EP0192918B1 - Vorwärmer für Umwandlungsanlage von thermischer Energie - Google Patents

Vorwärmer für Umwandlungsanlage von thermischer Energie Download PDF

Info

Publication number
EP0192918B1
EP0192918B1 EP85870030A EP85870030A EP0192918B1 EP 0192918 B1 EP0192918 B1 EP 0192918B1 EP 85870030 A EP85870030 A EP 85870030A EP 85870030 A EP85870030 A EP 85870030A EP 0192918 B1 EP0192918 B1 EP 0192918B1
Authority
EP
European Patent Office
Prior art keywords
heater
zone
desuperheating
outlet
tube nest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85870030A
Other languages
English (en)
French (fr)
Other versions
EP0192918A1 (de
Inventor
Jules Fernand René Ledoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to AT85870030T priority Critical patent/ATE43699T1/de
Priority to DE8585870030T priority patent/DE3570737D1/de
Priority to EP85870030A priority patent/EP0192918B1/de
Priority to US06/798,631 priority patent/US4635588A/en
Priority to ZA858815A priority patent/ZA858815B/xx
Publication of EP0192918A1 publication Critical patent/EP0192918A1/de
Application granted granted Critical
Publication of EP0192918B1 publication Critical patent/EP0192918B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/42Use of desuperheaters for feed-water heating

Definitions

  • the present invention relates to heaters applicable in installations for converting thermal energy into mechanical energy.
  • thermodynanic cycles Use at least one condensable fluid performing a thermodynanic cycle.
  • These are in particular thermal, fossil fuel or nuclear power plants.
  • condensable fluid generally means water or optionally ammonia or else any fluid occurring in the vapor phase and in the liquid phase during the various values of the pressure / temperature couple of the thermodynamic cycle.
  • the invention relates to heaters with two separate bundles, one of which heats the circulating water by condensation and sub-cooling, and the other heats a partial flow of this water by the desuperheating of the steam. .
  • Such a heater is for example described in document FR-A-1 153 029, according to which the two bundles of tubes are located inside the same heater jacket.
  • the invention aims to achieve heating with the maximum efficiency and the minimum possible size.
  • the invention is embodied as described in claim 1.
  • the bundle of tubes performing the desuperheating of the condensable fluid vapor is arranged in a spiral and each bundle of tubes has its own inlet and outlet.
  • FIG. 1 we have shown a cascade of two heaters 10,20 of a conventional cycle of transformation of thermal energy into mechanical energy.
  • Each heater is divided into three zones: the desuperheating zone 11, the condensation zone 12 and the sub-cooling zone 13.
  • the water to be heated which is the food water for the cycle, enters via the line 14 (thick line). ) in the sub-cooling zone 13 and then passes into the condensation zone 12, before crossing the desuperheating zone 11 and leaving at 15 by a pipe which can be connected to the inlet of the following heater 20.
  • the vapor enters via 16 (dotted line) in the desuperheating zone 11 and then passes into the condensation zone 12 where all the vapor is transformed into condensate.
  • This condensate is mixed with the condensate withdrawn through line 17 from the sub-cooling zone 13 of the adjacent heater 20 and is then sent to its own sub-cooling zone 13 before being in turn withdrawn through line 18 to an adjacent heater located upstream.
  • FIG. 2 is a more detailed sectional view of the conventional heater 10, showing at E the inlet manifold of the water to be heated and at 5 the outlet manifold of the water.
  • the water passes through a set of heat exchange tubes 19 generally forming a bundle of tubes bent in a U or in a triple U (said to be in W) and arranged in several layers.
  • a first section of this bundle of tubes 19 is connected to the inlet manifold E and is located in a box 21 which delimits the sub-cooling zone 13 filled with condensate 22 and which is provided with a condensate outlet 18.
  • a second section of the tubes 19 ′ is located in the condensation zone 12 filled with steam coming from the box 23 which delimits the desuperheating zone 11, in which is located the outlet manifold S of the water connected to the third section of tubes 19 ".
  • On this box 23 is connected the steam inlet pipe 16.
  • the whole of the heater 10 is generally mounted in a cylindrical shell 24 closed at the ends by domed bottoms 25.
  • the exchanger 50 constituting the desuperheating zone 11 is separated from the heater 30 and recovers the heat from the steam which it desuperheats at a higher temperature level.
  • it generally deals only part of the total flow of warm water, at least 30 0/0; 50% is a usual value.
  • the heaters 30, 40 and 50 are of conventional design, consisting of curved tubes connected either to a water box via a tube plate, or to two collectors, an inlet and an outlet as shown in FIG. 2.
  • the heater 30 only has the sub-zone cooling 13 and the condensation zone 12. This condensation zone 12 receives steam coming through 26 from the exchanger 50, as well as the condensate coming through 17 from the sub-cooling zone of the adjacent heater 40.
  • the exchanger 50 receives steam withdrawn at 16 and heats in its desuperheating zone 11 part of the flow of food water leaving the heater 40.
  • the bypass XY pipe (by-pass) of the heater 50 is provided with a throttle 27 ensuring the good distribution of the water flows between them. In installations where all the feed water flow passes through 50, 27 is a normally closed valve.
  • the variant of FIG. 4 has already been described in French patent No. 1,153,029 by Mr. P. J. Ricard, already cited.
  • the partial flow of water to be heated comes from the condensation zone 12 of the heater 30 and is reinjected into the water conduit downstream of the heater 40 or at the outlet of the desuperheating zone 11 of this heater 40.
  • the partial flow can vary in this embodiment from 3 to 25% of the total flow of the water to be heated.
  • Heaters 30 and 50 also require more space in the engine room and more connecting piping.
  • the dimensions of the exchanger 50 with bent U or W tubes are such that it is not economically conceivable to integrate the exchanger 50 into the heater 30.
  • FIG. 4 has probably never received any practical application because the thermal data relating to the heater 50 'lead to very large dimensions with long lengths of tubes and therefore to an investment cost that is too high, not offset by reduced energy consumption costs.
  • the integration of 50 'into the heater 30 is even less conceivable here than for FIG. 3.
  • the object of the present invention is to be able to reintegrate the exchanger 50 or 50 ′ into the heater 30 while maintaining arrangements and thermodynamic characteristics comparable to the solutions of FIGS. 3 and 4.
  • FIGS. 5 to 7. A first heat exchange cycle according to the invention is shown in FIGS. 5 to 7. This cycle corresponds to the embodiment shown in FIG. 3.
  • It comprises a heater 60 produced using two separate bundles of tubes.
  • a first bundle of tubes 29 is similar to the bundle of tubes bent in a U or W shape of the conventional heater 10, while the second bundle of tubes 39 specific to the desuperheating zone 11 is of the spiral type.
  • the steam enters the heater 60, laterally through the pipe 16.
  • a partial flow of the heated food water in the desuperheating zone of a conventional heater 40 placed downstream of the modified heater enters through a lateral manifold 41 on which the spiral or helix tubes 39 are connected, the connection points of which are shown schematically in FIG. 7 and designated at 42.
  • the tubes 39 are wound around a central drum 43.
  • the food water thus heated in the spiral tubes 39 passes through an outlet manifold 44, the connections of the tubes 39 to the reader neck shown diagrammatically in FIG. 7 being designated 45. This food water is sent downstream from the point where it was drawn off at the outlet of the heater classic 40.
  • the tubes are bent in superimposed layers and alternately oriented clockwise and anti-clockwise to prevent the gas from spinning up.
  • a second heat exchange cycle according to the invention is shown in Figures 8 and 9. This cycle corresponds to the embodiment shown in Figure 4.
  • It comprises a heater 80 also produced using two separate bundles of tubes, namely a first bundle of tubes 29 of the conventional bent type, in U or W shape, and a second bundle of tubes 39 of the spiral type described above. above in connection with FIGS. 5 to 7.
  • the unmodified heater 40 receives in its sub-cooling zone 13 a portion of the water which leaves the condensation zone 12 of the modified heater above 80. The other part of this water passes into the desuperheating zone 11 which is here integrated into the heater 80 (whereas it is distinct from the heater 30 in FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Claims (5)

1. Vorwärmer für eine Einrichtung zur Umwandlung thermischer Energie in mechanische Energie mittels zumindest eines kondensierbaren, in einem thermodynamischen Kreislauf wärmetragenden Fluids, welche Einrichtung zumindest einen Kessel oder ein Siederohr, eine Turbine, einen Kondensor, eine Pumpe und einen Vorwärmer umfaßt, der eine Heißdampfkühlzone, eine Kondensationszone und eine Unterkühlungszone aufweist das kondensierbare Fluid, das ihn in flüssigem Zustand durchströmt, vorwärmt, und mit zwei unterschiedlichen Rohrbündeln (29, 39) versehen ist, die im Inneren einer Umhüllung des Vorwärmers (60, 80) angeordnet sind, wobei das eine Rohrbündel (29) das kondensierbare Fluid durch die Kondensation und die Unterkühlung des aus der Turbine entnommenen Dampfes des kondensierbaren Fluids, und das andere Rohrbündel (39) eine Teilmenge des kondensierbaren Fluids durch die Kühlung des überhitzten Dampfes vorwärmt, dadurch gekennzeichnet, dass das die Kühlung des überhitzten Dampfes (Heissdampfkühlzone (11)) bewirkende Rohrbündel (39) in Windungen angeordnet ist, und dass jedes Rohrbündel (29, 39) einen eigenen Eingang (E, 41) und einen eigenen Ausgang (5, 44) aufweist.
2. Vorwärmer nach Anspruch 1, wobei das kondensierbare Fluid Wasser ist, dadurch gekennzeichnet, daß der Ausgang (S) des Rohrbündels (29) der Unterkühlungszone (13) und der Kondensationszone (12) des Vorwärmers (60) mit dem Eingang eines nachgeschalteten, herkömmlichen Vorwärmers (40) verbunden ist, daß der Ausgang des nachgeschalteten Vorwärmers (40) einen mit dem Eingang (41) der Heißdampfkühlzone des gewundenen Bündels (39) des Vorwärmers (60) verbundene Entnahmestelle für eine Teilmenge des zum Kessel zuzuführenden Wassers aufweist, und daß der Ausgang (44) Der Heißdampfkühlzone des gewundenen Bündels (39) des Vorwärmers (60) mit dem Ausgang des nachgeschalteten Vorwärmers (40) an einer Stelle verbunden ist, die stromabwärts der vorgenannten Entnahmestelle liegt.
3. Vorwärmer nach Anspruch 1, wobei das kondensierbare Fluid Wasser ist, dadurch gekennzeichnet, daß der Ausgang (S) des Rohrbündels (29) der Unterkühlungszone (13) und der Kondensationszone (12) des Vorwärmers (80) einerseits mit der Heißdampfkühlzone des gewundenen Bündels (39) dieses Vorwärmers (80) verbunden ist, um eine Teilmenge vorzuwärmen, und andererseits mit dem Eingang eines dem Vorwärmer (80) nachgeschalteten, herkömmlichen Vorwärmers (40) verbunden ist, und daß der Ausgang der Heißdampfkühlzone des gewundenen Bündels (39) des Vorwärmers (80) mit dem Ausgang des nachgeschalteten Vorwärmers (40) verbunden ist.
4. Vorwärmer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die gewundenen Rohrbündel (39) in einer Wendel um eine Trommel (43) gewickelt sind, die sich in der Längsachse des Vorwärmers (60, 80) erstreckt und auf der Trommel einander überlagernde Schichten bilden, die wechselweise im Uhrzeigersinn und entgegen dem Uhrzeigersinn orientiert sind.
5. Vorwärmer nach einem der Ansprüche 1 bis 4, gekennzeichnet durch eine Rohrleitung (17), die das in der Unterkühlungszone (13) des nachgeschalteten Vorwärmers (40) entnommene Kondensat seiner Kondensierungszone (12) zuführt.
EP85870030A 1985-02-25 1985-02-25 Vorwärmer für Umwandlungsanlage von thermischer Energie Expired EP0192918B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT85870030T ATE43699T1 (de) 1985-02-25 1985-02-25 Vorwaermer fuer umwandlungsanlage von thermischer energie.
DE8585870030T DE3570737D1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant
EP85870030A EP0192918B1 (de) 1985-02-25 1985-02-25 Vorwärmer für Umwandlungsanlage von thermischer Energie
US06/798,631 US4635588A (en) 1985-02-25 1985-11-15 Heaters for thermal energy transformation installations
ZA858815A ZA858815B (en) 1985-02-25 1985-11-18 Heaters for thermal energy transformation installations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85870030A EP0192918B1 (de) 1985-02-25 1985-02-25 Vorwärmer für Umwandlungsanlage von thermischer Energie

Publications (2)

Publication Number Publication Date
EP0192918A1 EP0192918A1 (de) 1986-09-03
EP0192918B1 true EP0192918B1 (de) 1989-05-31

Family

ID=8194732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85870030A Expired EP0192918B1 (de) 1985-02-25 1985-02-25 Vorwärmer für Umwandlungsanlage von thermischer Energie

Country Status (5)

Country Link
US (1) US4635588A (de)
EP (1) EP0192918B1 (de)
AT (1) ATE43699T1 (de)
DE (1) DE3570737D1 (de)
ZA (1) ZA858815B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377489A (en) * 1991-05-09 1995-01-03 Westinghouse Electric Corporation Internal moisture separation cycle for a low pressure turbine
US5626102A (en) * 1996-03-14 1997-05-06 Nir; Ari Heat recovery system for a boiler and a boiler provided therewith
WO2007078269A2 (en) * 2005-12-15 2007-07-12 Ineos Usa Llc Power recovery process
GB2478569A (en) * 2010-03-10 2011-09-14 Spirax Sarco Ltd Energy recovery unit with flash steam and condensate heat exchangers

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE157699C (de) *
US1936284A (en) * 1931-03-16 1933-11-21 Universal Oil Prod Co Coil for fluid heating furnaces
US2643519A (en) * 1949-03-02 1953-06-30 Richard C Powell Regenerative steam power plant in which an extraction turbine supplies steam to desuperheaters which serve to heat feed water
US2640687A (en) * 1950-06-16 1953-06-02 Petro Chem Process Company Inc Flow arrangement for multipass heaters
FR1054671A (fr) * 1951-07-26 1954-02-12 Balcke Ag Maschbau Réchauffeur à haute pression et réfrigérateur d'eau condensée combinés
US2921441A (en) * 1953-12-17 1960-01-19 Sulzer Ag Feed water preheating system for steam power plants
DE1119874B (de) * 1956-06-11 1961-12-21 Dr Jaroslav Nekolny Verfahren und Einrichtung zur mehrstufigen Speisewasservorwaermung mittels aus verschiedenen Stufen der Dampfturbine einer Dampfkraftanlage entnommenen Anzapfdampfes
FR1153029A (fr) * 1956-06-30 1958-02-28 Creusot Forges Ateliers Installation de turbine à vapeur dans laquelle des soutirages d'eau condensée sont réchauffés par la chaleur de surchauffe des soutirages de vapeur
US3032999A (en) * 1959-02-13 1962-05-08 Babcock & Wilcox Ltd Steam turbine power plants
FR1248874A (fr) * 1959-02-23 1960-12-23 Nuclear Power Plant Co Ltd échangeur de chaleur
FR1509175A (fr) * 1966-11-30 1968-01-12 Technoimpex Magyar Gepipari Ku Echangeur de chaleur à flux turbulent
GB1173896A (en) * 1966-12-09 1969-12-10 Steinmueller Gmbh L & C Regenerative Feedwater Heating
FR1523810A (fr) * 1967-05-19 1968-05-03 Richmond Engineering Company échangeur thermique
DE1576991A1 (de) * 1967-07-17 1970-07-02 Atlas Mak Maschb Gmbh Speisewasser-Vorwaermanlage mit Erhitzung
DE1912341C3 (de) * 1969-03-11 1980-03-13 Linde Ag, 6200 Wiesbaden Wärmetauscher mit schraubenförmig gewickelten Rohrlagen und Verfahren zu seiner Herstellung
BE755566A (fr) * 1969-09-03 1971-02-15 Ostro John D B Echangeur de chaleur
DE1948914A1 (de) * 1969-09-27 1971-04-15 Kraftwerk Union Ag Muehlheim Dampfkraftanlage mit dampftbeheizten Regenerativ-Vorwaermern
US4073267A (en) * 1975-10-03 1978-02-14 General Atomic Company Vapor generator
EP0032641B1 (de) * 1980-01-18 1986-09-10 Hamon-Sobelco S.A. System zur Wiedererwärmung für eine Dampfturbinenkraftanlage
DE3301338A1 (de) * 1983-01-17 1984-07-19 Linde Ag, 6200 Wiesbaden Speisewasservorwaermer

Also Published As

Publication number Publication date
ZA858815B (en) 1986-07-30
ATE43699T1 (de) 1989-06-15
US4635588A (en) 1987-01-13
DE3570737D1 (en) 1989-07-06
EP0192918A1 (de) 1986-09-03

Similar Documents

Publication Publication Date Title
EP2955460B1 (de) Wärmeenergieerzeugungssystem sowie verfahren
US20110083619A1 (en) Dual enhanced tube for vapor generator
CN101275785A (zh) 塔式太阳能热发电用高温热管中心接收器
EP0147304B1 (de) Natrium-Wasser-Dampferzeuger mit geraden konzentrischen Rohren und Gaszirkulation in dem ringförmigen Raum
EP0192918B1 (de) Vorwärmer für Umwandlungsanlage von thermischer Energie
MXPA05003380A (es) Evaporador de proceso directo para generador de vapor.
EP2873916B1 (de) Verfahren und Vorrichtung zur Verhinderung einer Austrocknung in einem Heizkessel eines solarthermischen Kraftwerks vom Typ Turm
FR2514879A1 (fr) Echangeur de chaleur pour un gaz charge en poussiere
FR2514475A1 (fr) Chaudiere de petite puissance pour installations de chauffage
FR2522113A1 (fr) Chaudiere de recuperation
Brady Design aspects of once through systems for heat recovery steam generators for base load and cyclic operation
FR2496246A1 (fr) Echangeur de chaleur a dispositif de nettoyage des surfaces susceptibles d'encrassement au contact d'un liquide epais
CN220892198U (zh) 一种双锅筒倾斜式余热锅炉及其供热系统
CN2207559Y (zh) 异型传热管
CN217764626U (zh) 一种锅炉排污余热利用系统
RU2360181C1 (ru) Подогреватель высокого давления системы регенерации паровой турбины
RU2775748C1 (ru) Пароперегреватель турбоустановки
SU320672A1 (ru) Подогреватель высокого давления
SU1650926A1 (ru) Система дл подогрева сетевой и питательной воды
KR200167978Y1 (ko) 복합형 폐열회수 증기발생기
SU1254179A1 (ru) Энергетическа установка
JPS6086394A (ja) 熱交換器
SU1671910A1 (ru) Паротурбинна установка
SU1746125A1 (ru) Устройство дл перегрева пара
JPS58200995A (ja) 凝縮伝熱管

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860927

17Q First examination report despatched

Effective date: 19870924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890531

Ref country code: SE

Effective date: 19890531

Ref country code: GB

Effective date: 19890531

Ref country code: AT

Effective date: 19890531

Ref country code: NL

Effective date: 19890531

REF Corresponds to:

Ref document number: 43699

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3570737

Country of ref document: DE

Date of ref document: 19890706

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900228

Ref country code: LI

Effective date: 19900228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910312

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920228

BERE Be: lapsed

Owner name: S.A. HAMON-SOBELCO

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103