according to a continuously corrected movement pattern
EP0629174B1 (en) Thread winding process and device
DE3627081C2 (en) Process for winding threads
DE19628402A1 (en) Thread winding process that avoids winding faults
DE3219880A1 (en) Process for eliminating a bolster during the winding of a yarn by random winding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: B A R M A G AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870727

17Q First examination report despatched

Effective date: 19880909

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3663931

Country of ref document: DE

Date of ref document: 19890720

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BARMAG GMBH ENGINEERING & MANUFACTURING

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000203

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000215

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000329

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050228