EP0192918A1 - Preheater for a thermal-energy transformation plant - Google Patents

Preheater for a thermal-energy transformation plant Download PDF

Info

Publication number
EP0192918A1
EP0192918A1 EP85870030A EP85870030A EP0192918A1 EP 0192918 A1 EP0192918 A1 EP 0192918A1 EP 85870030 A EP85870030 A EP 85870030A EP 85870030 A EP85870030 A EP 85870030A EP 0192918 A1 EP0192918 A1 EP 0192918A1
Authority
EP
European Patent Office
Prior art keywords
heater
zone
desuperheating
water
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85870030A
Other languages
German (de)
French (fr)
Other versions
EP0192918B1 (en
Inventor
Jules Fernand René Ledoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to EP85870030A priority Critical patent/EP0192918B1/en
Priority to AT85870030T priority patent/ATE43699T1/en
Priority to DE8585870030T priority patent/DE3570737D1/en
Priority to US06/798,631 priority patent/US4635588A/en
Priority to ZA858815A priority patent/ZA858815B/en
Publication of EP0192918A1 publication Critical patent/EP0192918A1/en
Application granted granted Critical
Publication of EP0192918B1 publication Critical patent/EP0192918B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/42Use of desuperheaters for feed-water heating

Definitions

  • the present invention relates to heaters c ables applied in processing facilities thermal energy into mechanical energy.
  • Such installations use at least one condensable fluid performing a thermodynamic cycle.
  • These are in particular thermal, fossil fuel or nuclear power plants.
  • condensable fluid generally means water or optionally ammonia or else any fluid occurring in the vapor phase and in the liquid phase during the various values of the pressure / temperature couple of the thermodynamic cycle.
  • the invention relates to heaters in two separate beams, one of which réchauf- f e circulating water by condensation and subcooling, and the other heats a part flow of this water by the desuperheating steam.
  • the invention aims to achieve heating with the maximum efficiency and the minimum possible size.
  • FIGS. 1, 3 and 4 schematically represent parts of known heating installations
  • FIG. 2 schematically illustrates in longitudinal section a conventional heater
  • FIGS. 5 and 8 schematically represent parts of a heating installation according to the invention.
  • FIGS 6, 7 and 9 schematically illustrate in longitudinal section a heater according to the invention in two forms, one shown in Figures 6 and 7 and the other in Figure 9.
  • FIG. 1 we have shown a cascade of two heaters 10,20 of a conventional cycle of transformation of thermal energy into mechanical energy.
  • Each heater is divided into three zones: the desuperheating zone 11, the condensation zone 12 and the sub-cooling zone 13.
  • the water to be heated which is the food water for the cycle, enters via the line 14 (line thick) in the sub-cooling zone 13 and then passes into the condensation zone 12, before passing through the desuperheating zone 11 and leaving at 15 by a pipe which can be connected to the inlet of the following heater 20.
  • the steam enters by -16 (dotted line) in the desuperheating zone 11 and then passes into the condensation zone 12 where all the steam is transformed into condensate.
  • This condensate is mixed with the condensate withdrawn through line 17 from the sub-cooling zone 13 of the adjacent heater 20 and is then sent to its own sub-cooling zone 13 before being in turn withdrawn through line 18 to an adjacent heater located upstream.
  • FIG. 2 is a more detailed sectional view of the conventional heater 10, showing at E the inlet manifold of the water to be heated and at S the outlet manifold of the water.
  • the water passes through a set of heat exchange tubes 19 generally forming a bundle of tubes bent in a U or in a triple U (said to be in W) and arranged in several layers.
  • a first section of this bundle of tubes 19 is connected to the inlet manifold E and is located in a box 21 which delimits the sub-cooling zone 13 filled with condensate 22 and which is provided with a condensate outlet 18.
  • a second section of the tubes 19 ′ is located in the condensation zone 12 filled with steam coming from the box 23 which delimits the desuperheating zone 11, in which is located the outlet manifold S of the water connected to the third section of tubes 19 ".
  • On this box 23 is connected the steam inlet pipe 16.
  • the whole of the heater 10 is generally mounted in a cylindrical shell 24 closed at the ends by domed bottoms 25.
  • the exchanger 50 constituting the desuperheating zone 11 is separated from the heater 30 and recovers the heat from the steam which it desuperheats at a higher temperature level.
  • it generally only processes part of the total flow rate of the water to be heated, at least 30%; 50% is a usual value.
  • the heaters 30, 40 and 50 are of conventional design, consisting of curved tubes connected either to a water box via a tube plate, or to two collectors, one inlet and one outlet as shown in FIG. 2.
  • the heater 30 only has the sub-cooling zone 13 and the condensation zone 12. This condensation zone 12 receives steam coming through 26 from the exchanger 50, as well as the condensate coming par 17 of the sub-cooling zone of the adjacent heater 40.
  • the exchanger 50 receives steam withdrawn at 16 and heats in its desuperheating zone 11 part of the flow of food water leaving the heater 40.
  • the bypass XY pipe (by-pass) of the heater 50 is provided with a throttle 27 ensuring the good distribution of the water flows between them. In installations where all the feed water flow passes through 50, 27 is a normally closed valve.
  • FIG. 4 has already been described in French patent No. 1,153,029 by Mr. P. J. Ricard.
  • the partial flow of water to be heated comes from the condensation zone 12 of the heater 30 and is reinjected into the water conduit downstream of the heater 40 or at the outlet of the desuperheating zone 11 of
  • the partial flow can vary in this embodiment from 3 to 25% of the total flow of the water to be heated. ''
  • Heaters 30 and 50 also require more space in the engine room and more connecting piping.
  • the dimensions of the exchanger 50 with bent U or W tubes are such that it is not economically conceivable to integrate the exchanger 50 into the heater 30.
  • the object of the present invention is to be able to reintegrate the exchanger 50 or 50 'into the heater 30 while maintaining thermodynamic arrangements and characteristics comparable to the solutions of Figures 3 and 4.
  • FIGS. 5 to 7. A first heat exchange cycle according to the invention is shown in FIGS. 5 to 7. This cycle corresponds to the embodiment shown in FIG. 3.
  • It comprises a heater 60 produced using two separate bundles of tubes.
  • a first bundle of tubes 29 is similar to the bundle of tubes bent in a U or W shape of the conventional heater 10, while the second bundle of tubes 39 specific to the desuperheating zone 11 is of the spiral type.
  • the tubes are bent in superimposed layers and orien - FOA alternately in the clockwise and anti - clockwise to prevent the carrying speed vortex gas.
  • a second heat exchange cycle according to the invention is shown in Figures 8 and 9. This cycle corresponds to the embodiment shown in Figure 4.
  • a heater 80 also carried out using two beams of separate tubes, namely a first tube bundle 29 of conventional type cin- t D, U or W, and a second tube bundle 39 of the spiral-type described above in relation to FIGS. 5 to 7.
  • the unmodified heater 40 receives in its sub-cooling zone 13 part of the water which leaves the condensation zone 12 of the modified heater previous 80. The other part of this water passes into the desuperheating zone 11 which is here integrated into the heater 80 (whereas it is distinct from the heater 30 in FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Air Supply (AREA)

Abstract

Le réchauffeur comporte deux faisceaux de tubes distincts dont l'un (29) réchauffe l'eau en circulation par la condensation et le sous-refroidissement et l'autre (39) réchauffe un débit partiel de cette eau par la désurchauffe de la vapeur. La vapeur entre par la tubulure 16. Le débit d'eau partiel précité provient de la zone de désurchauffe d'un réchauffeur classique placé en aval et entre par un collecteur (41). Les tubes (39) sont enroulés autour d'un tambour central (43).The heater comprises two separate bundles of tubes, one of which (29) heats the water in circulation by condensation and sub-cooling and the other (39) heats a partial flow of this water by the desuperheating of the steam. Steam enters via the pipe 16. The aforementioned partial water flow comes from the desuperheating zone of a conventional heater placed downstream and enters through a collector (41). The tubes (39) are wound around a central drum (43).

Description

La présente invention concerne les réchauffeurs appli- cables dans les installations de transformation d'énergie thermique en énergie mécanique.The present invention relates to heaters c ables applied in processing facilities thermal energy into mechanical energy.

De telles installations mettent en oeuvre au moins un fluide condensable effectuant un cycle thermodynamique. Ce sont en particulier les centrales électriques thermiques, à combustible fossile ou nucléaire.Such installations use at least one condensable fluid performing a thermodynamic cycle. These are in particular thermal, fossil fuel or nuclear power plants.

Par fluide condensable on entend généralement l'eau ou éventuellement l'ammoniac ou encore un quelconque fluide se présentant en phase vapeur et en phase liquide au cours des diverses valeurs du couple pression / température du cycle thermodynamique.The term “condensable fluid” generally means water or optionally ammonia or else any fluid occurring in the vapor phase and in the liquid phase during the various values of the pressure / temperature couple of the thermodynamic cycle.

Plus particulièrement, l'invention se rapporte aux réchauffeurs à deux faisceaux distincts dont l'un réchauf- fe l'eau en circulation par la condensation et le sous-refroidissement, et l'autre réchauffe un débit partiel de cette eau par la désurchauffe de la vapeur.More particularly, the invention relates to heaters in two separate beams, one of which réchauf- f e circulating water by condensation and subcooling, and the other heats a part flow of this water by the desuperheating steam.

L'invention vise à réaliser le réchauffage avec le maximum d'efficacité et le minimum d'encombrement possibles.The invention aims to achieve heating with the maximum efficiency and the minimum possible size.

Elle y parvient par les caractéristiques telles que définies dans les revendications terminant le présent mémoire.It achieves this by the characteristics as defined in the claims terminating the present specification.

Ces caractéristiques sont maintenant décrites en se référant aux dessins ci-annexés dans lesquels, les figures 1,3 et 4 représentent schématiquement des parties d'installations de réchauffage connues, la figure 2 illustre schématiquement en coupe longitudinale un réchauffeur conventionnel,These characteristics are now described with reference to the appended drawings in which, FIGS. 1, 3 and 4 schematically represent parts of known heating installations, FIG. 2 schematically illustrates in longitudinal section a conventional heater,

les figures 5 et 8 représentent schématiquement des parties d'installation de réchauffage selon l'invention etFIGS. 5 and 8 schematically represent parts of a heating installation according to the invention and

les figures 6, 7 et 9 illustrent schématiquement en coupe longitudinale un réchauffeur selon l'invention sous deux formes, l'une représentée sur les figures 6 et 7 et l'autre sur la figure 9.Figures 6, 7 and 9 schematically illustrate in longitudinal section a heater according to the invention in two forms, one shown in Figures 6 and 7 and the other in Figure 9.

Sur la figure 1 on a montré une cascade de deux réchauffeurs 10,20 d'un cycle classique de transformation d'énergie thermique en énergie mécanique. Chaque réchauffeur est compartimenté en trois zones : la zone de désurchauffe 11, la zone de condensation 12 et la zone de sous-refroidissement 13. L'eau à réchauffer, qui est l'eau alimentaire du cycle, entre par la canalisation 14 (trait épais) dans la zone de sous-refroidissement 13 et passe ensuite dans la zone de condensation 12, avant de traverser la zone de désurchauffe 11 et de sortir en 15 par une canalisation qui peut être raccordée à l'entrée du réchauffeur 20 suivant.In Figure 1 we have shown a cascade of two heaters 10,20 of a conventional cycle of transformation of thermal energy into mechanical energy. Each heater is divided into three zones: the desuperheating zone 11, the condensation zone 12 and the sub-cooling zone 13. The water to be heated, which is the food water for the cycle, enters via the line 14 (line thick) in the sub-cooling zone 13 and then passes into the condensation zone 12, before passing through the desuperheating zone 11 and leaving at 15 by a pipe which can be connected to the inlet of the following heater 20.

La vapeur entre par -16 (trait pointillé) dans la zone de désurchauffe 11 et passe ensuite dans la zone de condensation 12 où toute la vapeur est transformée en condensat. Ce condensat est mélangé avec le condensat soutiré par la canalisation 17 de la zone de sous-refroidissement 13 du réchauffeur adjacent 20 et est ensuite envoyé dans sa propre zone de sous-refroidissement 13 avant d'être soutiré à son tour par la canalisation 18 vers un réchau- feur adjacent situé en amont.The steam enters by -16 (dotted line) in the desuperheating zone 11 and then passes into the condensation zone 12 where all the steam is transformed into condensate. This condensate is mixed with the condensate withdrawn through line 17 from the sub-cooling zone 13 of the adjacent heater 20 and is then sent to its own sub-cooling zone 13 before being in turn withdrawn through line 18 to an adjacent heater located upstream.

La figure 2 est une vue en coupe plus détaillée du réchauffeur classique 10, montrant en E le collecteur d'entrée de l'eau à réchauffer et en S le collecteur de -sortie de l'eau.Figure 2 is a more detailed sectional view of the conventional heater 10, showing at E the inlet manifold of the water to be heated and at S the outlet manifold of the water.

Entre ces deux collecteurs l'eau passe dans un ensemble de tubes 19 d'échange thermique formant généralement un faisceau de tubes cintrés en U ou en triple U (dit en W) et disposé en plusieurs nappes.Between these two collectors, the water passes through a set of heat exchange tubes 19 generally forming a bundle of tubes bent in a U or in a triple U (said to be in W) and arranged in several layers.

Un premier tronçon de ce faisceau de tubes 19 est relié au collecteur d'entrée E et est situé dans un caisson 21 qui délimite la zone de sous-refroidissement 13 remplie de condensat 22 et qui est muni d'une sortie de condensat 18.A first section of this bundle of tubes 19 is connected to the inlet manifold E and is located in a box 21 which delimits the sub-cooling zone 13 filled with condensate 22 and which is provided with a condensate outlet 18.

Un second tronçon des tubes 19' est situé dans la zone de condensation 12 remplie de vapeur provenant du caisson 23 qui délimite la zone de désurchauffe 11, dans lequel est situé le collecteur de sortie S de l'eau relié au troisième tronçon de tubes 19". Sur ce caisson 23 est raccordée la tubulure'd'entrée de vapeur 16.A second section of the tubes 19 ′ is located in the condensation zone 12 filled with steam coming from the box 23 which delimits the desuperheating zone 11, in which is located the outlet manifold S of the water connected to the third section of tubes 19 ". On this box 23 is connected the steam inlet pipe 16.

L'ensemble du réchauffeur 10 est généralement monté dans une virole 24 cylindrique fermée aux extrémités par des fonds bombés 25.The whole of the heater 10 is generally mounted in a cylindrical shell 24 closed at the ends by domed bottoms 25.

Des installations complètes de réchauffage classiques sont notamment décrites et représentées (figure 1 et 3) dans le brevet EP 0032641 au nom de la demanderesse.Complete conventional heating systems are in particular described and represented (FIGS. 1 and 3) in patent EP 0032641 in the name of the applicant.

Afin d'améliorer ce cycle classique, du point de vue thermodynamique et pour obtenir un meilleur rendement de la conversion thermique, on a déjà proposé des cycles ou circuitstels que représentés aux figures 3 et 4.In order to improve this conventional cycle, from the thermodynamic point of view and in order to obtain a better efficiency of the thermal conversion, cycles or circuitstels have already been proposed as shown in FIGS. 3 and 4.

En effet, on peut remarquer sur ces circuits que l'échangeur 50 constituant la zone de désurchauffe 11 est séparé du réchauffeur 30 et récupère la chaleur de la vapeur qu'il désurchauffe à un niveau de température plus élevé. D'autre part, il ne traite généralement qu'une partie du débit total de l'eau à réchauffer, au moins 30 %; 50 % est une valeur usuelle.Indeed, it can be noted on these circuits that the exchanger 50 constituting the desuperheating zone 11 is separated from the heater 30 and recovers the heat from the steam which it desuperheats at a higher temperature level. On the other hand, it generally only processes part of the total flow rate of the water to be heated, at least 30%; 50% is a usual value.

La variante de la figure 3 a déjà été appliquée à des centrales électriques; les réchauffeurs 30,40 et 50 sont de conception classique, constitués de tubes cintrés raccordés soit à une boîte à eau par l'intermédiaire d'une plaque à tubes, soit à deux collecteurs, un d'entrée et un de sortie comme représenté sur la figure 2. Par contre, le réchauffeur 30 ne comporte que la zone de sous-refroidissement 13 et la zone de condensation 12. Cette zone de condensation 12 reçoit de la vapeur provenant par 26 de l'échangeur 50, ainsi que le condensat provenant par 17 de la zone de sous-refroidissement du réchauffeur 40 adjacent.The variant of Figure 3 has already been applied to power plants; the heaters 30, 40 and 50 are of conventional design, consisting of curved tubes connected either to a water box via a tube plate, or to two collectors, one inlet and one outlet as shown in FIG. 2. On the other hand, the heater 30 only has the sub-cooling zone 13 and the condensation zone 12. This condensation zone 12 receives steam coming through 26 from the exchanger 50, as well as the condensate coming par 17 of the sub-cooling zone of the adjacent heater 40.

L'échangeur 50 reçoit de la vapeur soutirée en 16 et réchauffe dans sa zone de désurchauffe 11 une partie du débit d'eau alimentaire sortant du réchauffeur 40. La canalisation XY de contournement (by-pass) du réchauffeur 50 est pourvue d'un étranglement 27 assurant la bonne répartition des débits d'eau entre eux. Dans les installations où tout le débit d'eau alimentaire passe dans 50, 27 est une vanne normalement fermée.The exchanger 50 receives steam withdrawn at 16 and heats in its desuperheating zone 11 part of the flow of food water leaving the heater 40. The bypass XY pipe (by-pass) of the heater 50 is provided with a throttle 27 ensuring the good distribution of the water flows between them. In installations where all the feed water flow passes through 50, 27 is a normally closed valve.

La variante de la figure 4 a déjà été décrite dans le brevet français N°1.153.029 par Mr. P. J. Ricard. Dans cette réalisation-ci, le débit partiel de l'eau à réchauffer provient de la zone de condensation 12 du réchauffeur 30 et est réinjecté dans le conduit d'eau en aval du réchauffeur 40 ou à la sortie de la zone de désurchauffe 11 deThe variant of FIG. 4 has already been described in French patent No. 1,153,029 by Mr. P. J. Ricard. In this embodiment, the partial flow of water to be heated comes from the condensation zone 12 of the heater 30 and is reinjected into the water conduit downstream of the heater 40 or at the outlet of the desuperheating zone 11 of

ce réchauffeur 40. Le débit partiel peut varier dans cette réalisation de 3 à 25 % du débit total de l'eau à réchauffer. ' this heater 40. The partial flow can vary in this embodiment from 3 to 25% of the total flow of the water to be heated. ''

Le coût d'investissement de ces deux solutions est nettement plus important que celui de la solution classique (figure 1); en effet, non seulement les surfaces d'échanges sont plus importantes que celles du réchauffeur 10, mais encore les viroles 24,les fonds bombés 25 et l'infrastructure sont beaucoup plus chers pour l'ensemble des réchauffeurs 30 et 50 que pour le réchauffeur 10.The investment cost of these two solutions is significantly higher than that of the conventional solution (Figure 1); indeed, not only are the exchange surfaces larger than those of the heater 10, but also the ferrules 24, the domed bottoms 25 and the infrastructure are much more expensive for all the heaters 30 and 50 than for the heater 10.

Les réchauffeurs 30 et 50 exigent aussi plus de place dans la salle des machines et plus de tuyauteries de liaison.Heaters 30 and 50 also require more space in the engine room and more connecting piping.

D'autre part, les dimensions de l'échangeur 50 avec des tubes cintrés en U ou en W sont telles qu'il n'est pas économiquement concevable d'intégrer l'échangeur 50 dans le réchauffeur 30.On the other hand, the dimensions of the exchanger 50 with bent U or W tubes are such that it is not economically conceivable to integrate the exchanger 50 into the heater 30.

La solution de la figure 4 n'a vraisemblablement jamais reçu d'application pratique parce que les données thermiques relatives au réchauffeur 50'conduisent à des dimensions très grandes avec des grandes longueurs de tubes et donc à un coût d'investissement trop élevé, non compensé par la réduction des coûts de consommation d'énergie. L'intégration de 50' dans le réchauffeur 30 est encore moins concevable ici que pour la figure 3.The solution of FIG. 4 has probably never received any practical application because the thermal data relating to the heater 50 ′ lead to very large dimensions with long lengths of tubes and therefore to too high an investment cost, not offset by reduced energy consumption costs. The integration of 50 'into the heater 30 is even less conceivable here than for FIG. 3.

Le but de la présente invention est de pouvoir réintégrer l'échangeur 50 ou 50' dans le réchauffeur 30 tout en maintenant des dispositions et des caractéristiques thermodynamiques comparable aux solutions des figures 3 et 4.The object of the present invention is to be able to reintegrate the exchanger 50 or 50 'into the heater 30 while maintaining thermodynamic arrangements and characteristics comparable to the solutions of Figures 3 and 4.

Un premier cycle d'échange thermique selon l'invention est montré aux figures 5 à 7. Ce cycle correspond à la réalisation représentée à la figure 3.A first heat exchange cycle according to the invention is shown in FIGS. 5 to 7. This cycle corresponds to the embodiment shown in FIG. 3.

Il comprend un réchauffeur 60 réalisé à l'aide de deux faisceaux de tubes distincts.It comprises a heater 60 produced using two separate bundles of tubes.

Un premier faisceau de tubes 29 est semblable au faisceau de tubes cintrés en U ou en W du réchauffeur classique 10,tandis que le deuxième faisceau de tubes 39 propre à la zone de désurchauffe 11 est du type spiralé.A first bundle of tubes 29 is similar to the bundle of tubes bent in a U or W shape of the conventional heater 10, while the second bundle of tubes 39 specific to the desuperheating zone 11 is of the spiral type.

La vapeur entre dans le réchauffeur 60, latéralement par la tubulure 16. D'autre part, un débit partiel de l'eau alimentaire réchauffée dans la zone de désurchauffe d'un réchauffeur classique 40 placé en aval du réchauffeur modifié entre par un collecteur latéral 41 sur lequel sont branchés les tubes en spirale ou hélice 39, dont les points de branchement sont représentés, schématiquement sur la figure 7 et désignés en 42. Les tubes 39 sont enroulés autour d'un tambour central 43. L'eau alimentaire ainsi réchauffée dans les tubes spiralés 39 passe dans un collecteur de sortie 44, les raccordements des tubes 39 au collecteur représentés schématiquement sur la figure 7 étant désignés 45. Cette eau alimentaire est envoyée en aval du point où elle a été soutirée à la sortie du réchauffeur classique 40.Steam enters the heater 60, laterally through the pipe 16. On the other hand, a partial flow of the heated food water in the desuperheating zone of a conventional heater 40 placed downstream of the modified heater enters through a lateral manifold 41 on which the spiral or helix tubes 39 are connected, the connection points of which are shown schematically in FIG. 7 and designated at 42. The tubes 39 are wound around a central drum 43. The food water thus heated in the spiral tubes 39 passes through an outlet manifold 44, the connections of the tubes 39 to the manifold shown diagrammatically in FIG. 7 being designated 45. This food water is sent downstream from the point where it was drawn off at the outlet of the conventional heater 40.

La technique d'enroulement des tubes 39 en spirale autour du tambour ou noyau central 43 et le montage de l'ensemble dans la virole par l'entremise de plaque à tubes et d'entretoises est empruntée aux échangeurs thermiques à faisceaux spiralés utilisés dans l'indûstrie chimique et les réacteurs nucléaires.The technique of winding the tubes 39 in a spiral around the drum or central core 43 and the mounting of the assembly in the shell via tube plate and spacers is borrowed from the heat exchangers with spiral beams used in the chemical industry and nuclear reactors.

Cette technique est notamment décrite dans le brevet français 1248874 et le brevet allemand DE-AS 1912341.This technique is notably described in French patent 1248874 and German patent DE-AS 1912341.

L'enroulement en spirale autour d'un tambour permet l'implantation de tubes très longs dans un encombrement relativement faible, et dans le cas présent la réintégration du désurchauffeur qui était séparé dans le schéma de la figure 3.The spiral winding around a drum allows the installation of very long tubes in a relatively small footprint, and in this case the reintegration of the desuperheater which was separated in the diagram of Figure 3.

Les tubes sont cintrés en nappes superposées et orien- tées alternativement dans les sens horlogique et anti- horlogique pour éviter la mise en vitesse tourbillonnaire du gaz.The tubes are bent in superimposed layers and orien - FOA alternately in the clockwise and anti - clockwise to prevent the carrying speed vortex gas.

Un deuxième cycle d'échange thermique selon l'invention est montré aux figures 8 et 9. Ce cycle correspond à la réalisation représentée à la figure 4.A second heat exchange cycle according to the invention is shown in Figures 8 and 9. This cycle corresponds to the embodiment shown in Figure 4.

Il comprend un réchauffeur 80 également réalisé à l'aide de deux faisceaux de tubes distincts, à savoir un premier faisceau de tubes 29 de type classique cin- tré, en U ou en W,et un deuxième faisceau de tubes 39 du type spiralé décrit ci-dessus en relation avec les figures 5 à 7. Comme à la figure 4, le réchauffeur non modifié 40 reçoit dans sa zone de sous-refroidissement 13 une partie de l'eau qui sort de la zone de condensation 12 du réchauffeur modifié précédent 80. L'autre partie de cette eau passe dans la zone de désurchauffe 11 qui est ici intégrée au réchauffeur 80 (alors qu'elle est distincte du réchauffeur 30 à la figure 4).It comprises a heater 80 also carried out using two beams of separate tubes, namely a first tube bundle 29 of conventional type cin- t D, U or W, and a second tube bundle 39 of the spiral-type described above in relation to FIGS. 5 to 7. As in FIG. 4, the unmodified heater 40 receives in its sub-cooling zone 13 part of the water which leaves the condensation zone 12 of the modified heater previous 80. The other part of this water passes into the desuperheating zone 11 which is here integrated into the heater 80 (whereas it is distinct from the heater 30 in FIG. 4).

Comme à la figure 4, l'eau qui sort de cette zone de désurchauffe rejoint celle qui sort du réchauffeur non modifié 40, en aval de celui-ci.As in FIG. 4, the water which leaves this desuperheating zone joins that which leaves the unmodified heater 40, downstream of the latter.

Les réchauffeurs selon l'invention, tels qu'illustrés aux figures 5 à 9,offrent les avantages suivants :

  • - Deux faisceaux indépendants : d'où la possibilité d'adapter les choix des matières, les épaisseurs, les diamètres de tubes aux conditions de service;
  • - indépendance des faisceaux d'où souplesse en cas de réparation ou de remplacement. Une partie seulement de la surface d'échange est affectée, soit la zone de désurchauffe, soit celle de condensation et sous-refroidissement,lorsqu'un faisceau est hors-service.
  • - compacité de la solution : économie de place dans la salle des machines; économie de tuyauteries de liaison entre les appareils; économie de supports d'appareil et de tuyauteries; économie de virole et fonds bombés.
The heaters according to the invention, as illustrated in FIGS. 5 to 9, offer the following advantages:
  • - Two independent beams: hence the possibility of adapting the choice of materials, thicknesses, diameters of tubes to the conditions of service;
  • - independence of the beams, hence flexibility in the event of repair or replacement. Only part of the exchange surface is affected, either the desuperheating zone, or that of condensation and sub-cooling, when a bundle is out of service.
  • - compactness of the solution: saving space in the engine room; saving of connecting pipes between devices; economy of apparatus supports and pipes; shell economy and domed bottoms.

Quoique la description ci-dessus soit illustrée par des réchauffeurs à collecteurs, l'invention se rapporte également à des réchauffeurs à plaques porte-tubes ( "tubulaires" ).Although the above description is illustrated by manifold heaters, the invention also relates to heaters with tube-holder plates ("tubular").

Il est bien entendu que l'invention n'est pas limitée aux détails décrits précédemment mais peut au contraire subir de nombreuses modifications qui y restent incluses.It is understood that the invention is not limited to the details described above but can on the contrary undergo numerous modifications which remain included therein.

Claims (7)

1. Réchauffeur pour installation de transformation d'énergie thermique en énergie mécanique au moyen d'au moins un fluide condensable caloporteur effectuant un cycle thermodynamique, cette installation comportant au moins une chaudière ou un bouilleur, une turbine, un condenseur, une pompe et un réchauffeur comportant une zone de désurchauffe, une zone de condensation et une zone de sous-refroidissement, réchauffant le fluide condensable qui le traverse à l'état liquide, ce réchauffeur étant du type à deux faisceaux distincts dont l'un réchauffe ce fluide condensable par la condensation et le sous-refroidissement de vapeur du fluide condensable prélevée à la turbine et l'autre réchauffe un débit partiel de ce fluide condensable par la désurchauffe de cette vapeur, caractérisé en ce que le faisceau de tubes (39) effectuant la désurchauffe de cette vapeur (zone de désurchauffe 11) est disposé en spirale de manière à réduire son encombrement.1. Heater for installation for converting thermal energy into mechanical energy by means of at least one heat-transferable condensable fluid performing a thermodynamic cycle, this installation comprising at least one boiler or boiler, one turbine, one condenser, one pump and one heater comprising a desuperheating zone, a condensation zone and a sub-cooling zone, heating the condensable fluid which passes through it in the liquid state, this heater being of the type with two distinct bundles, one of which heats this condensable fluid by the condensation and sub-cooling of the condensable fluid vapor taken from the turbine and the other heats a partial flow of this condensable fluid by the desuperheating of this vapor, characterized in that the bundle of tubes (39) effecting the desuperheating of this vapor (desuperheating zone 11) is arranged in a spiral so as to reduce its bulk. 2. Réchauffeur suivant la revendication 1, caractérisé en ce que dans la zone de désurchauffe (11) du réchauffeur (60,80), les tubes (39) sont enroulés en spirale autour d'un tambour (43) qui s'étend dans l'axe longitudinal du réchauffeur (60,80) de manière à former des nappes superposées à partir de ce tambour et orientées alternativement dans le sens horlogique et dans le sens anti-horlogique.2. A heater according to claim 1, characterized in that in the desuperheating zone (11) of the heater (60,80), the tubes (39) are wound in a spiral around a drum (43) which extends in the longitudinal axis of the heater (60,80) so as to form superimposed layers from this drum and oriented alternately in the clockwise direction and in the anti-clockwise direction. 3. Réchauffeur suivant les revendications 1 et 2, caractérisé en ce que le fluide condensable est l'eau.3. Heater according to claims 1 and 2, characterized in that the condensable fluid is water. 4. Réchauffeur suivant les revendications 1 à 3, caractérisé en ce qu'il réchauffe dans sa zone de désurchauffe à faisceau spiralé (39) un débit partiel de l'eau réchauffée dans la zone de désurchauffe d'un réchauffeur classique (40) pla-cé en aval et en ce que la sortie de cette zone de désurchauffe-à faisceau spiralé (39) est reliée à la sortie du réchauffeur classique (40) en un point situé en aval du point de soutirage du débit partiel précité.4. Heater according to claims 1 to 3, characterized in that it heats in its desuperheating zone with a spiral beam (39) a partial flow of water reheated in the desuperheating zone of a conventional heater (40) placed downstream and in that the outlet of this desuperheating-spiral beam area (39) is connected to the outlet of the conventional heater (40) in one point located downstream of the withdrawal point of the aforementioned partial flow. 5. Réchauffeur suivant les revendications 1 à 3, caractérisé en ce qu'il réchauffe dans sa zone de désurchauffe à faisceau spiralé (39) un débit partiel de l'eau en provenance de sa propre zone de condensation5. Heater according to claims 1 to 3, characterized in that it heats in its desuperheating zone with spiral beam (39) a partial flow of water from its own condensation zone (12) et l'envoie directement en aval d'un réchauffeur classique (40) placé en aval tandis qu'il envoie le reste du débit de l'eau issu de sa propre zone de condensation (12) directement dans la zone de sous-refroidissement (13) dudit réchauffeur classique (40).(12) and sends it directly downstream of a conventional heater (40) placed downstream while it sends the rest of the flow of water from its own condensation zone (12) directly into the under zone -cooling (13) of said conventional heater (40). 6. Réchauffeur suivant l'une quelconque des revendications 4 et 5, caractérisé en ce qu'il reprend les condensats qui proviennent de la zone de sous-refroidissement du réchauffeur classique d'aval (40) en les mélangeant à ses propres condensats dans sa zone de condensation.6. A heater according to any one of claims 4 and 5, characterized in that it takes up the condensates which come from the sub-cooling zone of the conventional downstream heater (40) by mixing them with its own condensates in its condensation area.
EP85870030A 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant Expired EP0192918B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP85870030A EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant
AT85870030T ATE43699T1 (en) 1985-02-25 1985-02-25 PREHEATER FOR THERMAL ENERGY CONVERSION PLANT.
DE8585870030T DE3570737D1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant
US06/798,631 US4635588A (en) 1985-02-25 1985-11-15 Heaters for thermal energy transformation installations
ZA858815A ZA858815B (en) 1985-02-25 1985-11-18 Heaters for thermal energy transformation installations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85870030A EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant

Publications (2)

Publication Number Publication Date
EP0192918A1 true EP0192918A1 (en) 1986-09-03
EP0192918B1 EP0192918B1 (en) 1989-05-31

Family

ID=8194732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85870030A Expired EP0192918B1 (en) 1985-02-25 1985-02-25 Preheater for a thermal-energy transformation plant

Country Status (5)

Country Link
US (1) US4635588A (en)
EP (1) EP0192918B1 (en)
AT (1) ATE43699T1 (en)
DE (1) DE3570737D1 (en)
ZA (1) ZA858815B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890061A1 (en) * 1996-03-14 1999-01-13 Ari Nir Heat recovery system
EP2369228A3 (en) * 2010-03-10 2014-08-27 Spirax-Sarco Limited Energy recovery unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377489A (en) * 1991-05-09 1995-01-03 Westinghouse Electric Corporation Internal moisture separation cycle for a low pressure turbine
US20090158737A1 (en) * 2005-12-15 2009-06-25 Ineos Usa Llc Power Recovery Process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1054671A (en) * 1951-07-26 1954-02-12 Balcke Ag Maschbau Combined high pressure heater and condensed water refrigerator
FR1153029A (en) * 1956-06-30 1958-02-28 Creusot Forges Ateliers Steam turbine installation in which condensed water withdrawals are heated by the superheating heat of the steam withdrawals
DE1119874B (en) * 1956-06-11 1961-12-21 Dr Jaroslav Nekolny Method and device for multi-stage feed water preheating by means of bleed steam taken from different stages of the steam turbine of a steam power plant
FR1509175A (en) * 1966-11-30 1968-01-12 Technoimpex Magyar Gepipari Ku Turbulent flow heat exchanger
FR1523810A (en) * 1967-05-19 1968-05-03 Richmond Engineering Company heat exchanger
GB1173896A (en) * 1966-12-09 1969-12-10 Steinmueller Gmbh L & C Regenerative Feedwater Heating
DE1576991A1 (en) * 1967-07-17 1970-07-02 Atlas Mak Maschb Gmbh Feed water preheating system with heating
DE1948914A1 (en) * 1969-09-27 1971-04-15 Kraftwerk Union Ag Muehlheim Steam power plant with steam-heated regenerative preheaters
FR2060383A1 (en) * 1969-09-03 1971-06-18 Ostbo John
DE3301338A1 (en) * 1983-01-17 1984-07-19 Linde Ag, 6200 Wiesbaden Feed-water preheater

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE157699C (en) *
US1936284A (en) * 1931-03-16 1933-11-21 Universal Oil Prod Co Coil for fluid heating furnaces
US2643519A (en) * 1949-03-02 1953-06-30 Richard C Powell Regenerative steam power plant in which an extraction turbine supplies steam to desuperheaters which serve to heat feed water
US2640687A (en) * 1950-06-16 1953-06-02 Petro Chem Process Company Inc Flow arrangement for multipass heaters
US2921441A (en) * 1953-12-17 1960-01-19 Sulzer Ag Feed water preheating system for steam power plants
US3032999A (en) * 1959-02-13 1962-05-08 Babcock & Wilcox Ltd Steam turbine power plants
FR1248874A (en) * 1959-02-23 1960-12-23 Nuclear Power Plant Co Ltd heat exchanger
DE1912341C3 (en) * 1969-03-11 1980-03-13 Linde Ag, 6200 Wiesbaden Heat exchanger with helically wound pipe layers and process for its manufacture
US4073267A (en) * 1975-10-03 1978-02-14 General Atomic Company Vapor generator
DE3071745D1 (en) * 1980-01-18 1986-10-16 Hamon Sobelco Sa Reheating system for a steam-turbine power plant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1054671A (en) * 1951-07-26 1954-02-12 Balcke Ag Maschbau Combined high pressure heater and condensed water refrigerator
DE1119874B (en) * 1956-06-11 1961-12-21 Dr Jaroslav Nekolny Method and device for multi-stage feed water preheating by means of bleed steam taken from different stages of the steam turbine of a steam power plant
FR1153029A (en) * 1956-06-30 1958-02-28 Creusot Forges Ateliers Steam turbine installation in which condensed water withdrawals are heated by the superheating heat of the steam withdrawals
FR1509175A (en) * 1966-11-30 1968-01-12 Technoimpex Magyar Gepipari Ku Turbulent flow heat exchanger
GB1173896A (en) * 1966-12-09 1969-12-10 Steinmueller Gmbh L & C Regenerative Feedwater Heating
FR1523810A (en) * 1967-05-19 1968-05-03 Richmond Engineering Company heat exchanger
DE1576991A1 (en) * 1967-07-17 1970-07-02 Atlas Mak Maschb Gmbh Feed water preheating system with heating
FR2060383A1 (en) * 1969-09-03 1971-06-18 Ostbo John
DE1948914A1 (en) * 1969-09-27 1971-04-15 Kraftwerk Union Ag Muehlheim Steam power plant with steam-heated regenerative preheaters
DE3301338A1 (en) * 1983-01-17 1984-07-19 Linde Ag, 6200 Wiesbaden Feed-water preheater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890061A1 (en) * 1996-03-14 1999-01-13 Ari Nir Heat recovery system
EP0890061A4 (en) * 1996-03-14 1999-10-20 Ari Nir Heat recovery system
EP2369228A3 (en) * 2010-03-10 2014-08-27 Spirax-Sarco Limited Energy recovery unit

Also Published As

Publication number Publication date
ZA858815B (en) 1986-07-30
DE3570737D1 (en) 1989-07-06
US4635588A (en) 1987-01-13
ATE43699T1 (en) 1989-06-15
EP0192918B1 (en) 1989-05-31

Similar Documents

Publication Publication Date Title
RU2627613C2 (en) Solar energy tube with automated extraction and heat collection, trough type device, heat generation system and technology
CN101275785A (en) High-temperature heat pipe center receiver for tower type solar thermal power generation
FR2835046A1 (en) COIL FOR CIRCULATION OF A HEAT COIL, METHOD FOR MANUFACTURING SUCH COIL AND REACTOR INCLUDING SUCH COIL
EP2873916B1 (en) Method and device for preventing the emptying of a boiler of a concentrating solar power plant with a tower
FR2942030A1 (en) SET OF CALODUCKS FOR SOLAR SENSORS
EP0192918B1 (en) Preheater for a thermal-energy transformation plant
FR2557280A1 (en) SODIUM-WATER VAPOR GENERATOR WITH RIGHT CONCENTRIC TUBES AND GAS CIRCULATION IN ANNULAR SPACE
MXPA05003380A (en) Once-through evaporator for a steam generator.
EP0007850A1 (en) Plant for recovering energy
CN2780738Y (en) Waste heat recovery system and device of sulfuric acid production
FR2514879A1 (en) HEAT EXCHANGER FOR A DUST-LOADED GAS
CN100360872C (en) Solar energy high-temperature vacuum heat absorption and heat storage apparatus
EP0314550B1 (en) Exothermal heterogeneous high-pressure synthesis process in the gas phase, and reactor for carrying it out
FR2664682A1 (en) HEAT EXCHANGER.
CN109812789B (en) Groove type solar photo-thermal power generation steam generation system
FR2522113A1 (en) RECOVERY BOILER
EP1009951A1 (en) Method for operating a boiler with forced circulation and boiler for its implementation
CN220892198U (en) Double-drum inclined waste heat boiler and heat supply system thereof
SU1758359A1 (en) Solar radiation evacuated receiver
CN210321328U (en) Novel integrated coaxial double-pipe heat exchanger
CN218178840U (en) Solar superheated steam generation system
EP0216667B1 (en) Apparatus to retain liquid in a substantially horizontal conduit, open at one end, when the liquid flow rate drops below a given level
CN1590920A (en) High temperature vacuum heat collecting device
EP0462903B1 (en) Tube-like heat-exchanger for hot and cold fluids, with great differences of temperature and pressure
CN117804202A (en) Steam heating device and drying tower

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860927

17Q First examination report despatched

Effective date: 19870924

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890531

Ref country code: SE

Effective date: 19890531

Ref country code: GB

Effective date: 19890531

Ref country code: AT

Effective date: 19890531

Ref country code: NL

Effective date: 19890531

REF Corresponds to:

Ref document number: 43699

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3570737

Country of ref document: DE

Date of ref document: 19890706

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900228

Ref country code: LI

Effective date: 19900228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910206

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910312

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920228

BERE Be: lapsed

Owner name: S.A. HAMON-SOBELCO

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103