EP0192918B1 - Preheater for a thermal-energy transformation plant - Google Patents

Preheater for a thermal-energy transformation plant Download PDF

Info

Publication number
EP0192918B1
EP0192918B1 EP85870030A EP85870030A EP0192918B1 EP 0192918 B1 EP0192918 B1 EP 0192918B1 EP 85870030 A EP85870030 A EP 85870030A EP 85870030 A EP85870030 A EP 85870030A EP 0192918 B1 EP0192918 B1 EP 0192918B1
Authority
EP
European Patent Office
Prior art keywords
heater
zone
desuperheating
outlet
tube nest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85870030A
Other languages
German (de)
French (fr)
Other versions
EP0192918A1 (en
Inventor
Jules Fernand René Ledoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to AT85870030T priority Critical patent/ATE43699T1/en
Priority to EP85870030A priority patent/EP0192918B1/en
Priority to DE8585870030T priority patent/DE3570737D1/en
Priority to US06/798,631 priority patent/US4635588A/en
Priority to ZA858815A priority patent/ZA858815B/en
Publication of EP0192918A1 publication Critical patent/EP0192918A1/en
Application granted granted Critical
Publication of EP0192918B1 publication Critical patent/EP0192918B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/42Use of desuperheaters for feed-water heating

Definitions

  • the present invention relates to heaters applicable in installations for converting thermal energy into mechanical energy.
  • thermodynanic cycles Use at least one condensable fluid performing a thermodynanic cycle.
  • These are in particular thermal, fossil fuel or nuclear power plants.
  • condensable fluid generally means water or optionally ammonia or else any fluid occurring in the vapor phase and in the liquid phase during the various values of the pressure / temperature couple of the thermodynamic cycle.
  • the invention relates to heaters with two separate bundles, one of which heats the circulating water by condensation and sub-cooling, and the other heats a partial flow of this water by the desuperheating of the steam. .
  • Such a heater is for example described in document FR-A-1 153 029, according to which the two bundles of tubes are located inside the same heater jacket.
  • the invention aims to achieve heating with the maximum efficiency and the minimum possible size.
  • the invention is embodied as described in claim 1.
  • the bundle of tubes performing the desuperheating of the condensable fluid vapor is arranged in a spiral and each bundle of tubes has its own inlet and outlet.
  • FIG. 1 we have shown a cascade of two heaters 10,20 of a conventional cycle of transformation of thermal energy into mechanical energy.
  • Each heater is divided into three zones: the desuperheating zone 11, the condensation zone 12 and the sub-cooling zone 13.
  • the water to be heated which is the food water for the cycle, enters via the line 14 (thick line). ) in the sub-cooling zone 13 and then passes into the condensation zone 12, before crossing the desuperheating zone 11 and leaving at 15 by a pipe which can be connected to the inlet of the following heater 20.
  • the vapor enters via 16 (dotted line) in the desuperheating zone 11 and then passes into the condensation zone 12 where all the vapor is transformed into condensate.
  • This condensate is mixed with the condensate withdrawn through line 17 from the sub-cooling zone 13 of the adjacent heater 20 and is then sent to its own sub-cooling zone 13 before being in turn withdrawn through line 18 to an adjacent heater located upstream.
  • FIG. 2 is a more detailed sectional view of the conventional heater 10, showing at E the inlet manifold of the water to be heated and at 5 the outlet manifold of the water.
  • the water passes through a set of heat exchange tubes 19 generally forming a bundle of tubes bent in a U or in a triple U (said to be in W) and arranged in several layers.
  • a first section of this bundle of tubes 19 is connected to the inlet manifold E and is located in a box 21 which delimits the sub-cooling zone 13 filled with condensate 22 and which is provided with a condensate outlet 18.
  • a second section of the tubes 19 ′ is located in the condensation zone 12 filled with steam coming from the box 23 which delimits the desuperheating zone 11, in which is located the outlet manifold S of the water connected to the third section of tubes 19 ".
  • On this box 23 is connected the steam inlet pipe 16.
  • the whole of the heater 10 is generally mounted in a cylindrical shell 24 closed at the ends by domed bottoms 25.
  • the exchanger 50 constituting the desuperheating zone 11 is separated from the heater 30 and recovers the heat from the steam which it desuperheats at a higher temperature level.
  • it generally deals only part of the total flow of warm water, at least 30 0/0; 50% is a usual value.
  • the heaters 30, 40 and 50 are of conventional design, consisting of curved tubes connected either to a water box via a tube plate, or to two collectors, an inlet and an outlet as shown in FIG. 2.
  • the heater 30 only has the sub-zone cooling 13 and the condensation zone 12. This condensation zone 12 receives steam coming through 26 from the exchanger 50, as well as the condensate coming through 17 from the sub-cooling zone of the adjacent heater 40.
  • the exchanger 50 receives steam withdrawn at 16 and heats in its desuperheating zone 11 part of the flow of food water leaving the heater 40.
  • the bypass XY pipe (by-pass) of the heater 50 is provided with a throttle 27 ensuring the good distribution of the water flows between them. In installations where all the feed water flow passes through 50, 27 is a normally closed valve.
  • the variant of FIG. 4 has already been described in French patent No. 1,153,029 by Mr. P. J. Ricard, already cited.
  • the partial flow of water to be heated comes from the condensation zone 12 of the heater 30 and is reinjected into the water conduit downstream of the heater 40 or at the outlet of the desuperheating zone 11 of this heater 40.
  • the partial flow can vary in this embodiment from 3 to 25% of the total flow of the water to be heated.
  • Heaters 30 and 50 also require more space in the engine room and more connecting piping.
  • the dimensions of the exchanger 50 with bent U or W tubes are such that it is not economically conceivable to integrate the exchanger 50 into the heater 30.
  • FIG. 4 has probably never received any practical application because the thermal data relating to the heater 50 'lead to very large dimensions with long lengths of tubes and therefore to an investment cost that is too high, not offset by reduced energy consumption costs.
  • the integration of 50 'into the heater 30 is even less conceivable here than for FIG. 3.
  • the object of the present invention is to be able to reintegrate the exchanger 50 or 50 ′ into the heater 30 while maintaining arrangements and thermodynamic characteristics comparable to the solutions of FIGS. 3 and 4.
  • FIGS. 5 to 7. A first heat exchange cycle according to the invention is shown in FIGS. 5 to 7. This cycle corresponds to the embodiment shown in FIG. 3.
  • It comprises a heater 60 produced using two separate bundles of tubes.
  • a first bundle of tubes 29 is similar to the bundle of tubes bent in a U or W shape of the conventional heater 10, while the second bundle of tubes 39 specific to the desuperheating zone 11 is of the spiral type.
  • the steam enters the heater 60, laterally through the pipe 16.
  • a partial flow of the heated food water in the desuperheating zone of a conventional heater 40 placed downstream of the modified heater enters through a lateral manifold 41 on which the spiral or helix tubes 39 are connected, the connection points of which are shown schematically in FIG. 7 and designated at 42.
  • the tubes 39 are wound around a central drum 43.
  • the food water thus heated in the spiral tubes 39 passes through an outlet manifold 44, the connections of the tubes 39 to the reader neck shown diagrammatically in FIG. 7 being designated 45. This food water is sent downstream from the point where it was drawn off at the outlet of the heater classic 40.
  • the tubes are bent in superimposed layers and alternately oriented clockwise and anti-clockwise to prevent the gas from spinning up.
  • a second heat exchange cycle according to the invention is shown in Figures 8 and 9. This cycle corresponds to the embodiment shown in Figure 4.
  • It comprises a heater 80 also produced using two separate bundles of tubes, namely a first bundle of tubes 29 of the conventional bent type, in U or W shape, and a second bundle of tubes 39 of the spiral type described above. above in connection with FIGS. 5 to 7.
  • the unmodified heater 40 receives in its sub-cooling zone 13 a portion of the water which leaves the condensation zone 12 of the modified heater above 80. The other part of this water passes into the desuperheating zone 11 which is here integrated into the heater 80 (whereas it is distinct from the heater 30 in FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A heater comprising two separate tube nests of which one (29) heats the circulating water by condensation and supercooling and the other (39) heats a partial flow of this water by the desuperheating of steam. Steam is admitted through pipe (16). The foregoing partial flow of water comes from the desuperheating zone of a heater located downstream and is admitted through a manifold (41). Pipes (39) are wound round a central drum (43).

Description

La présente invention concerne les réchauffeurs applicables dans les installations de transformation d'énergie thermique en énergie mécanique.The present invention relates to heaters applicable in installations for converting thermal energy into mechanical energy.

De telles installations mettent en oeuvre au moins un fluide condensable effectuant un cycle thermodynanique. Ce sont en particulier les centrales électriques thermiques, à combustible fossile ou nucléaire.Such installations use at least one condensable fluid performing a thermodynanic cycle. These are in particular thermal, fossil fuel or nuclear power plants.

Par fluide condensable on entend généralement l'eau ou éventuellement l'ammoniac ou encore un quelconque fluide se présentant en phase vapeur et en phase liquide au cours des diverses valeurs du couple pression/température du cycle thermodynamique.The term “condensable fluid” generally means water or optionally ammonia or else any fluid occurring in the vapor phase and in the liquid phase during the various values of the pressure / temperature couple of the thermodynamic cycle.

Plus particulièrement, l'invention se rapporte aux réchauffeurs à deux faisceaux distincts dont l'un réchauffe l'eau en circulation par la condensation et le sous-refroidissement, et l'autre réchauffe un débit partiel de cette eau par la désurchauffe de la vapeur.More particularly, the invention relates to heaters with two separate bundles, one of which heats the circulating water by condensation and sub-cooling, and the other heats a partial flow of this water by the desuperheating of the steam. .

Un tel réchauffeur est par exemple décrit dans le document FR-A-1 153 029, selon lequel les deux faisceaux de tubes se trouvent à l'intérieur d'une même enveloppe de réchauffeur.Such a heater is for example described in document FR-A-1 153 029, according to which the two bundles of tubes are located inside the same heater jacket.

L'invention vise à réaliser le réchauffage avec le maximum d'efficacité et le minimum d'encombrement possibles. L'invention est réalisée vomme décrit dans la revendication 1. A cet effet, le faisceau de tubes effectuant la désurchauffe de la vapeur de fluide condensable est disposé en spirale et chaque faisceau de tubes a une entrée et une sortie propres.The invention aims to achieve heating with the maximum efficiency and the minimum possible size. The invention is embodied as described in claim 1. For this purpose, the bundle of tubes performing the desuperheating of the condensable fluid vapor is arranged in a spiral and each bundle of tubes has its own inlet and outlet.

D'autres caractéristiques de l'invention se trouvent exposées dans les revendications dépendantes.Other features of the invention are set out in the dependent claims.

Ces caractéristiques sont maintenant décrites en se référant aux dessins ci-annexés dans lesquels:

  • les figures 1, 3 et 4 représentent schématiquement des parties d'installations de réchauffage connues,
  • la figure 2 illustre schématiquement en coupe longitudinale un réchauffeur conventionnel,
  • les figures 5 et 8 représentent schématiquement des parties d'installation de réchauffage selon l'invention et
  • les figures 6, 7 et 9 illustrent schématiquement en coupe longitudinale un réchauffeur selon l'invention sous deux formes, l'une représentée sur les figures 6 et 7 et l'autre sur la figure g.
These characteristics are now described with reference to the attached drawings in which:
  • FIGS. 1, 3 and 4 schematically represent parts of known heating installations,
  • FIG. 2 schematically illustrates in longitudinal section a conventional heater,
  • FIGS. 5 and 8 schematically represent parts of a heating installation according to the invention and
  • Figures 6, 7 and 9 schematically illustrate in longitudinal section a heater according to the invention in two forms, one shown in Figures 6 and 7 and the other in Figure g.

Sur la figure 1 on a montré une cascade de deux réchauffeurs 10,20 d'un cycle classique de transformation d'énergie thermique en énergie mécanique. Chaque réchauffeur est compartimenté en trois zones la zone de désurchauffe 11, la zone de condensation 12 et la zone de sous-refroidissement 13. L'eau à réchauffer, qui est l'eau alimentaire du cycle, entre par la canalisation 14 (trait épais) dans la zone de sous-refroidissement 13 et passe ensuite dans la zone de condensation 12, avant de traverser la zone de désurchauffe 11 et de sortir en 15 par une canalisation qui peut être raccordée à l'entrée du réchauffeur 20 suivant.In Figure 1 we have shown a cascade of two heaters 10,20 of a conventional cycle of transformation of thermal energy into mechanical energy. Each heater is divided into three zones: the desuperheating zone 11, the condensation zone 12 and the sub-cooling zone 13. The water to be heated, which is the food water for the cycle, enters via the line 14 (thick line). ) in the sub-cooling zone 13 and then passes into the condensation zone 12, before crossing the desuperheating zone 11 and leaving at 15 by a pipe which can be connected to the inlet of the following heater 20.

La vapeur entre par 16 (trait pointillé) dans la zone de désurchauffe 11 et passe ensuite dans la zone de condensation 12 où toute la vapeur est transformée en condensat. Ce condensat est mélangé avec le condensat soutiré par la canalisation 17 de la zone de sous-refroidissement 13 du réchauffeur adjacent 20 et est ensuite envoyé dans sa propre zone de sous-refroidissement 13 avant d'être soutiré à son tour par la canalisation 18 vers un réchaufeur adjacent situé en amont.The vapor enters via 16 (dotted line) in the desuperheating zone 11 and then passes into the condensation zone 12 where all the vapor is transformed into condensate. This condensate is mixed with the condensate withdrawn through line 17 from the sub-cooling zone 13 of the adjacent heater 20 and is then sent to its own sub-cooling zone 13 before being in turn withdrawn through line 18 to an adjacent heater located upstream.

La figure 2 est une vue en coupe plus détaillée du réchauffeur classique 10, montrant en E le collecteur d'entrée de l'eau à réchauffer et en 5 le collecteur de sortie de l'eau.Figure 2 is a more detailed sectional view of the conventional heater 10, showing at E the inlet manifold of the water to be heated and at 5 the outlet manifold of the water.

Entre ces deux collecteurs l'eau passe dans un ensemble de tubes 19 d'échange thermique formant généralement un faisceau de tubes cintrés en U ou en triple U (dit en W) et disposé en plusieurs nappes.Between these two collectors, the water passes through a set of heat exchange tubes 19 generally forming a bundle of tubes bent in a U or in a triple U (said to be in W) and arranged in several layers.

Un premier tronçon de ce faisceau de tubes 19 est relié au collecteur d'entrée E et est situé dans un caisson 21 qui délimite la zone de sous-refroidissement 13 remplie de condensat 22 et qui est muni d'une sortie de condensat 18.A first section of this bundle of tubes 19 is connected to the inlet manifold E and is located in a box 21 which delimits the sub-cooling zone 13 filled with condensate 22 and which is provided with a condensate outlet 18.

Un second tronçon des tubes 19' est situé dans la zone de condensation 12 remplie de vapeur provenant du caisson 23 qui délimite la zone de désurchauffe 11, dans lequel est situé le collecteur de sortie S de l'eau relié au troisième tronçon de tubes 19". Sur ce caisson 23 est raccordée la tubulure d'entrée de vapeur 16.A second section of the tubes 19 ′ is located in the condensation zone 12 filled with steam coming from the box 23 which delimits the desuperheating zone 11, in which is located the outlet manifold S of the water connected to the third section of tubes 19 ". On this box 23 is connected the steam inlet pipe 16.

L'ensemble du réchauffeur 10 est généralement monté dans une virole 24 cylindrique fermée aux extrémités par des fonds bombés 25.The whole of the heater 10 is generally mounted in a cylindrical shell 24 closed at the ends by domed bottoms 25.

Des installations complètes de réchauffage classiques sont notamment décrites et représentées (figure 1 et 3) dans le brevet EP-A-0 032 641 au nom de la demanderesse.Complete conventional heating systems are in particular described and represented (FIGS. 1 and 3) in patent EP-A-0 032 641 in the name of the applicant.

Afin d'améliorer ce cycle classique, du point de vue thermodynamique et pour obtenir un meilleur rendement de la conversion thermique, on a déjà proposé des cycles ou circuits tels que représentés aux figures 3 et 4.In order to improve this conventional cycle, from the thermodynamic point of view and in order to obtain a better efficiency of the thermal conversion, cycles or circuits have already been proposed as shown in FIGS. 3 and 4.

En effet, on peut remarquer sur ces circuits que l'échangeur 50 constituant la zone de désurchauffe 11 est séparé du réchauffeur 30 et récupère la chaleur de la vapeur qu'il désurchauffe à un niveau de température plus élevé. D'autre part, il ne traite généralement qu'une partie du débit total de l'eau réchauffer, au moins 30 0 /0; 50 % est une valeur usuelle.Indeed, it can be noted on these circuits that the exchanger 50 constituting the desuperheating zone 11 is separated from the heater 30 and recovers the heat from the steam which it desuperheats at a higher temperature level. On the other hand, it generally deals only part of the total flow of warm water, at least 30 0/0; 50% is a usual value.

La variante de la figure 3 a déjà été appliquée à des centrales électriques; les réchauffeurs 30,40 et 50 sont de conception classique, constitués de tubes cintrés raccordés soit à une boîte à eau par l'intermédiaire d'une plaque à tubes, soit à deux collecteurs, un d'entrée et un de sortie comme représenté sur la figure 2. Par contre, le réchauffeur 30 ne comporte que la zone de sous-refroidissement 13 et la zone de condensation 12. Cette zone de condensation 12 reçoit de la vapeur provenant par 26 de l'échangeur 50, ainsi que le condensat provenant par 17 de la zone de sous-refroidissement du réchauffeur 40 adjacent.The variant of Figure 3 has already been applied to power plants; the heaters 30, 40 and 50 are of conventional design, consisting of curved tubes connected either to a water box via a tube plate, or to two collectors, an inlet and an outlet as shown in FIG. 2. On the other hand, the heater 30 only has the sub-zone cooling 13 and the condensation zone 12. This condensation zone 12 receives steam coming through 26 from the exchanger 50, as well as the condensate coming through 17 from the sub-cooling zone of the adjacent heater 40.

L'échangeur 50 reçoit de la vapeur soutirée en 16 et réchauffe dans sa zone de désurchauffe 11 une partie du débit d'eau alimentaire sortant du réchauffeur 40. La canalisation XY de contournement (by-pass) du réchauffeur 50 est pourvue d'un étranglement 27 assurant la bonne répartition des débits d'eau entre eux. Dans les installations où tout le débit d'eau alimentaire passe dans 50, 27 est une vanne normalement fermée.The exchanger 50 receives steam withdrawn at 16 and heats in its desuperheating zone 11 part of the flow of food water leaving the heater 40. The bypass XY pipe (by-pass) of the heater 50 is provided with a throttle 27 ensuring the good distribution of the water flows between them. In installations where all the feed water flow passes through 50, 27 is a normally closed valve.

La variante de la figure 4 a déjà été décrite dans le brevet français N° 1 153 029 par Mr. P. J. Ricard, déjà cité. Dans cette réalisation-ci, le débit partiel de l'eau à réchauffer provient de la zone de condensation 12 du réchauffeur 30 et est réinjecté dans le conduit d'eau en aval du réchauffeur 40 ou à la sortie de la zone de désurchauffe 11 de ce réchauffeur 40. Le débit partiel peut varier dans cette réalisation de 3 à 25 % du débit total de l'eau à réchauffer.The variant of FIG. 4 has already been described in French patent No. 1,153,029 by Mr. P. J. Ricard, already cited. In this embodiment, the partial flow of water to be heated comes from the condensation zone 12 of the heater 30 and is reinjected into the water conduit downstream of the heater 40 or at the outlet of the desuperheating zone 11 of this heater 40. The partial flow can vary in this embodiment from 3 to 25% of the total flow of the water to be heated.

Le coût d'investissement de ces deux solutions est nettement plus important que celui de la solution classi que (figure 1); en effet, non seulement les surfaces d'échanges sont plus importantes que celles du réchauffeur 10, mais encore les viroles 24, les fonds bombés 25 et l'infrastructure sont beaucoup plus chers pour l'ensemble des réchauffeurs 30 et 50 que pour le réchauffeur 10.The investment cost of these two solutions is significantly higher than that of the conventional solution (Figure 1); indeed, not only are the exchange surfaces larger than those of the heater 10, but also the ferrules 24, the domed bottoms 25 and the infrastructure are much more expensive for all the heaters 30 and 50 than for the heater 10.

Les réchauffeurs 30 et 50 exigent aussi plus de place dans la salle des machines et plus de tuyauteries de liaison.Heaters 30 and 50 also require more space in the engine room and more connecting piping.

D'autre part, les dimensions de l'échangeur 50 avec des tubes cintrés en U ou en W sont telles qu'il n'est pas économiquement concevable d'intégrer l'échangeur 50 dans le réchauffeur 30.On the other hand, the dimensions of the exchanger 50 with bent U or W tubes are such that it is not economically conceivable to integrate the exchanger 50 into the heater 30.

La solution de la figure 4 n'a vraisemblablement jamais reçu d'application pratique parce que les données thermiques relatives au réchauffeur 50' conduisent à des dimensions très grandes avec des grandes longueurs de tubes et donc à un coût d'investissement trop élevé, non compensé par la réduction des coûts de consommation d'énergie. L'intégration de 50' dans le réchauffeur 30 est encore moins concevable ici que pour la figure 3.The solution of FIG. 4 has probably never received any practical application because the thermal data relating to the heater 50 'lead to very large dimensions with long lengths of tubes and therefore to an investment cost that is too high, not offset by reduced energy consumption costs. The integration of 50 'into the heater 30 is even less conceivable here than for FIG. 3.

Le but de la présente invention est de pouvoir réintégrer l'échangeur 50 ou 50' dans le réchauffeur 30 tout en maintenant des dispositions et des caractéristiques thermodynamiques comparable aux solutions des figures 3 et 4.The object of the present invention is to be able to reintegrate the exchanger 50 or 50 ′ into the heater 30 while maintaining arrangements and thermodynamic characteristics comparable to the solutions of FIGS. 3 and 4.

Un premier cycle d'échange thermique selon l'invention est montré aux figures 5 à 7. Ce cycle correspond à le réalisation représentée à la figure 3.A first heat exchange cycle according to the invention is shown in FIGS. 5 to 7. This cycle corresponds to the embodiment shown in FIG. 3.

Il comprend un réchauffeur 60 réalisé à l'aide de deux faisceaux de tubes distincts.It comprises a heater 60 produced using two separate bundles of tubes.

Un premier faisceau de tubes 29 est semblable au faisceau de tubes cintrés en U ou en W du réchauffeur classique 10, tandis que le deuxième faisceau de tubes 39 propre à la zone de désurchauffe 11 est du type spiralé.A first bundle of tubes 29 is similar to the bundle of tubes bent in a U or W shape of the conventional heater 10, while the second bundle of tubes 39 specific to the desuperheating zone 11 is of the spiral type.

La vapeur entre dans le réchauffeur 60, latéralement par la tubulure 16. D'autre part, un débit partiel de l'eau alimentaire réchauffée dans la zone de désurchauffe d'un réchauffeur classique 40 placé en aval du réchauffeur modifié entre par un collecteur latéral 41 sur lequel sont branchés les tubes en spirale ou hélice 39, dont les points de branchement sont représentés, schématiquement sur la figure 7 et désignés en 42. Les tubes 39 sont enroulés autour d'un tambour central 43. L'eau alimentaire ainsi réchauffée dans les tubes spiralés 39 passe dans un collecteur de sortie 44, les raccordements des tubes 39 au col lecteur représentés schématiquement sur la figure 7 étant désignés 45. Cette eau alimentaire est envoyée en aval du point où elle a été soutirée à la sortie du réchauffeur classique 40.The steam enters the heater 60, laterally through the pipe 16. On the other hand, a partial flow of the heated food water in the desuperheating zone of a conventional heater 40 placed downstream of the modified heater enters through a lateral manifold 41 on which the spiral or helix tubes 39 are connected, the connection points of which are shown schematically in FIG. 7 and designated at 42. The tubes 39 are wound around a central drum 43. The food water thus heated in the spiral tubes 39 passes through an outlet manifold 44, the connections of the tubes 39 to the reader neck shown diagrammatically in FIG. 7 being designated 45. This food water is sent downstream from the point where it was drawn off at the outlet of the heater classic 40.

La technique d'enroulement des tubes 39 en spirale autour du tambour ou noyau central 43 et le montage de l'ensemble dans la virole par l'entremise de plaque à tubes et d'entretoises est empruntée aux échangeurs thermiques à faisceaux spiralés utilisés dans l'industrie chimique et les réacteurs nucléaires.The technique of winding the tubes 39 in a spiral around the drum or central core 43 and the assembly of the assembly in the shell by means of tube plate and spacers is borrowed from the heat exchangers with spiral beams used in the chemical industry and nuclear reactors.

Cette technique est notamment décrite dans le brevet français 1 248 874 et les brevets allemands DE-B-1 912 341 et DE-A-3 301 338.This technique is described in particular in French patent 1,248,874 and German patents DE-B-1,912,341 and DE-A-3,301,338.

L'enroulement en spirale autour d'un tambour permet l'implantation de tubes très longs dans un encombrement relativement faible, et dans le cas présent la réintégration du désurchauffeur qui était séparé dans le schéma de la figure 3.The spiral winding around a drum allows the installation of very long tubes in a relatively small footprint, and in this case the reintegration of the desuperheater which was separated in the diagram of Figure 3.

Les tubes sont cintrés en nappes superposées et orientées alternativement dans les sens horlogique et antihorlogique pour éviter la mise en vitesse tourbillonnaire du gaz.The tubes are bent in superimposed layers and alternately oriented clockwise and anti-clockwise to prevent the gas from spinning up.

Un deuxième cycle d'échange thermique selon l'invention est montré aux figures 8 et 9. Ce cycle correspond à la réalisation représentée à la figure 4.A second heat exchange cycle according to the invention is shown in Figures 8 and 9. This cycle corresponds to the embodiment shown in Figure 4.

Il comprend un réchauffeur 80 également réalisé à l'aide de deux faisceaux de tubes distincts, à savoir un premier faisceau de tubes 29 de type classique cintré, en U ou en W, et un deuxième faisceau de tubes 39 du type spiralé décrit ci-dessus en relation avec les figures 5 à 7. Comme à la figure 4, le réchauffeur non modifié 40 reçoit dans sa zone de sous-refroidissement 13 une partie de l'eau qui sort de la zone de condensation 12 du réchauffeur modifié précèdent 80. L'autre partie de cette eau passe dans la zone de désurchauffe 11 qui est ici intégrée au réchauffeur 80 (alors qu'elle est distincte du réchauffeur 30 à la figure 4).It comprises a heater 80 also produced using two separate bundles of tubes, namely a first bundle of tubes 29 of the conventional bent type, in U or W shape, and a second bundle of tubes 39 of the spiral type described above. above in connection with FIGS. 5 to 7. As in FIG. 4, the unmodified heater 40 receives in its sub-cooling zone 13 a portion of the water which leaves the condensation zone 12 of the modified heater above 80. The other part of this water passes into the desuperheating zone 11 which is here integrated into the heater 80 (whereas it is distinct from the heater 30 in FIG. 4).

Comme à la figure 4, l'eau qui sort de cette zone de désurchauffe rejoint celle qui sort du réchauffeur non modifié 40, en aval de celui-ci.As in FIG. 4, the water which leaves this desuperheating zone joins that which leaves the unmodified heater 40, downstream of the latter.

Les réchauffeurs selon l'invention, tels qu'illustrés aux figures 5 à 9, offrent les avantages suivants:

  • - deux faisceaux indépendants: d'où la possibilité d'adapter les choix des matières, les épaisseurs, les diamètres de tubes aux conditions de service;
  • - indépendance des faisceaux: d'où souplesse en cas de réparation ou de remplacement. Une partie seulement de la surface d'échange est affectée, soit la zone de désurchauffe, soit celle de condensation et sous-refroidissement, lorsqu'un faisceau est hors-service.
  • - compacité de la solution: économie de place dans la salle des machines; économie de tuyauteries de liaison entre les appareils; économie de supports d'appareil et de tuyauteries; économie de virole et fonds bombés.
The heaters according to the invention, as illustrated in FIGS. 5 to 9, offer the following advantages:
  • - two independent beams: hence the possibility of adapting the choice of materials, thicknesses, diameters of tubes to service conditions;
  • - independence of the beams: hence flexibility in the event of repair or replacement. Only part of the exchange surface is affected, either the desuperheating zone, or that of condensation and sub-cooling, when a bundle is out of service.
  • - compactness of the solution: saving space in the engine room; saving of connecting pipes between devices; economy of apparatus supports and pipes; shell economy and domed bottoms.

Quoique la description ci-dessus soit illustrée par des réchauffeurs à collecteurs, l'invention se rapporte également à des réchauffeurs à plaques porte-tubes ("tubulaires").Although the above description is illustrated by manifold heaters, the invention also relates to heaters with tube-holder plates ("tubular").

Claims (5)

1. Heater for installation of transformation of thermal into mechanical energy by means of at least one condensable heat exchanging fluid making a thermodynamic cycle, this installation comprising at least one boiler or one heater tube, one turbine, one condenser, one pump and one heater comprising one desuperheating zone, one condensation zone and one supercooling zone, heating the condensable fluid which crosses it in the liquid state, this heater being of the two separate tube nests (29, 39) type mounted within a heater casing or vessel (60, 80), one tube nest (29) of which heats this condensable fluid by the condensation and the supercooling of the steam of the condensable fluid extracted at the turbine and the other tube nest (39) heats a part flow of this condensable fluid by the desuperheating of this steam, characterized in that the tube nest (39) undertaking the desuperheating of this steam (desuperheating zone 11) is spirally wound and that each tube nest (29, 39) has its own inlet (E, 41) and outlet (S, 44).
2. Heater according to claim 1, in which the condensable fluid is water, characterized in that the outlet (S) of the tube nest (29) of the supercooling zone (13) and condensation zone (12) of the heater (60) is connected to the inlet of a conventional heater (40) installed downstream, that the outlet of the downstream heater (40) has an extraction point of a part flow of the feed water connected to the inlet (41) of the desuperheating zone having the spirally wound tube nest (39) of the heater (60) and that the outlet (44) of the desuperheating zone having the spirally wound tube nest (39) of the heater (60) is connected to the outlet of the downstream heater (40) at a point below said extraction point.
3. Heater according to claim 1, in which the condensable fluid is water, characterized in that the outlet (S) of the tube nest (29) of the supercooling zone (13) and condensation zone (12) of the heater (80) is connected on the one hand to the desuperheating zone having the spirally wound tube nest (39) of said heater (80) to heat a part flow thereof and on the other hand to the inlet of a conventional heater (40) installed downstream of the heater (80) and that the outlet of the desuperheating zone having the spirally wound tube nest (39) of the heater (80) is connected to the outlet of the downstream heater (40).
4. Heater according to any of claims 1 to 3, characterized in that the tubes of the spirally wound nest (39) are spirally wound round a drum (43).which extends in the longitudinal axis of the heater (60, 80) so as to form superimposed layers from this drum and alternately pointing clockwise and anti-clockwise.
5. Heater according to any of claims 1 to 4, characterized by a pipe (17) feeding into its condensation zone (12) the condensates taken from the supercooling zone (13) of the downstream heater (40).
EP85870030A 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant Expired EP0192918B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT85870030T ATE43699T1 (en) 1985-02-25 1985-02-25 PREHEATER FOR THERMAL ENERGY CONVERSION PLANT.
EP85870030A EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant
DE8585870030T DE3570737D1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant
US06/798,631 US4635588A (en) 1985-02-25 1985-11-15 Heaters for thermal energy transformation installations
ZA858815A ZA858815B (en) 1985-02-25 1985-11-18 Heaters for thermal energy transformation installations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85870030A EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant

Publications (2)

Publication Number Publication Date
EP0192918A1 EP0192918A1 (en) 1986-09-03
EP0192918B1 true EP0192918B1 (en) 1989-05-31

Family

ID=8194732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85870030A Expired EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant

Country Status (5)

Country Link
US (1) US4635588A (en)
EP (1) EP0192918B1 (en)
AT (1) ATE43699T1 (en)
DE (1) DE3570737D1 (en)
ZA (1) ZA858815B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377489A (en) * 1991-05-09 1995-01-03 Westinghouse Electric Corporation Internal moisture separation cycle for a low pressure turbine
US5626102A (en) * 1996-03-14 1997-05-06 Nir; Ari Heat recovery system for a boiler and a boiler provided therewith
WO2007078269A2 (en) * 2005-12-15 2007-07-12 Ineos Usa Llc Power recovery process
GB2478569A (en) * 2010-03-10 2011-09-14 Spirax Sarco Ltd Energy recovery unit with flash steam and condensate heat exchangers

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE157699C (en) *
US1936284A (en) * 1931-03-16 1933-11-21 Universal Oil Prod Co Coil for fluid heating furnaces
US2643519A (en) * 1949-03-02 1953-06-30 Richard C Powell Regenerative steam power plant in which an extraction turbine supplies steam to desuperheaters which serve to heat feed water
US2640687A (en) * 1950-06-16 1953-06-02 Petro Chem Process Company Inc Flow arrangement for multipass heaters
FR1054671A (en) * 1951-07-26 1954-02-12 Balcke Ag Maschbau Combined high pressure heater and condensed water refrigerator
US2921441A (en) * 1953-12-17 1960-01-19 Sulzer Ag Feed water preheating system for steam power plants
DE1119874B (en) * 1956-06-11 1961-12-21 Dr Jaroslav Nekolny Method and device for multi-stage feed water preheating by means of bleed steam taken from different stages of the steam turbine of a steam power plant
FR1153029A (en) * 1956-06-30 1958-02-28 Creusot Forges Ateliers Steam turbine installation in which condensed water withdrawals are heated by the superheating heat of the steam withdrawals
US3032999A (en) * 1959-02-13 1962-05-08 Babcock & Wilcox Ltd Steam turbine power plants
FR1248874A (en) * 1959-02-23 1960-12-23 Nuclear Power Plant Co Ltd heat exchanger
FR1509175A (en) * 1966-11-30 1968-01-12 Technoimpex Magyar Gepipari Ku Turbulent flow heat exchanger
GB1173896A (en) * 1966-12-09 1969-12-10 Steinmueller Gmbh L & C Regenerative Feedwater Heating
FR1523810A (en) * 1967-05-19 1968-05-03 Richmond Engineering Company heat exchanger
DE1576991A1 (en) * 1967-07-17 1970-07-02 Atlas Mak Maschb Gmbh Feed water preheating system with heating
DE1912341C3 (en) * 1969-03-11 1980-03-13 Linde Ag, 6200 Wiesbaden Heat exchanger with helically wound pipe layers and process for its manufacture
BE755566A (en) * 1969-09-03 1971-02-15 Ostro John D B HEAT EXCHANGER
DE1948914A1 (en) * 1969-09-27 1971-04-15 Kraftwerk Union Ag Muehlheim Steam power plant with steam-heated regenerative preheaters
US4073267A (en) * 1975-10-03 1978-02-14 General Atomic Company Vapor generator
ATE22152T1 (en) * 1980-01-18 1986-09-15 Hamon Sobelco Sa REHEATING SYSTEM FOR A STEAM TURBINE POWER PLANT.
DE3301338A1 (en) * 1983-01-17 1984-07-19 Linde Ag, 6200 Wiesbaden Feed-water preheater

Also Published As

Publication number Publication date
EP0192918A1 (en) 1986-09-03
ZA858815B (en) 1986-07-30
ATE43699T1 (en) 1989-06-15
US4635588A (en) 1987-01-13
DE3570737D1 (en) 1989-07-06

Similar Documents

Publication Publication Date Title
EP2955460B1 (en) Heat power generating system and technique
US20110083619A1 (en) Dual enhanced tube for vapor generator
CN101275785A (en) High-temperature heat pipe center receiver for tower type solar thermal power generation
EP0147304B1 (en) Sodium-water steam generator with concentric straight tubes and gas circulation in the annular space
EP0192918B1 (en) Preheater for a thermal-energy transformation plant
MXPA05003380A (en) Once-through evaporator for a steam generator.
EP2873916B1 (en) Method and device for preventing the emptying of a boiler of a concentrating solar power plant with a tower
FR2514879A1 (en) HEAT EXCHANGER FOR A DUST-LOADED GAS
FR2514475A1 (en) Heat exchanger heating boiler - has axial heating coil with heat exchange disc between coils
FR2522113A1 (en) RECOVERY BOILER
Brady Design aspects of once through systems for heat recovery steam generators for base load and cyclic operation
FR2496246A1 (en) HEAT EXCHANGER WITH DEVICE FOR CLEANING SURFACES LIKELY TO FOULING IN CONTACT WITH A THICK LIQUID
CN220892198U (en) Double-drum inclined waste heat boiler and heat supply system thereof
CN217764626U (en) Boiler blowdown waste heat utilization system
RU2360181C1 (en) High-pressure heater of regeneration system of steam turbine
RU2775748C1 (en) Steam turbo plant
SU320672A1 (en) HIGH PRESSURE HEATER
SU1650926A1 (en) Heating system of mains and feed water
KR200167978Y1 (en) Complex heat recovery steam generator
SU1254179A1 (en) Power plant
JPS6086394A (en) Heat exchanger
SU1671910A1 (en) Steam-turbine plant
SU1746125A1 (en) Steam overheating device
JPS58200995A (en) Condensing heat transfer pipe
RU1801200C (en) Steam turbine condenser of deep-sea vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860927

17Q First examination report despatched

Effective date: 19870924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890531

Ref country code: SE

Effective date: 19890531

Ref country code: GB

Effective date: 19890531

Ref country code: AT

Effective date: 19890531

Ref country code: NL

Effective date: 19890531

REF Corresponds to:

Ref document number: 43699

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3570737

Country of ref document: DE

Date of ref document: 19890706

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900228

Ref country code: LI

Effective date: 19900228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910312

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920228

BERE Be: lapsed

Owner name: S.A. HAMON-SOBELCO

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103