EP0188183B1 - Process and device for recovering thermal energy from the exhaust gases of thermal-power stations - Google Patents

Process and device for recovering thermal energy from the exhaust gases of thermal-power stations Download PDF

Info

Publication number
EP0188183B1
EP0188183B1 EP85870007A EP85870007A EP0188183B1 EP 0188183 B1 EP0188183 B1 EP 0188183B1 EP 85870007 A EP85870007 A EP 85870007A EP 85870007 A EP85870007 A EP 85870007A EP 0188183 B1 EP0188183 B1 EP 0188183B1
Authority
EP
European Patent Office
Prior art keywords
steam
flue gas
recuperators
vaporizers
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85870007A
Other languages
German (de)
French (fr)
Other versions
EP0188183A1 (en
Inventor
André Jules Paquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamon Sobelco SA
Original Assignee
Hamon Sobelco SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Sobelco SA filed Critical Hamon Sobelco SA
Priority to EP85870007A priority Critical patent/EP0188183B1/en
Priority to DE8585870007T priority patent/DE3568605D1/en
Priority to AT85870007T priority patent/ATE41202T1/en
Priority to US06/757,623 priority patent/US4617878A/en
Priority to ZA86135A priority patent/ZA86135B/en
Priority to AU52214/86A priority patent/AU579701B2/en
Priority to JP61004421A priority patent/JPS61211607A/en
Priority to CA000499746A priority patent/CA1260341A/en
Publication of EP0188183A1 publication Critical patent/EP0188183A1/en
Application granted granted Critical
Publication of EP0188183B1 publication Critical patent/EP0188183B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/40Combinations of exhaust-steam and smoke-gas preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present invention relates to a process for recovering thermal energy from burnt gases, more particularly in thermal power stations.
  • the invention also relates to the device for implementing the method and in particular to a new industrial device hereinafter abbreviated as "recuperator-evaporator” intended for the recovery of thermal energy, also called sensible heat, from the gases resulting from the combustion of fossil fuels (natural gas, coal, lignite, ...) from thermal power plants, abbreviated as “burnt gases”, by its transfer to condensers from heaters, condensates which are evaporated.
  • recuperator-evaporator intended for the recovery of thermal energy, also called sensible heat, from the gases resulting from the combustion of fossil fuels (natural gas, coal, lignite, 7) from thermal power plants, abbreviated as “burnt gases”, by its transfer to condensers from heaters, condensates which are evaporated.
  • thermo power station should be understood to mean any installation for converting thermal energy into mechanical energy by means of condensable fluid performing a thermodynamic cycle, in particular thermal fossil fuel power stations.
  • FIG. 1 represents the diagram of a conventional thermodynamic cycle of a power plant, the turbine driving an electric generator not shown.
  • the complete water cycle is shown. It passes successively into the boiler (CH) where it is successively heated until boiling, vaporized and superheated; it then expands in the "high pressure” turbine (THP), then is reheated (RS), then expands in the “low pressure” turbine (TBP), then condenses in the condenser (C), hence the condenser water extraction pump sends it to successive "low pressure” heaters (R “R 2 , R 3 and R 4 ) where it is heated by steam drawn from the turbine (TBP).
  • CH boiler
  • RS reheated
  • TBP low pressure turbine
  • C condenses in the condenser
  • the water then arrives at the degasser (DG) then at the food tank (B), at the outlet of which the food pump (PA) brings it to the high pressure of the cycle and returns it to the boiler after passage through the three heaters successive "high pressure" (P s , R 7 and R B ).
  • Patent EP-0 032 641 shows in its figures 1 and 3 such parts of the cycle.
  • the invention also relates to the cycle of burnt gases.
  • Figure 2 shows schematically the combustion gas circuit.
  • Atmospheric air for example at 20 ° C, enters the air heater (RA) where it is heated, for example to 285 "C, by the burnt gases; it then enters the boiler (CH ) where it burns the fuel and leaves in the form of burnt gases (GB), for example at 330 ° C, to enter the air heater; these burnt gases are cooled there by atmospheric air (A) which they heat up, then are released to the atmosphere.
  • RA air heater
  • CH boiler
  • burnt gases GB
  • the temperature of the burnt gases is 120 "C.
  • the temperature of the burnt gases discharged into the atmosphere is between 115 ° C and 185 c C. A quantity of significant energy is thus lost, corresponding to the sensible heat of the burnt gases.
  • the temperature of the burnt gases leaving the heater is conditioned by several factors.
  • the air heater being a gas / gas exchanger, has poorer exchange coefficients than those where a fluid is liquid or those where a fluid changes state; taking into account the large variations in air temperature at the passage of the exchanger, of the order of 150 to 250 degrees Celsius, the air heater is a large device whose cost would be prohibitive if it had to modify (respectively raise and lower) the temperature of the air flows much more to substantially reduce energy loss.
  • Another element to take into account is the draft of the chimney rejecting the burnt gases to the atmosphere; a high temperature is favorable to the draft of the chimney (reduction in the blowing power of the air) and to the dispersion of the burnt gases in the atmosphere.
  • Common desulfurization processes include washing the flue gases with chemical solutions; it is desirable for this operation that the burnt gases do not enter at a too high temperature (in particular that at the outlet of the air heaters) in the desulfurization installation.
  • FR-2,534,150 describes a desulphurization plant for burnt gases where these gases are previously cooled to around 80 ° C in a heat exchanger which, after desulphurization, heats them up to send them to the chimney.
  • Patent DE-2 453 488 relates to the rejection of burnt gases purified by natural draft cooling towers.
  • FR-2 043 956 discloses a device comprising a steam turbine and a boiler for supplying the turbine.
  • the drinking water is heated by a succession of heaters.
  • Part of the food water being reheated is also reheated in economizers, each time being sent back a little further into the stream of food water being reheated.
  • economizers the water is brought into heat exchange contact with the burnt gases from the boiler.
  • the present invention aims to improve the performance of the assembly.
  • the invention aims in particular to recover the sensitive energy of the burnt gases, between 115 to 185 ° C, between their exit from the air heater and the dust collector and their entry into the desulphurization plant or their rejection to the chimney.
  • FIG. 3 represents the part of the cycle of FIG. 1 comprising the "low pressure" heaters (R, to R 4 ) where recuperators-evaporators according to the invention have been incorporated, in this case three devices: RE “RE 2 and RE 3.
  • recuperators and evaporators are steel boxes containing a bundle of tubes, the tubes being internally traversed by the burnt gases which pass successively in RE 3 , RE 2 and RE, while cooling.
  • the REs also receive a fraction of the condensates from the heaters (R "R 2 , R 3 ) and evaporate them on contact with the tubes through which the burnt gases pass; the vapor formed is returned to the heaters from which the condensates originated.
  • RE 3 is associated with R 3 , RE 2 with R 2 and RE 1 with R 1 , and the burnt gases arrive from the air heater (RA) at 180 ° C.
  • recuperators-evaporators therefore transfer thermal energy to the heaters essentially in the form of latent heat of evaporation; this supply of energy by the burnt gases results in a reduction in the withdrawal of steam from the turbine for the heater associated with the recuperator-evaporator.
  • thermodynamic cycle The efficiency of the thermodynamic cycle is thus improved from 1 to 1.5%.
  • recuperators-evaporators can be placed in the cycle of FIG. 1, as shown in FIG. 4.
  • the injection of the residual energy of the gases burned in the cycle water will be done in a staggered fashion, in as many stages as there are heaters, the energy injection taking place at a level relatively low in temperature than the burnt gases, the hottest burnt gases being associated with the hottest condensate, the coldest burnt gas, with the coldest condensate.
  • the first heater (s) from the condenser are not coupled with a recuperator-evaporator, in particular because the heat exchange would be too low, as mentioned above; as the thermodynamic gain is all the lower the lower the temperature and the pressure at the heater, the economic interest in the placement of recuperator-evaporator decreases when one approaches the condenser, and could no longer justify the installation of a recuperator-evaporator.
  • lowering the temperature of the burnt gases below the acid dew point could lead to the use of more expensive materials, leading to investment costs which would no longer be offset by the reduction in costs. production due to the improvement of the cycle efficiency by a recuperator-evaporator where the temperature of the burnt gases would drop below the dew point.
  • the invention also applies to cases where all the heaters are at the same pressure on the water side, except for pressure drops; in these cases there is only one pump P located at the outlet of the condenser and there is no longer any distinction between "low pressure” and "high pressure” heaters.
  • recuperators-evaporators The technology of recuperators-evaporators is related to that of evaporators.
  • Figures 5 and 6 show in section, respectively parallel to the length and perpendicular to the length, a recuperator-evaporator.
  • This device consists externally of a cylindrical box with a horizontal axis, consisting of a ferrule 1 and two bottoms 2 and 3. These bottoms together with the tube plates 4 and 5 determine the "smoke boxes" 6 and 7. In 6 the burnt gases (GB) arrive at the recuperator-evaporator; in 7, they come out.
  • GB burnt gases
  • the tube plates 4 and 5 are connected together by the "smoke tubes" 8, allowing the sealed passage of the burnt gases from the smoke box 6 to the smoke box 7.
  • the diameter of the tubes will generally be between 25 and 100 mm, for example 1 "1/2.
  • the tubes are grouped in superimposed layers, for example twenty-five layers of thirty-five tubes, inscribed, in section according to FIG. 6, in a rectangle.
  • the parallelepipedic bundle of tubes 8 is closed laterally by partitions 9 and 10, and is surmounted by a distribution tank 11 the bottom of which is pierced with a multitude of holes ensuring watering of the tubes 8 by water, partial condensate a heater, arriving at the top of the box through the orifice 12.
  • a pump 13 takes the condensate from the bottom of the recuperator-evaporator and recycles it through this device.
  • the materials constituting the elements in contact with water (condensates and steam), that is to say the ferrules 1, the partitions 9 and 10, the tank 11, the internal structural elements (supports, spacers,. ..) are similar to those used for heaters, especially for example steel.
  • the tubes 8 and the tube plates 4 and 5 they must be able to withstand on one side the aggressiveness of the burnt gases.
  • Their material may be the same material as that of the partitions; but if the burnt gases are particularly corrosive, their material may be even more noble, such as stainless steel or a nickel-based alloy.
  • the tubes could be made of ceramic material, for example, or glass or fluorinated organic polymer.
  • the material of the tubes and the plates can also be composite, for example stainless steel covered with a layer of polytetrafluoroethylene, internally for the tubes, and on the face of the smoke boxes for the tube plates.
  • the smoke boxes could possibly be covered internally with a resin, an organic polymer, protecting their metal walls against corrosion by burnt gases.
  • the recuperator-evaporator When the temperature of the burnt gases is lowered below the dew point, the recuperator-evaporator has the advantage of partially desulfurizing the burnt gases.
  • the external face of the tubes being in contact with a fluid having an intense phase change, in this case an evaporation in the form of boiling, the corresponding coefficients of heat transfer are excellent, better than with a gas and better than with a liquid.
  • This feature of the heat exchange significantly reduces the dimensions of the device compared, in particular, to a gas / gas exchanger such as an air heater.
  • the heat transmission on the internal face of the tubes it can be increased, for example, by an internal fin, increasing the contact surface and the turbulence of the gases.
  • the fluid in contact with the gas burned through the walls of the tubes is at a relatively high temperature, that of the condensates of the heaters, much higher than that of the ambient air, and that, consequently, the phenomena condensation on a cold wall are reduced or even avoided.
  • the power gain is of the order of magnitude of 1.5 MW at the shaft of the turbine, the latter driving a generator delivering on the electrical network 125 MW.
  • the gain is 0.35 MW at the turbine shaft.
  • recuperators-evaporators can be integrated into a single device, with a smoke box 18 common to the two recuperators-evaporators located between them.
  • FIG. 7 represents such a variant integrating two recuperators-evaporators.

Abstract

In a steam generating system, steam condensate extracted from steam used to reheat boiler water in heaters (H1, . . . , H4) is revaporized in the recuperators-vaporizers (RV1, . . . , RV3) by heat exchange contact with the flue gas from boiler (B). The steam thus formed is recycled to contribute to the reheating of the water fed to the boiler.

Description

La présente invention concerne un procédé de récupération d'énergie thermique des gaz brûlés, plus particulièrement dans des centrales thermiques.The present invention relates to a process for recovering thermal energy from burnt gases, more particularly in thermal power stations.

L'invention se rapporte également au dispositif pour la mise en oeuvre du procédé et notamment à un nouvel appareil industriel appelé ci-après en abrégé "récupérateur-évaporateur" destiné à la récupération d'énergie thermique, dite aussi chaleur sensible, des gaz résultant de la combustion de combustibles fossiles (gaz naturel, charbon, lignite,...) de centrales thermiques, en abrégé "gaz brûlés", par son transfert à des condensats de réchauffeurs, condensats qui sont évaporés.The invention also relates to the device for implementing the method and in particular to a new industrial device hereinafter abbreviated as "recuperator-evaporator" intended for the recovery of thermal energy, also called sensible heat, from the gases resulting from the combustion of fossil fuels (natural gas, coal, lignite, ...) from thermal power plants, abbreviated as "burnt gases", by its transfer to condensers from heaters, condensates which are evaporated.

Par centrale thermique, il faut entendre toute installation de transformation d'énergie thermique en énergie mécanique au moyen de fluide condensable effectuant un cycle thermodynamique, en particulier les centrales électriques thermiques à combustible fossile.The term “thermal power station” should be understood to mean any installation for converting thermal energy into mechanical energy by means of condensable fluid performing a thermodynamic cycle, in particular thermal fossil fuel power stations.

L'état connu de la technique ou art antérieur est représenté aux figures 1 et 2.The known state of the art or prior art is shown in Figures 1 and 2.

La figure 1 représente le schéma d'un cycle thermodynamique classique d'une centrale électrique, la turbine entraînant un générateur électrique non représente. Le cycle complet de l'eau y est représenté. Elle passe successivement dans la chaudière (CH) où elle est successivement chauffée jusqu'à ébullition, vaporisée et surchauffée; elle se détend ensuite dans la turbine "haute pression" (THP), puis est resurchauffée (RS), puis se détend dans la turbine "basse pression" (TBP), puis se condense dans le condenseur (C), d'où la pompe d'extraction d'eau du condenseur l'envoie dans les réchauffeurs "basse pression" successifs (R" R2, R3 et R4) où elle est réchauffée par de la vapeur soutirée de la turbine (TBP).FIG. 1 represents the diagram of a conventional thermodynamic cycle of a power plant, the turbine driving an electric generator not shown. The complete water cycle is shown. It passes successively into the boiler (CH) where it is successively heated until boiling, vaporized and superheated; it then expands in the "high pressure" turbine (THP), then is reheated (RS), then expands in the "low pressure" turbine (TBP), then condenses in the condenser (C), hence the condenser water extraction pump sends it to successive "low pressure" heaters (R "R 2 , R 3 and R 4 ) where it is heated by steam drawn from the turbine (TBP).

L'eau arrive alors au dégazeur (DG) puis à la bâche alimentaire (B), à la sortie de laquelle la pompe alimentaire (PA) la porte à la haute pression du cycle et la renvoie à la chaudière après passage dans les trois réchauffeurs "haute pression" successifs (Ps, R7 et RB).The water then arrives at the degasser (DG) then at the food tank (B), at the outlet of which the food pump (PA) brings it to the high pressure of the cycle and returns it to the boiler after passage through the three heaters successive "high pressure" (P s , R 7 and R B ).

La partie du cycle à laquelle l'invention se rapporte est essentiellement celle des réchauffeurs "basse pression". Le brevet EP-0 032 641 représente en ses figures 1 et 3 de telles parties du cycle.The part of the cycle to which the invention relates is essentially that of "low pressure" heaters. Patent EP-0 032 641 shows in its figures 1 and 3 such parts of the cycle.

L'invention concerne également le cycle des gaz brûlés.The invention also relates to the cycle of burnt gases.

La figure 2 représente schématiquement le circuit des gaz de combustion.Figure 2 shows schematically the combustion gas circuit.

L'air atmosphérique (A), par exemple à 20°C, pénètre dans le réchauffeur d'air (RA) où il est réchauffé, par exemple à 285"C, par les gaz brûlés; il pénètre alors dans la chaudière (CH) où il brûle le combustible et sort sous forme de gaz brulés (GB), par exemple à 330° C, pour pénétrer dans le réchauffeur d'air; ces gaz brûlés y sont refroidis par l'air atmosphérique (A) qu'ils réchauffent, puis sont rejetés à l'atmosphère.Atmospheric air (A), for example at 20 ° C, enters the air heater (RA) where it is heated, for example to 285 "C, by the burnt gases; it then enters the boiler (CH ) where it burns the fuel and leaves in the form of burnt gases (GB), for example at 330 ° C, to enter the air heater; these burnt gases are cooled there by atmospheric air (A) which they heat up, then are released to the atmosphere.

Correspondant avec les températures précédentes données à titre d'exemple, la température des gaz brûlés est de 120"C. En pratique la température des gaz brûlés rejetés à l'atmosphère est comprise entre 115°C et 185c C. Une quantité d'énergie non négligeable est ainsi perdue, correspondant à la chaleur sensible des gaz brûlés.Corresponding to the previous temperatures given by way of example, the temperature of the burnt gases is 120 "C. In practice the temperature of the burnt gases discharged into the atmosphere is between 115 ° C and 185 c C. A quantity of significant energy is thus lost, corresponding to the sensible heat of the burnt gases.

La température des gaz brûlés à la sortie du réchauffeur est conditionnée par plusieurs facteurs. Le réchauffeur d'air étant un échangeur gaz/gaz, a de moins bons coefficients d'échange que ceux où un fluide est liquide ou ceux où un fluide change d'état; compte tenu des grandes variations de température de l'air au passage de l'échangeur, de l'ordre de 150 à 250 degrés Celsius, le réchauffeur d'air est un grand appareil dont le coût serait prohibitif s'il devait modifier (respectivement élever et abaisser) encore beaucoup plus la température des flux d'air pour réduire substantiellement la perte d'énergie.The temperature of the burnt gases leaving the heater is conditioned by several factors. The air heater being a gas / gas exchanger, has poorer exchange coefficients than those where a fluid is liquid or those where a fluid changes state; taking into account the large variations in air temperature at the passage of the exchanger, of the order of 150 to 250 degrees Celsius, the air heater is a large device whose cost would be prohibitive if it had to modify (respectively raise and lower) the temperature of the air flows much more to substantially reduce energy loss.

C'est toutefois la prise en considération des phénomènes de condensation d'eau, éventuellement acidifiée par les oxydes de soufre résultant de la combustion de combustibles soufrés, dans les gaz brûlés qui déterminera la température minimale admissible pour les gaz brûlés. Cette condensation est évitée essentiellement à cause des dangers de corrosion et du coût du réchauffeur s'il devait être réalisé en matériaux spéciaux résistant à l'acide sulfurique. Dans les réchauffeurs d'air les phénomènes de condensation sur parois froides sont favorisés par la basse température de l'air ambiant y entrant, dont la température est nettement inférieure au point de rosée des gaz brûlés; ce point de rosée est fonction de l'humidité des gaz brulés qui, elle, dépend de la teneur en hydrogène du combustible; il se situe dans de nombreux cas entre 60 et 70° C. La présence d'oxydes de soufre élève toutefois ce point de rosée. Compte tenu de ce phénomène de condensation sur parois froides, la température moyenne des gaz brûlés sortants doit être nettement supérieure au point de rosée théorique.However, it is the consideration of the phenomena of water condensation, possibly acidified by sulfur oxides resulting from the combustion of sulfur fuels, in the burnt gases which will determine the minimum admissible temperature for the burnt gases. This condensation is mainly avoided because of the danger of corrosion and the cost of the heater if it had to be made of special materials resistant to sulfuric acid. In air heaters, condensation phenomena on cold walls are favored by the low temperature of the ambient air entering it, whose temperature is much lower than the dew point of the burnt gases; this dew point is a function of the humidity of the burnt gases, which depends on the hydrogen content of the fuel; it is in many cases between 60 and 70 ° C. The presence of sulfur oxides, however, raises this dew point. Given this phenomenon of condensation on cold walls, the average temperature of the outgoing burnt gases must be significantly higher than the theoretical dew point.

Un autre élément à prendre en considération est le tirage de la cheminée rejetant les gaz brulés à l'atmosphère; une température élevée est favorable au tirage de la cheminée (diminution de la puissance de soufflage de l'air) et à la dispersion des gaz brûlés dans l'atmosphère.Another element to take into account is the draft of the chimney rejecting the burnt gases to the atmosphere; a high temperature is favorable to the draft of the chimney (reduction in the blowing power of the air) and to the dispersion of the burnt gases in the atmosphere.

D'autre part, les contraintes relatives à la protection de l'environnement conduisent actuellement à désulfurer (partiellement) les gaz brûlés, afin essentiellement de réduire l'acidité des pluies.On the other hand, constraints relating to environmental protection currently lead to (partially) desulfurization of the burnt gases, in order essentially to reduce the acidity of the rains.

Les procédés courants de désulfuration consistent à laver les gaz brûlés par des solutions chimiques; il est souhaitable pour cette opération que les gaz brûlés n'entrent pas à température trop élevée (notament celle à la sortie des réchauffeurs d'air) dans l'installation de désulfuration. Le brevet FR-2 534 150 décrit une installation de désulfuration de gaz brûlés où ces gaz sont préalablement ref roidis à environ 80° C dans un échangeur de chaleur qui, après désulfuration, les réchauffe pour les envoyer à la cheminée. Mais le réchauffage des gaz brûlés désulfurés n'est pas indispensable; on peut dimensionner la cheminée et sa soufflante pour des gaz relativement froids; on peut aussi rejeter ces gaz brûlés par l'intermédiaire des réfrigérants atmosphériques à tirage naturel, qui peuvent disperser les gaz brûlés dans l'atmosphère beaucoup plus avantageusement vis-à-vis de la protection de l'environnement que les cheminées classiques de centrales électriques. Le brevet DE-2 453 488 concerne le rejet des gaz brûlés épurés par les tours de réfrigération à tirage naturel.Common desulfurization processes include washing the flue gases with chemical solutions; it is desirable for this operation that the burnt gases do not enter at a too high temperature (in particular that at the outlet of the air heaters) in the desulfurization installation. FR-2,534,150 describes a desulphurization plant for burnt gases where these gases are previously cooled to around 80 ° C in a heat exchanger which, after desulphurization, heats them up to send them to the chimney. However, reheating desulfurized burnt gases is not essential; the chimney and its fan can be sized for relatively cold gases; these burnt gases can also be discharged by means of atmospheric refrigerants with natural draft, which can disperse the burnt gases in the atmosphere much more advantageously with regard to environmental protection than the conventional chimneys of power plants. . Patent DE-2 453 488 relates to the rejection of burnt gases purified by natural draft cooling towers.

Par le FR-2 043 956 est connu un dispositif comportant une turbine à vapeur et une chaudière pour alimenter la turbine. Dans ce dispositif l'eau alimentaire est réchauffée par une succession de réchauffeurs. Une partie de l'eau alimentaire en cours de réchauffement est également réchauffée dans des économiseurs pour être chaque fois renvoyée un peu plus loin dans le courant d'eau alimentaire en cours de réchauffement. Dans ces économiseurs, l'eau est mise en contact d'échange thermique avec les gaz brûlés de la chaudière.FR-2 043 956 discloses a device comprising a steam turbine and a boiler for supplying the turbine. In this device, the drinking water is heated by a succession of heaters. Part of the food water being reheated is also reheated in economizers, each time being sent back a little further into the stream of food water being reheated. In these economizers, the water is brought into heat exchange contact with the burnt gases from the boiler.

L'utilisation de ces économiseurs n'entraîne aucune réduction des prélèvements de vapeur à la turbine pour le réchauffeur associé à l'économiseur. Le rendement de ce type d'appareil est faible.The use of these economizers does not reduce the amount of steam taken from the turbine for the heater associated with the economizer. The performance of this type of device is low.

La présente invention vise à améliorer le rendement de l'ensemble.The present invention aims to improve the performance of the assembly.

L'invention vise en particulier à récupérer l'énergie sensible des gaz brûlés, entre 115 à 185°C, entre leur sortie du réchauffeur d'air et du dépoussiéreur et leur entrée dans l'installation de désulfuration ou leur rejet à la cheminée.The invention aims in particular to recover the sensitive energy of the burnt gases, between 115 to 185 ° C, between their exit from the air heater and the dust collector and their entry into the desulphurization plant or their rejection to the chimney.

Son but est également de pallier aux inconvénients limitant la température des gaz brûles à la sortie des réchauffeurs d'air et d'obvier aux phénomènes de condensation sur parois froides et à la nécessité des grandes surfaces d'échange que requièrent les échangeurs gaz/gaz.Its purpose is also to alleviate the drawbacks limiting the temperature of the gases burned at the outlet of the air heaters and to obviate the phenomena of condensation on cold walls and the need for large exchange surfaces required by gas / gas exchangers. .

Ces buts sont atteints par l'invention telle que définie dans les revendications reprises à la fin de cette description.These objects are achieved by the invention as defined in the claims mentioned at the end of this description.

La figure 3 représente la partie du cycle de la figure 1 comprenant les réchauffeurs "basse pression" (R, à R4) où des récupérateurs-évaporateurs selon l'invention ont été incorporés, en l'occurrence trois appareils: RE" RE2 et RE3. Ces récupérateurs-évaporateurs sont des caissons en acier contenant un faisceau de tubes. Les tubes sont parcourus intérieurement par les gaz brûlés qui passent successivement dans RE3, RE2 et RE, en se refroidissant.FIG. 3 represents the part of the cycle of FIG. 1 comprising the "low pressure" heaters (R, to R 4 ) where recuperators-evaporators according to the invention have been incorporated, in this case three devices: RE "RE 2 and RE 3. These recuperators and evaporators are steel boxes containing a bundle of tubes, the tubes being internally traversed by the burnt gases which pass successively in RE 3 , RE 2 and RE, while cooling.

Les RE reçoivent d'autre part une fraction des condensats de réchauffeurs (R" R2, R3) et les évaporent au contact des tubes parcourus par les gaz brûlés; la vapeur formée est renvoyée aux réchauffeurs d'où provenaient les condensats.The REs also receive a fraction of the condensates from the heaters (R "R 2 , R 3 ) and evaporate them on contact with the tubes through which the burnt gases pass; the vapor formed is returned to the heaters from which the condensates originated.

Dans l'exemple représenté à la figure 3, RE3 est associé à R3, RE2 à R2 et RE1 à R1, et les gaz brûlés arrivent du réchauffeur d'air (RA) à 180° C.In the example shown in Figure 3, RE 3 is associated with R 3 , RE 2 with R 2 and RE 1 with R 1 , and the burnt gases arrive from the air heater (RA) at 180 ° C.

Les récupérateurs-évaporateurs transfèrent donc l'énergie thermique aux réchauffeurs essentiellement sous forme de chaleur latente d'évaporation; cet apport d'énergie par les gaz brûles entraîne une réduction des prélèvements de vapeur à la turbine pour le réchauffeur associé au récupérateur-évaporateur.The recuperators-evaporators therefore transfer thermal energy to the heaters essentially in the form of latent heat of evaporation; this supply of energy by the burnt gases results in a reduction in the withdrawal of steam from the turbine for the heater associated with the recuperator-evaporator.

Un plus grand débit de vapeur est dès lors disponible à la turbine pour s'y détendre en convertissant son énergie interne en travail mécanique. Les quantités de vapeur prélevées pour les réchauffeurs R" R2 et R3 mentionnées à la figure 3 sont effectivement substantiellement plus faibles que celles mentionnées à la figure 1.A greater flow of steam is therefore available to the turbine to relax there by converting its internal energy into mechanical work. The quantities of steam drawn for the heaters R "R 2 and R 3 mentioned in FIG. 3 are effectively substantially lower than those mentioned in FIG. 1.

Le rendement du cycle thermodynamique est ainsi amélioré de 1 à 1,5 %.The efficiency of the thermodynamic cycle is thus improved from 1 to 1.5%.

Si les gaz à la sortie du réchauffeur d'air ne sont qu'à 120°C, on ne pourra placer dans le cycle de la figure 1 que deux récupérateurs-évaporateurs, comme représenté à la figure 4.If the gases at the outlet of the air heater are only at 120 ° C, only two recuperators-evaporators can be placed in the cycle of FIG. 1, as shown in FIG. 4.

Ce sont les températures de condensation dans les réchauffeurs et la température des gaz brûlés qui déterminent le choix des réchauffeurs qui peuvent être associés à des récupérateurs-évaporateurs.It is the condensation temperatures in the heaters and the temperature of the burnt gases that determine the choice of heaters that can be associated with recuperators-evaporators.

De préférence, l'injection de l'énergie résiduelle des gaz brûlés à l'eau du cycle se fera de façon étagée, en autant d'étapes qu'il y a de réchauffeurs, l'injection d'énergie se faisant à un niveau de température relativement peu inférieur à celui des gaz brûlés, les gaz brûlés les plus chauds étant associés aux condensats les plus chauds, les gaz brûlés les plus froids, aux condensats les plus froids.Preferably, the injection of the residual energy of the gases burned in the cycle water will be done in a staggered fashion, in as many stages as there are heaters, the energy injection taking place at a level relatively low in temperature than the burnt gases, the hottest burnt gases being associated with the hottest condensate, the coldest burnt gas, with the coldest condensate.

Dans la succession des réchauffeurs considérée du condenseur à la chaudière, il y a un réchauffeur à partir duquel l'association n'est plus possible parce que la température de ses condensats est proche ou supérieure à celle des gaz brûlés, rendant impossible le transfert d'énergie thermique des gaz brûlés vers les réchauffeurs.In the succession of heaters considered from the condenser to the boiler, there is a heater from which association is no longer possible because the temperature of its condensates is close to or higher than that of the burnt gases, making it impossible to transfer thermal energy from the burnt gases to the heaters.

Dans la succession des réchauffeurs, il est possible qu'un réchauffeur ne soit pas associé à un récupérateur-évaporateur, alors que le réchauffeur précédent et le réchauffeur suivant le soient; ce sera essentiellement le cas lorsque l'échange calorifique prévu à ce réchauffeur est trop faible pour que le gain capitalisé d'énergie dû à l'amélioration du rendement thermodynamique du cycle compense les frais d'investissement d'un récupérateur-évaporateur.In the succession of heaters, it is possible that a heater is not associated with a recuperator-evaporator, while the previous heater and the following heater are; this will essentially be the case when the heat exchange provided for at this heater is too low for the capitalized energy gain due to the improvement in the thermodynamic efficiency of the cycle to offset the investment costs of a recuperator-evaporator.

Enfin il est possible que le ou les premiers réchauffeurs à partir du condenseur ne soient pas couplés avec un récupérateur-évaporateur, notamment parce que l'échange calorifique serait trop faible, comme cité plus haut; comme le gain thermodynamique est d'autant plus faible que la température et la pression sont basses au réchauffeur, l'intérêt économique au placement de récupérateur-évaporateur diminue lorsqu'on se rapproche du condenseur, et pourrait ne plus justifier l'installation d'un récupérateur-évaporateur. D'autre part, l'abaissement de la température des gaz brûlés en dessous du point de rosée acide pourrait conduire à l'emploi de matériaux plus coûteux, conduisant à des frais d'investissement qui ne seraient plus compensés par la réduction des frais de production due à l'amélioration du rendement du cycle par un récupérateur-évaporateur où la température des gaz brûlés descendrait en dessous du point de rosée. L'invention s'applique également aux cas où tous les réchauffeurs sont à la même pression du côté eau, aux pertes de charge près; dans ces cas il n'y a qu'une seule pompe P située à la sortie du condenseur et il n'y a plus de distinction entre réchauffeurs "basse pression" et réchauffeurs "haute pression".Finally, it is possible that the first heater (s) from the condenser are not coupled with a recuperator-evaporator, in particular because the heat exchange would be too low, as mentioned above; as the thermodynamic gain is all the lower the lower the temperature and the pressure at the heater, the economic interest in the placement of recuperator-evaporator decreases when one approaches the condenser, and could no longer justify the installation of a recuperator-evaporator. On the other hand, lowering the temperature of the burnt gases below the acid dew point could lead to the use of more expensive materials, leading to investment costs which would no longer be offset by the reduction in costs. production due to the improvement of the cycle efficiency by a recuperator-evaporator where the temperature of the burnt gases would drop below the dew point. The invention also applies to cases where all the heaters are at the same pressure on the water side, except for pressure drops; in these cases there is only one pump P located at the outlet of the condenser and there is no longer any distinction between "low pressure" and "high pressure" heaters.

La technologie des récupérateurs-évaporateurs est apparentée à celle des évaporateurs.The technology of recuperators-evaporators is related to that of evaporators.

Les figures 5 et 6 représentent en coupe, respectivement parallèlement à la longueur et perpendiculairement à la longueur, un récupérateur-évaporateur.Figures 5 and 6 show in section, respectively parallel to the length and perpendicular to the length, a recuperator-evaporator.

Cet appareil est constitué extérieurement d'un caisson cylindrique à axe horizontal, constitué d'une virole 1 et de deux fonds 2 et 3. Ces fonds déterminent avec les plaques à tubes 4 et 5 les "boîtes à fumées" 6 et 7. En 6 arrivent les gaz brûlés (GB) au récupérateur-évaporateur; en 7, ils en sortent.This device consists externally of a cylindrical box with a horizontal axis, consisting of a ferrule 1 and two bottoms 2 and 3. These bottoms together with the tube plates 4 and 5 determine the "smoke boxes" 6 and 7. In 6 the burnt gases (GB) arrive at the recuperator-evaporator; in 7, they come out.

Les plaques à tubes 4 et 5 sont reliées entre elles par les "tubes de fumée" 8, permettant le passage étanche des gaz brûlés de la boîte à fumée 6 à la boîte à fumée 7. Le diamètre des tubes sera généralement compris entre 25 et 100 mm, par exemple 1" 1/2.The tube plates 4 and 5 are connected together by the "smoke tubes" 8, allowing the sealed passage of the burnt gases from the smoke box 6 to the smoke box 7. The diameter of the tubes will generally be between 25 and 100 mm, for example 1 "1/2.

Les tubes sont groupés en nappes superposées, par exemple vingt-cinq nappes de trente-cinq tubes, s'incrivant, en coupe selon la figure 6, dans un rectangle.The tubes are grouped in superimposed layers, for example twenty-five layers of thirty-five tubes, inscribed, in section according to FIG. 6, in a rectangle.

Le faisceau parallélépipédique de tubes 8 est fermé latéralement par des cloisons 9 et 10, et est surmonté par un bac de distribution 11 dont le fond est percé d'une multitude de trous assurant l'arrosage des tubes 8 par l'eau, condensat partiel d'un réchauffeur, arrivant au sommet du caisson par l'orifice 12.The parallelepipedic bundle of tubes 8 is closed laterally by partitions 9 and 10, and is surmounted by a distribution tank 11 the bottom of which is pierced with a multitude of holes ensuring watering of the tubes 8 by water, partial condensate a heater, arriving at the top of the box through the orifice 12.

Au contact des tubes 8 chauffés intérieurement par les gaz brûlés (GB) l'eau s'évapore partiellement et la vapeur formée s'échappe par les orifices 16 et 17 situés au-dessus du niveau d'eau 14, ajusté par la vanne 15.In contact with the tubes 8 heated internally by the burnt gases (GB), the water partially evaporates and the vapor formed escapes through the orifices 16 and 17 located above the water level 14, adjusted by the valve 15 .

Afin d'assurer un débit d'arrosage suffisant, une pompe 13 prélève les condensats au bas du récupérateur-évaporateur et les recycle à travers cet appareil.To ensure sufficient irrigation flow, a pump 13 takes the condensate from the bottom of the recuperator-evaporator and recycles it through this device.

Les matériaux constituant les éléments en contact avec l'eau (condensats et vapeur), c'est-à-dire les viroles 1, les cloisons 9 et 10, le bac 11, les éléments internes de structure (supports, pièces intercalaires, ...) sont semblables à ceux utilisés pour les réchauffeurs, notamment par exemple l'acier.The materials constituting the elements in contact with water (condensates and steam), that is to say the ferrules 1, the partitions 9 and 10, the tank 11, the internal structural elements (supports, spacers,. ..) are similar to those used for heaters, especially for example steel.

Quant aux tubes 8 et aux plaques à tubes 4 et 5, ils doivent pouvoir supporter sur une face l'agressivité des gaz brûlés. Leur matériau pourra être le même matériau que celui des cloisons; mais si les gaz brûlés sont particulièrement corrosifs, leur matériau pourra être plus noble encore, tel l'acier inoxydable ou un alliage à base de nickel.As for the tubes 8 and the tube plates 4 and 5, they must be able to withstand on one side the aggressiveness of the burnt gases. Their material may be the same material as that of the partitions; but if the burnt gases are particularly corrosive, their material may be even more noble, such as stainless steel or a nickel-based alloy.

Si les gaz sont très agressifs et présentent des phénomènes de condensation de solutions acides, les tubes pourraient être en matériau céramique, par exemple, ou en verre ou en polymère organique fluoré. Le matériau des tubes et des plaques peut également être composite, par exemple de l'acier inoxydable recouvert d'une couche de polytétrafluoréthylène, intérieurement pour les tubes, et sur la face des boîtes de fumée pour les plaques tubulaires. Les boîtes de fumée seraient éventuellement recouvertes intérieurement d'une résine, d'un polymère organique, protégeant leurs parois métalliques contre la corrosion par les gaz brûlés.If the gases are very aggressive and exhibit condensation phenomena of acid solutions, the tubes could be made of ceramic material, for example, or glass or fluorinated organic polymer. The material of the tubes and the plates can also be composite, for example stainless steel covered with a layer of polytetrafluoroethylene, internally for the tubes, and on the face of the smoke boxes for the tube plates. The smoke boxes could possibly be covered internally with a resin, an organic polymer, protecting their metal walls against corrosion by burnt gases.

Lorsque la températue des gaz brûlés est abaissée en dessous du point de rosée, le récupérateur-évaporateur a l'avantage de désulfurer partiellement les gaz brûlés.When the temperature of the burnt gases is lowered below the dew point, the recuperator-evaporator has the advantage of partially desulfurizing the burnt gases.

La face extérieure des tubes étant en contact avec un fluide présentant un changement de phase intense, en l'occurrence une évaporation sous forme d'ébullition, les coefficients correspondants de transfert de chaleur sont excellents, meilleurs qu'avec un gaz et meilleurs qu'avec un liquide. Cette particularité de l'échange thermique réduit nettement les dimensions de l'appareil par rapport, notamment, à un échangeur gaz/gaz telle réchauffeur d'air.The external face of the tubes being in contact with a fluid having an intense phase change, in this case an evaporation in the form of boiling, the corresponding coefficients of heat transfer are excellent, better than with a gas and better than with a liquid. This feature of the heat exchange significantly reduces the dimensions of the device compared, in particular, to a gas / gas exchanger such as an air heater.

Quant à la transmission de chaleur sur la face interne des tubes, elle peut être augmentée, par exemple, par un ailetage interne, augmentant la surface de contact et la turbulence des gaz.As for the heat transmission on the internal face of the tubes, it can be increased, for example, by an internal fin, increasing the contact surface and the turbulence of the gases.

On remarque que le fluide en contact avec le gaz brûlé par l'intermédiaire des parois des tubes est à une température relativement élevée, celle des condensats des réchauffeurs, bien supérieure à celle de l'air ambiant, et que, dès lors, les phénomènes de condensation sur paroi froide sont réduits, voire évités.It is noted that the fluid in contact with the gas burned through the walls of the tubes is at a relatively high temperature, that of the condensates of the heaters, much higher than that of the ambient air, and that, consequently, the phenomena condensation on a cold wall are reduced or even avoided.

Dans le cas de la figure 3, le gain de puissance est de l'ordre de grandeur de 1,5 MW à l'arbre de la turbine, celle-ci entraînant un alternateur délivrant sur le réseau électrique 125 MW.In the case of FIG. 3, the power gain is of the order of magnitude of 1.5 MW at the shaft of the turbine, the latter driving a generator delivering on the electrical network 125 MW.

Dans le cas de la figure 4, le gain est de 0,35 MW à l'arbre de la turbine.In the case of Figure 4, the gain is 0.35 MW at the turbine shaft.

De tels gains sont nettement supérieurs au coût des récupérateurs-évaporateurs capitalisé sur la durée de vie de la centrale électrique.Such gains are significantly higher than the cost of recuperators-evaporators capitalized over the life of the power plant.

En variante, deux ou plusieurs récupérateurs-évaporateurs successifs peuvent être intégrés en un seul appareil, avec une boîte à fumée 18 commune aux deux récupérateurs-évaporateurs située entre eux. La figure 7 représente une telle variante intégrant deux récupérateurs-évaporateurs.As a variant, two or more successive recuperators-evaporators can be integrated into a single device, with a smoke box 18 common to the two recuperators-evaporators located between them. FIG. 7 represents such a variant integrating two recuperators-evaporators.

L'intégration de deux appareils successifs peut encore être plus poussée, comme représenté à la figure 8, où il n'y a plus de boîte à fumée intermédiaire; les tubes 8 d'un tel récupérateur-évaporateur double ont une longueur correspondant à l'ensemble des deux appareils, c'est-à-dire une longueur égale à la somme des longueurs des tubes des deux récupérateurs-évaporateurs de la figure 7, toutes autres choses étant inchangées. Dans l'appareil double de la figure 8, les deux récupérateurs-évaporateurs sont séparés par une plaque à tubes 21 étanche ne permettant pas le passage de fluide entre les espaces 22 et 23.The integration of two successive devices can be further advanced, as shown in Figure 8, where there is no longer a smoke box intermediate; the tubes 8 of such a double recuperator-evaporator have a length corresponding to the assembly of the two devices, that is to say a length equal to the sum of the lengths of the tubes of the two recuperator-evaporators of FIG. 7, all other things being unchanged. In the double apparatus of FIG. 8, the two recuperators-evaporators are separated by a sealed tube plate 21 not allowing the passage of fluid between the spaces 22 and 23.

Claims (9)

1. Process of recovering of the thermal energy of the flue gas of a power station with steam turbine, in which station steam is taken from the turbine to heat feed water fed to the boiler, said flue gas being put in heat exchange contact with a vapor condensate exclusively coming from said taken steam, said condensate thus being revaporized and the steam thus formed being recycled to the boiler to contribute to the heating of the feed water.
2. Process in accordance with claim 1, characterized in that the heat exchange with the flue gas is made in several stages, with each corresponding to a stage of heating the water fed to the boiler, the steam condensates being at a temperature level relatively little below the one of the flue gas, the hottest flue gas being associated with the hottest condensates and the coldest flue gas with the coldest condensates.
3. Process in accordance with claim 2, characterized in that the steam condensate comes from the "low pressure" part of the circuit of heating of water fed to the boiler and that the steam formed by the heat exchange with the flue gas is returned to said "low pressure" part to contribute to the heating of the water fed to the boiler.
4. Device for the application of the process in accordance with any of claims 1 to 3, usable in a steam turbine power station in which steam is taken from the turbine to heat the water fed to the boiler (CH), said station comprising for that purpose a set of heaters (R1...R4), characterized in that it consists in at least one recuperator-vaporizer (RE1...RE3) in which the flue gas exchanges its heat with a steam condensate from a heater (R,...R3) cited hereabove and coming exclusively from steam taken from the steam turbine.
5. Device in accordance with claim 4, characterized in that the recuperator-vaporizers (RE,...RE3) are casings containing at least two smoke boxes (6, 7) and one nest of tubes (8) which convey inside the flue gas which goes successively in the recuperators-vaporizers (RE3, RE2 and RE1) whilst cooling.
6. Device in accordance with claim 5, characterized in that the recuperators-vaporizers (RE,...RE3) receive a fraction of the condensates of the heaters (R1, R2, R3) and vaporize them in contact with the tubes conveying the flue gas, the steam formed being returned to the heaters whence the condensates came.
7. Device in accordance with claim 5, characterized in that at least two successive recuperators-vaporizers are built into a single apparatus.
8. Device in accordance with claim 7, characterized in that two successive recuperators-vaporizers are built into a single apparatus with a smoke box common to two recuperators-vaporizers and located between them.
9. Device in accordance with claim 5, characterized in that the length of tubes (8) corresponds to whole of at least two successive recuperators-vaporizers and that the various recuperators-vaporizers are separated by a sealed tube plate (21) not allowing the passage of fluid between the spaces of heat exchange of each recuperator-vaporizer.
EP85870007A 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations Expired EP0188183B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP85870007A EP0188183B1 (en) 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations
DE8585870007T DE3568605D1 (en) 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations
AT85870007T ATE41202T1 (en) 1985-01-16 1985-01-16 METHOD AND DEVICE FOR RECOVERING ENERGY FROM THE EXHAUST GAS OF A THERMAL POWER PLANT.
US06/757,623 US4617878A (en) 1985-01-16 1985-07-22 Process and device for recovery of thermal energy in a steam generating system
ZA86135A ZA86135B (en) 1985-01-16 1986-01-08 Process and device for recovery of thermal energy in a steam generating system
AU52214/86A AU579701B2 (en) 1985-01-16 1986-01-13 Process and device for recovery of thermal energy in a steam generating system
JP61004421A JPS61211607A (en) 1985-01-16 1986-01-14 Method and device for recovering heat energy in steam generating system
CA000499746A CA1260341A (en) 1985-01-16 1986-01-16 Process and device for recovery of thermal energy in a steam generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85870007A EP0188183B1 (en) 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations

Publications (2)

Publication Number Publication Date
EP0188183A1 EP0188183A1 (en) 1986-07-23
EP0188183B1 true EP0188183B1 (en) 1989-03-08

Family

ID=8194729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85870007A Expired EP0188183B1 (en) 1985-01-16 1985-01-16 Process and device for recovering thermal energy from the exhaust gases of thermal-power stations

Country Status (8)

Country Link
US (1) US4617878A (en)
EP (1) EP0188183B1 (en)
JP (1) JPS61211607A (en)
AT (1) ATE41202T1 (en)
AU (1) AU579701B2 (en)
CA (1) CA1260341A (en)
DE (1) DE3568605D1 (en)
ZA (1) ZA86135B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561220B1 (en) * 1992-03-16 1995-09-13 Siemens Aktiengesellschaft Process for operating a steam generating system and steam generator
US6371058B1 (en) * 2000-04-20 2002-04-16 Peter Tung Methods for recycling process wastewater streams
US7690201B2 (en) * 2005-11-07 2010-04-06 Veritask Energy Systems, Inc. Method of efficiency and emissions performance improvement for the simple steam cycle
EP2813286A1 (en) * 2013-06-11 2014-12-17 Evonik Industries AG Reaction tube and method for the production of hydrogen cyanide
MX2016004436A (en) 2013-10-11 2016-06-21 Evonik Degussa Gmbh Reaction tube and method for producing hydrogen cyanide.
CN107560462A (en) * 2016-06-30 2018-01-09 宝山钢铁股份有限公司 A kind of segmented smoke heat replacing device
EP3301075A1 (en) 2016-09-28 2018-04-04 Evonik Degussa GmbH Method for producing hydrogen cyanide
CN107120636A (en) * 2017-05-22 2017-09-01 大唐(北京)能源管理有限公司 A kind of coal fired power plant low temperature exhaust heat deep exploitation system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE541802A (en) *
US1152421A (en) * 1913-07-21 1915-09-07 William L Danley Steam-boiler.
US1589646A (en) * 1925-07-13 1926-06-22 Irving C Hicks Feed-water heater
US2392325A (en) * 1941-07-03 1946-01-08 Riley Stoker Corp Steam generating apparatus
DE1122081B (en) * 1958-09-09 1962-01-18 Schmidt Sche Heissdampf Device for preheating the feed water and the combustion air using the flue gases of a steam generator
FR1435041A (en) * 1965-03-01 1966-04-15 Babcock & Wilcox France Improvements to steam power plants
FR1461570A (en) * 1965-10-25 1966-02-25 Fives Penhoet Method of operating an installation comprising a boiler supplying a steam turbine and installation for the implementation of this process
FR1504666A (en) * 1966-10-20 1968-02-14
FR2043956A5 (en) * 1969-05-14 1971-02-19 Stein Industrie
DE2453488C2 (en) * 1974-11-12 1981-11-26 Saarbergwerke AG, 6600 Saarbrücken Process and system for discharging exhaust gases with low pollutant content into the atmosphere
ATE22152T1 (en) * 1980-01-18 1986-09-15 Hamon Sobelco Sa REHEATING SYSTEM FOR A STEAM TURBINE POWER PLANT.
US4501233A (en) * 1982-04-24 1985-02-26 Babcock-Hitachi Kabushiki Kaisha Heat recovery steam generator
US4445461A (en) * 1982-06-14 1984-05-01 Allis-Chalmers Corporation Waste heat recovery method and apparatus
US4526112A (en) * 1982-08-10 1985-07-02 Heat Exchanger Industries, Inc. Heat exchanger method and apparatus
DE3236905C2 (en) * 1982-10-06 1986-01-02 Gottfried Bischoff Bau kompl. Gasreinigungs- und Wasserrückkühlanlagen GmbH & Co KG, 4300 Essen Process for desulphurization of flue gases and device for carrying out the process
JPH0245763B2 (en) * 1983-02-14 1990-10-11 Hitachi Ltd JOKITAABINPURANTONOKYUSUIKANETSUKEITO
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
US4491093A (en) * 1984-03-26 1985-01-01 Hoekstra I Arthur Energy and water recovery from flue gases

Also Published As

Publication number Publication date
AU579701B2 (en) 1988-12-08
AU5221486A (en) 1986-07-24
ATE41202T1 (en) 1989-03-15
DE3568605D1 (en) 1989-04-13
US4617878A (en) 1986-10-21
ZA86135B (en) 1986-10-29
EP0188183A1 (en) 1986-07-23
CA1260341A (en) 1989-09-26
JPS61211607A (en) 1986-09-19

Similar Documents

Publication Publication Date Title
US10670334B2 (en) Highly cost effective technology for capture of industrial emissions without reagent for clean energy and clean environment applications
FI82767C (en) Method and apparatus for flue gas condensation
US4287938A (en) Method for exchanging heat and a device for carrying out said method
EP0188183B1 (en) Process and device for recovering thermal energy from the exhaust gases of thermal-power stations
EP1725812B1 (en) Oxygen-producing oxycombustion boiler
BE1011016A3 (en) Convective heat exchanger countercurrent.
FR2550610A1 (en) EFFICIENT PROCESS FOR HEAT RECOVERY LOST FROM GASEOUS EFFLUENTS CONTAINING SULFUR
CA1144147A (en) Heat exchanger/recuperator with cycle inversion, and its use for extracting heat from the exhaust of fired ovens
EP2795073A1 (en) Cogeneration method and equipment
EP0337910A1 (en) Process for reducing the content of non-condensables elements, which are present in fumes containing condensables and which are soluble in the condensable elements
US4577380A (en) Method of manufacturing heat exchangers
FR2576968A1 (en) METHOD AND DEVICE FOR OPERATING A POWER PLANT
EP1774223A1 (en) Method for generating water vapour adapted to oxycombustion
US5706644A (en) Method of operating a gas and steam power plant
EP0110763B1 (en) Heating plant equipped with an absorption heat pump
FR2490331A1 (en) Fluid circuit for solar energy collector - uses two heat exchanger panels and auxiliary fluid circulation to preheat main fluid
FR2850733A1 (en) Vapor generator for actuating revolving machine e.g. steam turbine, has one combustion hearth with boiler and vaporization zone, and another hearth with another boiler and over heat zone
FR2983901A1 (en) Thermal installation for production of electricity by combustion of e.g. biomass, has vapor circuit leveled with overheating exchanger that is placed between set of turbines, and overheating exchanger allowing rise in temperature of steam
FR3011917A1 (en) METHOD AND INSTALLATION FOR HEAT RECOVERY ON WET FUMES
EP2918911B1 (en) Combustion process in thermal combustion plant
FR3005143A1 (en) THERMAL INSTALLATION FOR THE PRODUCTION OF ELECTRICITY BY COMBUSTION
CN102128445B (en) Method, device and system for recycling moisture and latent heat of vaporization in lignite smoke
EP0246964A1 (en) Process and installation for drying flue gases before their discharge
JPS61125513A (en) White smoke inhibitor
WO2021170898A1 (en) Method and apparatus for purifying flue gas containing fine particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860915

17Q First examination report despatched

Effective date: 19870619

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890308

Ref country code: NL

Effective date: 19890308

Ref country code: SE

Effective date: 19890308

Ref country code: AT

Effective date: 19890308

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890308

REF Corresponds to:

Ref document number: 41202

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3568605

Country of ref document: DE

Date of ref document: 19890413

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

Ref country code: LI

Effective date: 19900131

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920115

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: S.A. HAMON-SOBELCO

Effective date: 19930131