EP0185598B1 - Anode tournante pour tube à rayons X - Google Patents

Anode tournante pour tube à rayons X Download PDF

Info

Publication number
EP0185598B1
EP0185598B1 EP85420225A EP85420225A EP0185598B1 EP 0185598 B1 EP0185598 B1 EP 0185598B1 EP 85420225 A EP85420225 A EP 85420225A EP 85420225 A EP85420225 A EP 85420225A EP 0185598 B1 EP0185598 B1 EP 0185598B1
Authority
EP
European Patent Office
Prior art keywords
emissive material
base body
anode according
anode
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85420225A
Other languages
German (de)
English (en)
Other versions
EP0185598A1 (fr
Inventor
Michel Bargues
René Romano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Original Assignee
Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA filed Critical Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Priority to AT85420225T priority Critical patent/ATE39784T1/de
Publication of EP0185598A1 publication Critical patent/EP0185598A1/fr
Application granted granted Critical
Publication of EP0185598B1 publication Critical patent/EP0185598B1/fr
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures

Definitions

  • the present invention relates to an anode, in particular a rotating anode intended to equip an X-ray tube.
  • X-ray tubes used mainly in radiology are equipped with disc-shaped amodes or anticathodes whose function is to emit X-radiation from the parts of their surface which are subjected to the action of a flow of electrons coming from a cathode with a sufficiently high kinetic energy.
  • this basic body had to have, at the same time, a high melting temperature, a high specific heat and a good coefficient of thermal conductivity.
  • molybdenum we turned to graphite because it had a much higher specific heat and also because it was lighter, which simplified its rotation in the case of anodes rotating.
  • problems with cracking of the active zone due, both to reactions which occur between the tungsten layer and the graphite and which lead to fragile intermediate layers and to differences in expansion between the materials present.
  • it has been recommended to deposit a barrier layer between graphite and tungsten which can be, for example, pure rhenium as taught in French patent 1,575,117.
  • This product is a nitrogenous aluminum compound, with the chemical formula AIN which can be obtained in powder form and whose thermal and mechanical properties allow it to be shaped by conventional sintering techniques to give a solid of density 3 , 26 approximately, that is to say a little larger than graphite but, clearly smaller than that of molybdenum.
  • This product also has a relatively high melting temperature and in particular a good coefficient of thermal conductivity which makes it possible to channel and evacuate throughout the anode the significant thermal flux created in the active area.
  • the Applicant has found perfect adhesion between the elements of the composite thus formed, a quality which is maintained over time. under the action of electron fluxes of very high kinetic energy.
  • the anode according to the invention finds its application in all X-ray tubes including the most recent models implementing high powers and rotational speeds which can be greater than 10,000 revolutions / minute.

Landscapes

  • X-Ray Techniques (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Ceramic Products (AREA)

Description

  • La présente invention a pour objet une anode, notamment une anode tournante destinée à équiper un tube à rayons X.
  • L'homme de l'art sait que les tubes à rayons X utilisés principalement en radiologie sont équipés d'amodes ou anticathodes en forme de disque dont la fonction est d'émettre un rayonnement X à partir des parties de leur surface qui sont soumises à l'action d'un flux d'électrons provenant d'une cathode avec une énergie cinétique suffisamment grande.
  • Il est également connu que dans un tube à rayons X l'énergie cinétique des électrons n'est transformée en énergie de rayons X que dans une proportion voisine de 1 %, de sorte que la majeure partie de l'énergie des électrons se convertit en chaleur.
  • C'est pourquoi, à l'origine, ces anodes étaient constituées exclusivement par un matériau ayant, outre de bonnes caractéristiques d'émissivité de rayons X, une temperature de fusion très élevée, tel que, par exemple, le tungstène et ses alliages avec le rhénium notamment. Par la suite, les techniciens s'étant inquiétés du prix de revient élevé et du poids de ces anodes, se sont aperçus qu'il suffisait de fabriquer avec le tungstène seulement les parties qui recevaient les électrons, c'est-à-dire les "zones actives" ou les "pistes focales" de l'anode. On s'est alors orienté vers des anodes composites formées d'un corps de base en un produit mieux adapté que le tungstène, ledit corps étant muni de zones actives obtenues par revêtement de tungstène ou de ses alliages.
  • Pour assurer sa fonction correctement, ce corps de base devait avoir, à la fois, une température de fusion élevée, une grande chaleur spécifique et un bon coefficient de conductibilité thermique. On a d'abord utilisé le molybdène puis on s'est tourné vers le graphite parce qu'il avait une chaleur spécifique beaucoup plus élevée et aussi parce qu'il était plus léger, ce qui simplifiait sa mise en rotation dans le cas des anodes tournantes. Mais on s'est alors heurté à des problèmes de fissuration de la zone active dûs, à la fois à des réactions qui se produisent entre la couche de tungstène et le graphite et qui conduisent à des couches intermédiaires fragiles et à des différences de dilatation entre les matériaux en présence. Pour remédier à ce défaut on a préconisé de déposer une couche barrière entre le graphite et le tungstène qui peut être, par exemple, du rhénium pur comme cela est enseigné dans le brevet français 1 575 117. De plus, le développement de la radiologie a conduit les concepteurs de matériel à étudier l'accroissement de la vitesse de rotation de l'anode et à rechercher des vitesses pouvant dépasser largement 10.000 tours/minute. A ces vitesses, les qualités mécaniques du corps de base doivent être élevées et ce corps doit posséder une faible densité, une chaleur spécifique élevée et un bon coefficient de conductibilité thermique.
  • Consciente des avantages que procuraient les anodes composites dont le corps de base est moins dense que le molybdène, la demanderesse a cherché à trouver un matériau répondant à ces critères et qui, à la différence du graphite, ne nécessite pas la présence d'une couche barrière et permet par ses caractéristiques mécaniques élevées d'atteindre des vitesses de rotation pouvant dépasser 10.000 tours/minute.
  • Ses recherches ont abouti à la mise au point d'une anode caractérisée en ce que le corps de base est constitué par du nitrure d'aluminium.
  • Ce produit est un composé azoté de l'aluminium, de formule chimique AIN qui peut être obtenu à l'état de poudre et dont les propriétés thermiques et mécaniques permettent la mise en forme par les techniques classiques de frittage pour donner un solide de densité 3,26 environ, c'est-à-dire un peu plus grande que le graphite mais, nettement plus petite que celle du molybdène. Ce produit possède également une température de fusion relativement élevée et notamment un bon coefficient de conductibilité thermique qui permet de canaliser et d'évacuer dans toute l'anode le flux thermique important créé dans la zone active. Ce sont là autant de caractéristiques qui en font un produit intéressant pour la confection des anodes mais qui ne suffiraient pas à être compétitif vis-à-vis du graphite ou des anodes en métal massif, s'il n'avait pas été découvert par la demanderesse, que ledit produit pouvait être revêtu directement par le matériau émissif sans avoir besoin de prévoir une couche d'accrochage ou une couche barrière et si ledit produit ne présentait pas les caractéristiques mécaniques permettant son utilisation à des vitesses de rotation élevées.
  • En effet quelle que soit la nature du métal ou alliage constituant la zone active et la manière de le déposer sur le corps de base, la demanderesse a constaté une adhérence parfaite entre les éléments du composite ainsi constitué, qualité qui se maintient dans le temps même sous l'action de flux d'électrons de très grande énergie cinétique.
  • C'est ainsi qu'ont été réalisés des dépôts d'épaisseur comprise entre 0,5 et 2 mm de tungstène, de rhénium, d'iridium, d'osmium et de leurs alliages ou de leurs composés du type carbure, nitrure, borure suivant des procédés très différents tels que l'électrolyse en bain de sel fondu, le dépôt en phase vapeur qu'il soit physique ou chimique, la fixation par brasage ou autre méthode de fixation d'éléments en métal fritté, sous forme de couronne, de portions de couronne, sur des surfaces planes ou en creux sans qu'on observe de phénomènes de décohésion ou d'altérations après de longues périodes d'utilisation dans des tubes de grande puissance mis en oeuvre dans les techniques radiologiques les plus modernes.
  • A titre d'exemple, on peut citer le cas d'une anode classique qui était utilisée dans des conditions de puissance et de temps telles que la température de la zone active était comprise entre 2500 et 300°C et que l'on a remplacé par une anode selon l'invention.
  • Son emploi dans les mêmes conditions a conduit à un abaissement de la temperature de la zone active comprise entre 200 et 400° C ce qui montre les bonnes caractéristiques de transmission de chaleur du nitrure d'aluminium.
  • L'anode selon l'invention trouve son application dans tous les tubes à rayons X y compris les modèles les plus récents mettant en oeuvre des puissances élevées et des vitesses de rotation pouvant être supérieures à 10.000 tours/minute.

Claims (6)

1. Anode tournante pour tube à rayons X constituée par un corps de base dont au moins une partie de la surface dite "active" est recouverte d'une couche d'un matériau émissif, caractérisée en ce que le corps de base est réalisé en nitrure d'aluminium.
2. Anode selon la revendication 1, caractérisée en ce que le corps de base résulte d'un frittage de particules.
3. Anode selon la revendication 1, caractérisée en ce que le matériau émissif est en contact direct avec le corps de base.
4. Anode selon la revendication 1, caractérisée en ce que le matériau émissif appartient au groupe constitué par les métaux tungstène, rhénium, osmium, iridium, leurs alliages et leurs composés tels que carbure, nitrure, borure.
5. Anode selon la revendication 1, caractérisée en ce que le matériau émissif résulte d'une technique appartenant au groupe constitué par l'électrolyse en bain fondu, le dépôt chimique en phase aqueuse, le dépôt physique en phase vapeur, la fixation par brasage et autre méthode de fixation d'éléments en métal fritté.
6. Anode selon la revendication 1, caractérisée en ce que le matériau émissif a une épaisseur comprise entre 0,5 et 2 mm.
EP85420225A 1984-12-13 1985-12-10 Anode tournante pour tube à rayons X Expired EP0185598B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85420225T ATE39784T1 (de) 1984-12-13 1985-12-10 Drehanode fuer roentgenroehre.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419398A FR2574988B1 (fr) 1984-12-13 1984-12-13 Anode tournante pour tube a rayons x
FR8419398 1984-12-13

Publications (2)

Publication Number Publication Date
EP0185598A1 EP0185598A1 (fr) 1986-06-25
EP0185598B1 true EP0185598B1 (fr) 1989-01-04

Family

ID=9310746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85420225A Expired EP0185598B1 (fr) 1984-12-13 1985-12-10 Anode tournante pour tube à rayons X

Country Status (6)

Country Link
EP (1) EP0185598B1 (fr)
JP (1) JPS61143929A (fr)
AT (1) ATE39784T1 (fr)
DE (1) DE3567318D1 (fr)
FR (1) FR2574988B1 (fr)
SU (1) SU1479013A3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975621A (en) * 1989-06-26 1990-12-04 Union Carbide Corporation Coated article with improved thermal emissivity
JPH0793099B2 (ja) * 1990-07-27 1995-10-09 信淳 渡辺 回転陽極x線管ターゲットの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1178523B (de) * 1962-07-04 1964-09-24 Patra Patent Treuhand Roentgenroehren-Drehanode, insbesondere tellerfoermige Drehanode
US3459678A (en) * 1966-01-03 1969-08-05 Eastman Kodak Co Olefin hydration catalyst
DE2201979C3 (de) * 1972-01-17 1979-05-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung einer geschwärzten Schicht auf Drehanoden von Röntgenröhren
US3819971A (en) * 1972-03-22 1974-06-25 Ultramet Improved composite anode for rotating-anode x-ray tubes thereof
AT336143B (de) * 1975-03-19 1977-04-25 Plansee Metallwerk Rontgenanode
CA1142211A (fr) * 1978-11-20 1983-03-01 Richard G. Weber Cible de rayons x tournable a revetement
JPS56141153A (en) * 1980-04-03 1981-11-04 Toshiba Corp Target for x-ray tube

Also Published As

Publication number Publication date
SU1479013A3 (ru) 1989-05-07
FR2574988B1 (fr) 1988-04-29
DE3567318D1 (en) 1989-02-09
JPH023263B2 (fr) 1990-01-23
JPS61143929A (ja) 1986-07-01
ATE39784T1 (de) 1989-01-15
EP0185598A1 (fr) 1986-06-25
FR2574988A1 (fr) 1986-06-20

Similar Documents

Publication Publication Date Title
US4090103A (en) X-ray target
US5008918A (en) Bonding materials and process for anode target in an x-ray tube
CA2196589C (fr) Nitrure de titane dope par du bore, revetement de substrat a base de ce nouveau compose, possedant une durete elevee et permettant une tres bonne resistance a l'usure, et pieces comportant un tel revetement
FR2521776A1 (fr) Anode tournante pour tube a rayon x
US5148463A (en) Adherent focal track structures for X-ray target anodes having diffusion barrier film therein and method of preparation thereof
US5204891A (en) Focal track structures for X-ray anodes and method of preparation thereof
EP0273161B1 (fr) Cible pour tube à rayons X
EP1060497A1 (fr) Anode tournante avec tube a rayons x
US4978051A (en) X-ray tube target
EP0185598B1 (fr) Anode tournante pour tube à rayons X
NL8104258A (nl) Verbeterde trefplaat voor roentgenbuizen.
US5352489A (en) Method for manufacturing a rotary anode for X-ray tube
FR2655191A1 (fr) Anode pour tube a rayons x.
US5099506A (en) X-ray rotary anode
JPH0598423A (ja) チタンの酸化防止用のクロム被膜
EP0415847B1 (fr) Anticathode tournante de tube à rayons X
US20070207338A1 (en) X-ray target and method for manufacturing same
JPS598252A (ja) X線管用回転ターゲットの製造法
EP0112206B1 (fr) Procédé de revêtement en carbures de surfaces métalliques
JPH0719533B2 (ja) X線管用回転ターゲットの製造方法
FR2593325A1 (fr) Anode tournante a graphite pour tube radiogene
JPH0480493B2 (fr)
JP2004197116A (ja) 電子ビーム蒸着用ハースライナー
JPH02288136A (ja) X線管用ターゲット及びその製造方法並びにx線管
JPH03122955A (ja) X線管用回転陽極ターゲット

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB IT

17P Request for examination filed

Effective date: 19860730

17Q First examination report despatched

Effective date: 19880330

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE GB IT

REF Corresponds to:

Ref document number: 39784

Country of ref document: AT

Date of ref document: 19890115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3567318

Country of ref document: DE

Date of ref document: 19890209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931115

Year of fee payment: 9

Ref country code: DE

Payment date: 19931115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931206

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941210

Ref country code: AT

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941231

BERE Be: lapsed

Owner name: COMURHEX SOC. POUR LA CONVERSION DE L'URANIUM EN

Effective date: 19941231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901