EP0188183B1 - Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks - Google Patents

Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks Download PDF

Info

Publication number
EP0188183B1
EP0188183B1 EP85870007A EP85870007A EP0188183B1 EP 0188183 B1 EP0188183 B1 EP 0188183B1 EP 85870007 A EP85870007 A EP 85870007A EP 85870007 A EP85870007 A EP 85870007A EP 0188183 B1 EP0188183 B1 EP 0188183B1
Authority
EP
European Patent Office
Prior art keywords
steam
flue gas
recuperators
vaporizers
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85870007A
Other languages
English (en)
French (fr)
Other versions
EP0188183A1 (de
Inventor
André Jules Paquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to EP85870007A priority Critical patent/EP0188183B1/de
Priority to AT85870007T priority patent/ATE41202T1/de
Priority to DE8585870007T priority patent/DE3568605D1/de
Priority to US06/757,623 priority patent/US4617878A/en
Priority to ZA86135A priority patent/ZA86135B/xx
Priority to AU52214/86A priority patent/AU579701B2/en
Priority to JP61004421A priority patent/JPS61211607A/ja
Priority to CA000499746A priority patent/CA1260341A/en
Publication of EP0188183A1 publication Critical patent/EP0188183A1/de
Application granted granted Critical
Publication of EP0188183B1 publication Critical patent/EP0188183B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/40Combinations of exhaust-steam and smoke-gas preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present invention relates to a process for recovering thermal energy from burnt gases, more particularly in thermal power stations.
  • the invention also relates to the device for implementing the method and in particular to a new industrial device hereinafter abbreviated as "recuperator-evaporator” intended for the recovery of thermal energy, also called sensible heat, from the gases resulting from the combustion of fossil fuels (natural gas, coal, lignite, ...) from thermal power plants, abbreviated as “burnt gases”, by its transfer to condensers from heaters, condensates which are evaporated.
  • recuperator-evaporator intended for the recovery of thermal energy, also called sensible heat, from the gases resulting from the combustion of fossil fuels (natural gas, coal, lignite, 7) from thermal power plants, abbreviated as “burnt gases”, by its transfer to condensers from heaters, condensates which are evaporated.
  • thermo power station should be understood to mean any installation for converting thermal energy into mechanical energy by means of condensable fluid performing a thermodynamic cycle, in particular thermal fossil fuel power stations.
  • FIG. 1 represents the diagram of a conventional thermodynamic cycle of a power plant, the turbine driving an electric generator not shown.
  • the complete water cycle is shown. It passes successively into the boiler (CH) where it is successively heated until boiling, vaporized and superheated; it then expands in the "high pressure” turbine (THP), then is reheated (RS), then expands in the “low pressure” turbine (TBP), then condenses in the condenser (C), hence the condenser water extraction pump sends it to successive "low pressure” heaters (R “R 2 , R 3 and R 4 ) where it is heated by steam drawn from the turbine (TBP).
  • CH boiler
  • RS reheated
  • TBP low pressure turbine
  • C condenses in the condenser
  • the water then arrives at the degasser (DG) then at the food tank (B), at the outlet of which the food pump (PA) brings it to the high pressure of the cycle and returns it to the boiler after passage through the three heaters successive "high pressure" (P s , R 7 and R B ).
  • Patent EP-0 032 641 shows in its figures 1 and 3 such parts of the cycle.
  • the invention also relates to the cycle of burnt gases.
  • Figure 2 shows schematically the combustion gas circuit.
  • Atmospheric air for example at 20 ° C, enters the air heater (RA) where it is heated, for example to 285 "C, by the burnt gases; it then enters the boiler (CH ) where it burns the fuel and leaves in the form of burnt gases (GB), for example at 330 ° C, to enter the air heater; these burnt gases are cooled there by atmospheric air (A) which they heat up, then are released to the atmosphere.
  • RA air heater
  • CH boiler
  • burnt gases GB
  • the temperature of the burnt gases is 120 "C.
  • the temperature of the burnt gases discharged into the atmosphere is between 115 ° C and 185 c C. A quantity of significant energy is thus lost, corresponding to the sensible heat of the burnt gases.
  • the temperature of the burnt gases leaving the heater is conditioned by several factors.
  • the air heater being a gas / gas exchanger, has poorer exchange coefficients than those where a fluid is liquid or those where a fluid changes state; taking into account the large variations in air temperature at the passage of the exchanger, of the order of 150 to 250 degrees Celsius, the air heater is a large device whose cost would be prohibitive if it had to modify (respectively raise and lower) the temperature of the air flows much more to substantially reduce energy loss.
  • Another element to take into account is the draft of the chimney rejecting the burnt gases to the atmosphere; a high temperature is favorable to the draft of the chimney (reduction in the blowing power of the air) and to the dispersion of the burnt gases in the atmosphere.
  • Common desulfurization processes include washing the flue gases with chemical solutions; it is desirable for this operation that the burnt gases do not enter at a too high temperature (in particular that at the outlet of the air heaters) in the desulfurization installation.
  • FR-2,534,150 describes a desulphurization plant for burnt gases where these gases are previously cooled to around 80 ° C in a heat exchanger which, after desulphurization, heats them up to send them to the chimney.
  • Patent DE-2 453 488 relates to the rejection of burnt gases purified by natural draft cooling towers.
  • FR-2 043 956 discloses a device comprising a steam turbine and a boiler for supplying the turbine.
  • the drinking water is heated by a succession of heaters.
  • Part of the food water being reheated is also reheated in economizers, each time being sent back a little further into the stream of food water being reheated.
  • economizers the water is brought into heat exchange contact with the burnt gases from the boiler.
  • the present invention aims to improve the performance of the assembly.
  • the invention aims in particular to recover the sensitive energy of the burnt gases, between 115 to 185 ° C, between their exit from the air heater and the dust collector and their entry into the desulphurization plant or their rejection to the chimney.
  • FIG. 3 represents the part of the cycle of FIG. 1 comprising the "low pressure" heaters (R, to R 4 ) where recuperators-evaporators according to the invention have been incorporated, in this case three devices: RE “RE 2 and RE 3.
  • recuperators and evaporators are steel boxes containing a bundle of tubes, the tubes being internally traversed by the burnt gases which pass successively in RE 3 , RE 2 and RE, while cooling.
  • the REs also receive a fraction of the condensates from the heaters (R "R 2 , R 3 ) and evaporate them on contact with the tubes through which the burnt gases pass; the vapor formed is returned to the heaters from which the condensates originated.
  • RE 3 is associated with R 3 , RE 2 with R 2 and RE 1 with R 1 , and the burnt gases arrive from the air heater (RA) at 180 ° C.
  • recuperators-evaporators therefore transfer thermal energy to the heaters essentially in the form of latent heat of evaporation; this supply of energy by the burnt gases results in a reduction in the withdrawal of steam from the turbine for the heater associated with the recuperator-evaporator.
  • thermodynamic cycle The efficiency of the thermodynamic cycle is thus improved from 1 to 1.5%.
  • recuperators-evaporators can be placed in the cycle of FIG. 1, as shown in FIG. 4.
  • the injection of the residual energy of the gases burned in the cycle water will be done in a staggered fashion, in as many stages as there are heaters, the energy injection taking place at a level relatively low in temperature than the burnt gases, the hottest burnt gases being associated with the hottest condensate, the coldest burnt gas, with the coldest condensate.
  • the first heater (s) from the condenser are not coupled with a recuperator-evaporator, in particular because the heat exchange would be too low, as mentioned above; as the thermodynamic gain is all the lower the lower the temperature and the pressure at the heater, the economic interest in the placement of recuperator-evaporator decreases when one approaches the condenser, and could no longer justify the installation of a recuperator-evaporator.
  • lowering the temperature of the burnt gases below the acid dew point could lead to the use of more expensive materials, leading to investment costs which would no longer be offset by the reduction in costs. production due to the improvement of the cycle efficiency by a recuperator-evaporator where the temperature of the burnt gases would drop below the dew point.
  • the invention also applies to cases where all the heaters are at the same pressure on the water side, except for pressure drops; in these cases there is only one pump P located at the outlet of the condenser and there is no longer any distinction between "low pressure” and "high pressure” heaters.
  • recuperators-evaporators The technology of recuperators-evaporators is related to that of evaporators.
  • Figures 5 and 6 show in section, respectively parallel to the length and perpendicular to the length, a recuperator-evaporator.
  • This device consists externally of a cylindrical box with a horizontal axis, consisting of a ferrule 1 and two bottoms 2 and 3. These bottoms together with the tube plates 4 and 5 determine the "smoke boxes" 6 and 7. In 6 the burnt gases (GB) arrive at the recuperator-evaporator; in 7, they come out.
  • GB burnt gases
  • the tube plates 4 and 5 are connected together by the "smoke tubes" 8, allowing the sealed passage of the burnt gases from the smoke box 6 to the smoke box 7.
  • the diameter of the tubes will generally be between 25 and 100 mm, for example 1 "1/2.
  • the tubes are grouped in superimposed layers, for example twenty-five layers of thirty-five tubes, inscribed, in section according to FIG. 6, in a rectangle.
  • the parallelepipedic bundle of tubes 8 is closed laterally by partitions 9 and 10, and is surmounted by a distribution tank 11 the bottom of which is pierced with a multitude of holes ensuring watering of the tubes 8 by water, partial condensate a heater, arriving at the top of the box through the orifice 12.
  • a pump 13 takes the condensate from the bottom of the recuperator-evaporator and recycles it through this device.
  • the materials constituting the elements in contact with water (condensates and steam), that is to say the ferrules 1, the partitions 9 and 10, the tank 11, the internal structural elements (supports, spacers,. ..) are similar to those used for heaters, especially for example steel.
  • the tubes 8 and the tube plates 4 and 5 they must be able to withstand on one side the aggressiveness of the burnt gases.
  • Their material may be the same material as that of the partitions; but if the burnt gases are particularly corrosive, their material may be even more noble, such as stainless steel or a nickel-based alloy.
  • the tubes could be made of ceramic material, for example, or glass or fluorinated organic polymer.
  • the material of the tubes and the plates can also be composite, for example stainless steel covered with a layer of polytetrafluoroethylene, internally for the tubes, and on the face of the smoke boxes for the tube plates.
  • the smoke boxes could possibly be covered internally with a resin, an organic polymer, protecting their metal walls against corrosion by burnt gases.
  • the recuperator-evaporator When the temperature of the burnt gases is lowered below the dew point, the recuperator-evaporator has the advantage of partially desulfurizing the burnt gases.
  • the external face of the tubes being in contact with a fluid having an intense phase change, in this case an evaporation in the form of boiling, the corresponding coefficients of heat transfer are excellent, better than with a gas and better than with a liquid.
  • This feature of the heat exchange significantly reduces the dimensions of the device compared, in particular, to a gas / gas exchanger such as an air heater.
  • the heat transmission on the internal face of the tubes it can be increased, for example, by an internal fin, increasing the contact surface and the turbulence of the gases.
  • the fluid in contact with the gas burned through the walls of the tubes is at a relatively high temperature, that of the condensates of the heaters, much higher than that of the ambient air, and that, consequently, the phenomena condensation on a cold wall are reduced or even avoided.
  • the power gain is of the order of magnitude of 1.5 MW at the shaft of the turbine, the latter driving a generator delivering on the electrical network 125 MW.
  • the gain is 0.35 MW at the turbine shaft.
  • recuperators-evaporators can be integrated into a single device, with a smoke box 18 common to the two recuperators-evaporators located between them.
  • FIG. 7 represents such a variant integrating two recuperators-evaporators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Claims (9)

1. Verfahren zur Rückgewinnung von thermischer Energie aus Abgasen eines thermischen Dampfturbinenkraftwerkes, in welchem Dampf der Turbine entnommen wird, um das dem Kessel zugeführte Speisewasser zu erwärmen, wobei die genannten Abgase mit einem Dampfkondensat in Wärmetauschkontakt gebracht werden, das ausschließlich aus dem genannten, entnommenen Dampf stammt, wobei dieses Kondensat wiederverdampft und der so gebildete Dampf zum Kessel zurückgeführt wird, um bei der Erwärmung des Wassers mitzuwirken.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmetausch mit den Abgasen in mehreren Schritten erfolgt, wobei jeder einem Schritt zur Erwärmung des dem Kessel zugeführten Wassers entspricht, die Dampfkondensate ein Temperaturniveau haben, das relativ geringfügig unter jenem der Abgase liegt, und die heißesten Abgase mit den heißesten Kondensaten und die kühlsten Abgase mit den kühlsten Kondensaten assoziiert werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Dampfkondensat aus dem "Niederdruck"-Bereich des Erwärmungskreises für das dem Kessel zugeführte Wasser kommt, und daß der durch Wärmetausch mit den Abgasen gebildete Dampf in den genannten "Niederdruck"-Bereich zurückgeführt wird, um bei der Erwärmung des dem Kessel zugeführten Wassers mitzuwirken.
4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, verwendbar in einem thermischen Dampfturbinenkraftwerk, in welchem Dampf der Turbine entnommen wird, um das dem Kessel (CH) zugeführte Wasser zu erwärmen, und welches zu diesem Zweck eine Reihe von Vorwärmern (Ri...R4) umfaßt, dadurch gekennzeichnet, daß sie aus mindestens einem Rekuperator-Verdampfer (RE,...RE3) besteht, in welchem die Abgase ihre Wärme mit Wasserdampfkondensat austauschen, das von einem der genannten Vorwärmer (R1...R4) ab gegeben wird und ausschließlich aus einer Entnahme aus der Dampfturbine stammt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Rekuperatoren-Verdampfer (RE,...RE3) Behälter sind, die mindestens zwei Rauchkammern (6, 7) und ein Rohrbündel (8) enthalten, durch deren Inneres die Abgase strömen, die nacheinander die Rekuperatoren-Verdampfer (RE3, RE2 und RE,) passieren und sich dabei abkühlen.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Rekuperatoren-Verdampfer (RE,...RE3) eine Fraktion der Kondensate der Vorwärmer (R1, R2, R3) aufnehmen und diese bei Kontakt mit den von den Abgasen durchströmten Rohren verdampfen, wobei der gebildete Dampf zu den Vorwärmern, aus denen die Kondensate stammen, zurückgeführt wird.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß mindestens zwei aufeinanderfolgende Rekuperatoren-Verdampfer in einem einzigen Apparat integriert sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß zwei aufeinanderfolgende Rekuperatoren-Verdampfer in einem einzigen Apparat mit einer den beiden Rekuperatoren-Verdampfern gemeinsamen und zwischen diesen angeordneten Rauchkammer integriert sind.
9. Vorrichtung nach Anspruch 5, dadruch gekennzeichnet, daß die Länge der Rohre (8) der Einheit von mindestens zwei aufeinanderfolgenden Rekuperatoren-Verdampfern entspricht und daß die verschiedenen Rekuperatoren-Verdampfer durch eine dichte Rohrplatte (21) getrennt sind, die das Durchlaufen von Flüssigkeit zwischen den jedem Rekuperator-Verdampfer zugehörigen Wärmetauschräumen verhindert.
EP85870007A 1985-01-16 1985-01-16 Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks Expired EP0188183B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP85870007A EP0188183B1 (de) 1985-01-16 1985-01-16 Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks
AT85870007T ATE41202T1 (de) 1985-01-16 1985-01-16 Verfahren und vorrichtung fuer die energierueckgewinnung aus dem abgas eines thermischen kraftwerks.
DE8585870007T DE3568605D1 (en) 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations
US06/757,623 US4617878A (en) 1985-01-16 1985-07-22 Process and device for recovery of thermal energy in a steam generating system
ZA86135A ZA86135B (en) 1985-01-16 1986-01-08 Process and device for recovery of thermal energy in a steam generating system
AU52214/86A AU579701B2 (en) 1985-01-16 1986-01-13 Process and device for recovery of thermal energy in a steam generating system
JP61004421A JPS61211607A (ja) 1985-01-16 1986-01-14 スチ−ム発生システムにおいて熱エネルギ−を回収する方法及び装置
CA000499746A CA1260341A (en) 1985-01-16 1986-01-16 Process and device for recovery of thermal energy in a steam generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85870007A EP0188183B1 (de) 1985-01-16 1985-01-16 Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks

Publications (2)

Publication Number Publication Date
EP0188183A1 EP0188183A1 (de) 1986-07-23
EP0188183B1 true EP0188183B1 (de) 1989-03-08

Family

ID=8194729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85870007A Expired EP0188183B1 (de) 1985-01-16 1985-01-16 Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks

Country Status (8)

Country Link
US (1) US4617878A (de)
EP (1) EP0188183B1 (de)
JP (1) JPS61211607A (de)
AT (1) ATE41202T1 (de)
AU (1) AU579701B2 (de)
CA (1) CA1260341A (de)
DE (1) DE3568605D1 (de)
ZA (1) ZA86135B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59300573D1 (de) * 1992-03-16 1995-10-19 Siemens Ag Verfahren zum Betreiben einer Anlage zur Dampferzeugung und Dampferzeugeranlage.
US6371058B1 (en) * 2000-04-20 2002-04-16 Peter Tung Methods for recycling process wastewater streams
US7690201B2 (en) * 2005-11-07 2010-04-06 Veritask Energy Systems, Inc. Method of efficiency and emissions performance improvement for the simple steam cycle
EP2813286A1 (de) * 2013-06-11 2014-12-17 Evonik Industries AG Reaktionsrohr und Verfahren zur Herstellung von Cyanwasserstoff
SG11201601072WA (en) 2013-10-11 2016-03-30 Evonik Degussa Gmbh Reaction tube and method for producing hydrogen cyanide
CN107560462A (zh) * 2016-06-30 2018-01-09 宝山钢铁股份有限公司 一种分段式烟气换热装置
EP3301075A1 (de) 2016-09-28 2018-04-04 Evonik Degussa GmbH Verfahren zur herstellung von cyanwasserstoff
CN107120636A (zh) * 2017-05-22 2017-09-01 大唐(北京)能源管理有限公司 一种燃煤电站低温余热深度利用系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE541802A (de) *
US1152421A (en) * 1913-07-21 1915-09-07 William L Danley Steam-boiler.
US1589646A (en) * 1925-07-13 1926-06-22 Irving C Hicks Feed-water heater
US2392325A (en) * 1941-07-03 1946-01-08 Riley Stoker Corp Steam generating apparatus
DE1122081B (de) * 1958-09-09 1962-01-18 Schmidt Sche Heissdampf Einrichtung zum Vorwaermen des Speisewassers und der Verbrennungsluft durch die Rauchgase eines Dampferzeugers
FR1435041A (fr) * 1965-03-01 1966-04-15 Babcock & Wilcox France Perfectionnements aux centrales thermiques à vapeur
FR1461570A (fr) * 1965-10-25 1966-02-25 Fives Penhoet Procédé d'exploitation d'une installation comprenant une chaudière alimentant une turbine à vapeur et installation pour la mise en oeuvre de ce prodédé
FR1504666A (de) * 1966-10-20 1968-02-14
FR2043956A5 (de) * 1969-05-14 1971-02-19 Stein Industrie
DE2453488C2 (de) * 1974-11-12 1981-11-26 Saarbergwerke AG, 6600 Saarbrücken Verfahren und Anlage zum Ableiten von Abgasen mit geringem Schadstoffgehalt in die Atmosphäre
EP0032641B1 (de) * 1980-01-18 1986-09-10 Hamon-Sobelco S.A. System zur Wiedererwärmung für eine Dampfturbinenkraftanlage
US4501233A (en) * 1982-04-24 1985-02-26 Babcock-Hitachi Kabushiki Kaisha Heat recovery steam generator
US4445461A (en) * 1982-06-14 1984-05-01 Allis-Chalmers Corporation Waste heat recovery method and apparatus
US4526112A (en) * 1982-08-10 1985-07-02 Heat Exchanger Industries, Inc. Heat exchanger method and apparatus
DE3236905C2 (de) * 1982-10-06 1986-01-02 Gottfried Bischoff Bau kompl. Gasreinigungs- und Wasserrückkühlanlagen GmbH & Co KG, 4300 Essen Verfahren zur Entschwefelung von Rauchgasen und Vorrichtung zur Durchführung des Verfahrens
JPH0245763B2 (ja) * 1983-02-14 1990-10-11 Hitachi Ltd Jokitaabinpurantonokyusuikanetsukeito
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
US4491093A (en) * 1984-03-26 1985-01-01 Hoekstra I Arthur Energy and water recovery from flue gases

Also Published As

Publication number Publication date
DE3568605D1 (en) 1989-04-13
AU5221486A (en) 1986-07-24
JPS61211607A (ja) 1986-09-19
CA1260341A (en) 1989-09-26
ZA86135B (en) 1986-10-29
ATE41202T1 (de) 1989-03-15
AU579701B2 (en) 1988-12-08
EP0188183A1 (de) 1986-07-23
US4617878A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US10670334B2 (en) Highly cost effective technology for capture of industrial emissions without reagent for clean energy and clean environment applications
FI82767C (fi) Foerfarande och anordning foer roekgaskondensering.
US4287938A (en) Method for exchanging heat and a device for carrying out said method
EP0188183B1 (de) Verfahren und Vorrichtung für die Energierückgewinnung aus dem Abgas eines thermischen Kraftwerks
EP0063195A2 (de) Verfahren und Vorrichtung zur Behandlung von Abgasen
EP0337910B1 (de) Verfahren zur Reduktion des Gehalts an nichtkondensierbaren Elementen, die sich in kondensierbare Elemente enthaltenden Rauchgasen befinden und darin löslich sind
EP1725812B1 (de) Sauerstoff erzeugender sauerstoffverbrennungskessel
BE1011016A3 (fr) Echangeur de chaleur convectif a contre-courant.
FR2550610A1 (fr) Procede efficace de recuperation de chaleur perdue a partir d'effluents gazeux contenant du soufre
CA1144147A (fr) Echangeur-recuperateur de chaleur a inversion de cycle et application a la recuperation de chaleur dans les fumees de fours a flammes
EP2795073A1 (de) Kraft-wärme-kopplungsverfahren und -vorrichtung
US4577380A (en) Method of manufacturing heat exchangers
FR2576968A1 (fr) Procede et dispositif pour l'exploitation d'une centrale electrique
EP1774223A1 (de) Verfahren zur erzeugung von für sauerstoffverbrennung geeignetem geeigneten wasserdampf
US5706644A (en) Method of operating a gas and steam power plant
FR3011917A1 (fr) Procede et installation de recuperation de chaleur sur des fumees humides
EP2918911B1 (de) Verbrennungsprozess in thermischer Verbrennungsanlage
EP0110763B1 (de) Mit einer Absorptionswärmepumpe versehene Heizungsanlage
FR2850733A1 (fr) Generateur a foyers de combustion successifs destine a la production de vapeur
FR2983901A1 (fr) Installation thermique de production d' electricite
FR3005143A1 (fr) Installation thermique de production d'electricite par combustion
CN102128445B (zh) 一种褐煤烟气中水分与汽化潜热的回收方法、装置及系统
EP0246964A1 (de) Verfahren und Einrichtung zur Trocknung von Rauchgasen vor ihrem Abzug
JPS61125513A (ja) 白煙防止装置
WO2021170898A1 (en) Method and apparatus for purifying flue gas containing fine particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860915

17Q First examination report despatched

Effective date: 19870619

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890308

Ref country code: NL

Effective date: 19890308

Ref country code: SE

Effective date: 19890308

Ref country code: AT

Effective date: 19890308

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890308

REF Corresponds to:

Ref document number: 41202

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3568605

Country of ref document: DE

Date of ref document: 19890413

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

Ref country code: LI

Effective date: 19900131

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920115

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: S.A. HAMON-SOBELCO

Effective date: 19930131