EP0185776B1 - Vorrichtung zum nachweis der absoluten stellung eines servoregelsystems - Google Patents

Vorrichtung zum nachweis der absoluten stellung eines servoregelsystems Download PDF

Info

Publication number
EP0185776B1
EP0185776B1 EP85903365A EP85903365A EP0185776B1 EP 0185776 B1 EP0185776 B1 EP 0185776B1 EP 85903365 A EP85903365 A EP 85903365A EP 85903365 A EP85903365 A EP 85903365A EP 0185776 B1 EP0185776 B1 EP 0185776B1
Authority
EP
European Patent Office
Prior art keywords
absolute
encoder
absolute position
movable element
servomotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85903365A
Other languages
English (en)
French (fr)
Other versions
EP0185776A4 (de
EP0185776A1 (de
Inventor
Kenichi Toyoda
Shinsuke Mezonizumi 101 Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Publication of EP0185776A1 publication Critical patent/EP0185776A1/de
Publication of EP0185776A4 publication Critical patent/EP0185776A4/de
Application granted granted Critical
Publication of EP0185776B1 publication Critical patent/EP0185776B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/27Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding groups G05B19/21, G05B19/27 and G05B19/33

Definitions

  • This invention relates to an absolute position detecting apparatus of a servo-control system for controlling a servomotor.
  • Servomotors are widely utilized for highly accurate positioning of the movable element of an industrial robot or the like and are servo-controlled.
  • FIG. 4 denotes an absolute encoder which, along with a pulse coder 116, is connected directly to the rotary shaft of a servomotor 105.
  • the absolute encoder comprises a disk the circumference whereof is provided with codes corresponding to rotational position, and optical reading means for reading the code at a specific position.
  • the absolute encoder may be integrated with the pulse coder 116.
  • Numerals 111a, 111b denote gears provided on the rotary shaft of the servomotor 105 and on the rotary shaft of a resolver 202, respectively, for transmitting the rotational motion of the servomotor 105 to the resolver 202.
  • the full stroke of a movable element 112 driven by the rotation of the servomotor 105 is l, as shown in Figs. 3 and 4, and that the number of revolutions of the motor 105 needed for this stroke is Pm (the number Pm of revolutions is not limited to an integer).
  • the gear ratio of the gears 111a, 111b is decided in such a manner that the resolver 202 makes one revolution for Pm revolutions of the motor 105.
  • PCC represents a position control circuit including an error calculating and storing unit 107.
  • RPC denotes a resolver detection circuit for outputting a grid position r i upon detecting a phase difference from the output of the resolver 202.
  • APC represents an absolute position detecting circuit for detecting an absolute position A of the movable element 112 from the grid position r i and an output a h from the absolute encoder 110.
  • a resolver is a rotary transformer having stator and rotor windings.
  • Fig. 5 is a perspective view, partly broken away, for describing the structure of such a resolver.
  • numeral 202a denotes a shaft, 202b a bearing retainer, 202c a stator, 202d a terminal, 202e a slip ring, 202f a stator retainer, 202g a case, 202h a rotor, and 202i a ball bearing.
  • a resolver is a mechanical detector having a complicated construction and therefore requires considerable space, is high in cost and demands both time and labor for mounting and maintenance.
  • An embodiment of the present invention provides an absolute position detecting apparatus of a servo-control system, which apparatus may be designed to require a compact space, to be inexpensive and advantageous in terms of mounting and maintenance.
  • an absolute position detecting apparatus of a servo-control system for detecting an absolute position of a movable element driven by a servomotor comprising: a first digital rotary absolute position encoder for dividing a movement of the movable element into a plurality of grid positions; a second digital rotary absolute position encoder for detecting a position of the movable element in an interval between adjacent ones of said grid positions; and means for detecting an absolute position of the movable element based on output signals from the first and second absolute position encoders; characterised in that the servomotor is arranged to drive the movable element along a linear path having a predetermined stroke l, the second absolute position encoder is driven directly by the servomotor and the first absolute position encoder is driven by the servomotor through a reduction mechanism so that the first absolute position encoder rotates once for the m number of revolutions taken by the servomotor to produce a single full linear stroke l of the movable element, whereby
  • an embodiment of the present invention requires less space, is inexpensive and advantageous in terms of mounting and maintenance.
  • Fig. 1 is a view for describing an absolute position detecting apparatus of a servo-control system according to the present invention
  • Fig. 2 is an overall block diagram illustrating a method of detecting absolute position in a servo-control system
  • Fig. 3 is a view for an operational description of a servo-control system absolute position detecting method
  • Fig. 4 is a view for describing a conventional absolute position detecting apparatus having a resolver
  • Fig. 5 is a perspective view, partly broken away, for describing the structure of a resolver.
  • Fig. 1 is an overall view of an arrangement for detecting absolute position in a servo-control system according to the present invention.
  • numeral 105 denotes the servomotor
  • numeral 106 denotes an absolute position detecting apparatus comprising a first absolute (as opposed to incremental) encoder 106a, a second absolute (as opposed to incremental) encoder 106b, a pulse coder 106c, a reduction mechanism 106d, and an output shaft 106e of the servomotor 105.
  • the first absolute encoder 106a is coupled to the rotary shaft 106e of the servomotor 105 through the reduction mechanism 106d and gears 106g, 106h.
  • Numeral 200 denotes a signal processor, which includes a grid position generating circuit GPG, the absolute position detecting circuit APC, the position control circuit PCC, and the error calculating and storing unit 107. Shown at r i is a grid position signal.
  • the rotational motion of the servomotor 105 is transmitted to the second absolute encoder 106b and pulse coder 106c via the output shaft 106, and to the first absolute encoder 106a via the gears 106g, 106h and reduction mechanism 106d.
  • the first absolute encoder 106a replaces the conventional resolver and is used for rough detection of absolute position.
  • the first absolute encoder is of 12-bit construction and, though not shown in Fig. 1, makes one revolution for the full stroke l of the movable element.
  • a rough signal produced as an output by the first absolute encoder 106a enters the grid position generating circuit GPG, which outputs the grid position signal r i .
  • numeral 101 denotes a paper tape in which NC command data are punched.
  • the tape stores such NC command data as positioning information for machining, M-, S- and T-function information, and the like.
  • Numeral 102 denotes an NC unit which causes a tape reader 102e to read the NC data from the paper tape 101, and which decodes the NC data.
  • the NC unit 102 has a processor 102a for executing processing in accordance with a control program, a program memory 102b for storing a predetermined control program, a data memory 102c for storing data, an operator's panel 102d for control, a tape reader/puncher 102e, a display device 102f, an input/output port 102g, a present position counter 102h, and an address/data bus 102j interconnecting these components.
  • Numeral 103 denotes a pulse distributor which executes a well-shown pulse distribution calculation based on the move command Zc to generate distributed pulses PUS of a frequency corresponding to a commanded velocity.
  • Numeral 104 designates an acceleration/deceleration circuit for linearly accelerating the pulse rate of the distributed pulse train PUS when the pulse train is generated, and for linearly decelerating the pulse rate at the end of the pulse train, thereby generating a pulse train PUI.
  • Numeral 105 denotes the servomotor, which drives an operating shaft.
  • Numeral 106 designates the absolute position detecting apparatus for detecting the absolute position of the servo-control system, the apparatus being provided on the output shaft of the servomotor 105 and illustrated in detail in Fig. 1.
  • PCC represents the error calculating and storing unit which, by way of example, is constituted by a reversible counter, for storing a difference Er between a number of feedback pulses and a number of input pulses PUI generated by the acceleration/deceleration circuit 104 and indicative of a position command value.
  • the error calculating and storing unit may be constituted by an arithmetic circuit 107a for calculating the difference Er between the pulse train PUI and the feedback pulses, and the error register 107 for storing the error Er, as illustrated.
  • Numeral 108 denotes a digital/analog (D/A) converter for generating an analog voltage proportional to the contents of the error register 107, and 109 designates a velocity control circuit.
  • the error calculating and storing unit PCC and the D/A converter 108 construct a motor position control circuit DCC.
  • Fig. 3 is a view for describing the operation of the arrangement shown in Fig. 2.
  • let l represent the full stroke of the movable element along the operating shaft driven by the rotation of the servomotor 105
  • m represent the number of revolutions required to be made by the servomotor 105 to traverse this stroke (where the number m of revolutions is not limited to an integer).
  • the reduction mechanism 106d performs a speed reduction so that the first absolute encoder 106a will make one revolution for m revolutions of the servomotor 105. Accordingly, the first absolute encoder revolves once for movement equivalent to one full stroke.
  • Fig. 3 is a view for describing the operation of the arrangement shown in Fig. 2.
  • let l represent the full stroke of the movable element along the operating shaft driven by the rotation of the servomotor 105
  • m represent the number of revolutions required to be made by the servomotor 105 to traverse this stroke (where the number m of revolutions is not limited to an integer
  • PCC denotes the position control circuit comprising the error calculating and storing unit 107, etc., shown in Fig. 2.
  • the position control circuit receives pulses P produced by the pulse coder 106c and is supplied with the output of the absolute position detecting circuit APC.
  • the position control circuit performs position control based on these signals.
  • APC represents the absolute position detecting circuit, which detects absolute position x from the grid position signal r i and the output a h of the second absolute encoder 106b.
  • a grid position r i is obtained on the basis of the output from the first absolute encoder 106a.
  • the second absolute encoder 106b divides one fourth of a revolution into 16 equal parts every quarter revolution of the servomotor 105 and outputs absolute positions a1 - a16 corresponding thereto. Accordingly, the absolute positions a1 - a16 are produced four times for each single revolution of the servomotor 105.
  • the grid position r i is converted into the grid position P jk of the second absolute encoder 106b for the i-th revolution of the servomotor 105. This can be found with facility since the resolution n and number m of revolutions of the servomotor 105 are already known.
  • the grid position r i of the first absolute encoder 106a corresponds to n/4m. Therefore, the i-th grid position r i of the first absolute encoder 106a corresponds to the i ⁇ 4m/n-th grid position P jk of the second absolute encoder 106b.
  • the detecting circuit APC obtains the absolute position of point A.
  • the second absolute encoder 106 is composed of, e.g., four bits to enable highly precise detection of position.
  • the absolute position detecting apparatus may be accommodated in compact fashion within a case 106f, as indicated by the dashed line in Fig. 1.
  • control system has one drive shaft. It goes without saying, however, that the invention can also be applied to a control system having a plurality of drive shafts.
  • the present invention is applicable to an absolute position detecting apparatus of a servo-control system having a numerical control unit for controlling the movable element of a robot or the movable element of a machine tool such as a lathe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Claims (5)

  1. Vorrichtung zur Feststellung einer absoluten Position eines Servoregelsystems zur Feststellung einer absoluten Position eines durch einen Servomotor (105) angetriebenen bewegbaren Elements (112) mit
       einem ersten absoluten digitalen Decoder (106a) der Rotationsstellung zum Aufteilen einer Bewegung des bewegbaren Elements (112) in eine vielzahl von Rasterstellungen (rn),
       einem zweiten absoluten digitalen Decoder (106b) der Rotationsstellung zum Feststellen einer Position des bewegbaren Elements (112) in einem Zwischenraum zwischen jeweils zwei benachbarten der genannten Rasterstellungen (rn), und
       Mittel (APC) zur Feststellung einer absoluten Position des bewegbaren Elements (112) auf der Grundlage von Ausgangssignalen der ersten und zweiten absoluten Stellungsdecoder (106a, 106b),
       dadurch gekennzeichnet, daß der Servomotor (105) eingerichtet ist, das bewegbare Element (112) entlang einer geradlinigen Bahn mit einem vorgegebenen Hub 1 anzutreiben, wobei der zweite absolute Stellungsdecoder (106b) direkt durch den Servomotor (105) angetrieben wird, und der erste absolute Stellungsdecoder (106a) durch den Servomotor (105) über einen Untersetzungsmechanismus (106d) angetrieben wird, so daß der erste absolute Stellungsdecoder (106a) sich nur einmal pro Anzahl m von Umdrehungen dreht, die von dem Servomotor (105) ausgeführt werden, um einen einzelnen vollständigen geradlinigen Hub 1 des bewegbaren Elements (112) zu erzeugen, wobei der Winkel α des ersten absoluten Stellungsdecoders (106a) eine unzweideutige grobe Position des geradlinig bewegbaren Elements (112) entlang seines Hubes zur Verfügung stellt, welcher in Kombination mit der durch den zweiten absoluten Stellungsdecoder (106b) erzeugten Anzeige eine genaue Anzeige der Position des bewegbaren Elements (112) entlang seines Hubs 1 liefert, da der erste absolute Stellungsdecoder (106a) den mechanischen Winkel α einer eine Rasterstellung erzeugenden Schaltung (CPG) zuführt, welche eine Rasterstellung (ri) berechnet, und daß der zweite absolute Stellungsdecoder (106b) die gleiche Anzahl (16) von absoluten Stellungen für jeden ganzen Bruchteil (1/4) einer vollständigen Umdrehung des Servomotors (105) ausgibt, daß dann die Rasterstellung (ri) in eine Rasterstellung (Pjk) des zweiten absoluten Decoders (106b) für die i-te Umdrehung des Servomotors (105) umgewandelt wird, wobei die endgültige absolute Position des geradlinig bewegbaren Elements (112) als eine Kombination der Rasterstellung (Pjk) und des Feststellungsausgangssignals (ah) des zweiten absoluten Stellungsdecoders (106b) bereitgestellt wird.
  2. Vorrichtung zur Feststellung einer absoluten Position eines Servoregelsystems nach Anspruch 1, dadurch gekennzeichnet, daß der erste absolute Decoder (106a) einen 12-bit-Aufbau aufweist.
  3. Vorrichtung zur Feststellung einer absoluten Position eines Servoregelsystems nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der zweite absolute Decoder (106b) einen 4-bit-Aufbau aufweist.
  4. Vorrichtung zur Feststellung einer absoluten Position eines Servoregelsystems nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Impulscodierer (106c), welcher sich zusammmen mit dem zweiten absoluten Decoder (106b) dreht, um Rückführungsimpulse (P) für einen externen Positionscontroller (PCC) zu liefern.
  5. Vorrichtung zur Feststellung einer absoluten Position eines Servoregelsystems nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens der erste und zweite absolute Decoder (106a, 106b) und die Untersetzungsvorrichtung (106c) im gleichen Gehäuse untergebracht sind.
EP85903365A 1984-06-26 1985-06-26 Vorrichtung zum nachweis der absoluten stellung eines servoregelsystems Expired - Lifetime EP0185776B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13174584A JPS6111820A (ja) 1984-06-26 1984-06-26 サ−ボ制御系の絶対位置検出装置
JP131745/84 1984-06-26

Publications (3)

Publication Number Publication Date
EP0185776A1 EP0185776A1 (de) 1986-07-02
EP0185776A4 EP0185776A4 (de) 1988-03-30
EP0185776B1 true EP0185776B1 (de) 1993-05-05

Family

ID=15065193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85903365A Expired - Lifetime EP0185776B1 (de) 1984-06-26 1985-06-26 Vorrichtung zum nachweis der absoluten stellung eines servoregelsystems

Country Status (4)

Country Link
EP (1) EP0185776B1 (de)
JP (1) JPS6111820A (de)
DE (1) DE3587320T2 (de)
WO (1) WO1986000430A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8919799D0 (en) * 1989-09-01 1989-10-18 British Telecomm Optical coupler
GB8928237D0 (en) * 1989-12-14 1990-02-21 British Telecomm Lossless optical component
JP2729113B2 (ja) * 1991-02-27 1998-03-18 株式会社ミツトヨ アブソリュートエンコーダ
DE4229439A1 (de) * 1992-09-03 1994-03-10 Bosch Gmbh Robert Vorrichtung und Verfahren zur Lageregelung eines beweglichen Teils
JP3436515B2 (ja) * 2000-04-18 2003-08-11 株式会社ミツトヨ 測定装置、信号出力方法および記憶媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB872470A (en) * 1956-08-21 1961-07-12 Warner Swasey Co Improvements in or relating to electrical programming for angularly positioning shafts
US3738504A (en) * 1971-11-22 1973-06-12 North American Rockwell Back gauge position feed back signal generation
JPS5232433B2 (de) * 1973-09-29 1977-08-22
JPS5420760A (en) * 1977-07-15 1979-02-16 Toshiba Corp Digital position detector
JPS5565055A (en) * 1978-11-09 1980-05-16 Komatsu Ltd Method for indexing rotary body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Prof.Dr.-Ing.Wilhem Simon:"Die numerische Steuerung von Werkzeugmaschinen",p.42-45/85-98/101-112. *

Also Published As

Publication number Publication date
JPS6111820A (ja) 1986-01-20
DE3587320T2 (de) 1993-08-12
DE3587320D1 (de) 1993-06-09
WO1986000430A1 (en) 1986-01-16
EP0185776A4 (de) 1988-03-30
EP0185776A1 (de) 1986-07-02

Similar Documents

Publication Publication Date Title
EP0139769B1 (de) System zum nachweis der absolutstelle in servoregelsystemen
US4575666A (en) Absolute position detecting system for servocontrol system
EP0177060B1 (de) Digitales Servosteuersystem
US4947336A (en) Multiple axis motion control system
US3781629A (en) Synchronous control system adapted for a numerically controlled machine
US3400314A (en) Numerical positioning control system
US4109185A (en) Servo system employing digital components
EP0292575B1 (de) Regelanordnung mit servolenkung
EP0292574B1 (de) Numerische regelvorrichtung
US4827203A (en) Rotor rotational position detector for a motor
EP0185776B1 (de) Vorrichtung zum nachweis der absoluten stellung eines servoregelsystems
US3211896A (en) Automatic control apparatus
KR880000272B1 (ko) 수치 제어장치의 위치오차보정방식 및 장치
US3497778A (en) Part positioning device and plural stepping motor control therefor
JP3370845B2 (ja) アブソリュートエンコーダ
US5006772A (en) Position monitor for a stepper motor
EP0267966A1 (de) Ortungssystem
GB863125A (en) Numerically controlled curve interpolating machine
US3101436A (en) Numerically controlled positioning system
US3611101A (en) Multiloop positioning control system
CA1151268A (en) Resolver interface for servo position control
JP2526855B2 (ja) ブラシレスモ−タ制御装置
JPS59229609A (ja) 産業用ロボツトの制御装置
US4163932A (en) Numerical control system and method for a three axes movement
JPH01135447A (ja) 絶対位置検出装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 19880330

17Q First examination report despatched

Effective date: 19900314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930505

REF Corresponds to:

Ref document number: 3587320

Country of ref document: DE

Date of ref document: 19930609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930630

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930805

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930805

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301