EP0188750A1 - Shock sound waves apparatus for the disintegration of calculi - Google Patents

Shock sound waves apparatus for the disintegration of calculi Download PDF

Info

Publication number
EP0188750A1
EP0188750A1 EP85116021A EP85116021A EP0188750A1 EP 0188750 A1 EP0188750 A1 EP 0188750A1 EP 85116021 A EP85116021 A EP 85116021A EP 85116021 A EP85116021 A EP 85116021A EP 0188750 A1 EP0188750 A1 EP 0188750A1
Authority
EP
European Patent Office
Prior art keywords
shock wave
wave tube
tube according
axis
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85116021A
Other languages
German (de)
French (fr)
Other versions
EP0188750B1 (en
Inventor
Helmut Dr. Reichenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0188750A1 publication Critical patent/EP0188750A1/en
Application granted granted Critical
Publication of EP0188750B1 publication Critical patent/EP0188750B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to a shock wave tube with a coil on which a membrane is adjacent.
  • the invention relates in particular to a shock wave tube which is used for crushing concrement in therapy.
  • Shock wave tubes of this type have been known per se for a long time and can be according to recent studies such.
  • a shock wave tube is described, the coil of which has a curved shape, so that the emitted shock wave converges in one focus.
  • An insulating film and a metal membrane are arranged in front of the coil.
  • a cavity is formed in front of the membrane, which is filled with a liquid which is under a certain pressure.
  • the object of the invention is to develop a shock wave tube of the type mentioned in such a way that it is no longer exposed to such destructive stresses.
  • the invention is based on the consideration that this can be achieved if the shock waves, apart from the membrane, do not pass through any other parts which are subjected to a permanent pressure difference.
  • This object is achieved in that the membrane is sucked into the coil with negative pressure relative to the environment.
  • this shock wave tube is that there is no overpressure for pressing the membrane against the coil. This also eliminates the necessary chamber for holding the excess pressure and the material layer provided in this chamber as an exit window, which is passed through by the shock wave. The elimination of this layer of material has the further significant advantage that there can be no interaction with this layer of material which would otherwise adversely affect the amplitude and the temporal and spatial course of the shock wave.
  • a preferred embodiment is characterized in that the coil is designed as a flat flat coil and that a tube-like connection is provided, one end of which lies in the area between the membrane and the flat coil and the other end of which can be connected to the suction side of a vacuum pump which is provided for generating the negative pressure.
  • 1 denotes a shock wave tube.
  • the shock wave tube 1 has a cylindrical housing 3, in the area of the end face of which a circular coil carrier 5 is fastened on the inside.
  • the gap between the coil carrier 5 and the housing 3 is sealed by means of a first O-ring 7.
  • a flat single-layer flat coil 9 is cast in on the upper side of the coil carrier 5.
  • the flat coil 9 is wound spirally, so that there is a connection in the middle and at the edge for applying an electrical voltage.
  • a circular insulating film 11 is arranged above the cast flat coil 9 and has the same cross section as the housing 3 of the shock wave tube 1. Above the insulating film 11 there is a circular membrane 13 of the same cross section.
  • the membrane 13 is made of an electrically highly conductive material.
  • a spacer ring 15 is inserted between the membrane 13 and the insulating film 11, so that a small air gap 1 4 is present between the insulating film 11 and the membrane 1 3.
  • a profiled retaining ring 17 is arranged above the membrane 13.
  • a second O-ring 19 is located in a peripheral annular groove of the retaining ring 17. The underside of the retaining ring 17 is thus sealed against the membrane 13.
  • the housing 3 is bent at right angles to the retaining ring 17 inwards, so that a stop for the retaining ring 17 is formed.
  • an annular groove 21 is milled from the inside, which serves to receive a third 0-ring 23. With this O-ring 23, the top of the retaining ring 1 7 is sealed against the housing 3.
  • the coil carrier 5 is provided in its edge region with a bore or opening 25 which extends completely through it parallel to the main axis. Deviating from this, the channel-like opening 25 could also run in the inside of the housing 3.
  • the insulating film 11 located at one end of the channel-like opening 25 is provided with a hole 2T.
  • a vacuum pump (not shown in FIG. 1) is connected to the other end of the opening 25 via a nozzle (not shown).
  • the volume between the membrane 13 and the insulating film 11 is very small compared to the volume of the bore 25 and the supply line to the vacuum pump. It has been shown that the shock wave tube 1 can work for several hours with the negative pressure once generated with a good seal, without the vacuum pump having to be switched on again.
  • the axial length of the shock wave tube 1 was approximately 10 cm, the inner diameter of the housing 3 approximately 15 cm, the thickness of the membrane 13 approximately 0.2 mm, the thickness of the spacer ring 15 approximately 0.2 mm and the diameter of the bore 25 approx. 2 mm.
  • FIG. 2 shows the shock wave tube 1 again with its essential components, namely the housing 3, the coil carrier 5, the flat coil 9, the insulating film 11 and the membrane 13.
  • the first electrical connection of the flat coil 9, which is located in its center, is led out and to the first electrode 29 of a spark gap 31.
  • a grounded capacitor 35 is connected to the second electrode 33 of the spark gap 31. This is charged via a series resistor 36 by a charger, not shown.
  • the charging voltage is approx. 20 kV.
  • the bore 25 is part of a tubular connection here.
  • this still includes a hose 39 which leads to the suction side of a vacuum pump 41.
  • the hose 39 has a branch 43, from which a stub leads to a pressure gauge or pressure gauge 45.
  • a display device 47 for displaying the current negative pressure is connected to the manometer 45.
  • the manometer 45 is designed so that it emits an electrical signal on the output side, which is a measure of the negative pressure. On the output side, it is connected to the first input 49 of a comparator 51 via a line. An electrical voltage is applied to the second input 53 of the comparator 51, which corresponds to an upper limit value for the pressure between the insulating film 11 and the membrane 13. This limit, the z. B.
  • the output signal C of the comparator 51 is passed on the one hand to a control circuit 57 for the vacuum pump 4 1.
  • the vacuum pump 41 is switched on and off via the control circuit 57. If the specified upper limit is exceeded, it is switched on.
  • the output signal C of the comparator 51 is applied to the first input 59 of an AND gate 61. This is blocked when the upper limit is exceeded.
  • a trigger signal is applied to the second input 63 of the AND gate 61. This is supplied by a trigger circuit 62.
  • the trigger signal can, for example, be triggered manually via a switch 60.
  • a single trigger pulse can be triggered. But it can also trigger a sequence of trigger pulses. However, this can also trigger a sequence of trigger pulses with a preselectable time interval that determines the sequence of the shock waves.
  • the trigger signal can be derived from a device for monitoring cardiac activity and / or from a device for monitoring breathing. Such a device would then be connected to the trigger circuit 62 via the input 60a.
  • the output of the AND gate 61 is guided to a triggering device 65 which operates the ignition or auxiliary electrode 37.
  • the AND gate 61, the trigger circuit 62 and the trigger circuit 65 thus together form the part 64 of a control device for the shock wave tube 1. This is ignited only when the pressure mentioned is below the limit value.
  • the aim of the shock wave tube 1 shown, including the monitoring device, is to give an impulse to the shock wave tube 1, namely to trigger the generation of a shock wave only when the conditions for proper functioning are present. These conditions are the presence of a sufficient negative pressure in the air gap 14 and the presence of a trigger signal from a connected trigger signal generator 62.
  • the AND gate 61 can have more than two inputs in order to take into account further triggering criteria for the shock wave. Both patient-side and device-side requirements can therefore be specified.
  • a flat shock wave tube 1 is shown schematically in FIGS. 3 to 7, with the membrane 13 and the flat coil 9.
  • the spark gap 31 is also shown in FIGS. 3 and 4. Beyond the membrane 1 3, the housing 3 continues there.
  • the shock wave tube 1 is oriented essentially parallel to the body surface 67 of a patient.
  • the emitted shock wave strikes a parabolically curved reflector 69, which is arranged on the output side opposite the membrane 13.
  • the parabola axes are labeled x, y.
  • the shock wave tube 1 and the reflector 69 are located here in a common device housing 71.
  • the device housing 71 contains,. namely at the level of the reflector 69, a coupling layer 73.
  • the coupling layer 73 consists, for example, of EPDM rubber or another material with a low shear modulus. Such materials are known per se in ultrasound technology.
  • the device housing 71 is filled with water on the inside at least between the reflector 69 and the membrane 13.
  • the coupling layer 73 is preferably placed on the body surface 67 of the patient via a gel as the coupling medium.
  • the patient is aligned so that a calculus 75 to be destroyed is located inside him at the focal point F of the parabolic reflector 69.
  • the parabola which determines the curvature of the reflector 69 has an axis of symmetry 77 which runs parallel to the main axis 79 of the shock wave tube 1.
  • the reflector 69 can be displaced both parallel to the x and parallel to the y direction, that is to say perpendicular to or in the direction of the shock wave propagation.
  • the mechanical adjustment option is indicated by double arrows 80a and 80b.
  • the reflector 69 is also perpendicular to it, i.e. displaceable in the z direction. This has the advantage that the focus position can be changed without moving the device housing 71 with the coupling layer 73 or the patient.
  • a plane shock wave propagates in the direction of the reflector 69. From there it is deflected to the side by about 90 °.
  • the shock wave enters the patient through the coupling layer 73 and collects at the focal point F of the reflector 69.
  • the advantage of the arrangement shown is that a relatively large entry angle ⁇ is used when only one reflecting surface is used.
  • FIG. 4 there is a cone 81 opposite the membrane 13, the tip of which faces the membrane 13.
  • the cone 81 serves as the first reflector for the plane shock wave and is in particular made of brass.
  • the cone axis k and the main axis 79 are directed in the same direction here.
  • the flat shock wave which also has a circular cross section due to the circular membrane 13, is formed on the cone 81 to form a vertical cylindrical wave which runs outwards.
  • the latter is surrounded by a second reflector 83, which focuses the shock wave running vertically outwards into a focus F.
  • the second reflector 83 which extends in a ring around the cone 81, comes about due to the rotation of an arc of a parabola 85 (coordinates x, y).
  • the parabola 85 is placed so that its main axis 87 is perpendicular to the axis 79 of the shock tube 1.
  • the concretion 75 is located in the focal point F of the parabolic ring 83.
  • the arrangement of shock wave tube 1 with the associated reflectors 81, 83 is accommodated in a common device housing 71.
  • the path traversed by the shock wave is filled with water.
  • At the end of the device housing 71 there is again a coupling layer 73 in order to apply the apparatus to the body surface 67 of the patient.
  • shock wave is coupled into the patient's body with a particularly large aperture. Since the second reflector 83 is rotationally symmetrical to the axis 79 of the shock wave tube 1, the focal point F is on this axis 79. The arrangement is thus easy to align with the concretion 75 in the patient. In addition, there is a particularly compact construction.
  • a shock wave tube 1 with a relatively small diameter, e.g. B. of five centimeters, can be used here.
  • Figure 5 shows an arrangement with a shock wave tube 1, in which the shock wave also axially strikes a cone 81 and is reflected at right angles to the outside, so that a cylindrical shock wave results.
  • a second reflector 83 is provided, which is arranged in a ring around the cone 81.
  • the second reflector 83 was created here by rotating the arc of a parabola 85 about the axis 79 of the shock wave tube 1.
  • the parabola axis x which is assigned to the arc and belongs to the circular ring of the second reflector 83, coincides with the axis 79 of the shock wave tube 1 and the axis k of the cone 8 1 .
  • the geometry of the arrangement is fixed here.
  • the center A of the cone 81 is three times the distance from the apex S of the parabola 85 as the focal point F from the apex S.
  • the arrangement is oriented toward the patient so that the concretion 75 of the patient is on the common axis 79, k of the shock wave tube 1 and cone 81 is located.
  • a focus zone is formed, the apex point B of which is nine times the distance from the apex point S as the focal point F.
  • the concretion 75 is positioned here.
  • FIG. 6 shows a further possibility of focusing using reflectors.
  • the plane shock wave hits a cone 81, the concave surface of which has come about by rotating an arc of a parabola about the cone axis k.
  • the latter is surrounded by a second reflector 83, which is formed by rotating a straight line about the axis k of the cone 81. From there, the sound wave is focused on focus F.
  • An advantage of all reflector arrangements is that, due to the elimination of an exit window for the overpressure space, few interfaces interact with the shock wave and that large opening angles (apertures) can be achieved.
  • the shock wave tube 1 is provided with a lens system.
  • This comprises a planar reflector 89 which is disposed in the normal position at an angle of 4 5 ° to the propagation direction of the shock waves, and a converging lens 9 1 to which the shock waves are directed from the reflector 89th
  • the arrangement of converging lenses 81 and reflector 89 can be interchanged.
  • the reflector 89 can also have a curved surface.
  • a displacement device for the converging lens 91 is provided for depth adjustment. Their function is indicated by the double arrow 93.
  • the reflector 89 can be tilted by means of a ball joint 95. This makes it possible to adjust the focus perpendicular to the direction of propagation.
  • the converging lens 91 is hardly exposed to wear here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)

Abstract

Bei einem Stoßwellenrohr (1) für die Konkrementzertrümmerung in einem Patienten ist die Spule als ebene Flachspule (9) ausgebildet. Eine rohrartige Verbindung (39) führt vom Bereich zwischen der Flachspule (9) und einer vorgelagerten Membran (13) zu der Saugseite einer Vakuumpumpe (41). Im Betrieb des Stoßwellenrohrs (1) ist die Membran (13) an die Flachspule (9) angesaugt. Vorteil der Anordnung ist es, daß eine Druckkammer zum Anpressen der Membran (13) von außen entfällt. Die Stoßwellen brauchen deswegen keine Austrittsfenster zu durchlaufen, wodurch Störungen aufgrund von Rissen in dem Austrittsfenster entfallen. Das Stoßwellenrohr (1) kann sehr kompakt in Verbindung mit Reflektoren (69; 81, 83) aufgebaut werden. Die Reflektoren (69; 83) weisen bevorzugt eine parabolische Form mit einem Brennpunkt (F) auf, in welchem das Konkrement (75) des Patienten plaziert wird.In the case of a shock wave tube (1) for crushing the concrement in a patient, the coil is designed as a flat flat coil (9). A tube-like connection (39) leads from the area between the flat coil (9) and an upstream membrane (13) to the suction side of a vacuum pump (41). During operation of the shock wave tube (1), the membrane (13) is sucked onto the flat coil (9). The advantage of the arrangement is that there is no pressure chamber for pressing the membrane (13) from the outside. The shock waves therefore do not have to pass through exit windows, which eliminates disturbances due to cracks in the exit window. The shock wave tube (1) can be constructed very compactly in connection with reflectors (69; 81, 83). The reflectors (69; 83) preferably have a parabolic shape with a focal point (F) in which the patient's concrement (75) is placed.

Description

Die Erfindung betrifft ein Stoßwellenrohr mit einer Spule, an welcher eine Membran angrenzt. Die Erfindung bezieht sich insbesondere auf ein Stoßwellenrohr, das zur Konkrementzertrümmerung in der Therapie eingesetzt wird.The invention relates to a shock wave tube with a coil on which a membrane is adjacent. The invention relates in particular to a shock wave tube which is used for crushing concrement in therapy.

Stoßwellenrohre dieser Art sind an sich seit längerer Zeit bekannt und können nach neueren Untersuchungen, wie z. B. in der DE-OS 33 12 014 beschrieben, in der Medizintechnik zur Zertrümmerung von Konkrementen im Körper eines Patienten eingesetzt werden. Dort ist ein Stoßwellenrohr beschrieben, dessen Spule eine gekrümmte Form aufweist, so daß die ausgesandte Stoßwelle in einem Fokus zusammenläuft. Vor der Spule sind eine Isolierfolie und eine Metallmembran angeordnet. Um eine wirkungsvolle Stoßwelle zu erzielen, ist es nötig, daß die Membran eng an der Spule anliegt. Dazu wird vor der Membran ein Hohlraum gebildet, der mit einer Flüssigkeit gefüllt ist, welche unter einem gewissen Druck steht.Shock wave tubes of this type have been known per se for a long time and can be according to recent studies such. B. described in DE-OS 33 12 014, used in medical technology for crushing concrements in the body of a patient. There, a shock wave tube is described, the coil of which has a curved shape, so that the emitted shock wave converges in one focus. An insulating film and a metal membrane are arranged in front of the coil. In order to achieve an effective shock wave, it is necessary for the membrane to be tight against the coil. For this purpose, a cavity is formed in front of the membrane, which is filled with a liquid which is under a certain pressure.

Es hat sich herausgestellt, daß diejenigen Materialien, die unter dem zum Anpressen der Membran nötigen Druck stehen, aufgrund der dadurch bestehenden andauernden Vorspannung von der durchlaufenden Stoßwelle besonders stark beansprucht werden. Bei gewöhnlichen Austrittsfenstern für die Stoßwelle, z. B. aus Plexiglas, hat sich gezeigt, daß diese Druckvorbelastung nach Durchlauf mehrerer Stoßwellen zur Rißbildung führen kann. Der Überdruck kann dann nicht mehr aufrecht erhalten werden.It has been found that those materials which are under the pressure required to press on the membrane are particularly stressed by the continuous shock wave due to the permanent prestressing that results. With ordinary exit windows for the shock wave, e.g. B. made of plexiglass, has been shown that this pressure preload can lead to cracking after passing through several shock waves. The overpressure can then no longer be maintained.

Aufgabe der Erfindung ist es, ein Stoßwellenrohr der eingangs genannten Art so weiterzubilden, daß es solchen zerstörerischen Beanspruchungen nicht mehr ausgesetzt ist. Die Erfindung beruht auf der Überlegung, daß sich dies erreichen läßt, wenn die Stoßwellen außer der Membran keine weiteren Teile durchlaufen, die mit einer andauernden Druckdifferenz beaufschlagt sind.The object of the invention is to develop a shock wave tube of the type mentioned in such a way that it is no longer exposed to such destructive stresses. The invention is based on the consideration that this can be achieved if the shock waves, apart from the membrane, do not pass through any other parts which are subjected to a permanent pressure difference.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Membran mit Unterdruck gegenüber der Umgebung an die Spule angesaugt ist.This object is achieved in that the membrane is sucked into the coil with negative pressure relative to the environment.

Vorteil dieses Stoßwellenrohres ist es, daß ein Überdruck zum Andrücken der Membran gegen die Spule entfällt. Damit entfällt auch die notwendige Kammer zum Halten des Überdrucks und die in dieser Kammer als Austrittsfenster vorgesehene Materialschicht, die von der Stoßwelle durchlaufen wird. Durch den Wegfall dieser Materialschicht ergibt sich weiter als wesentlicher Vorteil, daß keine Wechselwirkung mit dieser Materialschicht stattfinden kann, welche die Amplitude sowie den zeitlichen und räumlichen Verlauf der Stoßwelle andernfalls nachteilig beeinflussen würde.The advantage of this shock wave tube is that there is no overpressure for pressing the membrane against the coil. This also eliminates the necessary chamber for holding the excess pressure and the material layer provided in this chamber as an exit window, which is passed through by the shock wave. The elimination of this layer of material has the further significant advantage that there can be no interaction with this layer of material which would otherwise adversely affect the amplitude and the temporal and spatial course of the shock wave.

Eine bevorzugte Ausführungsform zeichnet sich dadurch aus, daß die Spule als ebene Flachspule ausgebildet ist, und daß eine rohrartige Verbindung vorgesehen ist, deren eines Ende im Bereich zwischen der Membran und der Flachspule liegt und deren anderes Ende an die Saugseite einer Vakuumpumpe anschließbar ist, die zur Erzeugung des Unterdrucks vorgesehen ist.A preferred embodiment is characterized in that the coil is designed as a flat flat coil and that a tube-like connection is provided, one end of which lies in the area between the membrane and the flat coil and the other end of which can be connected to the suction side of a vacuum pump which is provided for generating the negative pressure.

Aufgrund des Unterdrucks zwischen der Flachspule und der Membran liegt diese bis in ihren Randbereich an der Flachspule an. Bei Auslösung der Stoßwelle wird die Membran schlagartig aus ihrer Ruhelage ausgelenkt; danach wird sie durch die Rücksaugkraft schnell gedämpft, wobei gleichzeitig eine definierte Rückführung der Membran erfolgt.Due to the negative pressure between the flat coil and the membrane, this rests against the flat coil up to its edge area. When the shock wave is triggered, the membrane is suddenly deflected from its rest position; then it is quickly dampened by the suction force, while at the same time a defined return of the membrane takes place.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen in Verbindung mit den Zeichnungen. Es zeigen:

  • Fig. 1 ein Stoßwellenrohr mit gegen die Flachspule angesaugter Membran,
  • Fig. 2 ein schematisch dargestelltes Stoßwellenrohr mit angeschlossener Vakuumpumpe und Überwachungseinrichtungen,
  • Fig. 3 eine erste Reflektoranordnung zur Fokussierung der emittierten ebenen Stoßwelle,
  • Fig. 4 eine zweite Reflektoranordnung zur Fokussierung der emittierten ebenen Stoßwelle,
  • Fig. 5 eine dritte Reflektoranordnung zur Fokussierung der emittierten ebenen Stoßwelle,
  • Fig. 6 eine vierte Reflektoranordnung zur Fokussierung der emittierten ebenen Stoßwelle und
  • Fig. 7 ein Linsensystem zur Fokussierung der emittierten ebenen Stoßwelle.
Further advantages and refinements of the invention result from the subclaims in connection with the drawings. Show it:
  • 1 is a shock wave tube with membrane sucked against the flat coil,
  • 2 shows a schematically illustrated shock wave tube with a connected vacuum pump and monitoring devices,
  • 3 shows a first reflector arrangement for focusing the emitted plane shock wave,
  • 4 shows a second reflector arrangement for focusing the emitted plane shock wave,
  • 5 shows a third reflector arrangement for focusing the emitted plane shock wave,
  • Fig. 6 shows a fourth reflector arrangement for focusing the emitted plane shock wave and
  • Fig. 7 shows a lens system for focusing the emitted flat shock wave.

In Figur 1 ist mit 1 ein Stoßwellenrohr bezeichnet. Das Stoßwellenrohr 1 weist ein zylindrisches Gehäuse 3 auf, im Bereich von dessen Stirnseite innen ein kreisförmiger Spulenträger 5 befestigt ist. Der Spalt zwischen dem Spulenträger 5 und dem Gehäuse 3 ist mittels eines ersten O--Ringes 7 abgedichtet. Auf der Oberseite des Spulenträgers 5 ist eine ebene einlagige Flachspule 9 eingegossen. Die Flachspule 9 ist spiralförmig gewickelt, so daß sich in der Mitte und am Rand jeweils ein Anschluß zum Anlegen einer elektrischen Spannung befindet. Oberhalb der eingegossenen Flachspule 9 ist eine kreisförmige Isolierfolie 11 angeordnet, die denselben Querschnitt hat wie das Gehäuse 3 des Stoßwellenrohrs 1. Oberhalb der Isolierfolie 11 befindet sich eine kreisförmige Membran 13 von gleichem Querschnitt. Die Membran 13 ist aus elektrisch gut leitendem Material gefertigt. Zwischen der Membran 13 und der Isolierfolie 11 ist ein Abstandsring 15 eingelegt, so daß ein kleiner Luftspalt 14 zwischen der Isolierfolie 11 und der Membran 13 vorhanden ist. Oberhalb der Membran 13 ist ein profilierter Haltering 17 angeordnet. In einer peripheren Ringnut des Halterings 17 befindet sich ein zweiter O-Ring 19. Damit ist die Unterseite des Halterings 17 gegen die Membran 13 abgedichtet.In Figure 1, 1 denotes a shock wave tube. The shock wave tube 1 has a cylindrical housing 3, in the area of the end face of which a circular coil carrier 5 is fastened on the inside. The gap between the coil carrier 5 and the housing 3 is sealed by means of a first O-ring 7. A flat single-layer flat coil 9 is cast in on the upper side of the coil carrier 5. The flat coil 9 is wound spirally, so that there is a connection in the middle and at the edge for applying an electrical voltage. A circular insulating film 11 is arranged above the cast flat coil 9 and has the same cross section as the housing 3 of the shock wave tube 1. Above the insulating film 11 there is a circular membrane 13 of the same cross section. The membrane 13 is made of an electrically highly conductive material. A spacer ring 15 is inserted between the membrane 13 and the insulating film 11, so that a small air gap 1 4 is present between the insulating film 11 and the membrane 1 3. A profiled retaining ring 17 is arranged above the membrane 13. A second O-ring 19 is located in a peripheral annular groove of the retaining ring 17. The underside of the retaining ring 17 is thus sealed against the membrane 13.

Das Gehäuse 3 ist im Anschluß an den Haltering 17 rechtwinklig nach innen abgebogen, so daß ein Anschlag für den Haltering 17 entsteht. In diesem Anschlag oder abgebogenen Teil des Gehäuses 3 ist von innen eine Ringnut 21 eingefräst, die zur Aufnahme eines dritten 0--Rings 23 dient. Mit diesem O-Ring 23 wird die Oberseite des Halterings 17 gegen das Gehäuse 3 dicht abgeschlossen.The housing 3 is bent at right angles to the retaining ring 17 inwards, so that a stop for the retaining ring 17 is formed. In this stop or bent part of the housing 3, an annular groove 21 is milled from the inside, which serves to receive a third 0-ring 23. With this O-ring 23, the top of the retaining ring 1 7 is sealed against the housing 3.

Der Spulenträger 5 ist in seinem Randbereich mit einer Bohrung oder Öffnung 25 versehen, die parallel zur Hauptachse ganz durch ihn hindurchführt. Abweichend davon könnte die kanalartige Öffnung 25 auch in der Innenseite des Gehäuses 3 verlaufen. Die am einen Ende der kanalartigen Öffnung 25 gelegene Isolierfolie 11 ist mit einem Loch 2T versehen. An das andere Ende der Öffnung 25 ist über einen (nicht gezeigten) Stutzen eine Vakuumpumpe (in Fig. 1 nicht gezeigt) angeschlossen.The coil carrier 5 is provided in its edge region with a bore or opening 25 which extends completely through it parallel to the main axis. Deviating from this, the channel-like opening 25 could also run in the inside of the housing 3. The insulating film 11 located at one end of the channel-like opening 25 is provided with a hole 2T. A vacuum pump (not shown in FIG. 1) is connected to the other end of the opening 25 via a nozzle (not shown).

Ist die Vakuumpumpe eingeschaltet, so wird durch die Bohrung 25 und das Loch 27 aus dem Spalt 14, der zwischen der Isolierfolie 11 und der Membran 13 liegt, Luft angesaugt. Die Membran 13 bewegt sich dann in die strichpunktiert gezeichnete durchgebogene Position. Sie liegt sodann aufgrund der Saugkraft eng an der Isolierfolie 11 und damit indirekt an der Flachspule 9 an. Wird auf die Flachspule 9 mittels eines (in Fig. 2 gezeigten) Kondensators ein steiler, hoher Spannungsimpuls gegeben, so wird aufgrund der resultierenden starken elektromagnetischen Kräfte die Membran 13 von der Flachspule 9 und der Isolierfolie 11 abgestoßen. Nach dem Spannungsimpuls wird die Membran 13 aufgrund des Unterdrucks wieder in eine definierte Position an die Isolierfolie 11 zurückgeführt.If the vacuum pump is switched on, air is drawn in through the bore 2 5 and the hole 27 from the gap 14 which lies between the insulating film 11 and the membrane 13. The membrane 13 then moves into the dash dotted drawn curved position. Because of the suction force, it then lies closely against the insulating film 11 and thus indirectly against the flat coil 9. If a steep, high voltage pulse is applied to the flat coil 9 by means of a capacitor (shown in FIG. 2), the membrane 13 is repelled by the flat coil 9 and the insulating film 11 due to the resulting strong electromagnetic forces. After the voltage pulse, the membrane 13 is returned to the defined position on the insulating film 11 due to the negative pressure.

Das Volumen zwischen der Membran 13 und der Isolierfolie 11 ist gegenüber dem Volumen der Bohrung 25 und der Zuleitung zur Vakuumpumpe sehr gering. Es hat sich gezeigt, daß das Stoßwellenrohr 1 bei guter Abdichtung mehrere Stunden mit dem einmal erzeugten Unterdruck arbeiten kann, ohne daß die Vakuumpumpe erneut eingeschaltet zu werden braucht.The volume between the membrane 13 and the insulating film 11 is very small compared to the volume of the bore 25 and the supply line to the vacuum pump. It has been shown that the shock wave tube 1 can work for several hours with the negative pressure once generated with a good seal, without the vacuum pump having to be switched on again.

In einer realisierten Ausführungsform betrug die axiale Länge des Stoßwellenrohrs 1 etwa 10 cm, der Innendurchmesser des Gehäuses 3 etwa 15 cm, die Dicke der Membran 13 etwa 0,2 mm, die Dicke des Abstandsrings 15 etwa 0,2 mm und der Durchmesser der Bohrung 25 ca. 2 mm. Der im Luftspalt 14 aufrecht erhaltene Druck betrug weniger als 50 mbar (= 50 Hektopascal).In a realized embodiment, the axial length of the shock wave tube 1 was approximately 10 cm, the inner diameter of the housing 3 approximately 15 cm, the thickness of the membrane 13 approximately 0.2 mm, the thickness of the spacer ring 15 approximately 0.2 mm and the diameter of the bore 25 approx. 2 mm. The pressure maintained in the air gap 14 was less than 50 mbar (= 50 hectopascals).

In Figur 2 ist nochmals das Stoßwellenrohr 1 mit seinen wesentlichen Bauelementen, nämlich dem Gehäuse 3, dem Spulenträger 5, der Flachspule 9, der Isolierfolie 11 und der Membran 13, dargestellt. Der erste elektrische Anschluß der Flachspule 9, der in ihrem Zentrum sitzt, ist herausgeführt und an die erste Elektrode 29 einer Funkenstrecke 31 geführt. An die zweite Elektrode 33 der Funkenstrecke 31 ist ein geerdeter Kondensator 35 gelegt. Dieser wird über einen Vorwiderstand 36 durch ein nicht gezeigtes Ladegerät aufgeladen. Die Ladespannung beträgt ca. 20 kV. Zwischen der ersten Elektrode 29 und der zweiten Elektrode 33 der Funkenstrecke 31 befindet sich eine Hilfselektrode 37, über die die Funkenstrecke 31 gezündet werden kann. Im Falle der Zündung entlädt sich der Kondensator 35 schlagartig über die Flachspule 9, woraufhin die metallene Membran 13 aufgrund der elektromagnetischen Wechselwirkung von der Flachspule 9 abgestoßen wird.FIG. 2 shows the shock wave tube 1 again with its essential components, namely the housing 3, the coil carrier 5, the flat coil 9, the insulating film 11 and the membrane 13. The first electrical connection of the flat coil 9, which is located in its center, is led out and to the first electrode 29 of a spark gap 31. A grounded capacitor 35 is connected to the second electrode 33 of the spark gap 31. This is charged via a series resistor 36 by a charger, not shown. The charging voltage is approx. 20 kV. Between the first electrode 29 and second electrode 33 of the spark gap 3 1 there is an auxiliary electrode 37, on the radio path can be ignited 31st In the event of ignition, the capacitor 35 suddenly discharges via the flat coil 9, whereupon the metal membrane 13 is repelled by the flat coil 9 due to the electromagnetic interaction.

Die Bohrung 25 ist hier Teil einer rohrartigen Verbindung. Insbesondere beinhaltet diese noch einen Schlauch 39, der zu der Saugseite einer Vakuumpumpe 41 führt. Der Schlauch 39 besitzt eine Abzweigung 43, von welcher eine Stichleitung zu einem Druckmeßgerät oder Manometer 45 führt. An dem Manometer 45 ist eine Anzeigevorrichtung 47 zur Darstellung des momentanen Unterdruckes angeschlossen. Das Manometer 45 ist so ausgebildet, daß es ausgangsseitig ein elektrisches Signal abgibt, das ein Maß für den Unterdruck ist. Es ist ausgangsseitig über eine Leitung an den ersten Eingang 49 eines Komparators 51 angeschlossen. An den zweiten Eingang 53 des Komparators 51 wird eine elektrische Spannung gelegt, die einem oberen Grenzwert für den Druck zwischen der Isolierfolie 11 und der Membran 13 entspricht. Dieser Grenzwert, der z. B. 100 mbar betragen kann, wird mit dem momentan gemessenen Druck-Istwert des Manometers 45 verglichen, und das Ergebnis des Vergleichs wird am Ausgang 55 des Komparators 51 als elektrisches Ausgangssignal C abgegeben. Das Ausgangssignal C des Komparators 51 ist zum einen an eine Steuerschaltung 57 für die Vakuumpumpe 41 geführt. Über die Steuerschaltung 57 wird die Vakuumpumpe 41 ein und ausgeschaltet. Bei Überschreiten des genannten oberen Grenzwertes wird sie eingeschaltet. Zum anderen ist das Ausgangssignal C des Komparators 51 an den ersten Eingang 59 eines UND-Tores 61 gelegt. Dieses wird gesperrt, wenn der obere Grenzwert überschritten ist. An den zweiten Eingang 63 des UND-Tores 61 ist ein Triggersignal angelegt. Dieses wird von einer Triggerschaltung 62 geliefert. Das Triggersignal kann beispielsweise von Hand über einen Schalter 60 ausgelöst werden. Bei Schließen des Schalters 60 kann also beispielsweise ein einziger Triggerimpuls ausgelöst werden. Es kann aber auch dadurch eine Folge von Triggerimpulsen ausgelöst werden. Es kann aber auch dadurch eine Folge von Triggerimpulsen mit vorwählbarem Zeitabstand, der die Aufeinanderfolge der Stoßwellen bestimmt, ausgelöst werden. Darüber hinaus kann das Triggersignal von einem Gerät zur Überwachung der Herztätigkeit und/oder aber von einem Gerät zur Überwachung der Atmung abgeleitet sein. Ein soches Gerät wäre dann über den Eingang 60a mit der Triggerschaltung 62 verbunden. Der Ausgang des UND--Tores 61 ist zu einer Auslöseeinrichtung 65 geführt, die die Zünd- oder Hilfselektrode 37 bedient. Das UND-Tor 61, die Triggerschaltung 62 und die Auslöseschaltung 65 bilden somit zusammen das Teil 64 einer Steuereinrichtung für das Stoßwellenrohr 1. Dieses wird nur dann gezündet, wenn der genannte Druck unter dem Grenzwert liegt.The bore 25 is part of a tubular connection here. In particular, this still includes a hose 39 which leads to the suction side of a vacuum pump 41. The hose 39 has a branch 43, from which a stub leads to a pressure gauge or pressure gauge 45. A display device 47 for displaying the current negative pressure is connected to the manometer 45. The manometer 45 is designed so that it emits an electrical signal on the output side, which is a measure of the negative pressure. On the output side, it is connected to the first input 49 of a comparator 51 via a line. An electrical voltage is applied to the second input 53 of the comparator 51, which corresponds to an upper limit value for the pressure between the insulating film 11 and the membrane 13. This limit, the z. B. 100 mbar, is compared with the currently measured actual pressure value of the manometer 45, and the result of the comparison is output at the output 55 of the comparator 51 as an electrical output signal C. The output signal C of the comparator 51 is passed on the one hand to a control circuit 57 for the vacuum pump 4 1. The vacuum pump 41 is switched on and off via the control circuit 57. If the specified upper limit is exceeded, it is switched on. On the other hand, the output signal C of the comparator 51 is applied to the first input 59 of an AND gate 61. This is blocked when the upper limit is exceeded. A trigger signal is applied to the second input 63 of the AND gate 61. This is supplied by a trigger circuit 62. The trigger signal can, for example, be triggered manually via a switch 60. When switch 60 is closed, for example, a single trigger pulse can be triggered. But it can also trigger a sequence of trigger pulses. However, this can also trigger a sequence of trigger pulses with a preselectable time interval that determines the sequence of the shock waves. In addition, the trigger signal can be derived from a device for monitoring cardiac activity and / or from a device for monitoring breathing. Such a device would then be connected to the trigger circuit 62 via the input 60a. The output of the AND gate 61 is guided to a triggering device 65 which operates the ignition or auxiliary electrode 37. The AND gate 61, the trigger circuit 62 and the trigger circuit 65 thus together form the part 64 of a control device for the shock wave tube 1. This is ignited only when the pressure mentioned is below the limit value.

Ziel des dargestellten Stoßwellenrohres 1 samt Überwachungseinrichtung ist es, einen Impuls auf das Stoßwellenrohr 1 zu geben, und zwar die Erzeugung einer Stoßwelle immer nur dann auszulösen, wenn die Bedingungen für ein einwandfreies Funktionieren gegeben sind. Diese Bedingungen sind das Vorhandensein eines ausreichenden Unterdrucks im Luftspalt 14 und das Vorhandensein eines Triggersignals von einem angeschlossenen Triggersignalgeber 62. Das UND-Tor 61 kann dabei mehr als zwei Eingänge aufweisen, um gegebenenfalls noch weitere Auslösekriterien für die Stoßwelle zu berücksichtigen. Es können also sowohl patientenseitige als auch geräteseitige Voraussetzungen festgelegt werden.The aim of the shock wave tube 1 shown, including the monitoring device, is to give an impulse to the shock wave tube 1, namely to trigger the generation of a shock wave only when the conditions for proper functioning are present. These conditions are the presence of a sufficient negative pressure in the air gap 14 and the presence of a trigger signal from a connected trigger signal generator 62. The AND gate 61 can have more than two inputs in order to take into account further triggering criteria for the shock wave. Both patient-side and device-side requirements can therefore be specified.

In den Figuren 3 bis 7 ist jeweils ein ebenes Stoßwellenrohr 1 schematisch gezeigt, und zwar mit der Membran 13 und der Flachspule 9. In den Figuren 3 und 4 ist auch die Funkenstrecke 31 gezeigt. Jenseits der Membran 13 setzt sich dort noch das Gehäuse 3 fort.A flat shock wave tube 1 is shown schematically in FIGS. 3 to 7, with the membrane 13 and the flat coil 9. The spark gap 31 is also shown in FIGS. 3 and 4. Beyond the membrane 1 3, the housing 3 continues there.

In Figur 3 ist das Stoßwellenrohr 1 im wesentlichen parallel zu der Körperoberfläche 67 eines Patienten ausgerichtet. Die ausgesendete Stoßwelle trifft auf einen parabolisch gekrümmten Reflektor 69, der ausgangsseitig gegenüber der Membran 13 angeordnet ist. Die Parabelachsen sind mit x, y bezeichnet. Das Stoßwellenrohr 1 und der Reflektor 69 befinden sich hier in einem gemeinsamen Gerätegehäuse 71. Das Gerätegehäuse 71 enthält seitlich, . und zwar auf Höhe des Reflektors 69, eine Ankoppelschicht 73. Die Ankoppelschicht 73 besteht beispielsweise aus EPDM-Gummi oder einem anderen Material mit niedrigem Schubmodul. Solche Materialien sind an sich in der Ultraschalltechnik bekannt. Das Gerätegehäuse 71 ist innen zumindest zwischen dem Reflektor 69 und der Membran 13 mit Wasser gefüllt. Die Ankoppelschicht 73 wird vorzugsweise über ein Gel als Ankoppelmedium an die Körpereberfläεhe 67 des Patienten gelegt. Dabei wird der Patient so ausgerichtet, daß sich ein zu zerstörendes Konkrement 75 in seinem Inneren im Brennpunkt F des parabolischen Reflektors 69 befindet. Die Parabel die die Krümmung des Reflektors 69 bestimmt, weist dabei eine Symmetrieachse 77 auf, die parallel zur Hauptachse 79 des Stoßwellenrohres 1 verläuft.In FIG. 3, the shock wave tube 1 is oriented essentially parallel to the body surface 67 of a patient. The emitted shock wave strikes a parabolically curved reflector 69, which is arranged on the output side opposite the membrane 13. The parabola axes are labeled x, y. The shock wave tube 1 and the reflector 69 are located here in a common device housing 71. The device housing 71 contains,. namely at the level of the reflector 69, a coupling layer 73. The coupling layer 73 consists, for example, of EPDM rubber or another material with a low shear modulus. Such materials are known per se in ultrasound technology. The device housing 71 is filled with water on the inside at least between the reflector 69 and the membrane 13. The coupling layer 73 is preferably placed on the body surface 67 of the patient via a gel as the coupling medium. The patient is aligned so that a calculus 75 to be destroyed is located inside him at the focal point F of the parabolic reflector 69. The parabola which determines the curvature of the reflector 69 has an axis of symmetry 77 which runs parallel to the main axis 79 of the shock wave tube 1.

Der Reflektor 69 kann sowohl parallel zur x- als auch parallel zur y-Richtung verschoben werden, d.h. senkrecht zur bzw. in Stoßwellen-Ausbreitungsrichtung. Die mechanische Verstellmöglichkeit ist durch Doppelpfeile 80a bzw. 80b angedeutet. Darüber hinaus ist der Reflektor 69 auch senkrecht hierzu, also in z-Richtung verschiebbar. Dies hat den Vorteil, daß eine Änderung der Fokuslage möglich ist, ohne das Gerätegehäuse 71 mit Ankoppelschicht 73 oder den Patienten zu verschieben.The reflector 69 can be displaced both parallel to the x and parallel to the y direction, that is to say perpendicular to or in the direction of the shock wave propagation. The mechanical adjustment option is indicated by double arrows 80a and 80b. In addition, the reflector 69 is also perpendicular to it, i.e. displaceable in the z direction. This has the advantage that the focus position can be changed without moving the device housing 71 with the coupling layer 73 or the patient.

Wird die Membran 13 aufgrund eines Spannungsimpulses ausgelenkt, so breitet sich eine ebene Stoßwelle in Richtung des Reflektors 69 aus. Sie wird von da zur Seite hin um etwa 90° abgelenkt. Die Stoßwelle tritt durch die Ankoppeischicht 73 hindurch in den Patienten ein und sammelt sich im Brennpunkt F des Reflektors 69. Dort befindet sich das Konkrement 75, z. B. ein Nierenstein, und wird durch Druck- und Zugkräfte der Stoßwelle zerkleinert.If the membrane 13 is deflected due to a voltage pulse, a plane shock wave propagates in the direction of the reflector 69. From there it is deflected to the side by about 90 °. The shock wave enters the patient through the coupling layer 73 and collects at the focal point F of the reflector 69. There is the concretion 75, for. B. a kidney stone, and is crushed by compressive and tensile forces of the shock wave.

Vorteil der gezeigten Anordnung ist es, daß ein relativ großer Eintrittswinkel β bei Verwendung von nur einer reflektierenden Oberfläche verwendet wird.The advantage of the arrangement shown is that a relatively large entry angle β is used when only one reflecting surface is used.

In Figur 4 befindet sich gegenüber der Membran 13 ein Kegel 81, dessen Spitze der Membran 13 zugewandt ist. Der Kegel 81 dient in dieser Anordnung als erster Reflektor für die ebene Stoßwelle und ist insbesondere aus Messing gefertigt. Die ebene Mantellinie des Kegels 81 weist eine Neigung von a = 45° gegenüber der Hauptachse 79 des Stoßwellenrohrs 1 auf. Die Kegelachse k und die Hauptachse 79 sind hier gleich gerichtet. Somit wird die ebene Stoßwelle, die aufgrund der kreisförmigen Membran 13 auch einen kreisförmigen Querschnitt hat, an dem Kegel 81 zu einer darauf senkrecht stehenden zylindrischen Welle umgeformt, die nach außen läuft. In Höhe des Kegels 81 ist dieser von einem zweiten Reflektor 83 umgeben, der die senkrecht nach außen laufende Stoßwelle in einen Fokus F fokussiert. Der zweite Reflektor 83, der sich ringförmig um den Kegel 81 erstreckt, kommt aufgrund der Rotation eines Bogens einer Parabel 85 (Koordinaten x, y) zustande. Die Parabel 85 ist dabei so gelegt, daß ihre Hauptachse 87 senkrecht auf der Achse 79 des Stoßwellenrohrs 1 steht. Das Konkrement 75 befindet sich im Brennpunkt F des Parabelringes 83. Auch hier ist die Anordnung aus Stoßwellenrohr 1 mit den zugehörigen Reflektoren 81, 83 in einem gemeinsamen Gerätegehäuse 71 untergebracht. Der von der Stoßwelle durchlaufene Weg ist mit Wasser ausgefüllt. Endseitig am Gerätegehäuse 71 befindet sich wiederum eine Ankoppelschicht 73, um die Apparatur an die Körperoberfläche 67 des Patienten anzulegen. Vorteil dieser Anordnung ist es, daß die Stoßwelle mit besonders großer Apertur in den Körper des Patienten eingekoppelt wird. Da der zweite Reflektor 83 rotationssymmetrisch zur Achse 79 des Stoßwellenrohrs 1 geformt ist, befindet sich der Brennpunkt F auf dieser Achse 79. Die Anordnung ist somit leicht auf das Konkrement 75 im Patienten auszurichten. Darüber hinaus ergibt sich eine besonders kompakte Konstruktion. Ein Stoßwellenrohr 1 mit relativ kleinem Durchmesser, z. B. von fünf Zentimetern, kann hier Anwendung finden.In FIG. 4 there is a cone 81 opposite the membrane 13, the tip of which faces the membrane 13. In this arrangement, the cone 81 serves as the first reflector for the plane shock wave and is in particular made of brass. The flat surface line of the cone 81 has an inclination of a = 45 ° with respect to the main axis 79 of the shock wave tube 1. The cone axis k and the main axis 79 are directed in the same direction here. Thus, the flat shock wave, which also has a circular cross section due to the circular membrane 13, is formed on the cone 81 to form a vertical cylindrical wave which runs outwards. At the level of the cone 81, the latter is surrounded by a second reflector 83, which focuses the shock wave running vertically outwards into a focus F. The second reflector 83, which extends in a ring around the cone 81, comes about due to the rotation of an arc of a parabola 85 (coordinates x, y). The parabola 85 is placed so that its main axis 87 is perpendicular to the axis 79 of the shock tube 1. The concretion 75 is located in the focal point F of the parabolic ring 83. Here too, the arrangement of shock wave tube 1 with the associated reflectors 81, 83 is accommodated in a common device housing 71. The path traversed by the shock wave is filled with water. At the end of the device housing 71 there is again a coupling layer 73 in order to apply the apparatus to the body surface 67 of the patient. The advantage of this arrangement is that the shock wave is coupled into the patient's body with a particularly large aperture. Since the second reflector 83 is rotationally symmetrical to the axis 79 of the shock wave tube 1, the focal point F is on this axis 79. The arrangement is thus easy to align with the concretion 75 in the patient. In addition, there is a particularly compact construction. A shock wave tube 1 with a relatively small diameter, e.g. B. of five centimeters, can be used here.

Figur 5 stellt eine Anordnung mit einem Stoßwellenrohr 1 dar, bei der die Stoßwelle ebenfalls axial auf einen Kegel 81 trifft und von diesem rechtwinklig nach außen reflektiert wird, so daß sich eine zylinderförmige Stoßwelle ergibt. Auch hier ist ein zweiter Reflektor 83 vorgesehen, der kreisringförmig um den Kegel 81 angeordnet ist. Der zweite Reflektor 83 ist hier durch Rotation des Bogens einer Parabel 85 um die Achse 79 des Stoßwellenrohrs 1 entstanden. In Abweichung zur Anordnung gemäß Figur 4 fällt hier jedoch die Parabelachse x, die dem Bogen zugeordnet ist und die zum Kreisring des zweiten Reflektors 83 gehört, mit der Achse 79 des Stoßwellenrohrs 1 und der Achse k des Kegels 81 zusammen. Die Geometrie der Anordnung ist hier fest vorgegeben. Der Mittelpunkt A des Kegels 81 hat vom Scheitelpunkt S der Parabel 85 den dreifachen Abstand wie der Brennpunkt F vom Scheitelpunkt S. Die Anordnung ist so auf den Patienten ausgerichtet, daß sich das Konkrement 75 des Patienten auf der gemeinsamen Achse 79, k von Stoßwellenrohr 1 und Kegel 81 befindet. Es bildet sich eine Fokuszone, deren scheitelnächster Punkt B den neunfachen Abstand vom Scheitelpunkt S hat wie der Brennpunkt F. Hier wird das Konkrement 75 positioniert.Figure 5 shows an arrangement with a shock wave tube 1, in which the shock wave also axially strikes a cone 81 and is reflected at right angles to the outside, so that a cylindrical shock wave results. Here too, a second reflector 83 is provided, which is arranged in a ring around the cone 81. The second reflector 83 was created here by rotating the arc of a parabola 85 about the axis 79 of the shock wave tube 1. In a departure from the arrangement according to FIG. 4, however, the parabola axis x, which is assigned to the arc and belongs to the circular ring of the second reflector 83, coincides with the axis 79 of the shock wave tube 1 and the axis k of the cone 8 1 . The geometry of the arrangement is fixed here. The center A of the cone 81 is three times the distance from the apex S of the parabola 85 as the focal point F from the apex S. The arrangement is oriented toward the patient so that the concretion 75 of the patient is on the common axis 79, k of the shock wave tube 1 and cone 81 is located. A focus zone is formed, the apex point B of which is nine times the distance from the apex point S as the focal point F. The concretion 75 is positioned here.

Figur 6 zeigt eine weitere Möglichkeit der Fokussierung mittels Reflektoren. Dort trifft die ebene Stoßwelle auf einen Kegel 81, dessen konkaver Mantel durch Rotation eines Bogens einer Parabel um die Kegelachse k zustande gekommen ist. Auf Höhe des Kegels 81 ist dieser von einem zweiten Reflektor 83 umgeben, der durch Rotation einer Geraden um die Achse k des Kegels 81 gebildet ist. Von dort wird die Schallwelle auf den Fokus F fokussiert.FIG. 6 shows a further possibility of focusing using reflectors. There, the plane shock wave hits a cone 81, the concave surface of which has come about by rotating an arc of a parabola about the cone axis k. At the level of the cone 81, the latter is surrounded by a second reflector 83, which is formed by rotating a straight line about the axis k of the cone 81. From there, the sound wave is focused on focus F.

Es lassen sich noch weitere günstige Reflektorkonstellationen finden, mit Hilfe deren die Stoßwelle konzentriert werden kann. Bei allen Reflektoranordnungen ergibt sich als Vorteil, daß infolge des Wegfalls eines Austrittsfensters für den Uberdruckraum wenige Grenzflächen in Wechselwirkung mit der Stoßwelle treten und daß sich große Öffnungswinkel (Aperturen) erzielen lassen.There are other favorable reflector constellations that can be used to concentrate the shock wave. An advantage of all reflector arrangements is that, due to the elimination of an exit window for the overpressure space, few interfaces interact with the shock wave and that large opening angles (apertures) can be achieved.

Nach Figur 7 ist das Stoßwellenrohr 1 mit einem Linsensystem versehen. Dieses umfaßt einen ebenen Reflektor 89, der in Normalposition unter einem Winkel von 45° zur Ausbreitungsrichtung der Stoßwellen angeordnet wird, und eine Sammellinse 91, auf die die Stoßwellen vom Reflektor 89 gelenkt werden. Im Prinzip kann die Anordnung von Sammellinsen 81 und Reflektor 89 vertauscht werden. Auch kann der Reflektor 89 eine gekrümmte Oberfläche aufweisen. Zur Tiefenverstellung ist eine Verschiebeeinrichtung für die Sammellinse 91 vorgesehen. Deren Funktion ist durch den Doppelpfeil 93 gekennzeichnet. Der Reflektor 89 ist mittels eines Kugelgelenks 95 kippbar. Dadurch ist eine Einstellung des Fokus senkrecht zur Ausbreitungsrichtung möglich. Die Sammellinse 91 ist hier kaum einem Verschleiß ausgesetzt.According to Figure 7, the shock wave tube 1 is provided with a lens system. This comprises a planar reflector 89 which is disposed in the normal position at an angle of 4 5 ° to the propagation direction of the shock waves, and a converging lens 9 1 to which the shock waves are directed from the reflector 89th In principle, the arrangement of converging lenses 81 and reflector 89 can be interchanged. The reflector 89 can also have a curved surface. A displacement device for the converging lens 91 is provided for depth adjustment. Their function is indicated by the double arrow 93. The reflector 89 can be tilted by means of a ball joint 95. This makes it possible to adjust the focus perpendicular to the direction of propagation. The converging lens 91 is hardly exposed to wear here.

Claims (25)

1. Stoßwellenrohr mit einer Spule, an welcher eine Membran angrenzt, dadurch gekennzeichnet , daß die Membran (13) mit Unterdruck gegenüber der Umgebung an die Spule (9) angesaugt ist. 1st Shock wave tube with a coil, which is adjacent to a membrane, characterized in that the membrane (13) is sucked into the coil (9) with negative pressure relative to the environment. 2. Stoßwellenrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Spule als ebene Flachspule (9) ausgebildet ist und daß eine rohrartige Verbindung (39) vorgesehen ist, deren eines Ende im Bereich zwischen der Membran - (13) und der Flachspule (9) liegt und deren anderes Ende an die Saugseite einer Vakuumpumpe (41) anschließbar ist, die zur Erzeugung des Unterdrucks vorgesehen ist.2. Shock wave tube according to claim 1, characterized in that the coil is designed as a flat flat coil (9) and that a tubular connection (39) is provided, one end of which in the area between the membrane - ( 1 3) and the flat coil (9 ) is located and the other end of which can be connected to the suction side of a vacuum pump ( 4 1), which is provided for generating the negative pressure. 3. Stoßwellenrohr nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Flachspule (9) im Bereich einer Stirnseite eines zylindrischen Trägers (5) aus elektrisch isolierendem Material angebracht ist.3. Shock wave tube according to claim 1 or 2, characterized in that the flat coil (9) is attached in the region of an end face of a cylindrical carrier (5) made of electrically insulating material. 4. Stoßwellenrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet , daß die rohrartige Verbindung (39) eine durch den Träger (5) führende Öffnung (25) umfaßt.4. Shock wave tube according to one of claims 1 to 3, characterized in that the tubular connection (39) comprises an opening (25) leading through the carrier (5). 5. Stoßwellenrohr nach Anspruch 4, dadurch gekennzeichnet, daß die Öffnung (25) am Rand des Trägers (5) befindet.5. Shock wave tube according to claim 4, characterized in that the opening (25) is located on the edge of the carrier (5). 6. Stoßwellenrohr nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß im Verlauf der rohrartigen Verbindung (39) ein Druckmeßgerät (45) angeschlossen ist.6. shock wave tube according to one of claims 2 to 5, characterized in that a pressure measuring device (45) is connected in the course of the tubular connection (39). 7. Stoßwellenrohr nach Anspruch 6, dadurch gekennzeichnet, daß der von dem Druckmeßerät (45) ermittelte Druck als elektrisches Signal zu einem ersten Eingang (49) eines Komparators (51) geführt ist, daß am Komparator (51) ein zweiter Eingang (53) zur Eingabe eines maximalen Grenzwertes des Drucks vorhanden ist, und daß der Komparator (51) ausgangsseitig mit einer Steuereinrichtung - (64) verbunden ist, die zur Freigabe eines Spannungsimpulses auf die Flachspule (9) vorgesehen ist.7. Shock wave tube according to claim 6, characterized in that the pressure determined by the pressure measuring device (45) is conducted as an electrical signal to a first input (49) of a comparator (51), that on the comparator (51) a second input (53) for entering a maximum limit value of the pressure, and that the comparator (51) is connected on the output side to a control device - (64) which is provided for releasing a voltage pulse on the flat coil (9). 8. Stoßwellenrohr nach Anspruch 7, dadurch gekennzeichnet, daß die Steuereinrichtung (64) ein UND-Tor - (61) umfaßt, an dessen ersten Eingang (59) das Ausgangssignal (C) des Komparators (51) und an dessen zweiten Eingang (63) das Ausgangssignal einer Triggerschaltung - (62) gelegt ist.8. shock wave tube according to claim 7, characterized in that the control device (64) comprises an AND gate - (61), at its first input (59) the output signal (C) of the comparator (51) and at its second input (63 ) the output signal of a trigger circuit - (62) is connected. 9. Stoßwellenrohr nach Anspruch 7 oder' 8, dadurch gekennzeichnet, daß der Komparator (51) ausgangsseitig mit einer Pumpensteuerschaltung (57) für die Vakuumpumpe (41) verbunden ist, die in Abhängigkeit des vom Komparator (51) durchgeführten Vergleichs die Vakuumpumpe (41) ein- und ausschaltet.9. shock wave tube according to claim 7 or '8, characterized in that the comparator (51) is connected on the output side to a pump control circuit (57) for the vacuum pump (41) which, depending on the comparison carried out by the comparator (51), the vacuum pump (41 ) switches on and off. 10. Stoßwellenrohr nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Eingang der Triggerschaltung - (62) mit einem Gerät zur Überwachung der Herztätigkeit verbunden ist.10. Shock wave tube according to claim 8 or 9, characterized in that the input of the trigger circuit - (62) is connected to a device for monitoring cardiac activity. 11. Stoßwellenrohr nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, daß der Eingang der Triggerschaftung - (62) mit einem Gerät zur Überwachung der Atmung verbunden ist.11. Shock wave tube according to claim 8, 9 or 10, characterized in that the input of the trigger shaft - (62) is connected to a device for monitoring breathing. 12. Stoßwellenrohr nach einem der Ansprüche 2, 4 bis 11, dadurch gekennzeichnet, daß das eine Ende der rohratigen Verbindung (39) als Ringnut ausgestaltet ist, an den Randbereich der Membran (13) anschließt und die Flashspule (9) kreisförmig umschließt.12. Shock wave tube according to one of claims 2, 4 to 11, characterized in that one end of the tubular connection (39) is designed as an annular groove, adjoins the edge region of the membrane (13) and surrounds the flash coil (9) in a circle. 13. Stoßwellenrohr nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Flashspule (9) eben ist, und daß in Stoßwellen-Ausbreitungsrichtung hinter der Membran (13) ein Reflektorsystem (69; 81, 83) angeordnet ist.13. Shock wave tube according to one of claims 1 to 11, characterized in that the flash coil (9) is flat, and that in the shock wave propagation direction behind the membrane (13) a reflector system (69; 81, 83) is arranged. 14. Stoßwellenrohr nach Anspruch 13, dadurch gekennzeichnet, daß das Reflektorsystem einen Kegel (81) umfaßt, dessen Achse (k) parallel zur Stoßwellenrohr-Achse ist, daß der Kegel (81) von einem Reflektorring (83) umgeben ist, daß die Form des Reflektorringes (83) durch Rotation eines Bogens einer Parabel (85) um die Achse (k) des Kegels (81) gebildet ist, wobei die Parabel-Hauptachse - (87) senkrecht auf der Achse (k) des Kegels (81) steht, und wobei der Brennpunkt (F) der Parabel (85) auf der Achse - (k) des Kegels (81) liegt (Fig. 4).14. Shock wave tube according to claim 13, characterized in that the reflector system comprises a cone (81) whose axis (k) is parallel to the shock wave tube axis, that the cone (81) is surrounded by a reflector ring (83) that the shape of the reflector ring (83) is formed by rotating an arc of a parabola (85) about the axis (k) of the cone (81), the main parabola axis - (87) being perpendicular to the axis (k) of the cone (81) , and wherein the focal point (F) of the parabola (85) lies on the axis - (k) of the cone (81) (Fig. 4). 15. Stoßwellenrohr nach Anspruch 13, dadurch gekennzeichnet, daß das Reflektorsystem einen Kegel (81) umfaßt, dessen Achse (k) parallel zur Stoßwellenrohr-Achse ist, daß der Kegel (81) von einem Reflektorring (83) umgeben ist, welcher ein Ausschnitt eines Rotationsparaboloiden (85) ist, dessen Rotationsachse mit der Achse (k) des Kegels (81) zusammenfällt und daß der Mittelpunkt (A) des Kegels (81) vom Scheitel (S) des Rotationsparaboloiden (85) dreimal so weit entfernt ist wie der Brennpunkt (F) des Rotationsparaboloiden (85) vom Scheitel (S), wodurch eine Fokuszone (B) des Reflektorsystems neunmal so weit vom Scheitel (S) entfernt ist wie der Brennpunkt (F) des Rotationsparaboloiden (85) (Fig. 5).15. Shock wave tube according to claim 13, characterized in that the reflector system comprises a cone (81) whose axis (k) is parallel to the shock wave tube axis, that the cone (81) is surrounded by a reflector ring (83) which has a cutout of a paraboloid of revolution (85), the axis of rotation of which coincides with the axis (k) of the cone (81) and that the center (A) of the cone (81) is three times as far from the apex (S) of the paraboloid of revolution (85) as that Focal point (F) of the rotational paraboloid (85) from the apex (S), whereby a focus zone (B) of the reflector system is nine times as far from the apex (S) as the focal point (F) of the rotational paraboloid (85) (Fig. 5). 16. Stoßwellenrohr nach Anspruch 13, dadurch gekennzeichnet , daß das Reflektorsystem einen Kegel (81) umfaßt, dessen Mantellinie parabolisch gekrümmt ist, und daß der Kegel (81) von einem Reflektorring (83) umgeben ist, dessen Mantellinie eine Gerade ist (Fig. 6).16. Shock wave tube according to claim 13, characterized in that the reflector system comprises a cone (81), the surface line of which is parabolically curved, and that the cone (81) is surrounded by a reflector ring (83), the surface line of which is a straight line (Fig. 6). 17. Stoßwellenrohr nach Anspruch 13, dadurch gekennzeichnet, daß in Stoßwellen-Ausbreitungsrichtung hinter der Membran (13) ein Ausschnitt aus einem Rotationsparaboloiden (69) angeordnet ist, dessen Rotationsachse (77) parallel zur Stoßwellenrohr-Achse (79) ausgerichtet ist (Fig. 3).17. Shock wave tube according to claim 13, characterized in that in the shock wave propagation direction behind the membrane (13) a section of a rotational paraboloid (69) is arranged, the axis of rotation (77) of which is aligned parallel to the shock wave tube axis (79) (Fig. 3). 18. Stoßwellenrohr nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß das Reflektorsystem (69; 81, 83) in Richtung der Stoßwellenrohr-Achse (79) verschiebbar ist.18. Shock wave tube according to one of claims 13 to 17, characterized in that the reflector system (69; 81, 83) is displaceable in the direction of the shock wave tube axis (79). 19. Stoßwettenrohr nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß der Ausschnitt aus dem Rotationsparaboloiden (69) in einer Richtung senkrecht zur Stoßwellenrohr-Achse (79) verschiebbar ist (Fig. 3).19. shock betting tube according to claim 17 or 18, characterized in that the section of the paraboloid of revolution (69) is displaceable in a direction perpendicular to the axis of the shock wave tube (79) (Fig. 3). 20. Stoßwellenrohr nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Flachspule (9) eben ist, und daß in Stoßwellenrichtung hinter der Membran (13) ein Linsensystem angeordnet ist.20. Shock wave tube according to one of claims 1 to 12, characterized in that the flat coil (9) is flat, and that a lens system is arranged in the shock wave direction behind the membrane (13). 21. Stoßwellenrohr nach Anspruch 20, dadurch gekennzeichnet, daß das Linsensystem eine Sammellinse umfaßt.2 1 . Shock wave tube according to claim 20, characterized in that the lens system comprises a converging lens. 22. Stoßwellenrohr nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß das Reflektorsystem (69; 81, 83) aus Messing gefertigt ist.22. Shock wave tube according to one of claims 1 4 to 19, characterized in that the reflector system (69; 81, 83) is made of brass. 23. Stoßwellenrohr nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß es zusammen mit dem Reflektorsystem (69; 81, 83) in einem gemeinsamen Gehäuse (71) untergebracht ist..23. Shock wave tube according to one of claims 14 to 19, characterized in that it is accommodated together with the reflector system (69; 8 1 , 83) in a common housing (71). 24. Stoßwellenrohr nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß das Linsensystem aus einem Reflektor (89) und einer Sammellinse (91) besteht, und daß die Sammellinse in Stoßwellenrichtung verschiebbar ist (Fig. 7).24. Shock wave tube according to claim 20 or 21, characterized in that the lens system consists of a reflector (89) and a converging lens (91), and that the converging lens is displaceable in the direction of the shock wave (Fig. 7). 25. Stoßwellenrohr nach Anspruch 24, dadurch gekennzeichnet, daß der Reflektor (89) um eine Achse senkrecht oder parallel zur Stoßwellenrichtung kippbar ist (Fig. 7).25. Shock wave tube according to claim 24, characterized in that the reflector (89) is tiltable about an axis perpendicular or parallel to the shock wave direction (Fig. 7).
EP85116021A 1984-12-27 1985-12-16 Shock sound waves apparatus for the disintegration of calculi Expired EP0188750B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3447440 1984-12-27
DE19843447440 DE3447440A1 (en) 1984-12-27 1984-12-27 SHOCK SHAFT PIPE FOR THE CRUSHING OF CONCRETE

Publications (2)

Publication Number Publication Date
EP0188750A1 true EP0188750A1 (en) 1986-07-30
EP0188750B1 EP0188750B1 (en) 1988-11-09

Family

ID=6253926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85116021A Expired EP0188750B1 (en) 1984-12-27 1985-12-16 Shock sound waves apparatus for the disintegration of calculi

Country Status (4)

Country Link
US (1) US4697588A (en)
EP (1) EP0188750B1 (en)
JP (1) JPS61154658A (en)
DE (2) DE3447440A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329849A1 (en) * 1988-02-18 1989-08-30 Dornier Medizintechnik Gmbh Variable shock waves energy through an adapted ohmic consumption
WO1990004359A2 (en) * 1988-10-17 1990-05-03 Storz Medical Ag Device for generating focused acoustic pressure waves
DE4102447C1 (en) * 1991-01-28 1992-04-09 Siemens Ag, 8000 Muenchen, De
DE4038650C1 (en) * 1990-12-04 1992-04-16 Siemens Ag, 8000 Muenchen, De Pressure pulse concretion remover - has pulsed pressure source and pulse generator in common housing
DE4125088C1 (en) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
DE4038651A1 (en) * 1990-12-04 1992-06-11 Siemens Ag Pressure pulse generator assembly - has pressure pulse source, HV pulse generator, and housing for both, forming integral module
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
DE4136004C1 (en) * 1991-10-31 1993-01-28 Siemens Ag, 8000 Muenchen, De
DE4139024C1 (en) * 1991-11-27 1993-04-15 Siemens Ag, 8000 Muenchen, De
DE4135177A1 (en) * 1991-10-24 1993-04-29 Siemens Ag Therapeutic assembly for treatment by acoustic irradiation - has acoustic source aligned by X=ray beam with focus of ultrasonic radiation accurately determined and displayed
DE4201141A1 (en) * 1992-01-17 1993-07-22 Siemens Ag Acoustic pressure pulse source e.g. for medical use - has insulating foils adhesively bonded to electric coil
DE4201139A1 (en) * 1992-01-17 1993-07-22 Siemens Ag Electromagnetic acoustic pressure pulse source - has breakdown resistant insulating foils, useful in medical treatment
DE4212809A1 (en) * 1992-04-16 1993-10-21 Siemens Ag Therapy device for the treatment of a living being with focused acoustic waves
DE4306459C1 (en) * 1993-03-02 1994-04-28 Siemens Ag Ultrasound therapy device using X-ray imaging - uses mounting allowing X-ray imaging from two different directions, with corresponding adjustment of acoustic wave focus
DE4232683C1 (en) * 1992-09-29 1994-04-28 Siemens Ag Ultrasound therapy device with X=ray imaging system - has carrier for acoustic wave source and patient table each adjusted to adjust acoustic wave focus position.
DE4306460A1 (en) * 1993-03-02 1994-09-15 Siemens Ag Therapy device for treatment with focussed acoustic waves
DE19538054C1 (en) * 1995-10-12 1996-12-05 Siemens Ag Therapeutic unit with patient support plate, for e.g. shock wave generator used to break up kidney stones
DE4447643C2 (en) * 1994-01-14 1998-11-12 Siemens Ag Medical appts with X=Ray diagnostic unit

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218113U (en) * 1985-07-18 1987-02-03
JPH042644Y2 (en) * 1985-11-28 1992-01-29
EP0256203A1 (en) * 1986-06-05 1988-02-24 Siemens Aktiengesellschaft Shock wave generator for the disintegration of concretions in a living body by non-contacting means
US5095891A (en) * 1986-07-10 1992-03-17 Siemens Aktiengesellschaft Connecting cable for use with a pulse generator and a shock wave generator
US4782821A (en) * 1986-07-14 1988-11-08 Siemens Aktiengesellschaft Shock wave generator for an installation for non-contacting disintegration of calculi in the body of a life form
EP0253053B1 (en) * 1986-07-14 1994-04-27 Siemens Aktiengesellschaft Shock-wave generator for a device for non-contacting desintegration of concretions in a living body
DE3765336D1 (en) * 1986-07-16 1990-11-08 Siemens Ag SHOCK SHAFT GENERATOR FOR GENERATING AN ACOUSTIC SHOCK SHAFT IMPULSE.
DE8627238U1 (en) * 1986-10-06 1988-02-04 Siemens AG, 1000 Berlin und 8000 München Shock wave source
EP0263349A1 (en) * 1986-10-06 1988-04-13 Siemens Aktiengesellschaft Shock wave generator
DE3743822A1 (en) * 1987-12-23 1989-07-13 Dornier Medizintechnik ELECTROMAGNETIC SHAFT SOURCE
DE3907605C2 (en) * 1989-03-09 1996-04-04 Dornier Medizintechnik Shock wave source
EP0412202A1 (en) * 1989-08-11 1991-02-13 Siemens Aktiengesellschaft Shock wave generator to produce focused shock waves with a reflector shaped as a paraboloid of revolution
US5156144A (en) * 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device
DE9109025U1 (en) * 1990-08-02 1991-12-05 Siemens AG, 80333 München Generator for generating acoustic train impulses
US5233972A (en) * 1990-09-27 1993-08-10 Siemens Aktiengesellschaft Shockwave source for acoustic shockwaves
DE59010891D1 (en) * 1990-10-29 2000-01-27 Siemens Ag Acoustic pressure pulse generator
US5350352A (en) * 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
DE4118443C2 (en) * 1991-06-05 2000-04-06 Siemens Ag Acoustic pressure pulse generator
DE4119524C2 (en) * 1991-06-13 1998-08-20 Siemens Ag Device for the treatment of bone disorders by means of acoustic waves
DE4125375C1 (en) * 1991-07-31 1992-12-10 Siemens Ag, 8000 Muenchen, De Pressure pulse source for lithotripsy - has pulsed diaphragm in acoustic medium with layer of lower acoustic impedance
DE4143540C2 (en) * 1991-10-24 1996-08-08 Siemens Ag Therapeutic assembly for treatment by acoustic irradiation
US5331952A (en) * 1992-03-23 1994-07-26 Bantum Tripter Joint Venture Partners Water system for lithotripter
US5370120A (en) * 1992-12-08 1994-12-06 Siemens Aktiengesellschaft Ultrasound imaging apparatus
DE4447855B4 (en) * 1993-02-10 2008-10-16 Siemens Ag Use of a source of pulsatile waves for the treatment of conditions of pain and apparatus for such use
DE4315282C2 (en) * 1993-05-07 1999-10-07 Siemens Ag Use of an acoustic pressure pulse source
DE4325213C2 (en) * 1993-07-27 1996-11-21 Siemens Ag Therapy device for treatment with acoustic waves
DE4329167C2 (en) * 1993-08-30 1996-06-05 Siemens Ag Medical device with a device part
DE19520749C1 (en) * 1995-06-07 1996-08-08 Siemens Ag Ultrasonic therapeutic appts. with X-ray transparent source of waves
DE19644314A1 (en) * 1995-11-23 1997-05-28 Siemens Ag Therapy appts. with acoustic wave source
DE19615342C1 (en) * 1996-04-18 1997-10-09 Siemens Ag Therapy appts. with optical positioning device
CH691345A5 (en) * 1996-04-18 2001-07-13 Siemens Ag Therapy device by a simple adjustment of a desired distance from a reference point.
DE19702593C2 (en) * 1997-01-24 2000-07-06 Siemens Ag Method and device for generating shock waves for technical, preferably medical applications
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
DE19822793C2 (en) * 1998-05-20 2000-05-31 Siemens Ag Device for marking the position of the focus of a shock wave source
US7914453B2 (en) * 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US6869407B2 (en) * 2001-09-12 2005-03-22 Moshe Ein-Gal Acoustic wave device
DE10215416B4 (en) * 2002-04-08 2020-10-29 Ferton Holding S.A. Medical device for the treatment of biological tissue
US7311677B1 (en) * 2002-06-26 2007-12-25 Fields John G Energy concentrator system and method
US7267654B2 (en) * 2002-10-08 2007-09-11 University Of Washington Focused shock-wave devices with direct wave cavitation suppressor
US8235909B2 (en) * 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US9011336B2 (en) * 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US7530356B2 (en) * 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
JP5932195B2 (en) * 2004-10-06 2016-06-08 ガイデッド セラピー システムズ, エル.エル.シー. System for controlled heat treatment of human surface tissue
CA2583600A1 (en) 2004-10-06 2006-04-20 Guided Therapy Systems, L.L.C. Method and system for noninvasive cosmetic enhancement
US7758524B2 (en) * 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
EP2409729A1 (en) 2004-10-06 2012-01-25 Guided Therapy Systems, L.L.C. Method and system for ultrasound tissue treatment
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US20060079868A1 (en) * 2004-10-07 2006-04-13 Guided Therapy Systems, L.L.C. Method and system for treatment of blood vessel disorders
US7571336B2 (en) 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US9566454B2 (en) * 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
EP3103522A1 (en) * 2006-09-19 2016-12-14 Guided Therapy Systems, L.L.C. System for treating muscle, tendon, ligament and cartilage tissue
US9241683B2 (en) * 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US20080127735A1 (en) * 2006-11-21 2008-06-05 Stephen Bruce Berman Sonar and Ultrasound Emitter that Generates Shock Wave Vibratory Forces by the Fracturing, Breaking or Cracking of Materials for Testing and Measuring and Imaging Purposes
WO2008137944A1 (en) * 2007-05-07 2008-11-13 Guided Therapy Systems, Llc. Methods and systems for coupling and focusing acoustic energy using a coupler member
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US12102473B2 (en) 2008-06-06 2024-10-01 Ulthera, Inc. Systems for ultrasound treatment
HUE027536T2 (en) 2008-06-06 2016-10-28 Ulthera Inc System for cosmetic treatment and imaging
WO2010075547A2 (en) * 2008-12-24 2010-07-01 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
WO2012018390A2 (en) 2010-08-02 2012-02-09 Guided Therapy Systems, Llc Systems and methods for treating acute and/or chronic injuries in soft tissue
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
EP2739357B1 (en) 2011-07-10 2023-09-06 Guided Therapy Systems, L.L.C. Systems for improving an outside appearance of skin using ultrasound as an energy source
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
CN113648552A (en) 2013-03-08 2021-11-16 奥赛拉公司 Apparatus and method for multi-focal ultrasound therapy
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
EP3102967A1 (en) * 2014-02-08 2016-12-14 Soundblast Technologies, LLC System and method for coupling an overpressure wave to a target media
CN106470735B (en) 2014-04-18 2019-09-20 奥赛拉公司 Ribbon transducer ultrasonic therapy
FR3022674B1 (en) * 2014-06-18 2019-12-13 Iem Sarl DETECTION TERMINAL COMPRISING A PIEZOELECTRIC TRANSDUCER ATTACHED TO A MEMBRANE LINKED TO A STOP STRUCTURE
NL2013968B1 (en) * 2014-12-12 2016-10-11 Fugro N V Pressure tolerant seismic source.
AU2017208980B2 (en) 2016-01-18 2022-03-31 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
SG11201809850QA (en) 2016-08-16 2018-12-28 Ulthera Inc Systems and methods for cosmetic ultrasound treatment of skin
TWI797235B (en) 2018-01-26 2023-04-01 美商奧賽拉公司 Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR528145A (en) * 1917-05-07 1921-11-07 Louis Lumiere Sound wave reception and transmission system
DE760163C (en) * 1939-12-19 1953-05-18 Siemens Reiniger Werke Ag Device for generating convergent ultrasonic radiation
DE1191720B (en) * 1961-06-24 1965-04-22 Siemens Ag Electrodynamic impulse sounder for echo sounding
DE2436856A1 (en) * 1973-08-06 1975-02-20 Gen Electric DEVICE FOR FOCUSING AND COLLIMATION OF ULTRASOUND WAVES
EP0081051A1 (en) * 1981-11-25 1983-06-15 Dornier Gmbh Releasing device for shock waves for therapeutic purposes
DE3312014A1 (en) * 1983-04-02 1984-10-11 Wolfgang Prof. Dr. 7140 Ludwigsburg Eisenmenger Device for the contactless crushing of concrements in the body of living beings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1730531A (en) * 1928-11-30 1929-10-08 Percy A Robbins Acoustic transformer
DE3119295A1 (en) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DESTROYING CONCRETE IN BODIES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR528145A (en) * 1917-05-07 1921-11-07 Louis Lumiere Sound wave reception and transmission system
DE760163C (en) * 1939-12-19 1953-05-18 Siemens Reiniger Werke Ag Device for generating convergent ultrasonic radiation
DE1191720B (en) * 1961-06-24 1965-04-22 Siemens Ag Electrodynamic impulse sounder for echo sounding
DE2436856A1 (en) * 1973-08-06 1975-02-20 Gen Electric DEVICE FOR FOCUSING AND COLLIMATION OF ULTRASOUND WAVES
EP0081051A1 (en) * 1981-11-25 1983-06-15 Dornier Gmbh Releasing device for shock waves for therapeutic purposes
DE3312014A1 (en) * 1983-04-02 1984-10-11 Wolfgang Prof. Dr. 7140 Ludwigsburg Eisenmenger Device for the contactless crushing of concrements in the body of living beings

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329849A1 (en) * 1988-02-18 1989-08-30 Dornier Medizintechnik Gmbh Variable shock waves energy through an adapted ohmic consumption
WO1990004359A2 (en) * 1988-10-17 1990-05-03 Storz Medical Ag Device for generating focused acoustic pressure waves
EP0369177A2 (en) * 1988-10-17 1990-05-23 Storz Medical Ag Focused acoustic pressure wave generator
WO1990004359A3 (en) * 1988-10-17 1990-06-28 Storz Medical Ag Device for generating focused acoustic pressure waves
EP0369177A3 (en) * 1988-10-17 1990-08-16 Storz Medical Ag Focused acoustic pressure wave generator
US8099154B1 (en) 1988-10-17 2012-01-17 Storz Medical Ag Apparatus for generating focused acoustical pressure waves
DE4038650C1 (en) * 1990-12-04 1992-04-16 Siemens Ag, 8000 Muenchen, De Pressure pulse concretion remover - has pulsed pressure source and pulse generator in common housing
DE4038651A1 (en) * 1990-12-04 1992-06-11 Siemens Ag Pressure pulse generator assembly - has pressure pulse source, HV pulse generator, and housing for both, forming integral module
DE4038651C2 (en) * 1990-12-04 1999-10-28 Siemens Ag Pressure pulse generator
DE4102447C1 (en) * 1991-01-28 1992-04-09 Siemens Ag, 8000 Muenchen, De
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
DE4125088C1 (en) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
DE4135177A1 (en) * 1991-10-24 1993-04-29 Siemens Ag Therapeutic assembly for treatment by acoustic irradiation - has acoustic source aligned by X=ray beam with focus of ultrasonic radiation accurately determined and displayed
DE4135177C2 (en) * 1991-10-24 1998-04-09 Siemens Ag Therapy device for the treatment of a living being with focused acoustic waves
DE4136004C1 (en) * 1991-10-31 1993-01-28 Siemens Ag, 8000 Muenchen, De
DE4139024C1 (en) * 1991-11-27 1993-04-15 Siemens Ag, 8000 Muenchen, De
DE4201141A1 (en) * 1992-01-17 1993-07-22 Siemens Ag Acoustic pressure pulse source e.g. for medical use - has insulating foils adhesively bonded to electric coil
DE4201139A1 (en) * 1992-01-17 1993-07-22 Siemens Ag Electromagnetic acoustic pressure pulse source - has breakdown resistant insulating foils, useful in medical treatment
DE4212809A1 (en) * 1992-04-16 1993-10-21 Siemens Ag Therapy device for the treatment of a living being with focused acoustic waves
DE4232683C1 (en) * 1992-09-29 1994-04-28 Siemens Ag Ultrasound therapy device with X=ray imaging system - has carrier for acoustic wave source and patient table each adjusted to adjust acoustic wave focus position.
DE4306459C1 (en) * 1993-03-02 1994-04-28 Siemens Ag Ultrasound therapy device using X-ray imaging - uses mounting allowing X-ray imaging from two different directions, with corresponding adjustment of acoustic wave focus
DE4306460A1 (en) * 1993-03-02 1994-09-15 Siemens Ag Therapy device for treatment with focussed acoustic waves
US5395299A (en) * 1993-03-02 1995-03-07 Siemens Aktiengesellschaft Method and apparatus for treating a subject with focused acoustic waves
DE4447643C2 (en) * 1994-01-14 1998-11-12 Siemens Ag Medical appts with X=Ray diagnostic unit
DE19538054C1 (en) * 1995-10-12 1996-12-05 Siemens Ag Therapeutic unit with patient support plate, for e.g. shock wave generator used to break up kidney stones

Also Published As

Publication number Publication date
JPH0458979B2 (en) 1992-09-21
DE3447440A1 (en) 1986-07-03
JPS61154658A (en) 1986-07-14
DE3566077D1 (en) 1988-12-15
US4697588A (en) 1987-10-06
EP0188750B1 (en) 1988-11-09

Similar Documents

Publication Publication Date Title
EP0188750B1 (en) Shock sound waves apparatus for the disintegration of calculi
EP0300315B1 (en) Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body
EP0133665B1 (en) Apparatus for the smashing at a distance of calculus
DE4241161C2 (en) Acoustic therapy facility
DE3543867C2 (en)
DE4213586C2 (en) Therapy device for treatment with focused acoustic waves
DE2538960C2 (en) Device for the contactless smashing of calculus in a living being
EP0143185B1 (en) Dual-purpose apparatus for the diagnosis and therapy of the eye
EP0133946B1 (en) Apparatus for the contactless disintegration of concrements
DE3506249C2 (en)
DE3443295A1 (en) DEVICE FOR THE CONTACT-FREE CRUSHING OF CONCRETE IN THE BODY OF LIVING BEINGS
EP0268019A1 (en) Apparatus for disintegrating a fluid-suspended solid body
DE3328039C2 (en) FACILITIES FOR THE CONTACTLESS SMASHING OF A CONCERMENT IN THE BODY OF A LIVING BEING
DE3536271A1 (en) POSITIONING DEVICE FOR AN ELECTRODE
DE3840077A1 (en) LITHOTRIPTOR
DE3916093A1 (en) LITHOTRIPTOR
DD248067A5 (en) GENERATOR WITH ELASTIC STRAITS OF LARGE STAERKS WHICH HAVE LIVING POINTS IN A LIQUID AND THROUGH COLLABORATIONS
EP0372119B2 (en) Lithotripter
EP0402433A1 (en) Device for breaking up a solid body surrounded by a fluid.
EP0240797B1 (en) Shockwave generator with increased efficiency
DE3522491A1 (en) ACOUSTIC LENS ARRANGEMENT
DE3727692C2 (en) Shock wave source with short focus
DE10349297B4 (en) Adapter for laser processing and laser processing device for such an adapter
DE4039408A1 (en) Shock wave generator with reflector - has several reflector sections, each associated with different focus zone enabling rapid focus zone displacement
DE4102447C1 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19860826

17Q First examination report despatched

Effective date: 19880121

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3566077

Country of ref document: DE

Date of ref document: 19881215

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041203

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050217

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051216

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20051216